
A Detailed Proof1

A.1 Proof of Theorem 4.12

Proof. Similar to the proof of Theorem 3.2 in Kumar et al. [4], we first prove this theorem in the3

absence of sampling error, and then incorporate sampling error at the end. By set the derivation of4

the objective in Eq. 4 to zero, we can compute the Q-function update induced in the exact, tabular5

setting(T π = T̂ π and πβ(a|s) = π̂β(a|s)).6

∀ s,a, k, Q̂k+1(s,a) = T πQ̂k(s,a)− α

[
Σn

i=1λi
µi

πi
β

− 1

]
(A.1)

Then, the value of the policy, V̂ k+1 can be proved to be underestimated, since:7

V̂ k+1(s) = Ea∼π(a|s)

[
Q̂π(s,a)

]
= T πV̂ k(s)− αEa∼π(a|s)

[
Σn

i=1λi
µi

πi
β

− 1

]
(A.2)

Next, we will show that DCF
CQL(s) = Σaπ(a|s)

[
Σn

i=1λi
µi(ai|s)
π̂i
β(a

i|s) − 1
]

is always positive, when8

µi(ai|s) = πi(ai|s):9

DCF
CQL(s) = Σaπ(a|s)

[
Σn

i=1λi
µi(ai|s)
πi
β(a

i|s)
− 1

]
(A.3)

= Σn
i=1λi

[
Σaiπi(ai|s)

[
µi(ai|s)
πi
β(a

i|s)
− 1

]]
(A.4)

= Σn
i=1λi

[
Σai(πi(ai|s)− πi

β(a
i|s) + πi

β(a
i|s))

[
µi(ai|s)
πi
β(a

i|s)
− 1

]]
(A.5)

= Σn
i=1λi

[
Σai(πi(ai|s)− πi

β(a
i|s))

[
πi(ai|s)− πi

β(a
i|s)

πi
β(a

i|s)

]
+Σaiπi

β(a
i|s))

[
µi(ai|s)
πi
β(a

i|s)
− 1

]]
(A.6)

= Σn
i=1λi

[
Σai

[
(πi(ai|s)− πi

β(a
i|s))2

πi
β(a

i|s)

]
+ 0

]
since,∀i,Σaiπi(ai|s) = Σaiπi

β(a
i|s) = 1

(A.7)
≥ 0 (A.8)

As shown above, the DCF
CQL(s) ≥ 0, and DCF

CQL(s) = 0, iff πi(ai|s) = πi
β(a

i|s). This implies that10

each value iterate incurs some underestimation, i.e. V̂ k+1(s) ≤ T πV̂ k(s).11

We can compute the fixed point of the recursion in Equation A.2 and get the following estimated12

policy value:13

V̂ π(s) = V π(s)− α

[
(I − γPπ)−1Σaπ(a|s)

[
Σn

i=1λi
µi(ai|s)
π̂i
β(a

i|s)
− 1

]]
(s) (A.9)

Because the (I − γPπ)−1 is non negative and the DCF
CQL(s) ≥ 0, it’s easily to prove that in the14

absence of sampling error, Theorem 4.1 gives a lower bound.15

Incorporating sampling error. According to the conclusion in Kumar et al. [4], we can directly16

write down the result with sampling error as follows:17

V̂ π(s) ≤ V π(s)−α

[
(I − γPπ)−1Σaπ(a|s)

[
Σn

i=1λi
µi(ai|s)
π̂i
β(a

i|s)
− 1

]]
(s)+

[
(I − γPπ)−1 Cr,T,σRmax

(1− γ)
√
|D|

]
(A.10)

1



So, the statement of Theorem 4.1 with sampling error is proved. Please refer to the Sec.D.3 in Kumar18

et al. [4] For detailed proof. Besides, the choice of α in this case to prevent overestimation is given19

by:20

α ≥ max
s,a∈D

Cr,T,σRmax

(1− γ)
√
|D|
·max
s∈D

[
Σaπ(a|s)

