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Abstract

In this work we revisit an interactive variant of joint differential privacy, recently
introduced by Naor et al. [2023], and generalize it towards handling online pro-
cesses in which existing privacy definitions seem too restrictive. We study basic
properties of this definition and demonstrate that it satisfies (suitable variants) of
group privacy, composition, and post processing.
In order to demonstrate the advantages of this privacy definition compared to
traditional forms of differential privacy, we consider the basic setting of online
classification. We show that any (possibly non-private) learning rule can be effec-
tively transformed to a private learning rule with only a polynomial overhead in
the mistake bound. This demonstrates a stark difference with traditional forms
of differential privacy, such as the one studied by Golowich and Livni [2021],
where only a double exponential overhead in the mistake bound is known (via an
information theoretic upper bound).

1 Introduction

In this work we study privacy of interactive machine learning processes. As a motivating story,
consider a chatbot that continuously improves itself by learning from the conversations it conducts
with users. As these conversations might contain sensitive information, we would like to provide
privacy guarantees to the users, in the sense that the content of their conversations with the chatbot
would not leak. This setting fleshes out the following two requirements.

(1) Clearly, the answers given by the chatbot to user ui must depend on the queries made by user
ui. For example, the chatbot should provide different answers when asked by user ui for the
weather forecast in Antarctica, and when asked by ui for a pasta recipe.
This is in contrast to the plain formulation of differential privacy, where it is required that all of
the mechanism outputs would be (almost) independent of any single user input. Therefore, the
privacy requirement we are aiming for is that the conversation of user ui will remain “hidden”
from other users, and would not leak through the other users’ interactions with the chatbot.
Moreover, this should remain true even if a “privacy attacker” (aiming to extract information
about the conversation user ui had) conducts many different conversations with the chatbot.

(2) The interaction with the chatbot is, by design, interactive and adaptive, as it aims to conduct
dialogues with the users. This allows the privacy attacker (mentioned above) to choose its
queries to the chatbot adaptively. Privacy, hence, needs to be preserved even in the presence of
adaptive attackers.

While each of these two requirements was studied in isolation, to the best of our knowledge, they have
not been (explicitly) unified into a combined privacy framework. Requirement (1) was formalized
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by Kearns et al. [2015] as joint differential privacy (JDP). It provides privacy against non-adaptive
attackers. Intuitively, in the chatbot example, JDP aims to hide the conversation of user ui from any
privacy attacker that chooses in advance all the queries it poses to the chatbot. This is unsatisfactory
since the adaptive nature of this process invites adaptive attackers.

Requirement (2) was studied in many different settings, but to the best of our knowledge, only w.r.t.
the plain formulation of DP, where the (adaptive) privacy attacker sees all of the outputs of the
mechanism. Works in this vein include [Dwork et al., 2009, Chan et al., 2010, Hardt and Rothblum,
2010, Dwork et al., 2010b, Bun et al., 2017, Kaplan et al., 2021, Jain et al., 2021]. In the chatbot
example, plain DP would require, in particular, that even the messages sent from the chatbot to user
ui reveals (almost) no information about ui. In theory, this could be obtained by making sure that the
entire chatbot model is computed in a privacy preserving manner, such that even its full description
leaks almost no information about any single user. Then, when user ui comes, we can “simply” share
the model with her, and let her query it locally on her device. But this is likely unrealistic with large
models involving hundreds of billions of parameters.

In this work we use challenge differential privacy, which was recently introduced by Naor et al. [2023]
in the context of PAC learning.6 As discussed below, challenge differential privacy is particularly
suitable for addressing interactive and adaptive learning processes, such as the one illustrated above.
Challenge DP can be viewed as an interactive variant of JDP, aimed at maintaining privacy against
adaptive privacy attackers. Intuitively, in the chatbot example, this definition would guarantee
that even an adaptive attacker that controls all of the users except for user ui, learns (almost) no
information about the conversation user ui had with the chatbot.

1.1 Private Online Classification

We initiate the study of challenge differential privacy in the basic setting of online classification. Let
X be the domain, Y be the label space, and Z = X ×Y be set of labeled examples. An online learner
is a (possibly randomized) mapping A : Z⋆ × X → Y . That is, it is a mapping that maps a finite
sequence S ∈ Z⋆ (the past examples), and an unlabeled example x (the current query point) to a
label y, which is denoted by y = A(x;S).
Let H ⊆ YX be a hypothesis class. A sequence S ∈ Z⋆ is said to be realizable by H if there
exists h ∈ H such that h(xi) = yi for every (xi, yi) ∈ S. For a sequence S = {(xt, yt)}Tt=1 ∈ Z⋆

we writeM(A;S) for the random variable denoting the number of mistakes A makes during the
execution on S. That isM

(
A;S

)
=

∑T
t=1 1{ŷt ̸= yt}, where ŷt = A(xt;S<t) is the (randomized)

prediction of A on xt.
Definition 1.1 (Online Learnability: Realizable Case). We say that a hypothesis classH is online
learnable if there exists a learning rule A such that E

[
M

(
A;S

)]
= o(T ) for every sequence S

which is realizable byH.
Remark 1.2. Notice that Definition 1.1 corresponds to an oblivious adversary, as it quantifies over
the input sequence in advance. This should not be confused with the adversaries considered in the
context of privacy which are always adaptive in this work. In the non-private setting, focusing on
oblivious adversaries does not affect generality in terms of utility. This is less clear when privacy
constraints are involved.7 We emphasize that our results (our mistake bounds) continue to hold even
when the realizable sequence is chosen by an adaptive (stateful) adversary, that at every point in time
chooses the next input to the algorithm based on all of the previous outputs of the algorithm.

A classical result due to Littlestone [1988] characterizes online learnability (without privacy con-
straints) in terms of the Littlestone dimension. The latter is a combinatorial parameter ofH which
was named after Littlestone by Ben-David et al. [2009].

In particular, Littlestone’s characterization implies the following dichotomy: ifH has finite Littlestone
dimension d then there exists a (deterministic) learning rule which makes at most d mistakes on

6The privacy notion we study, Challenge DP, is a generalization of the privacy notion presented by Naor et al.
[2023]. They focused on a special case in which there is no interaction with individual users. In the chatbot
example, this corresponds to having each user submitting only a single query to the chatbot without conducting
an adaptive dialog with it. In addition, we analyze useful properties of Challenge DP, such as composition,
post-processing, and group-privacy. These properties were not studied by Naor et al. [2023].

7In particular, Golowich and Livni [2021] studied both oblivious and adaptive adversaries, and obtained very
different results in these two cases.
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every realizable input sequence. In the complementing case, when the Littlestone dimension ofH is
infinite, for every learning rule A and every T ∈ N there exists a realizable sequence S of length T
such that E

[
M

(
A;S

)]
≥ T/2. In other words, as a function of T , the optimal mistake bound is

either uniformly bounded by the Littlestone dimension, or it is ≥ T/2. Because of this dichotomy, in
some places online learnability is defined with respect to a uniform bound on the number of mistakes
(and not just a sublinear one as in the above definition). In this work we follow the more general
definition.

