
Supplementary Material for:
Convolutional Neural Operators for Robust and Accurate Learning of PDEs.

Table of Contents
A Technical Details for Section 2 of main text. 15

A.1 Approximation of Operators mapping between Sobolev spaces by operators map-
ping between spaces of bandlimited functions. 15

A.2 Continuous-Discrete Equivalence for Operator G∗ from Section 2.1 16
A.3 Multi-channel versions of elementary operators for CNO (2.3) 17
A.4 Discrete operators for CNO . 18
A.5 Proof of Proposition 2.1 of Main Text . 19

B Proof of Theorem 3.1 of Main Text 20
B.1 Auxiliary results . 23

C Technical Details for Section 4 of Main Text 24
C.1 Training and Implementation Details . 24
C.2 Training Details . 29
C.3 Details about the description and numerical results in each benchmark 30
C.4 Testing at Different Resolutions. 46
C.5 Ablation Studies. 47
C.6 Error vs. number of training samples. 48

D Depiction of the Datasets. 48

E Additional References 50

A Technical Details for Section 2 of main text.

A.1 Approximation of Operators mapping between Sobolev spaces by operators mapping
between spaces of bandlimited functions.

We prove that one can approximate any continuous operator G† : X → Y (as introduced in Section
2) of the main text by an operator mapping between spaces of bandlimited functions to arbitrary
accuracy. We obtain this result by discarding the high-frequency components, e.g. higher than
frequency w, of both the input and output of G†. This can be performed by a Fourier projection
Pw. For orthogonal Fourier projections and also trigonometric polynomial interpolation [19, 24] the
following result on the accuracy of the projection holds,

Lemma A.1. Given σ, r ∈ N0 with r > d/2 and r ≥ σ, and f ∈ Cr(Td) it holds for every w ∈ N
that,

∥f − Pw(f)∥Hσ(Td) ≤ C(r, d)w−(r−σ) ∥f∥Hr(Td) , (A.1)

for a constant C(r, d) > 0 that only depends on r and d.

Using this result, we show that by discarding the high frequencies of the input and output of G† one
can approximate G† to arbitrary accuracy by choosing an appropriate frequency cutoff.

Lemma A.2. For any ε,B > 0 there exist w ∈ N such that
∥∥G†(a)− PwG†(Pwa)

∥∥
L2(D)

≤ ε for
all a ∈ Hr(D) with ∥a∥Hr(D) ≤ B.

15

Proof. We follow [24] and use Lemma A.1 repeatedly together with the stability of G† (2.1) to obtain,∥∥G†(a)− PwG†(Pwa)
∥∥
L2 ≤

∥∥G†(a)− PwG†(a)
∥∥
L2 +

∥∥PwG†(a)− PwG†(Pwa)
∥∥
L2

≲ w−r
∥∥G†(a)

∥∥
Hr +

∥∥G†(a)− G†(Pwa)
∥∥
L2

≲ w−r∥G†∥op ∥a∥Hr + ω(∥a− Pwa∥Hσ)

≲ w−r∥G†∥op ∥a∥Hr + ω(Cw−(r−σ) ∥a∥Hr).

(A.2)

It follows immediately that for large enough w,

sup
∥a∥Hr≤B

∥∥G†(a)− PwG†(Pwa)
∥∥
L2 ≤ ε. (A.3)

This proves the statement of the lemma.

Given that both Pwa ∈ Bw(D) and PwG†(Pwa) ∈ Bw(D), a consequence of the above lemma
is the existence of an operator G∗ : Bw(D) → Bw(D) : a 7→ PwG†(a) that can approximate G†

arbitrarily well. It follows from the lemma and its proof that
∥∥G† − G∗

∥∥
op

≤ ε, where the operators
are considered as mappings from and to Bw(D) ∩Hr(D) equipped with the Hr(D)-norm.

A.2 Continuous-Discrete Equivalence for Operator G∗ from Section 2.1

For every w > 0, we denote by Bw(R2) the space of multivariate bandlimited functions

Bw(R2) = {f ∈ L2(R2) : suppf̂ ⊆ [−w,w]2},

where f̂ denotes the Fourier transform on L1(R)

f̂(ξ) :=

ˆ
R
f(x)e−2πixξ dx, ξ ∈ R,

which extends to L2(R) by a classical density argument. The set Ψw = {sinc(2wx1 − m) ·
sinc(2wx2 − n)}m,n∈Z constitutes an orthonormal basis for Bw(R2). The bounded operator

TΨw : ℓ2(Z2) → Bw(R2), TΨw(cm,n) =
∑

m,n∈Z
cm,nsinc(2w · −m) · sinc(2w · −n),

which reconstructs a function from its basis coefficients, is called synthesis operator, and its adjoint

