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Abstract

Flexible sensors are promising for ubiquitous sensing of human status due to their
flexibility and easy integration as wearable systems. However, on-body displace-
ment of sensors is inevitable since the device cannot be firmly worn at a fixed
position across different sessions. This displacement issue causes complicated
patterns and significant challenges to subsequent machine learning algorithms. Our
work proposes a novel self-adaptive motion tracking network to address this chal-
lenge. Our network consists of three novel components: i) a light-weight learnable
Affine Transformation layer whose parameters can be tuned to efficiently adapt to
unknown displacements; ii) a Fourier-encoded LSTM network for better pattern
identification; iii) a novel sequence discrepancy loss equipped with auxiliary regres-
sors for unsupervised tuning of Affine Transformation parameters. Experimental
results show that our method is robust across different on-body position configura-
tions. Our dataset and code are available at: https://github.com/ZuoCX1996/Self-
Adaptive-Motion-Tracking-against-On-body-Displacement-of-Flexible-Sensors.

1 Introduction

Following the philosophy of ubiquitous computing, wearable devices have emerged as a promising
solution for motion tracking that has various applications in entertainment [1], human-computer
interaction [2], healthcare [3, 4], etc. Among different types of such wearable devices, those using
flexible sensors stand out for their advantages in long-term use scenarios. Specifically, flexible sensors
can be easily integrated into wearable devices (e.g., sewn into ordinary clothing) while ensuring
wearing comfort. These flexible sensors bend in response to human body movements (represented by
joint angles), causing changes in their readings, which can be used for motion tracking [5].

In recent years, enabling wearable devices to be worn in non-fixed positions has become a crucial
objective in order to make these devices more suitable for daily use [6]. However, this flexibility poses
new challenges for deep-learning powered motion capture (mocap) systems. That is, the inevitable
on-body displacement across wearing sessions can cause significant data distribution shifts, which
degrades the performance of supervised learning models (Figure 1a).

A straightforward solution to the above problem is to collect a large dataset that covers a wide
spectrum of wearing positions for model training. However, this approach significantly amplifies data
collection costs, including equipment expenses, manpower, and time investments. Furthermore, any
alterations in device design (sensor position, quantity, etc.) necessitate a fresh round of data collection,
resulting in significant resource consumption and impeding swift product iteration. Another solution
is to fine-tune the model against “unseen” displacements with a small amount of labeled data under
new displacements, a.k.a., supervised domain adaptation. However, this is infeasible for our task as
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Figure 1: Demonstration of our problem setup. (a) Joint tracking with lateral and circular sensor
displacements. (b) The data distribution shifts caused by lateral displacement, e.g., l=1: lateral
displacement shifts upwards by 1 cm; and (c) circular displacements, e.g., c=5: circular displacement
shifts clockwise by 5◦. r1, r2: sensor readings.

obtaining accurate joint angles (i.e., labels) requires advanced optical motion capture systems that are
difficult to set up in real-world scenarios (e.g., outdoor running, boating), hindering everyday use.

In this work, we address the above challenges by proposing a novel self-adaptive motion tracking
network that can adapt itself to unknown displacements in an unsupervised way, using only a small
amount of new sensor readings. Specifically, most existing unsupervised domain adaptation methods
assume the source and target domains share identical feature distributions, which is not applicable to
our task as our training set contains data with multiple displacements, while the test data has only
one unknown displacement. To this end, we propose a novel solution that allows the alignment of test
data with a subset of training data that also has one displacement, which encompasses three novel
components: i) a light-weight learnable Affine Transformation layer whose parameters effectively
model the distributional shifts caused by displacements; ii) a Fourier-encoded LSTM network that
facilitates the learning of more frequency components for better pattern learning and identification; iii)
a novel sequence discrepancy loss equipped with auxiliary regressors for unsupervised self-adaptation.

The contributions of our method are three-fold:

• We propose a novel self-adaptive motion tracking network that can adapt to unknown on-
body displacements of flexible sensors in an unsupervised way, allowing for long-term and
daily motion tracking.