We investigate the following questions: Can every online learnable class be learned by an algorithm
which satisfies challenge differential privacy? What is the optimal mistake bound attainable by
private learners?

Our main result in this part provides an affirmative answer to the first question. We show that for any
classH with Littlestone dimension d there exists an (ε, δ)-challenge-DP learning rule which makes
at most Õ

(
d2

ε2 log2
(
1
δ

)
log2

(
T
β

))
mistakes, with probability 1− β, on every realizable sequence of

length T . Remarkably, our proof provides an efficient transformation taking a non-private learner to
a private one: that is, given a black box access to a learning rule A which makes at most M mistakes
in the realizable case, we efficiently construct an (ε, δ)-challenge-DP learning rule A′ which makes
at most Õ

(
M2

ε2 log2
(
1
δ

)
log2

(
T
β

))
mistakes.

1.1.1 Construction overview

We now give a simplified overview of our construction, called POP, which transforms a non-private
online learning algorithm into a private one (while maintaining computational efficiency). Let A be a
non-private algorithm, guaranteed to make at most d mistakes in the realizable setting. We maintain
k copies of A. Informally, in every round i ∈ [T ] we do the following:

1. Obtain an input point xi.
2. Give xi to each of the k copies of A to obtain predicted labels ŷi,1, . . . , ŷi,k.
3. Output a “privacy preserving” aggregation ŷi of {ŷi,1, . . . , ŷi,k}, which is some variant of noisy

majority. This step will only satisfy challenge-DP, rather than (standard) DP.
4. Obtain the “true” label yi.
5. Let ℓ ∈ [k] be chosen at random.
6. Rewind all copies of algorithm A except for the ℓth copy, so that they “forget” ever seeing xi.
7. Give the true label yi to the ℓth copy of A.

As we aggregate the predictions given by the copies of A using (noisy) majority, we know that if the
algorithm errs then at least a constant fraction of the copies of A err. As we feed the true label yi
to a random copy, with constant probability, the copy which we do not rewind incurs a mistake at
this moment. That is, whenever we make a mistake then with constant probability one of the copies
we maintain incurs a mistake. This can happen at most ≈ k · d times, since we have k copies and
each of them makes at most d mistakes. This allows us to bound the number of mistakes made by our
algorithm (w.h.p.). The privacy analysis is more involved. Intuitively, by rewinding all of the copies
of A (except one) in every round, we make sure that a single user can affect the inner state of at most
one of the copies. This allows us to efficiently aggregate the predictions given by the copies in a
privacy preserving manner. The subtle point is that the prediction we release in time i does require
querying all the experts on the current example xi (before rewinding them). Nevertheless, we show
that this algorithm is private.

1.1.2 Comparison with Golowich and Livni [2021]

The closest prior work to this manuscript is by Golowich and Livni who also studied the problem
of private online classification, but under a more restrictive notion of privacy than challenge-DP. In
particular their definition requires that the sequence of predictors which the learner uses to predict
in each round does not compromise privacy. In other words, it is as if at each round the learner
publishes the entire truth-table of its predictor, rather than just its current prediction. This might be
too prohibitive in certain applications such as the chatbot example illustrated above. Golowich and
Livni show that even with respect to their more restrictive notion of privacy it is possible to online
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learn every Littlestone class. However, their mistake bound is doubly exponential in the Littlestone
dimension (whereas ours is quadratic), and their construction requires more elaborate access to
the non-private learner. In particular, it is not clear whether their construction can be implemented
efficiently (while our construction is efficient).

1.2 Additional Related Work

Several works studied the related problem of private learning from expert advice [Dwork et al., 2010a,
Jain et al., 2012, Thakurta and Smith, 2013, Dwork and Roth, 2014, Jain and Thakurta, 2014, Agarwal
and Singh, 2017, Asi et al., 2022]. These works study a variant of the experts problem in which
the learning algorithm has access to k experts; on every time step the learning algorithm chooses
one of the experts to follow, and then observes the loss of each expert. The goal of the learning
algorithm is that its accumulated loss will be competitive with the loss of the best expert in hindsight.
In this setting the private data is the sequence of losses observed throughout the execution, and the
privacy requirement is that the sequence of experts chosen by the algorithm should not compromise
the privacy of the sequence of losses.8 When applying these results to our context, the set of experts
is the set of hypotheses in the classH, which means that the outcome of the learner (on every time
step) is a complete model (i.e., a hypothesis). That is, in our context, applying prior works on private
prediction from expert advice would result in a privacy definition similar to that of Golowich and
Livni [2021] that accounts (in the privacy analysis) for releasing complete models, rather than just
the predictions, which is significantly more restrictive.

There were a few works that studied private learning in online settings under the constraint of JDP.
For example, Shariff and Sheffet [2018] studied the stochastic contextual linear bandits problem
under JDP. Here, in every round t the learner receives a context ct, then it selects an action at (from
a fixed set of actions), and finaly it receives a reward yt which depends on (ct, at) in a linear way.
The learner’s objective is to maximize cumulative reward. The (non-adaptive) definition of JDP
means that action at is revealed only to user ut. Furthermore, it guarantees that the inputs of user ut

(specifically the context ct and the reward yt) do not leak to the other users via the actions they are
given, provided that all these other users fix their data in advance. This non-adaptive privacy notion
fits the stochastic setting of Shariff and Sheffet [2018], but (we believe) is less suited for adversarial
processes like the ones we consider in this work. We also note that the algorithm of Shariff and
Sheffet [2018] in fact satisfies the more restrictive privacy definition which applies to the sequence
of predictors (rather than the sequence of predictions), similarly to the that of Golowich and Livni
[2021].

2 Preliminaries

Notation. Two datasets S and S′ are called neighboring if one is obtained from the other by
adding or deleting one element, e.g., S′ = S ∪ {x′}. For two random variables Y,Z we write
X ≈(ε,δ) Y to mean that for every event F it holds that Pr[X ∈ F ] ≤ eε · Pr[Y ∈ F ] + δ, and
Pr[Y ∈ F ] ≤ eε · Pr[X ∈ F ] + δ. Throughout the paper we assume that the privacy parameter ε
satisfies ε = O(1), but our analyses trivially extend to larger values of epsilon.

The standard definition of differential privacy is,
Definition 2.1 ([Dwork et al., 2006]). LetM be a randomized algorithm that operates on datasets.
AlgorithmM is (ε, δ)-differentially private (DP) if for any two neighboring datasets S, S′ we have
M(S) ≈(ε,δ)M(S′).

The Laplace mechanism. The most basic constructions of differentially private algorithms are via
the Laplace mechanism as follows.
Definition 2.2. A random variable has probability distribution Lap(γ) if its probability density
function is f(x) = 1

2γ exp(−|x|/γ), where x ∈ R.

Definition 2.3 (Sensitivity). A function f that maps datasets to the reals has sensitivity ∆ if for every
two neighboring datasets S and S′ it holds that |f(S)− f(S′)| ≤ ∆.