[
Σn

i=1λi
µi(ai|s)
π̂i
β(a

i|s)
− 1

]]−1

(A.11)

21

A.2 Proof of Theorem 4.222

Proof. According to the definition, we can get the formulation of DCF
CQL(π,β)(s) and23

DCQL(π,β)(s) as follow:24

DCF
CQL(π,β)(s) = Ea∼π(·|s)

([
n∑

i=1

λi
πi(ai|s)
βi(ai|s)

]
− 1

)
(A.12)

=

n∑
i=1

λi

(∑
ai

πi(ai|s) ∗ πi(ai|s)
βi(ai|s)

)
− 1 ≥ 0 (A.13)

25

DCQL(π,β)(s) = Ea∼π(·|s)

([
π(a|s)
β(a|s)

]
− 1

)
(A.14)

=

n∏
i=1

(∑
ai

πi(ai|s) ∗ πi(ai|s)
βi(ai|s)

)
− 1 ≥ 0 (A.15)

Then, by taking the logarithm of DCQL(π,β)(s), we get:26

ln(DCQL(π,β)(s) + 1) =

n∑
i=1

ln

(
Eai∼πi(·|s)

πi(ai|s)
βi(ai|s)

)
(A.16)

As Σiλi = 1, it’s obvious that27

ln(DCF
CQL(π,β)(s) + 1) ≤ ln

(∑
aj

πj(aj |s) ∗ πj(aj |s)
βj(aj |s)

)
, where j = argmax

k
Eπk

πk

βk
(A.17)

By combining equation A.16 and inequation A.17, we get28

DCQL(π,β)(s) + 1

DCF
CQL(π,β)(s) + 1

≥ exp

 n∑
i=1,i̸=j

ln

(
Eai∼πi(·|s)

πi(ai|s)
βi(ai|s)

) (A.18)

≥ exp

 n∑
i=1,i̸=j

KL(πi(s)||βi(s))

 , where j = argmax
k

Eπk

πk

βk
(A.19)

the second inequality is derived from the Jensen’s inequality. As the Kullback-Leibler Divergence29

is non-negative, it’s obvious that DCQL(π,β)(s) ≥ DCF
CQL(π,β)(s), then we can simplify the30

left-hand side of this inequality:31

DCQL(π,β)(s)

DCF
CQL(π,β)(s)

≥ exp

 n∑
i=1,i̸=j

KL(πi(s)||βi(s))

 , where j = argmax
k

Eπk

πk

βk
(A.20)

32

2



A.3 Proof of Equation 633

Proof. Similar to the proof of Lemma D.3.1 in CQL [4], Q̄ is obtained by solving a recursive Bellman34

fixed point equation in the empirical MDP M̂ , with an altered reward, r(s, a)−α
[∑

i λi
πi(ai|s)
βi(ai|s) − 1

]
,35

hence the optimal policy π∗(a|s) obtained by optimizing the value under the CFCQL Q-function36

equivalently is characterized via Eq. 6.37

A.4 Proof of Theorem 4.338

Proof. Similar to Eq. 6, π∗
MA is equivalently obtained by solving:39

π∗
MA(a|s)← argmax

π
J(π, M̂)− α

1

1− γ
Es∼dπ

M̂
(s)[DCQL(π,β)(s)]. (A.21)

Recall that ∀s,π,β, DCQL(π,β)(s) ≥ 0. We have40

J(π∗
MA, M̂) ≥J(π∗

MA, M̂)− α
1

1− γ
E
s∼d

π∗
MA

M̂
(s)

[DCQL(π
∗
MA,β)(s)]

≥J(π∗, M̂)− α
1

1− γ
Es∼dπ∗

M̂
(s)[DCQL(π

∗,β)(s)].