• We propose three novel components for our network: i) a light-weight learnable Affine
Transformation layer, ii) a Fourier-encoded LSTM network, and iii) a novel sequence
discrepancy loss, which together efficiently reduce the distributional shifts of sensor readings
caused by on-body displacements.

• Extensive experiments demonstrate the superior performance of our method against the
state-of-the-art methods of domain adaptation applied in our scenario.

2 Related Work

2.1 Domain Adaptation

Domain adaptation aims to mitigate the gap between the source and target domains so that models
trained in the source domain(s) can be applied to the target domain(s). Traditional methods perform
adaptation effectively by either reweighting samples from the source domain [7, 8], or seeking
an explicit feature transformation that transforms the source and target samples into the same
feature spaces [9, 10, 11, 12]. Subsequent studies have shown that deep neural networks can learn
more transferable features for domain adaptation [13]. For example, Deep Domain Confusion
(DDC) [14] first proposed the use of Maximum Mean Discrepancy (MMD) loss to align the feature
distribution of the target domain with that of the source domain for the domain adaption of deep neural
networks; Deep Adaptation Networks (DAN) [15] extends the idea to the use of multiple-kernel
MMD; Deep CORAL [16] proposed CORAL loss [17] for adaptation; Chen et al.[18] propose a
Higher-order Moment Matching (HoMM) method for better distribution discrepancy minimizing.
Other works within deep neural networks also illustrate immense success in learning transferable
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features [19, 20, 21]. In addition, recent studies show that adversarial learning also contributes to
learning more transferable and discriminative representations [22, 23, 24, 25, 26, 27, 28].

In summary, most existing domain adaptation methods assume that the source and target domains
share the same feature distributions and thus aim to minimize relevant distributional differences [29].
While in our task, the training set contains data with multiple displacements while the test data has
only one unknown displacement, thus making the above-mentioned assumption invalid.

Addressing this issue, we propose a novel self-adaptive motion tracking network that tunes the
parameters of an Affine Transformation layer with a novel sequence discrepancy loss, which can
align the test data with a subset of training data that also has one displacement, achieving robust and
accurate domain adaptation for flexible sensors.

2.2 Human Motion Capture

Human motion capture records human body movements and has been widely applied in entertainment,
healthcare, sports, etc. Existing mocap solutions can be roughly classified into two categories: vision-
based and sensor-based.

Vision-based mocap solutions make use of the latest deep learning techniques and have achieved
great success in specific scenarios [30, 31]. However, they rely on good visual conditions and are
inherently weak against textureless clothes and environmental problems (e.g., challenging lighting,
occlusion). Most existing sensor-based mocap solutions rely on Inertial Measurement Units (IMUs)
to record motion inertia / acceleration for the analysis of human posture [32, 33, 34]. Although
robust against environmental conditions, the dense and tight placement of IMUs is intrusive and
inconvenient, hampering performers from moving freely in their daily lives.

To this end, people turned to flexible sensor-based wearable devices indistinguishable from daily
clothing. For example, Glauser et al. [35] designed a stretch-sensing soft glove and used it to
interactively estimate hand poses with the aid of a deep neural network; Ma et al. [36] proposed
flexible all-textile dual tactile-tension sensors for precise monitoring of athletic and form, illustrating
their potential application in robust physical training analysis. Zhou et al. [37] uses a deep regressor
to continuously predict the 3D upper body joints coordinates from 16-channel textile capacitive
sensors.

2.3 Flexible Sensors

Given their advantages of bio-compatibility, high stretch-ability, lightweight, and ease of integration
within clothing, flexible sensors have been used for long-term monitoring of human physical status,
specifically motion capture [38], human-computer interfaces [39], soft robotics [40], etc. For human
motion tracking, existing methods have explored the use of flexible sensors in tracking the motion of
the upper body [41], fingers [35], lower limbs [42], elbow joints [43], and knee joints [44]. Along
with such exploration, it has been noted that on-body displacement of sensors is inevitable as the
device cannot be firmly worn at a fixed position across different sessions [45]. Additionally, due to
the deformation characteristics of flexible sensors, it is fairly complicated to achieve robust motion
tracking in the presence of placement deviation [46, 47].