8Asi et al. [2022] study a more general framework of adaptive privacy in which the private data is an auxiliary
sequence (z1, . . . , zT ). During the interaction with the learner, these zt’s are used (possibly in an adaptive way)
to choose the sequence of loss functions.
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Theorem 2.4 (The Laplace Mechanism [Dwork et al., 2006]). Let f be a function that maps datasets
to the reals with sensitivity ∆. The mechanismA that on input S adds noise with distribution Lap(∆ε )
to the output of f(S) preserves (ε, 0)-differential privacy.

Joint differential privacy. The standard definition of differential privacy (Definition 2.1) captures a
setting in which the entire output of the computation may be publicly released without compromising
privacy. While this is a very desirable requirement, it is sometimes too restrictive. Indeed, Kearns
et al. [2015] considered a relaxed setting in which we aim to analyze a dataset S = (x1, . . . , xn),
where every xi represents the information of user i, and to obtain a vector of outcomes (y1, . . . , yn).
This vector, however, is not made public. Instead, every user i only receives its “corresponding
outcome” yi. This setting potentially allows the outcome yi to strongly depend on the the input xi,
without compromising the privacy of the ith user from the view point of the other users.

Definition 2.5 ([Kearns et al., 2015]). LetM : Xn → Y n be a randomized algorithm that takes a
dataset S ∈ Xn and outputs a vector y⃗ ∈ Y n. AlgorithmM satisfies (ε, δ)-joint differential privacy
(JDP) if for every i ∈ [n] and every two datasets S, S′ ∈ Xn differing only on their ith point it holds
thatM(S)−i ≈(ε,δ)M(S′)−i. HereM(S)−i denotes the (random) vector of length n− 1 obtained
by running (y1, . . . , yn)←M(S) and returning (y1, . . . , yi−1, yi+1, . . . , yn).

In words, consider an algorithmM that operates on the data of n individuals and outputs n outcomes
y1, . . . , yn. This algorithm is JDP if changing only the ith input point xi has almost no affect on the
outcome distribution of the other outputs (but the outcome distribution of yi is allowed to strongly
depend on xi). Kearns et al. [2015] showed that this fits a wide range of problems in economic
environments.

Example 2.6 ([Nahmias et al., 2019]). Suppose that a city water corporation is interested in
promoting water conservation. To do so, the corporation decided to send each household a customized
report indicating whether their water consumption is above or below the median consumption in the
neighborhood. Of course, this must be done in a way that protects the privacy of the neighbors. One
way to tackle this would be to compute a privacy preserving estimation z for the median consumption
(satisfying Definition 2.1). Then, in each report, we could safely indicate whether the household’s
water consumption is bigger or smaller than z. While this solution is natural and intuitive, it turns out
to be sub-optimal: We can obtain better utility by designing a JDP algorithm that directly computes
a different outcome for each user (“above” or “below”), which is what we really aimed for, without
going through a private median computation.

Algorithm AboveThreshold. Consider a large number of low sensitivity functions f1, f2, . . . , fT
which are given (one by one) to a data curator (holding a dataset S). Algorithm AboveThreshold
allows for privately identifying the queries fi whose value fi(S) is (roughly) greater than some
threshold t.

Algorithm 1 AboveThreshold [Dwork et al., 2009, Hardt and Rothblum, 2010]
Input: Dataset S ∈ X∗, privacy parameters ε, δ, threshold t, number of positive reports r, and an
adaptively chosen stream of queries fi : X∗ → R with sensitivity ∆

1. Denote γ = O
(
∆
ε

√
r ln( rδ )

)
2. In each round i, when receiving a query fi ∈ Q, do the following:

(a) Let f̂i ← fi(S) + Lap(γ)

(b) If f̂i ≥ t, then let σi = 1 and otherwise let σi = 0

(c) Output σi

(d) If
∑i

j=1 σi ≥ r then HALT

Even though the number of possible rounds is unbounded, algorithm AboveThreshold preserves
differential privacy. Note, however, that AboveThreshold is an interactive mechanism, while the
standard definition of differential privacy (Definition 2.1) is stated for non-interactive mechanisms,
that process their input dataset, release an output, and halt. The adaptation of DP to such interactive
settings is done via a game between the (interactive) mechanism and an adversary that specifies the
inputs to the mechanism and observes its outputs. Intuitively, the privacy requirement is that the view
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of the adversary at the end of the execution should be differentially private w.r.t. the inputs given to
the mechanism. Formally,
Definition 2.7 (DP under adaptive queries [Dwork et al., 2006, Bun et al., 2017]). Let M be
a mechanism that takes an input dataset and answers a sequence of adaptively chosen queries
(specified by an adversary B and chosen from some family Q of possible queries). MechanismM
is (ε, δ)-differentially private if for every adversary B we have that AdaptiveQueryM,B,Q (defined
below) is (ε, δ)-differentially private (w.r.t. its input bit b).

Algorithm 2 AdaptiveQueryM,B,Q [Bun et al., 2017]
Input: A bit b ∈ {0, 1}. (The bit b is unknown toM and B.)

1. The adversary B chooses two neighboring datasets S0 and S1.
2. The dataset Sb is given to the mechanismM.
3. For i = 1, 2, . . .

(a) The adversary B chooses a query qi ∈ Q.
(b) The mechanismM is given qi and returns ai.
(c) ai is given to B.

4. WhenM or B halts, output B’s view of the interaction.

Theorem 2.8 ([Dwork et al., 2009, Hardt and Rothblum, 2010, Kaplan et al., 2021]). Algorithm
AboveThreshold is (ε, δ)-differentially private.

A private counter. In the setting of algorithm AboveThreshold, the dataset is fixed in the begin-
ning of the execution, and the queries arrive sequentially one by one. Dwork et al. [2010a] and Chan
et al. [2010] considered a different setting, in which the data arrives sequentially. In particular, they
considered the counter problem where in every time step i ∈ [T ] we obtain an input bit xi ∈ {0, 1}
(representing the data of user i) and must immediately respond with an approximation for the current
sum of the bits. That is, at time i we wish to release an approximation for x1 + x2 + · · ·+ xi.

Similarly to our previous discussion, this is an interactive setting, and privacy is defined via a game
between a mechanismM and an adversary B that adaptively determines the inputs for the mechanism.
Definition 2.9 (DP under adaptive inputs [Dwork et al., 2006, 2010a, Chan et al., 2010, Kaplan
et al., 2021, Jain et al., 2021]). LetM be a mechanism that in every round i obtains an input point
xi (representing the information of user i) and outputs a response ai. Mechanism M is (ε, δ)-
differentially private if for every adversary B we have that AdaptiveInputM,B (defined below) is
(ε, δ)-differentially private (w.r.t. its input bit b).

Algorithm 3 AdaptiveInputM,B [Jain et al., 2021]
Input: A bit b ∈ {0, 1}. (The bit b is unknown toM and B.)

1. For i = 1, 2, . . .

(a) The adversary B outputs a bit ci ∈ {0, 1}, under the restriction that
∑i

j=1 cj ≤ 1.
% The round i in which ci = 1 is called the challenge round. Note that there could be at most one
challenge round throughout the game.