(A.22)

Then we give an upper bound of Es∼dπ∗
M̂

(s)[DCQL(π
∗,β)(s)]. Due to the assumption that βi is41

greater than ϵ anywhere, we have42

DCQL(π,β)(s) =
∑
a

π(a|s)[π(a|s)
β(a|s)

− 1] =
∑
a

π(a|s)[ π(a|s)∏n
i=1 β

i(ai|s)
− 1]

≤

(
1

ϵn

∑
a

π(a|s)[π(a|s)]

)
− 1 ≤ 1

ϵn
− 1.

(A.23)

Combining Eq. A.22 and Eq. A.23, we can get43

J(π∗
MA, M̂) ≥ J(π∗, M̂)− α

1− γ
(
1

ϵn
− 1) (A.24)

Recall the sampling error proved in [4] and referred to above in (A.10), we can use it to bound the44

performance difference for any π on true and empirical MDP by45

|J(π,M)− J(π,M̂)| ≤ Cr,T,δRmax

(1− γ)2

∑
s

ρ(s)√
|D(s)|

, (A.25)

then let sampling error := 2 · Cr,T,σRmax

(1−γ)2

∑
s

ρ(s)√
|D(s)|

, and incorporate it into (A.24) , we get46

J(π∗
MA,M) ≥ J(π∗,M)− α

1− γ
(
1

ϵn
− 1)− sampling error (A.26)

where sampling error is a constant dependent on the MDP itself and D. Note that during the proof47

we do not take advantage of the nature of π∗. Actually π∗ can be replaced by any policy π. The48

reason we use π∗ is that it can give that largest lower bound, resulting in the best policy improvement49

guarantee. Similarly, DCF
CQL can be bounded by 1

ϵ − 1:50

DCF
CQL(π,β)(s) =

n∑
i=1

λi

∑
ai

πi(ai|s)[π
i(ai|s)

βi(ai|s)
− 1]

≤

(
1

ϵ

n∑
i=1

λi

∑
ai

πi(ai|s)[πi(ai|s)]

)
− 1

≤1

ϵ

(
n∑

i=1

λi

)
− 1 =

1

ϵ
− 1.

(A.27)

51

3



A.5 Proof of Theorem 4.452

We first show the theorem of safe policy improvement guarantee for MACQL and CFCQL, separately.53

Then we compare these two gaps.54

MACQL has a safe policy improvement guarantee related to the number of agents n:55

Theorem A.1. Given the discounted marginal state-distribution dπ
M̂

, we define B(π, D) =56

Es∼dπ
M̂
[
√

D (π,β) (s) + 1]. The policy π∗
MA(a|s) is a ζMA-safe policy improvement over β in57

the actual MDP M , i.e., J(π∗
MA,M) ≥ J(β,M)− ζMA, where ζMA = 2

(
Cr,δ

1−γ +
γRmaxCT,δ

(1−γ)2

)
·58

√
|A|√

|D(s)|
B(π∗

MA, DCQL) +
α

1−γ (
1
ϵn − 1)− (J(π∗, M̂)− J(β̂, M̂)).59

Proof. We can first get a J(π∗
MA, M̂)-related policy improvement guarantee following the proof of60

Theorem 3.6 in Kumar et al. [4]:61

J(π∗
MA,M) ≥J(β,M)−

(
2

(
Cr,δ

1− γ
+

γRmaxCT,δ

(1− γ)2

)
·
√
|A|√
|D(s)|

B(π∗
MA, DCQL)

− (J(π∗
MA, M̂)− J(β̂, M̂))

) (A.28)

According to Eq. A.21, π∗
MA is obtained by optimizing J(π, M̂) with a DCQL-related regularizer.62

And Theorem 4.3 shows that DCQL can be extremely large when the team size expands, which may63

severely change the optimization objective and affects the shape of the optimization plane. Therefore,64