In this work, we start with an exemplary scenario: an elbow pad with two flexible and stretchable
sensors for elbow joint tracking, and address this gap by proposing a novel self-adaptive motion
tracking network that can adapt to unknown on-body displacements in an unsupervised manner to
achieve robust and accurate motion tracking.

3 Hardware

We design and develop a prototype by augmenting a standard elbow pad with two soft stretchable
(i.e., flexible) sensors, which are placed on the olecranon side of the elbow. The pad offers a versatile
size of 20 cm in length and 25 cm in circumference, accommodating a broad spectrum of users. The
two sensors are placed 2 cm apart.

Our method aims to estimate the bending angle, θ, of an elbow joint (Figure 1) from the sensor
readings of the two flexible sensors. The bending angle is defined as the angle in the sagittal plane
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Figure 2: Overview of the proposed self-adaptive motion tracking network. Our network decomposes
the mapping f between sensor readingsR and joint angles θ into two parts: fR→θ = fR→R0 ·fR0→θ.
(a) The intuition behind the adaptation function fR→R0

, which aligns the test dataR to a subset of
the training setR0 that also has a single displacement. (b) Illustration of the three novel components
in the proposed network: i) a learnable Affine Transformation layer; ii) a Fourier-encoded LSTM
network; iii) a sequence discrepancy loss L equipped with auxiliary regressors. Specifically, fR→R0

is implemented with the Affine Transformation layer, whose parameters are adapted with the sequence
discrepancy loss L; fR0→θ is implemented with the supervisedly pre-trained Fourier-encoded LSTM
network, whose parameters are frozen during adaptation.

between the humerus and the central line between the radius and the ulna. Fabric sensors are
purchased as off-shelf products from ElasTech1. They are capacitive, i.e., their capacitance increase
with the stretch caused by the bending of the arm. The sensor readings are digitized to values in the
range [0, 1023] and transmitted wirelessly via Bluetooth Low Energy at a frame rate of 50Hz.

4 Method

In our work, a motion tracking system using flexible sensors aims to construct a function f between
sensor readings R and joint angles θ (Figure 1a) that: θ=f(R). Naively, f can be approximated
through supervised learning by fitting a model to collected (R, θ) data. While in practice, it is
infeasible to collect enough (R, θ) data for training as R depends on the countless instances of
on-body displacement of flexible sensors (c, l), where c (deg) and l (cm) are circular and lateral
displacement, respectively (Figure 1a). Addressing this issue, we propose a novel self-adaptive motion
tracking network for flexible sensors that can efficiently adapt to unseen on-body displacements in an
unsupervised manner. As Figure 2 shows, our network decomposes f into two parts:

fR→θ = fR→R0
· fR0→θ (1)

whereR0 denotes the sensor readings with a limited number of displacements in the training dataset,
R denotes the sensor readings with unknown displacements at the time of testing. Between them,
fR→R0

is implemented with a light-weight learnable Affine Transformation layer whose parameters
can be tuned to align R to R0 and thus adapt the network to “unseen” displacements (Sec. 4.1);
fR0→θ is implemented with a Fourier-encoded LSTM network to reduce the learning bias towards
low-frequency functions and produce more accurate results (Sec. 4.2). The tuning of fR→R0 is
achieved by minimizing a novel sequence discrepancy loss equipped with auxiliary regressors
(Sec. 4.3).

1http://www.elas-tech.com/
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4.1 Learnable Affine Transformation

The proposed learnable Affine Transformation layer is an efficient implementation of fR→R0
.

Specifically, it models the linear transformation components of flexible sensors in a motion tracking
system:

• Initial Stretch, which is mainly affected by lateral displacements (Figure 1(b)) and can be
modeled with the additive bias vector in affine transformation.

• Stretching Range, which is mainly affected by circular displacement (Figure 1(c)) and can
be modeled with a scaling matrix in affine transformation.

Accordingly, let X = [r1, r2]
T be the sensor readings, Ws = diag [s1, s2] be the scaling matrix,

B = [b1, b2]
T be the bias vector, we have:

fR→R0
(X) = WsX +B =

[
s1 0
0 s2

] [
r1
r2

]
+

[
b1
b2

]
(2)

Both Ws and B are learnable in the adaptation stage (Sec. 4.3) for the adaptation to unknown
displacements.