(b) The adversary B chooses two input points xi,0 and xi,1, under the restriction that if
ci = 0 then xi,0 = xi,1.

(c) AlgorithmM obtains xi,b and outputs ai.
(d) ai is given to B.

2. WhenM or B halts, output B’s view of the interaction.

Theorem 2.10 (Private counter [Dwork et al., 2010a, Chan et al., 2010, Jain et al., 2021]). There
exists an (ε, 0)-differentially private mechanismM (as in Definition 2.9) that in each round i ∈ [T ]
obtains an input bit xi ∈ {0, 1} and outputs a response ai ∈ N with the following properties. Let s
denote the random coins ofM. Then there exists an event E such that: (1) Pr[s ∈ E] ≥ 1− β, and
(2) Conditioned on every s ∈ E, for every input sequence (x1, . . . , xT ), the answers (a1, . . . , aT )

satisfy
∣∣∣ai −∑i

j=1 xi

∣∣∣ ≤ O
(

1
ε log(T ) log

(
T
β

))
.

6



3 Challenge Differential Privacy

We now introduce the privacy definition we consider in this work is. Intuitively, the requirement is that
even an adaptive adversary controlling all of the users except Alice, cannot learn much information
about the interaction Alice had with the algorithm.
Definition 3.1 (Extension of Naor et al. [2023]). Consider an algorithmM that, in each round
i ∈ [T ] obtains an input point xi, outputs a “predicted” label ŷi, and obtains a “true” label yi. We
say that algorithmM is (ε, δ)-challenge differentially private if for any adversary B we have that
OnlineGameM,B,T , defined below, is (ε, δ)-differentially private (w.r.t. its input bit b).

Algorithm 4 OnlineGameM,B,T,g

Setting: T ∈ N denotes the number of rounds and g ∈ N is a “group privacy” parameter. If
not explicitly stated we assume that g = 1. M is an online algorithm and B is an adversary that
determines the inputs adaptively.
Input of the game: A bit b ∈ {0, 1}. (The bit b is unknown toM and B.)

1. For i = 1, 2, . . . , T

(a) The adversary B outputs a bit ci ∈ {0, 1}, under the restriction that
∑i

j=1 cj ≤ g.
% We interpret rounds i in which ci = 1 as challenge rounds. Note that there could be at most g
challenge rounds throughout the game.

(b) The adversary B chooses two labeled inputs (xi,0, yi,0) and (xi,1, yi,1), under the restric-
tion that if ci = 0 then (xi,0, yi,0) = (xi,1, yi,1).

(c) AlgorithmM obtains xi,b, then outputs ŷi, and then obtains yi,b.
(d) If ci = 0 then set ỹi = ŷi. Otherwise set ỹi = ⊥.
(e) The adversary B obtains ỹi.

% Note that the adversary B does not get to see the outputs of M in challenge rounds.
2. Output B’s view of the game, that is ỹ1, . . . , ỹT and the internal randomness of B.

% Note that from this we can reconstruct all the inputs specified by B throughout the game.

Remark 3.2. Naor et al. [2023] studied a special case of this definition, suitable to their stochastic
setting. More specifically, they considered a setting where the algorithm initially gets a dataset
containing labeled examples. Then, on every time step, a new user arrives and submits its unlabeled
example to the algorithm, and the algorithm responds with a predicted label. We extend the definition
to capture settings in which every user interacts with the algorithm (rather than just submitting
its input). In the concrete application we consider (online learning) this corresponds to the user
submitting its input, then obtaining the predicted label, and then submitting the “true” label. Our
generalized definition (Section A) captures this as a special case and allows for arbitrary interactions
with each user.

Composition and post-processing. Composition and post-processing for challenge-DP follows
immediately from their analogues for (standard) DP. Formally, composition is defined via the
following game, called CompositionGame, in which a “meta adversary” B∗ is trying to guess an
unknown bit b ∈ {0, 1}. The meta adversary B∗ is allowed to (adaptively) invoke k executions of the
game specified in Algorithm 4, where all of these k executions are done with the same (unknown) bit
b. See Algorithm 5.

Algorithm 5 CompositionGameB∗,m,ε,δ

Input of the game: A bit b ∈ {0, 1}. (The bit b is unknown to B∗.)
1. For ℓ = 1, 2, . . . ,m

(a) The adversary B∗ outputs an (ε, δ)-challenge-DP algorithmMℓ, an adversary Bℓ, and
an integer Tℓ.

(b) The adversary B∗ obtains the outcome of OnlineGameMℓ,Bℓ,Tℓ
(b).

2. Output B∗’s view of the game (its internal randomness and all of the outcomes of OnlineGame
it obtained throughout the execution).

The following theorem follows immediately from standard composition theorems for differential
privacy [Dwork et al., 2010b].

7



Theorem 3.3 (special case of [Dwork et al., 2010b]). For every B∗, every m ∈ N and every
ε, δ, δ′ ≥ 0 it holds that CompositionGameB∗,m,ε,δ is (ε′,mδ + δ′)-differentially private (w.r.t. the
input bit b) for ε′ =

√
2m ln(1/δ′)ε+mε(eε − 1).

Group privacy. We show that challenge-DP is closed under group privacy. This is more subtle than
the composition argument. In fact, we first need to define what do we mean by “group privacy” in the
context of challenge-DP, which we do using the parameter g in algorithm OnlineGame. Recall that
throughout the execution of OnlineGame, the adversary is allowed g challenge rounds. We show that
if an algorithm satisfies challenge-DP when the adversary is allowed only a single challenge round,
then it also satisfies challenge-DP (with related privacy parameters) when the adversary is allowed
g > 1 challenge rounds. This is captured by the following theorem; see Appendix B for the proof.
Theorem 3.4. LetM be an algorithm that in each round i ∈ [T ] obtains an input point xi, outputs
a “predicted” label ŷi, and obtains a “true” label yi. IfM is (ε, δ)-challenge-DP then for every
g ∈ N and every adversary B (posing at most g challenges) we have that OnlineGameM,B,T,g is
(gε, g · eεg · δ)-differentially private.

4 Algorithm ChallengeAT

Towards presenting our private online learner, we introduce a variant of algorithm AboveThreshold
with additional guarantees, which we call ChallengeAT. Recall that AboveThreshold “hides”
arbitrary modifications to a single input point. Intuitively, the new variant we present aims to hide
both an arbitrary modification to a single input point and an arbitrary modification to a single query
throughout the execution. Consider algorithm ChallengeAT.

Algorithm 6 ChallengeAT
Input: Dataset S ∈ X∗, privacy parameters ε, δ, threshold t, number of positive reports r, and an
adaptively chosen stream of queries fi : X∗ → R each with sensitivity ∆
Tool used: An (ε, 0)-DP algorithm, PrivateCounter, for counting bits under continual observation,
guaranteeing error at most λ with probability at least 1− δ

1. Instantiate PrivateCounter
2. Denote γ = O

(
∆
ε

√
r + λ ln( r+λ

δ )
)

3. In each round i, when receiving a query fi, do the following:
(a) Let f̂i ← fi(S) + Lap(γ)

(b) If f̂i ≥ t, then let σi = 1 and otherwise let σi = 0

(c) Output σi

(d) Feed σi to PrivateCounter and let counti denote its current output
(e) If counti ≥ r then HALT

Remark 4.1. When we apply ChallengeAT, it sets λ = O
(

1
ε log(T ) log

(
T
β

))
. Technically, for

this it has to know T and β. To simplify the description this is not explicit in our algorithms.