J(π∗
MA, M̂) may be extremely low, and keeping J(π∗

MA, M̂) in Eq. A.28 results in a mediocre65

policy improvement guarantee. To bound J(π∗
MA, M̂), we introduce Eq. A.24 into Eq. A.28, we get66

the following:67

J(π∗
MA,M) ≥J(β,M)−

(
2

(
Cr,δ

1− γ
+

γRmaxCT,δ

(1− γ)2

)
·
√
|A|√
|D(s)|

B(π∗
MA, DCQL)

+
α

1− γ
(
1

ϵn
− 1)− (J(π∗, M̂)− J(β̂, M̂))

) (A.29)

This complete the proof.68

We can get a similar ζCF satisfying J(π∗
CF ,M) ≥ J(β,M)−ζCF for CFCQL, which is independent69

of n:70

ζCF = 2

(
Cr,δ

1− γ
+

γRmaxCT,δ

(1− γ)2

)
·
√
|A|√
|D(s)|

B(π∗
CF , D

CF
CQL)+

α

1− γ
(
1

ϵ
−1)−(J(π∗, M̂)−J(β̂, M̂))

(A.30)
Then we can prove Theorem 4.4.71

Proof. Subtract ζCF from ζMA, and we get:72

ζMA−ζCF = 2

(
Cr,δ

1− γ
+

γRmaxCT,δ

(1− γ)2

) √
|A|√
|D(s)|

(
B(π∗

MA, DCQL)− B(π∗
CF , D

CF
CQL)

)
+

α

1− γ
(
1

ϵn
−1

ϵ
)

(A.31)
Let the right side ≥ 0, and we can get73

n ≥ log 1
ϵ

[
max

(
1,

1

ϵ
+

2

α

√
|A|√
|D(s)|

(
Cr,δ +

γRmaxCT,δ

1− γ

)
·
[
B
(
π∗
CF , D

CF
CQL

)
− B (π∗

MA, DCQL)
])]

(A.32)
According to Theorem 4.3,74

B
(
π∗
CF , D

CF
CQL

)
= E

s∼d
π∗
CF

M̂

[
√
DCF

CQL(π
∗
CF ,β)(s) + 1] ≤ E

s∼d
π∗
CF

M̂

[

√
1

ϵ
− 1 + 1] =

1√
ϵ

(A.33)

4



In the meantime, we have75

B
(
π∗
CF , D

CF
CQL

)
= E

s∼d
π∗
MA

M̂

[
√

DCQL(π∗
MA,β)(s) + 1] ≥ E

s∼d
π∗
MA

M̂

[
√

DCQL(β,β)(s) + 1] = 1

(A.34)
Therefore, we can relax the lower bound of n to a constant that76

n ≥ log 1
ϵ

(
1

ϵ
+

2

α

√
|A|√
|D(s)|

(Cr,δ +
γRmaxCT,δ

1− γ
) · ( 1√

ϵ
− 1)

)
(A.35)

77

B Implement Details78

B.1 Derivation of the Update Rule79

To utilize the Eq. 4 for policy optimization, following the analysis in the Section 3.2 in Kumar et al.80

[4], we formally define optimization problems over each µi(ai|s) by adding a regularizer R(µi). As81

shown below, we mark the modifications from the Eq. 4 in red.82

min
Q

max
µ

α

[ n∑
i=1

λiEs∼D,ai∼µi,a−i∼β−i [Q(s,a)]− Es∼D,a∼β[Q(s,a)]

]

+
1

2
Es,a,s′∼D

[
(Q(s,a)− T̂ πQ̄k(s,a))

2

]
+

n∑
i=1

λiR(µi),

(B.36)

By choosing different regularizer, there are a variety of instances within CQL family. As recom-83

mended in Kumar et al. [4], we choose R(µi) to be the KL-divergence against a Uniform distribution84

over action space, i.e., R(µi) = −DKL(µ
i, Unif(ai)), then it’s easily to derive the following variant85

of Eq. B.36 called CFCQL(H) which is the update rule we used:86

min
Q

αEs∼D

[ n∑
i=1

λiEa−i∼β−i [log
∑
ai

exp(Q(s,a))]− Ea∼β[Q(s,a)]

]
+

1

2
Es,a,s′∼D

[
(Q(s,a)− T̂ πkQ̄k(s,a))

2

]
.