4.2 Fourier-encoded LSTM Network

We implement fR0→θ by augmenting a standard LSTM sequence prediction network with a Fourier
Feature Encoding (FFE) layer, which models the nonlinear mapping from flexible sensor signals to
joint angles. Our key insight is that FFE helps to reduce the learning bias of deep neural networks
towards low-frequency functions [48] that leads to underfitting of fR0→θ.

The FFE layer used in our work is as follows:

x′ =

[
cos(

2πx

A
), sin(

2πx

A
)

]
(3)

where x ∈ X is the input, A > |max(X)−min(X)| so that x′ and x are in one-to-one correspon-
dence. Please note that our Fourier-encoded LSTM network is only trained in the pretraining stage
and fixed during adaptation (Figure 2).

4.3 Unsupervised Adaptation to Displacements

Algorithm 1 Unsupervised Adaptation to Displacements
Input: Pretrained model f with auxillary regressors; Scaling matrix Ws and Bias vector B of the
affine transformation layer in f ; Test-time sensor readings R; Batch size n;
Parameter: Training epoch e; Learning rate η;
Output: Adapted Ws and B;

1: for i = 1, . . . , e do
2: for j = 1, . . . , ⌈|R|/n⌉ do
3: X ← a mini-batch of (sequence) samples from R

4: Θ̂← f(X)

5: Ws ←Ws − η ∂L(Θ̂)
∂Ws

; B ← B − η ∂L(Θ̂)
∂B

6: end for
7: end for
8: return Ws, B

As mentioned above, our network decomposes the mapping f into two parts fR→θ = fR→R0 ·fR0→θ.
Between them, the challenging nonlinear components are well-approximated by fR0→θ, which greatly
simplifies our adaptation to tuning the parameters of the Affine Transformation layer of fR→R0 .
Intuitively, we aim to align the distribution of R to that of R0 so that fR0→θ can accurately map
R to joint angle θ. Naively, this can be achieved by directly minimizing a distributional difference
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loss between R0 and R or maximizing the prediction accuracy when using R. However, neither
approach is effective for our task as i) the former assumesR andR0 share the same distribution after
the affine transformation, which is incorrect becauseR0 (the training set) contains data with multiple
displacements whileR is collected with a single unknown displacement; and ii) the latter requires
ground truth joint angles θ ofR, which are unavailable during use. Addressing this challenge, we
propose a novel sequence discrepancy loss equipped with auxiliary regressors as follows.

Sequence Discrepancy Loss. We observed that the domain gaps among different displacements
are particularly evident when the elbow is bent and less when the elbow is flexed. Consequently, the
domain gaps are not evenly distributed over time during elbow movement, leading to the discrepancy
among different regressors that estimate the same joint angle θt with different choices of time
windows, where t denotes the time step in a motion sequence. Our key idea is that the adaptation to
unknown displacements can be achieved by minimizing such discrepancy. Specifically, let n be the
length of the time window for the main regressor, we have

θ̂
(0)
t = f(Rt−n+1, Rt−n+2, ..., Rt) (4)

where θ̂
(0)
t is its joint angle estimate. Similarly, we include additional n− 1 auxillary regressors that

predict θt with different time windows as:

θ̂
(i)
t = f(R(t+i)−n+1, R(t+i)−n+2, ..., Rt+i) (5)

where θ̂
(0)
t ≈ θ̂

(1)
t ≈ ... ≈ θ̂

(n−1)
t forR0 used in supervised pretraining, i=1,...,n-1. However, when

R is used, discrepancies occur among regressors and we tune the affine transformation parameters
(Sec. 4.1) to minimize such discrepancies. Specifically, let Θ

(k)
= mean(θ̂

(k)
1 , θ̂

(k)
2 , . . . , θ̂

(k)
t ) be the

mean of joint angle estimates of regressor k, ϕ̂(k)
t =

θ̂
(k)
t −mint(θ̂

(k))

maxt(θ̂(k))−mint(θ̂(k))+ε
be the normalized joint

angles, ε = 1 for numerical purpose, we define:

Lmean =

n−1∑
k=0

(Θ
(k) − 1

n

n−1∑
i=0

Θ
(i)
)2 (6)

Lshape =
∑
t

n−1∑
k=0

(ϕ̂
(k)
t − 1

n

n−1∑
i=0

ϕ̂
(i)
t )2 (7)

Our overall sequence discrepancy loss is a weighted sum of Lmean and Lshape:

L = αLmean + (1− α)Lshape (8)

where α ∈ [0, 1] is a weighting hyperparameter. Alg. 1 shows the pseudo-code of our adaptation
algorithm.

5 Experimental Results

5.1 Experimental Setup

Dataset and Metrics The dataset used in this paper consists of sensor readings and joint angles
collected by a single user wearing the augmented elbow pad (Sec. 3) while performing elbow flexion.
The joint angles are computed using the 3D positions captured by a Nokov motion-capture system
at a rate of 60 FPS. As instances of different on-body displacements, we collect 11 groups of data
with circular displacements c ∈ {−5, 0, 5} and lateral displacements l ∈ {−2,−1, 0, 1, 2}. For each
group, we collected data for 8 consecutive elbow flexion. In total, we collected 5,310 frames of data
across the 11 valid groups. Among the 11 groups, we randomly selected 5 of them as the training set
Dtrain and used the rest 6 groups as the test set Dtest. We have obtained ethical approval for the
publication of both datasets and results.

We use the Mean Absolute Error (MAE) of predicted joint angles (degrees) as our main evaluation
metric. For each experiment, we repeat 20 times and report their mean and standard deviation (std).
Unless specified, we use the same setups for all experiments.

6



Training Details Our model is trained in two stages: supervised pretraining and unsupervised
adaptation. For the supervised pretraining, we employ an MSE loss:

Lmse =
1

n

n−1∑
k=0

∑
t

(θ̂
(k)
t − θt)

2 (9)

where θ̂
(k)
t is the output of regressor k at time step t, θt is the corresponding ground truth joint

angle. We use an Adam optimizer with a learning rate of 1e−3, β1 = 0.9, β2 = 0.999, and training
epoch e = 30. For the adaptation, we use an Adam optimizer with a learning rate of 5e−3 and a
weight decay of 0.001, β1 = 0.9, β2 = 0.999, and training epoch e = 20. We use n = 10 for both
pretraining and adaptation. All experiments were conducted on a desktop PC with an AMD Ryzen
3950X CPU and an NVIDIA RTX 3080 GPU. Please see the supplementary materials for the details
of network architectures.

5.2 Comparisons with SOTA

As Table 1 shows, we compare our method with state-of-the-art (SOTA) domain adaptation methods.
For a fair comparison, we have adapted the official code provided by the authors to share the same
input and output format as ours. Please see the supplementary materials for more details on the
implementation of SOTA methods. It can be observed that our method outperforms all SOTA methods,
which demonstrates its effectiveness.
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Figure 3: Comparison with two most competitive SOTA methods (displacement condition: c=-5,
l=1). As highlighted in the dashed boxes, our method (red) is much closer to the ground truth (blue).
GT: ground truth.

To gain more insights, we visualize the results of our method and its two strongest competitors,
AdvSKM [27] and HoMM [18], as time series in Figure 3. The results show that our method fits the
ground truth with a closer distance than other SOTA methods.

Table 1: Results of comparative experiments.

Method MAE (deg)

MMD [49] 28.73 ± 8.50
D-CORAL [16] 13.83 ± 8.45
DAAN [23] 16.80 ± 7.88
DSAN [50] 14.03 ± 5.88
AdvSKM [27] 13.05 ± 5.19
HoMM [18] 11.03 ± 4.42

Ours 7.32 ± 2.85
Supervised 5.63±1.95

Comparison with Supervised Learning
To demonstrate the effectiveness of un-
supervised learning in our task, we tune
the parameters of Affine Transformation
layer by supervised learning (i.e., super-
vised domain adaptation) to obtain its “up-
per bound”. Even trained in an unsuper-
vised manner, our method achieves results
comparable to its supervised version (Ta-
ble 1). This difference of 1.5 degrees in-
dicates that our unsupervised learning ap-
proach is effective.