The utility guarantees of ChallengeAT are straightforward. The following theorem follows by
bounding (w.h.p.) all the noises sampled throughout the execution (when instantiating ChallengeAT
with the private counter from Theorem 2.10).
Theorem 4.2. Let s denote the random coins of ChallengeAT. Then there exists an event E such
that: (1) Pr[s ∈ E] ≥ 1 − β, and (2) Conditioned on every s ∈ E, for every input dataset S and
every sequence of T queries (f1, . . . , fT ) it holds that

1. Algorithm ChallengeAT does not halt before the rth time in which it outputs σi = 1,

2. For every i such that σi = 1 it holds that fi(S) ≥ t−O
(

∆
ε

√
r + λ ln( r+λ

δ ) log(Tβ )
)

,

3. For every i such that σi = 0 it holds that fi(S) ≤ t+O
(

∆
ε

√
r + λ ln( r+λ

δ ) log(Tβ )
)

,

where λ = O
(

1
ε log(T ) log

(
T
β

))
is the error of the counter of Theorem 2.10.
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The event E in Theorem 4.2 occurs when all the Laplace noises of the counter and ChallengeAT
are within a factor of log(T/β) of their expectation. The privacy guarantees of ChallengeAT are
more involved. They are defined via a game with an adversary B whose goal is to guess a secret
bit b. At the beginning of the game, the adversary chooses two neighboring datasets S0, S1, and
ChallengeAT is instantiated with Sb. Then throughout the game the adversary specifies queries fi
and observes the output of ChallengeAT on these queries. At some special round i∗, chosen by the
adversary, the adversary specifies two queries f0

i∗ , f
1
i∗ , where only f b

i∗ is fed into ChallengeAT. In
round i∗ the adversary does not get to see the answer of ChallengeAT on f b

i∗ (otherwise it could
easily learn the bit b since f0

i∗ , f
1
i∗ may be very different). We show that any such adversary B has

only a small advantage in guessing the bit b. The formal details are given in Appendix C.

5 Online Classification under Challenge Differential Privacy

We are now ready to present our private online prediction algorithm. Consider algorithm POP.

Theorem 5.1. When executed with a learner A that makes at most d mistakes and with parameters
k = Õ

(
d
ε2 log

2( 1δ ) log
2(Tβ )

)
and r = O

(
dk + ln

(
1
β

))
, then with probability at least (1− β) the

number of mistakes made by algorithm POP is bounded by Õ
(

d2

ε2 log2( 1δ ) log
2(Tβ )

)
.

Algorithm 7 POP (Private Online Procedure)
Setting: T ∈ N denotes the number of rounds in the game. A is a non-private online-algorithm.
Parameters: k determines the number of copies of A we maintain. r determines the number of
positive reports we aim to receive from ChallengeAT.

1. Instantiate k copies A1, . . . ,Ak of algorithm A
2. Instantiate algorithm ChallengeAT on an empty dataset with threshold t = −k/4, privacy

parameters ε, δ, number of positive reports r, and sensitivity parameter ∆ = 1.
3. For i = 1, 2, . . . , T

(a) Obtain input xi

(b) Let Atemp
1 , . . . ,Atemp

k be duplicated copies of A1, . . . ,Ak

(c) Let ℓi ∈ [k] be chosen uniformly at random
(d) Let ŷi,ℓi ← Aℓi(xi). For j ∈ [k] \ {ℓi} let ŷi,j ← Atemp

j (xi)

(e) Feed ChallengeAT the query fi ≡ −
∣∣∣k2 −∑

j∈[k] ŷi,j

∣∣∣ and obtain an outcome σi. (If
ChallengeAT halts then POP also halts.)
% Recall that σi = 1 indicates that −

∣∣∣ k2 −
∑

j∈[k] ŷi,j

∣∣∣ ≳ − k
4

, meaning that there is “a lot” of
disagreement among ŷi,1, . . . , ŷi,k.

(f) If σi = 1 then sample ŷi ∈ {0, 1} at random. Else let ŷi = majority{ŷi,1, . . . , ŷi,k}
(g) Output the bit ŷi as a prediction, and obtain a “true” label yi
(h) Feed yi to Aℓi

% Note that Aℓ is the only copy of A that changes its state during this iteration

Informally, the privacy guarantees of POP follow from those of ChallengeAT. We give the formal
details in Appendix D, obtaining the following theorem.

Theorem 5.2. Algorithm POP is (O(ε), O(δ))-Challenge-DP. That is, For every adversary B it holds
that OnlineGamePOP,B is (O(ε), O(δ))-DP w.r.t. the bit b (the input of the game).

We proceed with the utility guarantees of POP. See Appendix F for an extension to the agnostic
setting.

Theorem 5.3. When executed with a learner A that makes at most d mistakes and with parameters
k = Õ

(
d
ε2 log

2( 1δ ) log
2(Tβ )

)
and r = O

(
dk + ln

(
1
β

))
, then with probability at least (1− β) the

number of mistakes made by algorithm POP is bounded by Õ
(

d2

ε2 log2( 1δ ) log
2(Tβ )

)
.
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Proof. By Theorem 4.2, with probability (1− β) over the internal coins of ChallengeAT, for every
input sequence, its answers are accurate up to error of

errorCAT = O

(
∆

ε

√
r + λ ln(

r + λ

δ
) log(

T

β
)

)
,

where in our case, the sensitivity ∆ is 1, and the error of the counter λ is at most O
(
1
ε log(T ) log

(
T
δ

))
by Theorem 2.10. We continue with the proof assuming that this event occurs. Furthermore, we set
k = Ω(errorCAT), large enough, such that if less than 1

5 the experts disagree with the other experts,
then algorithm POP returns the majority vote with probability 1.

Consider the execution of algorithm POP and define 1/5-Err be a random variable that counts the
number of time steps in which at least 1/5th of the experts make an error. That is

1/5-Err =

∣∣∣∣∣∣
i ∈ [T ] :

∑
j∈[k]

1{ŷi,j ̸= yi} > k/5


∣∣∣∣∣∣ .

We also define the random variable

expertAdvance = |{i ∈ [T ] : yi ̸= ŷi,ℓi}| .
That is expertAdvance counts the number of times steps in which the random expert we choose (the
ℓith expert) errs. Note that the ℓith expert is the expert that gets the “true” label yi as feedback. As
we run k experts, and as each of them is guaranteed to make at most d mistakes, we get that

expertAdvance ≤ kd.