(B.37)

B.2 Details for Computing λ87

To compute λ, we need an explicit expression of πi and βi. In the setting of discrete action space, as88

we use Q-learning, πi can be expressed by the Boltzman policy, i.e.89

πi(aij) =
exp

(
Ea−i∼β−iQ(s, aij ,a

−i)
)∑

k exp
(
Ea−i∼β−iQ(s, aik,a

−i)
) (B.38)

We use behaviour cloning to pre-train a parameterized β(s) with a three-level fully-connected network90

and MLE(Maximum Likelihood Estimation) loss.91

With the explicit expression of πi and βi, we can directly compute λ with Eq. 8 and Eq. 9. While,92

in practice, we find the Eπi
πi(s)
βi(s) may introduce extreme variance as its large scale and fluctuations,93

which will hurt the performance. Instead, we take the logarithm of it and further reduced it to the94

Kullback-Leibler Divergence as follow:95

∀i, s, λi(s) =
exp

(
−τDKL(π

i(s)||βi(s))
)∑n

j=1 exp (−τDKL(πj(s)||βj(s)))
, (B.39)

5



For continuous action space, we use the deterministic policy like in MADDPG, whose policy96

distribution can be regared as a Dirac delta function. Therefore, we approximate Eπj
πj(s)
βj(s) by the97

following:98

Eπj

πj(s)

βj(s)
≈ 1

βj(πj(s)|s)
(B.40)

Then we need to obtain an explicit expression of βi. We first train a VAE [3] from the dataset to99

obtain the lower bound of βi. Let pϕ(a, z|s) and qφ(z|a, s) be the decoder and the encoder of the100

trained VAE, respectively. According to Wu et al. [13], βj(aj |s) can be explicitly estimated by (We101

omit the superscript j for brevity):102

log βϕ(a | s) = logEqφ(z|a,s)

[
pϕ(a, z | s)
qφ(z | a, s)

]
≈ Ez(l)qφ(z|a,s)

[
log

1

L

L∑
l=1

pϕ
(
a, z(l) | s

)
qφ
(
z(l) | a, s

)]
def
= l̂og πβ(a | s;φ, ϕ, L).

(B.41)

Therefore, we can sample from the VAE L times to estimate βi. The sampling error reduces as L103

increases.104

C Experimental Details105

C.1 Tasks106

Equal_Line is a multi-agent task which we design by simplify the space shape of Equal_Space107

to one-dimension. There are n agents and they are randomly initialized to the interval [0, 2]. The108

state space is a a one-dimensional bounded region in [0,max(10, 2 ∗ n)] and the local action space is109

a discrete, eleven-dimensional space, i.e. [0,−0.01,−0.05,−0.1,−0.5,−1, 0.01, 0.05, 0.1, 0.5, 1],110

which represents the moving direction and distance at each step. The reward is shared by the agents111

and formulated as 10 ∗ (n− 1)min_dis−last_step_min_dis
line_length , which will spur the agents to cooperate to112

spread out and keep the same distance between each other.113

For Multi-agent Particle Environment and Multi-agent Mujoco, we adopt the open-source imple-114

mentations from Lowe et al. [5]1 and Peng et al. [8]2 respectively. And we use the datasets and the115

adversary agents provided by Pan et al. [7].116

For StarCraft II Micromanagement Benchmark, we use the open-source implementation from117

Samvelyan et al. [10]3 and choose four maps with different difficulty and number of agents as118

the experimental scenarios, which is summarized in Table 1. We construct our own datasets with119