Experiments on different participants To further demonstrate the generalization ability of our
method, we conducted experiments with five additional participants of varying body types (see the
supplementary materials for body profile details). Each of these five participants wore the devices
in three supervised on-body positions and performed three distinct physical activities sequentially:
ping-pong, basketball, and boxing. Each activity lasted for a minimum duration of one minute. In
total, this comprehensive evaluation approach yielded 15 (5 participants × 3 on-body displacements)
unique data segments across all participants, comprising 81,848 total frames. For each participant,
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Table 2: Experimental results on five additional participants.
Averaged MAE (deg)

User ID D-CORAL DSAN HoMM AdvSKM Ours

1 11.84 ± 1.49 11.86 ± 1.57 11.96 ± 1.73 11.84 ± 1.80 12.07 ± 1.04
2 16.59 ± 1.81 17.04 ± 1.80 16.53 ± 1.70 16.63 ± 0.95 16.69 ± 2.34
3 14.94 ± 5.89 13.68 ± 4.19 15.24 ± 6.93 15.71 ± 6.89 12.70 ± 2.79
4 11.76 ± 1.11 12.04 ± 1.16 12.06 ± 1.49 12.08 ± 1.73 9.30 ± 2.77
5 19.41 ± 4.37 19.32 ± 4.34 20.58 ± 5.88 19.44 ± 4.21 13.96 ± 2.88

Avg 14.91 ± 0.34 14.79 ± 0.22 15.27 ± 0.48 15.14 ± 0.18 12.94 ± 0.25

we conducted 5 times 3-fold cross-validation experiments and recorded the average result. As Table 2
shows, our method achieves optimal or near-optimal results for all five additional users, indicating
the effectiveness of our method against user diversity.

5.3 Ablation Study

To demonstrate the effectiveness of the three novel techniques proposed, we conduct an ablation
study as follows:

• FFE: Remove the Fourier Feature Encoding (FFE) layer from the LSTM network.
• Affine: Remove the Affine Transformation layer and tune all the parameters of the network

during adaptation after supervised pretraining. For the adaptation, we use a weighted sum of
two loss terms: i) a supervised loss Lmse applied on the training data; and ii) our sequence
discrepancy loss L applied on the test data.

• SD Loss: Replace our Sequence Discrepancy (SD) loss with a more naive and stricter
version:

L
′
=

∑
t

n−1∑
k=0

(θ̂
(k)
t −Θt)

2 (10)

where Θt = mean(θ̂
(0)
t , ..., θ̂

(n−1)
t ).

Table 3: Ablation study.

Case FFE Affine SD Loss MAE

1 - - - 13.40±5.58
2 + - - 11.81±6.65
3 - + - 12.58±8.62
4 - - + 14.36±5.96
5 - + + 10.27±4.20
6 + - + 12.36±6.99
7 + + - 9.38±8.78

Ours + + + 7.32±2.85

We have enumerated all combinations of the
three components proposed. As Table 3 shows,
it can be observed that: i) Ours achieves the best
performance, indicating the effectiveness of the
three novel techniques proposed; ii) FFE and
affine transformation improve the performance
in all cases; iii) the effectiveness of SD loss
relies on affine transformation. In both cases
with and without FFE, the co-existence of affine
transformation and SD loss show better perfor-
mance than using SD loss alone (Ours over Case
6, Case 5 over Case 3).

5.4 Justification of Motivation

Affine Transformation Figure 4 demonstrates the effective alignment of the target and source
domains with our method. As shown in Figure 4a and 4b , although light-weight, the proposed Affine
Transformation layer effectively aligns the sensor reading distributions of test data (blue) to those in
the training set (orange), thereby significantly improving the accuracy of joint angle estimation.