We now show that with high probability 1/5-Err is not much larger than expertAdvance. Let i be a
time step in which at least 1/5 fraction of the experts err. As the choice of ℓi (the expert we update)
is random, then with probability at least 1

5 the chosen expert also errs. It is therefore unlikely that
1/5-Err is much larger than expertAdvance, which is bounded by kd. Specifically, by standard
concentration arguments (see Appendix E for the precise version we use) it holds that

Pr

[
1/5-Err > 18dk + 18 + ln

(
1

β

)]
≤ β.

Note that when at least 1/5 of the experts disagree with other experts then at least 1/5 of the experts
err. It follows that 1/5-Err upper bounds the number of times in which algorithm ChallengeAT
returns an “above threshold” answer. Hence, by setting r > 18dk + 18 + ln

(
1
β

)
we ensure that

w.h.p. algorithm ChallangeAT does not halt prematurely (and hence POP does not either).

Furthermore our algorithm errs either when there is a large disagreement between the experts or when
all experts err. It follows that 1/5-Err also upper bounds the number of times which our algorithm
errs.

Overall, by setting r = O
(
dk + ln

(
1
β

))
we ensure that POP does not halt prematurely, and

by setting k = O
(

∆
ε

√
r + λ ln( r+λ

δ ) log(Tβ )
)

we ensure that POP does not err too many times
throughout the execution. Combining the requirement on r and on k, it suffices to take

k = Õ

(
d

ε2
log2(

1

δ
) log2(

T

β
) +

1

ε · d
log(T ) log

(
T

δ

))
,

in which case algorithm POP makes at most Õ
(

d2

ε2 log2( 1δ ) log
2(Tβ )

)
with high probability.

6 Conclusion

Our work presents a new privacy model for online classification, together with an efficiency preserving
transformation from non-private online classification, that exhibits a doubly exponential improvement
in the error compared to prior works on this topic. We leave open the possibility that such an
improvement could also be achieved in the setting of Golowich and Livni [2021], i.e., under the more
restrictive notion of privacy where the sequence of predictors does not compromise privacy.
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A General Variant of challenge-DP

Definition A.1. Consider an algorithm M that, in each phase i ∈ [T ], conducts an arbitrary
interaction with the ith user. We say that algorithmM is (ε, δ)-challenge differentially private if
for any adversary B we have that GeneralGameM,B,T , defined below, is (ε, δ)-differentially private
(w.r.t. its input bit b).

Algorithm 8 GeneralGameM,B,T

Setting: T ∈ N denotes the number of phases.M is an interactive algorithm and B is an adaptive
and interactive adversary.
Input of the game: A bit b ∈ {0, 1}. (The bit b is unknown toM and B.)

1. For i = 1, 2, . . . , T

(a) The adversary B outputs a bit ci ∈ {0, 1}, under the restriction that
∑i

j=1 cj ≤ 1.
(b) The adversary B chooses two interactive algorithms Ii,0 and Ii,1, under the restric-

tion that if ci = 0 then Ii,0 = Ii,1.
(c) AlgorithmM interacts with Ii,b. Let ŷi denote the view of Ii,b at the end of this

interaction.
(d) If ci = 0 then set ỹi = ŷi. Otherwise set ỹi = ⊥.
(e) The adversary B obtains ỹi.

2. Output B’s view of the game.
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B Group privacy

In this section we prove Theorem 3.4.

Proof of Theorem 3.4. Fix g ∈ N and fix an adversary B (that poses at most g challenge rounds). We
consider a sequence of gamesW0,W1, . . . ,Wg , whereWℓ is defined as follows.

1. Initialize algorithmM and the adversary B.

2. For round i = 1, 2, . . . , T :

(a) Obtain a challenge indicator ci and two labeled inputs (xi,0, yi,0) and (xi,1, yi,1) from B.

(b) If
∑i

j=1 cj > ℓ then set (wi, zi) = (xi,0, yi,0). Otherwise set (wi, zi) = (xi,1, yi,1).
(c) Feed wi to algorithmM, obtain an outcome ŷi, and feed it zi.
(d) If ci = 0 then set ỹi = ŷi. Otherwise set ỹi = ⊥.
(e) Give ỹi to B.

3. Output ỹ1, . . . , ỹT and the internal randomness of B.

That is,Wℓ simulates the online game betweenM and B, where during the first ℓ challenge rounds
algorithm M is given (xi,1, yi,1), and in the rest of the challenge rounds algorithm M is given
(xi,0, yi,0). Note that

OnlineGameM,B,T,g(0) ≡ W0 and OnlineGameM,B,T,g(1) ≡ Wg.

We claim that for every 0 < ℓ ≤ g it holds that Wℓ−1 ≈(ε,δ) Wℓ. To this end, fix 0 < ℓ ≤ g

and consider an adversary B̂, that poses at most one challenge, defined as follows. Algorithm
B̂ runs B internally. In every round i, algorithm B̂ obtains from B a challenge bit ci and two
labeled inputs (xi,0, yi,0) and (xi,1, yi,1). As long as B did not pose its ℓth challenge, algorithm B̂
outputs (xi,1, yi,1), (xi,1, yi,1). During the round i in which B poses its ℓth challenge, algorithm B
outputs (xi,0, yi,0), (xi,1, yi,1). This is the challenge round posed by algorithm B̂. In every round t

afterwards, algorithm B̂ outputs (xi,0, yi,0), (xi,0, yi,0). When algorithm B̂ obtains an answer ỹi it

sets ˜̃yi =

{
ỹi, if ci = 0

⊥, if ci = 1
and gives ˜̃yi to algorithm B.

As B̂ is an adversary that poses (at most) one challenge, by the privacy properties ofM we know
that OnlineGameM,B̂,T is (ε, δ)-DP. Recall that the output of OnlineGameM,B̂,T includes all of

the randomness of B̂, as well as the answers ỹt generated throughout the game. This includes
the randomness of B (which B̂ runs internally), and hence, determines also all of the ˜̃yi’s defined
by B̂ throughout the interaction. Let P be a post-processing procedure that takes the output of
OnlineGameM,B̂,T and returns the randomness of B as well as (˜̃y1, . . . , ˜̃yT ). By closure of DP to
post-processing, we have that P (OnlineGameM,B̂,T (0)) ≈(ε,δ) P (OnlineGameM,B̂,T (1)). Now
note that P (OnlineGameM,B̂,T (0)) ≡ Wℓ−1 , and P (OnlineGameM,B̂,T (1)) ≡ Wℓ, and hence
Wℓ−1 ≈(ε,δ) Wℓ. Overall we have that

OnlineGameA,B,T,g(0) ≡ W0 ≈(ε,δ) W1 ≈(ε,δ) W2 ≈(ε,δ) · · · ≈(ε,δ) Wg ≡ OnlineGameA,B,T,g(1).

This shows that OnlineGameA,B,T,g is (gε, g · eεg · δ)-differentially private, thereby completing the
proof.

C Privacy Analysis of ChallengeAT

The privacy guarantees of ChallengeAT are captured using the game specified in algorithm
ChallengeAT-GameB.

Theorem C.1. For every adversary B it holds that ChallengeAT-GameB is (O(ε), O(δ))-DP w.r.t.
the bit b (the input of the game).
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Algorithm 9 ChallengeAT-GameB
Setting: B is an adversary that adaptively determines the inputs to ChallengeAT.
Input of the game: A bit b ∈ {0, 1}. (The bit b is unknown to ChallengeAT and B.)