QMIX [9] by collecting training or evaluating data.120

Table 1: The details of tested maps in the StarCraft II micromanagement benchmark

Maps Agents Enemies Difficulty
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots Easy
3s_vs_5z 3 Stalkers 5 Zealots Easy
5m_vs_6m 5 Marines 6 Marines Hard
6h_vs_8z 6 Hydralisks 8 Zealots Super Hard

1https://github.com/openai/multiagent-particle-envs
2https://github.com/schroederdewitt/multiagent_mujoco
3https://github.com/oxwhirl/smac

6

https://github.com/openai/multiagent-particle-envs
https://github.com/schroederdewitt/multiagent_mujoco
https://github.com/oxwhirl/smac


C.2 StarCraft II datasets collection121

The datasets are made based on the training process or trained model of QMIX[9]. Specially, the122

Medium or Expert datasets are sampled by executing a partially-pretrained policy with a medium123

performance level or a fully-pretrained policy. The Medium−Replay datasets are exactly the replay124

buffer during training until the policy reaches the medium performance. The Mixed datasets are125

the equal mixture of Medium and Expert datasets. All datasets contain five thousand trajectories,126

except for the Medium−Replay.127

C.3 Baselines128

BC: behavior cloning. In discrete action space, we train a three-level MLP network with MLE loss.129

In continuous action space, we use the method of explicit estimation of behavior density in Wu et al.130

[13], which is modified from a VAE [3] estimator. TD3-BC[1]: One of the SOTA single agent offline131

algorithm, simply adding the BC term to TD3 [2]. We use the open-source implementation4 and132

modify it to a CTDE version with centralised critic. MACQL:naive extension of conservative Q-133

learning, as proposed in Sec. 3.3. We implement it based on the open-source implementation5. As the134

joint action space is enormous, we sample N actions for the logsumexp operation. MAICQ[14]:multi-135

agent version of implicit constraint Q-learning by propose the decomposed multi-agent joint-policy136

under implicit constraint. We use the open-source implementation6 in discrete action space and cite137

the experimental results in continuous action space from Pan et al. [7]. OMAR[7]:uses zeroth-order138

optimization for better coordination among agents’ policies, based on independent CQL (ICQL).139

We cite the experimental results in continuous action space from Pan et al. [7] and implement a140

version in discrete action space based on the open-source implementation7. MADTKD[12]:uses141

decision transformer to represent each agent’s policy and trains with knowledge distillation. As142

lack of open-source implementation, We implement it based on the open-source implementation8 of143

another Decision Transformer based method MADT[6].144

C.4 Resources145

We use 2 servers to run all the experiments. Each one has 8*NVIDIA RTX 3090 GPUs, and 2*AMD146

7H12 CPUs. Each setting is repeated for 5 seeds. For one seed in SC2, it takes about 1.5 hours. For147

MPE, 10 minutes is enough. The experiments on MaMuJoCo cost the most, about 5 hours for each148

seed.149

C.5 Code, Hyper-parameters and Reproducibility150

Please refer to our submitted anonymous repository9 for the code and the hyper-parameters of our151

method. For each dataset number 0, 1, 2, 3, 4, we use the seed 0, 1, 2, 3, 4, respectively.152

Figure 1: Ablations of τ on World.

4https://github.com/sfujim/TD3_BC
5https://github.com/aviralkumar2907/CQL
6https://github.com/YiqinYang/ICQ
7https://github.com/ling-pan/OMAR
8https://github.com/ReinholdM/Offline-Pre-trained-Multi-Agent-Decision-Transformer
9https://anonymous.4open.science/r/CFCQL-7272

7

https://github.com/sfujim/TD3_BC
https://github.com/aviralkumar2907/CQL
https://github.com/YiqinYang/ICQ
https://github.com/ling-pan/OMAR
https://github.com/ReinholdM/Offline-Pre-trained-Multi-Agent-Decision-Transformer
https://anonymous.4open.science/r/CFCQL-7272