Sequence Discrepancy Loss The design rationale of this component is rooted in the insight that
our sequence discrepancy loss L shares a similar optimization landscape with the estimation error
of joint angles during optimization (Figure 5). This consistency effectively offers the advantage of
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Figure 4: Original and adapted data distributions of our method, HoMM and AdvSKM. Note that due
to method characteristics, our method is aligned directly using the sensor reading, while the latter
two are aligned in the latent space. “dim 1” and “dim 2” are obtained using t-SNE.

leading the network optimization toward the optimal point. As shown in Figure 6, i) before adaptation,
the outputs of different regressors significantly differ from each other, leading to a high sequence
discrepancy; ii) after adaptation, the discrepancy among regressors reduced and the accuracy of joint
angle estimates for all regressors was improved significantly at the same time.

Fourier Feature Encoding Existing literature shows the existence of spectral bias: the tendency of
neural networks to prioritize learning low-frequency functions [48]. Figure 7a shows the frequency
distribution difference between the prediction and ground truth. Without the component of FFE,
the network output shows a large deviation in the region of low-frequency domain from the ground
truth (on the left side of this plot). This over-emphasis on the low-frequency components inevitably
dominates the prediction capability and weakens the reconstruction of the high-frequency signals.

Our experiment confirms that Fourier Feature Encoding (FFE) reduces the spectral bias of neural
networks. Therefore, as Figure 7 shows, our method can approximate the mapping between sensor
readings and joint angles in a more faithful way.
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Figure 5: Rationale of our Sequence Discrepancy (SD) loss (c=5, l=0). Our SD loss shares similar
minima with the MAE errors. Error: errors of joint angle estimation. As defined in Eq. 2, Bias
B = [b1, b2]

T and Scaling Ws = diag [s1, s2].
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Figure 6: Justification of Sequence Discrepancy
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iliary regressors 1, 5, 9. Main: main regressor.
GT: ground truth.
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6 Limitations and Future Work

Limitations The performance of the proposed method is dependent on the quality of the data in
both the training and test sets. When the data quality is poor (e.g., noisy), the error in joint angle
prediction may still be high even if the sensor readings are well aligned (see Figure 8a and 8b).
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Figure 8: Failure cases (noisy data). x-axis and
y-axis ([r1, r2]): sensor readings. z-axis: joint
angles. Blue and Orange: displacements in the
training and test sets, respectively.

Specifically, according to the frequency char-
acteristics of elbow movement, we define the
sensor signal greater than 5Hz as noise, and cal-
culated the signal-to-noise ratio (SNR) for the
sensor signals within the 11 data sets collected
from a single user. Furthermore, we compiled
the mean absolute error (MAE) for each set after
implementing our adaptive approach. It can be
found that our proposed method exhibits signifi-
cant effectiveness when the SNR exceeds 10 dB.
Conversely, maintaining satisfactory outcomes
becomes challenging when the SNR falls below
10 dB (see the supplementary materials for the
visualization).

Future Work As abovementioned, we believe that extending our method to learning with noisy
data would be interesting future work. In addition, our work opens up a number of research directions
for future efforts. First, in most domain adaptation methods, measuring the similarity between
the distribution of the target domain and the source domain is a key step. While in our work, we
found that the output of the auxiliary regressors can be used as an indicator of data distribution
shifts from the source domain, and verified the feasibility of domain adaptation using only target
domain data in flexible sensor applications. In future work, we hope to implement this idea in more
diverse applications. Second, although we have only used translation and scaling, this work proves
affine-based domain adaptation to be a promising solution to mitigate the data distribution shifts of
flexible sensors. The effectiveness of rotation and reflection remains to be studied in our future work.

7 Conclusion

Our work proposes a novel self-adaptive motion tracking network to address the challenging data
distributional shifts caused by on-body displacements of flexible sensors. To mitigate the effects of
such displacements, we propose three novel techniques. First, we propose an Affine Transformation
layer that can remap shifted data distributions to those in the training set efficiently. Second,
we propose a Fourier-encoded LSTM network that can learn richer frequency components in the
input signals and thus improves the accuracy of joint angle estimation. Finally, we propose a
Sequence Discrepancy loss equipped with auxiliary regressors that can adapt the parameters of Affine
Transformation effectively in an unsupervised manner. Experimental results show that our method
can effectively adapt to unknown displacements of flexible sensors worn at different positions.
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