1. The adversary B specifies two neighboring datasets S0, S1 ∈ X∗.
2. Instantiate ChallengeAT with the dataset Sb and parameters ε, δ, threshold t, and number

of positive reports r.
3. For i = 1, 2, 3, . . .

(a) Get bit ci ∈ {0, 1} from B subject to the restriction that
∑i

j=1 cj ≤ 1.
% When ci = 1 this is the Challange round.

(b) Get two queries f0
i : X∗ → R and f1

i : X∗ → R from B, each with sensitivity ∆,
subject to the restriction that if ci = 0 then f0

i ≡ f1
i .

(c) Give the query f b
i to ChallengeAT and get back the bit σi.

(d) If ci = 0 then set ŷi = σi. Otherwise set ŷt = ⊥.
(e) Give ŷi to the adversary B.

4. Publish B’s view of the game, that is ŷ1, . . . , ŷT and the internal randomness of B.

Proof. Fix an adversary B. Let CATG denote the algorithm ChallengeAT-GameB with this fixed B.
Consider a variant of algorithm CATG, which we call CATG-noCount defined as follows. During the
challenge round i, inside the call to ChallengeAT, instead of feeding σi to the PrivateCounter
we simply feed it 0 (in Step 3d of ChallengeAT).

By the privacy properties of PrivateCounter (Theorem 2.10), for every b ∈ {0, 1} we have that

CATG(b) ≈(ε,0) CATG-noCount(b),

so it suffices to show that CATG-noCount is DP (w.r.t. b). Now observe that the execution of
PrivateCounter during the execution of CATG-noCount can be simulated from the view of the
adversary B (the only bit that ChallengeAT feeds the counter which is not in the view of the
adversary is the one of the challange round which we replaced by zero in CATG-noCount). Hence,
we can generate the view of B in algorithm CATG by interacting with AboveThreshold instead of
with ChallengeAT. This is captured by algorithm CAT-G-AboveThrehold.

Algorithm 10 CATG-AboveThreshold

Setting: B is an adversary that adaptively determines the inputs to ChallengeAT.
Input of the game: A bit b ∈ {0, 1}. (The bit b is unknown to ChallengeAT and B.)

1. The adversary B specifies two neighboring datasets S0, S1 ∈ X∗.

2. Instantiate PrivateCounter

3. Instantiate AboveThreshold on the dataset Sb with parameters ε, δ, t, (r + λ).

4. For i = 1, 2, 3, . . .

(a) Get bit ci ∈ {0, 1} from the adversary B subject to the restriction that
∑i

j=1 cj ≤ 1.

(b) Get two queries f0
i : X∗ → R and f1

i : X∗ → R, each with sensitivity ∆ from B,
subject to the restriction that if ci = 0 then f0

i ≡ f1
i .

(c) Give the query f b
i to Algorithm AboveThreshold and get back a bit σi.

(d) If ci = 0 then set ŷi = σi. Otherwise set ŷt = ⊥.
(e) Give ŷi to the adversary B.
(f) If ci = 0 then feed σi to PrivateCounter, and otherwise feed it 0.
(g) Let counti denote the current output of PrivateCounter, and HALT if counti ≥ r

5. Publish B’s view of the game, that is ŷ1, . . . , ŷT and the internal randomness of B.

This algorithm is almost identical to CATG-noCount, except for the fact that AboveThreshold might
halt the execution itself (even without the halting condition on the outcome of PrivateCounter).
However, by the utility guarantees of PrivateCounter, with probability at least 1− δ it never errs
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by more than λ, in which case algorithm AboveThreshold never halts prematurely. Hence, for every
bit b ∈ {0, 1} we have that

CATG-AboveThrehold(b) ≈(0,δ) CATG-noCount(b).
So it suffices to show that CATG-AboveThrehold is DP (w.r.t. its input bit b). This almost follows
directly from the privacy guarantees of AboveThreshold, since CATG-AboveThrehold interacts
only with this algorithm, except for the fact that during the challenge round i the adversary B specifies
two queries (and only one of them is fed into AboveThreshold). To bridge this gap, we consider
one more (and final) modification to the algorithm, called ĈATG-AboveThrehold. This algorithm is
identical to CATG-AboveThrehold, except that in Step 4c we do not feed f b

i to AboveThreshold if
ci = 1. That is, during the challenge round we do not interact with AboveThreshold.

Now, by the privacy properties of AboveThreshold we have that ĈATG-AboveThrehold is DP (w.r.t.
its input bit b). Furthermore, when algorithm AboveThreshold does not halt prematurely, we have
that ĈATG-AboveThrehold is identical to CATG-AboveThrehold. Therefore, for every bit b ∈ {0, 1}
we have

CATG-AboveThrehold(b) ≈(0,δ) ĈATG-AboveThrehold(b).

Overall we get that
CATG(0) ≈(ε,0) CATG-noCount(0)

≈(0,δ) CATG-AboveThrehold(0)

≈(0,δ) ĈATG-AboveThrehold(0)

≈(ε,δ) ĈATG-AboveThrehold(1)

≈(0,δ) CATG-AboveThrehold(1)

≈(0,δ) CATG-noCount(1)

≈(ε,0) CATG(1)

D Privacy Analysis of POP

In this section we prove Theorem 5.2.

Proof of Theorem 5.2. Let B be an adversary that playes in OnlineGame against POP, posing at most
1 challenge. That is, at one time step i, the adversary specifies two inputs (x0

i , y
0
i ), (x

1
i , y

1
i ), algorithm

POP processes (xb
i , y

b
i ), and the adversary does not see the prediction ŷi at this time step. We need to

show that the view of the adversary is DP w.r.t. the bit b. To show this, we observe that the view of
B can be generated (up to a small statistical distance of δ) by interacting with ChallengeAT as in
the game ChallengeAT-Game. Formally, consider the following adversary B̂ that simulates B while
interacting with ChallengeAT instead of POP.

As B̂ only interacts with ChallengeAT, its view at the end of the execution (which includes the view
of the simulated B) is DP w.r.t. the bit b. Furthermore, the view of the simulated B generated in this
process is almost identical to the view of B had it interacted directly with POP. Specifically, the only
possible difference is that the computation of ŷi in Step 3(e)ii of B̂ might not be well-defined. But
this does not happen when ChallengeAT maintains correctness, which holds with probability at least
1− δ.

Overall, letting ChallengeAT-GameB̂|B
denote the view of the simulated B at the end of the interac-

tion of B̂ with ChallengeAT, we have that

OnlineGamePOP,B(0) ≈(0,δ) ChallengeAT-GameB̂|B
(0)

≈(ε,δ) ChallengeAT-GameB̂|B
(1)

≈(0,δ) OnlineGamePOP,B(1).
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Algorithm 11 B̂
Setting: This is an adversary that plays against ChallengeAT in the game ChallengeAT-Game.