Table 2: Complete results on Multi-agent Particle Environment.
Env Dataset MAICQ MATD3-BC ICQL OMAR MACQL CFCQL

CN

Random 6.3±3.5 9.8±4.9 24.0±9.8 34.4±5.3 45.6±8.7 62.2±8.1
Medium-replay 13.6±5.7 15.4±5.6 20.0±8.4 37.9±12.3 25.5±5.9 52.2±9.6

Medium 29.3±5.5 29.3±4.8 34.1±7.2 47.9±18.9 14.3±20.2 65.0±10.2
Expert 104.0±3.4 108.3±3.3 98.2±5.2 114.9±2.6 12.2±31 112±4

PP

Random 2.2±2.6 5.7±3.5 5.0±8.2 11.1±2.8 25.2±11.5 78.5±15.6
Medium-replay 34.5±27.8 28.7±20.9 24.8±17.3 47.1±15.3 11.9±9.2 71.1±6

Medium 63.3±20.0 65.1±29.5 61.7±23.1 66.7±23.2 55±43.2 68.5±21.8
Expert 113.0±14.4 115.2±12.5 93.9±14.0 116.2±19.8 108.4±21.5 118.2±13.1

World

Random 1.0±3.2 2.8±5.5 0.6±2.0 5.9±5.2 11.7±11 68±20.8
Medium-replay 12.0±9.1 17.4±8.1 29.6±13.8 42.9±19.5 13.2±16.2 73.4±23.2

Medium 71.9±20.0 73.4±9.3 58.6±11.2 74.6±11.5 67.4±48.4 93.8±31.8
Expert 109.5±22.8 110.3±21.3 71.9±28.1 110.4±25.7 99.7±31 119.7±26.4

Figure 2: Ablations of α on World.

D More results153

D.1 Complete Results on MPE154

Table 2 shows the complete results of our methods and more baselines on Multi-agent Particle155

Environment. Some results are cited from Pan et al. [7].156

D.2 Temperature Coefficient in Continuous Action Space157

We carry out ablations of τ on MPE’s map World in Fig. 1. We find that although. the best τ differs in158

different datasets, the overall performance is not sensitive to τ , which verifies the theoretical analysis159

that any simplex of λ that
∑n

i=1 λi = 1 can induce an underestimated value function.160

D.3 Ablation on CQL α161

We carry out ablations of α on MPE’s map World in Fig. 2. We find that α plays a more important162

role for team performance on narrow distributions (e.g., Expert and Medium) than that on wide163

distributions (e.g., Random and Medium−Replay).164

D.4 Component Analysis on Counterfactual style165

In the environment MaMuJo, except for the counterfactual Q function, we also analyze whether166

the conuterfactual treatment in CFCQL can be incorporated in other components and help further167

improvement in Table 3. We find that the counterfactual policy improvement is critical for this168

environment. With CF_P, the method shows great performance gain on narrow data distribution, e.g.,169

the Expert dataset.170

8



Table 3: Component Analysis on MaMuJoCo. CF_T: computing target Q by
Ei∼Unif(1,n)Es′,a−i∼D,ai∼πiQθ̂(s,a). CF_P: the policy improvement (PI) by Eq. 10, other-
wise using MADDPG’s PI.