1. Specify two datasets S0 = {0} and S1 = {1}.
2. Instantiate algorithm B
3. For i = 1, 2, . . . , T

(a) Obtain a challenge indicator ci and inputs x0
i , x

1
i from B (where x0

i = x1
i if ci = 0).

(b) Let ℓi ∈ [k] be chosen uniformly at random
(c) Define the query qi : {0, 1} → R, where qi(b) = fi and where fi is defined as in

Step 3e of POP.
% Note that, given b, this can be computed from (x0

1, x
1
1), . . . , (x

0
i , x

1
i ) and ℓ1, . . . , ℓi and

y1, . . . , yi−1. Furthermore, whenever ci = 0 then this is a query of sensitivity at most
1. When ci = 1 the sensitivity might be large, which we view it as two separate queries,
corresponding to a challenge round when playing against ChallengeAT.

(d) Output the challenge bit ci and the query qi, which is given to ChallengeAT.
(e) If ci = 0 then

i. Obtain an outcome σi from ChallengeAT
ii. Define ŷi as in Step 3f of POP, as a function of σi and (x0

1, x
1
1), . . . , (x

0
i , x

1
i ) and

ℓ1, . . . , ℓi and y1, . . . , yi−1.
iii. Feed the bit ŷi to the adversary B

(f) Obtain a “true” label yi from the adversary B.

E A Coin Flipping Game

Consider algorithm 12 which specifies an m-round “coin flipping game” against an adversary B. In
this game, the adaptively chooses the biases of the coins we flip. In every flip, the adversary might
gain a reward or incur a “budget loss”. The adversary aims to maximize the rewards it collects before
its budget runs out.

Algorithm 12 CoinGameB,k,m

Setting: B is an adversary that determins the coin biases adaptively. k denotes the “budget” of the
adversary. m denotes the number of iterations.

1. Set budget = k and reward = 0.
2. In each round i = 1, 2, . . . ,m:

(a) The adversary chooses 0 ≤ pi ≤ 5
6 and pi

5 ≤ qi ≤ 1− pi, possibly based on the first
(i− 1) rounds.

(b) A random variable Xi ∈ {0, 1, 2} is sampled, where Pr[Xi = 1] = pi and Pr[Xi =
2] = qi and Pr[Xi = 0] = 1− pi − qi.

(c) The adversary obtains Xi

(d) If Xi = 1 and budget > 0 then reward = reward + 1.
(e) Else if Xi = 2 then budget = budget− 1.

3. Output reward.

The next theorem states that no adversary can obtain reward much larger than k in this game.
Intuitively, this holds because in every time step i, the probability of Xi = 2 is not much smaller than
the probability that Xi, then (w.h.p.) it is very unlikely that the number of rewards would be much
larger than k.
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Theorem E.1 ([Gupta et al., 2010, Kaplan et al., 2021]). For every adversary’s strategy, every k ≥ 0,
every m ∈ N, and every λ ∈ R, we have

Pr[CoinGameB,k,m > λ] ≤ exp

(
−λ

6
+ 3(k + 1)

)
.

F Extension to the Agnostic Case

In this section we extend the analysis of POP to the agnostic setting. We use the tilde-notation to hide
logarithmic factors in T, 1

δ ,
1
β ,

1
ε .

Theorem F.1 ([Ben-David et al., 2009]). For any hypothesis class H and scalar M∗ ≥ 0 there
exists an online learning algorithm such that for any sequence ((x1, y1), . . . , (xT , yT )) satisfying
min
h∈H

∑T
i=1 |h(xi)− yi| ≤M∗ the predictions ŷ1, . . . , ŷT given by the algorithm satisfy

T∑
i=1

|ŷi − yi| ≤ O (M∗ + Ldim(H) ln(T )) .

Definition F.2. For parameters u < w, let POP[u,w] denote a variant of POP in which we halt the
execution after the vth time in which we err, for some arbitrary value u ≤ v ≤ w. (Note that the
execution might halt even before that, by the halting condition of POP itself.) This could be done
while preserving privacy (for appropriate values of u < w) by using the counter of Theorem 2.10 for
privately counting the number of mistakes.

Lemma F.3. Let H be a hypothesis class with d = Ldim(H), and let A denote the non-private

algorithm from Theorem F.1 with M∗ = d ln(T ). Denote k = Θ̃
(

d2

ε

)
, r = u = Θ(kd ln(T )), and

w = 2u. Consider executing POP[u,w] with A and with parameters k, r on an adaptively chosen
sequence of inputs (x1, y1), . . . , (xi∗ , yi∗), where i∗ ≤ T denotes the time at which POP[u,w] halts.
Then, with probability at least (1− β) it holds that

OPTi∗ ≜ min
h∈H

i∗∑
i=1

|h(xi)− yi| > d · ln(T ).

Proof sketch. Similarly to the proof of Theorem 5.3, we set k = Ω̃
(

d2

ε

)
, and assume that if less

than 1
5 the experts disagree with the other experts, then algorithm POP[u,w] returns the majority vote

with probability 1.

Let 1/5-Err denote the random variable that counts the number of time steps in which at least 1/5th
of the experts make an error. As in the proof of Theorem 5.3, 1/5-Err upper bounds both the number
of mistakes made by POP[u,w] , which we denote by OurError, as well as the number of times in
which algorithm ChallengeAT returns an “above threshold” answer, which we denote by NumTop.
By Theorem 4.2, we know that (w.h.p.) NumTop ≥ r. Also let WorstExpert denote the largest
number of mistakes made by a single expert.

Consider the time i∗ at which POP[u,w] halts. If it halts because u ≤ v ≤ w mistakes have been made,
then

k ·WorstExpert ≥ 1/5-Err ≥ OurError ≥ u = Ω(kd ln(T )) .

Alternatively, if POP[u,w] halts after r “above threshold” answer, then

k ·WorstExpert ≥ 1/5-Err ≥ NumTop ≥ r = Ω(kd ln(T )) .

At any case, when POP[u,w] halts it holds that at least one expert made at least Ω (d ln(T )) mistakes.
Therefore, by Theorem F.1, we have that OPTi∗ ≥ d ln(T ).

Theorem F.4. Let H be a hypothesis class with Ldim(H) = d. There exists an (ε, δ)-Challenge-
DP online learning algorithm providing the following guarantee. When executed on an adaptively
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chosen sequence of inputs (x1, y1), . . . , (xT , yT ), then the algorithm makes at most Õ
(

d·OPT
ε2 + d2

ε2

)
mistakes (w.h.p.), where

OPT ≜ min
h∈H

T∑
i=1

|h(xi)− yi|.

Proof sketch. This is obtained by repeatedly re-running POP[u,w], with the parameter setting specified
in Lemma F.3. We refer to the time span of every single execution of POP[u,w] as a phase.

By construction, in every phase, POP[u,w] makes at most w = Θ̃(kd) mistakes. By Lemma F.3
every hypothesis in H makes at least d · ln(T ) mistakes in this phase. Therefore, there could be
at most Õ

(
max

{
1 , OPT

d

})
phases, during which we incur a total of at most Õ

(
d·OPT

ε2 + d2

ε2

)
mistakes.
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