Dataset Default +CF_T -CF_P MACQL

Random 39.7±4.0 48.7±1.8 23.9±9.2 5.3±0.5
Med-Rep 59.5±8.2 58.9±9.6 43.5±5.6 36.7±7.1
Medium 80.5±9.6 76.2±12.1 43.8±7.8 51.5±26.7
Expert 118.5±4.9 118.1±6.9 3.7±3.1 50.1±20.1

E Discussions171

E.1 Broader Impacts172

Our proposed method holds potential for application in real-world multi-agent systems, such as173

intelligent warehouse management or medical treatment. However, directly implementing the derived174

policy might entail risks due to the domain gap between the training virtual datasets and real-world175

scenarios. To mitigate potential hazards, it is crucial for practitioners to operate the policy under176

human supervision, ensuring that undesirable outcomes are avoided by limiting the available options.177

E.2 Limitations178

Here we discuss some limitations about CFCQL. In the case of discrete action space, since CFCQL179

uses QMIX as the backbone, it inherits the Individual-global-max principle [11], which means it180

cannot solve tasks that are not factorizable. On continuous action space, the counterfactual policy181

update used in CFCQL allows for updating only one agent’s policy for each sample, which may lead182

to lower convergence speed compared to methods with independent learning.183

References184

[1] Fujimoto, S. and Gu, S. S. A minimalist approach to offline reinforcement learning. Advances185

in neural information processing systems, 34:20132–20145, 2021.186

[2] Fujimoto, S., Hoof, H., and Meger, D. Addressing function approximation error in actor-critic187

methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.188

[3] Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint189

arXiv:1312.6114, 2013.190

[4] Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative q-learning for offline reinforce-191

ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.192

[5] Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, I. Multi-agent actor-critic193

for mixed cooperative-competitive environments. In Advances in neural information processing194

systems (NeurIPS), 2017.195

[6] Meng, L., Wen, M., Yang, Y., Le, C., Li, X., Zhang, W., Wen, Y., Zhang, H., Wang, J., and Xu,196

B. Offline pre-trained multi-agent decision transformer: One big sequence model conquers all197

starcraftii tasks. arXiv preprint arXiv:2112.02845, 2021.198

[7] Pan, L., Huang, L., Ma, T., and Xu, H. Plan better amid conservatism: Offline multi-agent rein-199

forcement learning with actor rectification. In International Conference on Machine Learning,200

pp. 17221–17237. PMLR, 2022.201

[8] Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny, P.-A., Torr, P., Böhmer, W., and202

Whiteson, S. Facmac: Factored multi-agent centralised policy gradients. Advances in Neural203

Information Processing Systems, 34:12208–12221, 2021.204

[9] Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., and Whiteson, S. Qmix:205

Monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv206

preprint arXiv:1803.11485, 2018.207

9



[10] Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G., Nardelli, N., Rudner, T. G., Hung,208

C.-M., Torr, P. H., Foerster, J., and Whiteson, S. The starcraft multi-agent challenge. arXiv209

preprint arXiv:1902.04043, 2019.210

[11] Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y. Qtran: Learning to factorize with211

transformation for cooperative multi-agent reinforcement learning. In International Conference212

on Machine Learning (ICML), 2019.213

[12] Tseng, W.-C., Wang, T.-H., Lin, Y.-C., and Isola, P. Offline multi-agent reinforcement learning214

with knowledge distillation. In Advances in Neural Information Processing Systems, 2022.215

[13] Wu, J., Wu, H., Qiu, Z., Wang, J., and Long, M. Supported policy optimization for offline216

reinforcement learning. In Advances in Neural Information Processing Systems, 2022.217

[14] Yang, Y., Ma, X., Li, C., Zheng, Z., Zhang, Q., Huang, G., Yang, J., and Zhao, Q. Believe what218

you see: Implicit constraint approach for offline multi-agent reinforcement learning. Advances219

in Neural Information Processing Systems, 34:10299–10312, 2021.220

10


	Detailed Proof
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Equation 6
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Implement Details
	Derivation of the Update Rule
	Details for Computing 

	Experimental Details
	Tasks
	StarCraft II datasets collection
	Baselines
	Resources
	Code, Hyper-parameters and Reproducibility

	More results
	Complete Results on MPE
	Temperature Coefficient in Continuous Action Space
	Ablation on CQL 
	Component Analysis on Counterfactual style

	Discussions
	Broader Impacts
	Limitations