T ∗
Ψw

: Bw(R2) → ℓ2(Z2), T ∗
Ψw
f =

{
f
(m
2w

,
n

2w

)
)
}
m,n∈Z

,

which extract basis coefficients from an underlying function, is called analysis operator. Every ban-
dlimited function can be uniquely and stably recovered from its sampled values

{
f
(

m
2w ,

n
2w

)
)
}
m,n∈Z

via the reconstruction formula

f(x1, x2) = TΨw
T ∗
Ψw
f(x1, x2) =

∑
m,n∈Z

f
(m
2w

,
n

2w

)
sinc(2wx1 −m) · sinc(2wx2 − n), (A.4)

and we say that there is a continuous-discrete equivalence (CDE) between f and its samples{
f
(

m
2w ,

n
2w

)
)
}
m,n∈Z. More in general, every bandlimited function f ∈ Bw(R2) can be uniquely

and stably recovered from its values {f (mT, nT))}m,n∈Z if the sampling rate or reciprocal of
grid size, 1/T is greater or equal than the Nyquist rate 2w. This simply follows from the fact that
Bw(R2) ⊂ Bw′(R2) for every w′ > w. On the contrary, reconstructing f ∈ Bw at a sampling rate
below the Nyquist rate, i.e. 1/T < 2w, results in a non-zero value for the aliasing error function:

ε(f) = f − TΨ 1
2T

T ∗
Ψ 1

2T

f,

and the associated aliasing error ∥ε∥2 (cfr. Definition 2.1 in [2]).

Let G∗ be a (possibly) non-linear operator between band-limited spaces, i.e. G∗ : Bw(R2) →
Bw′(R2), for some w,w′ > 0. As argued in [2], the concepts of continuous-discrete equivalence

16

(CDE) and aliasing error can be adapted to the operator G∗. The continuous operator G∗ is uniquely
determined by a map gΨw,Ψw′ : ℓ(Z2) → ℓ2(Z2) if the aliasing error operator

ε = G∗ − TΨw′ ◦ gΨw,Ψw′ ◦ T ∗
Ψw

(A.5)

is identically zero, and we say that G∗ and gΨw,Ψw′ satisfy a continuous-discrete equivalence (cfr.
Definition 3.1 in [2]). Equivalently, the diagram

Bw Bw′ ,

ℓ2(Z2) ℓ2(Z2)

G∗

T∗
Ψw

gΨw,Ψ
w′

TΨ
w′

commutes, i.e. the black and the blue directed paths in the diagram lead to the same result. In this
latter case, since T ∗

Ψw
◦ TΨw

is the identity operator from ℓ2(Z2) onto itself, equation (A.5) forces
the discretization gΨw,Ψw′ to be defined as

gΨw,Ψw′ = T ∗
Ψw′ ◦ G

∗ ◦ TΨw
, (A.6)

i.e. the diagram

Bw Bw′

ℓ2(Z2) ℓ2(Z2)

G∗

T∗
Ψ

w′TΨw

gΨw,Ψ
w′

also commutes. In other words, once we fix the discrete representations associated to the input and
output functions, there exists a unique way to define a discretization gΨw,Ψw′ that is consistent with the
continuous operator G∗ and this is given by (A.6). In practice, we may have access to different discrete
representations of the input and output functions, e.g. point samples evaluated on different grids,
which in the theory amounts to a change of reference systems in the function spaces. For instance,
sampling a function f ∈ Bw on a finer grid

{(
m
2w ,

n
2w

)
)
}
m,n∈Z, w > w, amounts to representing

the function f with respect to the system Ψw = {sinc(2wx1 −m) · sinc(2wx2 − n)}m,n∈Z, which
constitutes an orthonormal basis for Bw ⊃ Bw. Then, one can define the associated CDE discretization
gΨw,Ψw′ as in (A.6), and by equation (A.5), one readily obtains the change of basis formula

gΨw,Ψw′ = T ∗
Ψw′ ◦ TΨw′ ◦ gΨw,Ψw′ ◦ T ∗

Ψw
◦ TΨw

, (A.7)

see also Remark 3.5 in [2] for a more general change of frame formula. Finally, all the above concepts
generalize to every pair of frame sequences (Ψ,Φ) that span respectively the input and output function
spaces, and we refer to [2] for a complete exposition. Appendix A.2 can be adapted to bandlimited
periodic functions, i.e. periodic functions with a finite number of non-zero Fourier coefficients, with
the Dirichlet kernel as a counterpart of the sinc function, see [57, Section 5.5.2] for further details.

A.3 Multi-channel versions of elementary operators for CNO (2.3)

In this section, we will define multi-channel versions of the elementary mappings which define CNO
(2.3). Note that the single-channel versions were defined in the main text.

Convolution Operator. In the multi-channel settings, discrete kernels Kw are defined on the
din × dout × s2 uniform grids on D, where din is the number of input channels and dout is the
number of output channels. Formally, the kernels are defined as

Kw,cl =

k∑
i,j=1

kij,cl · δzij .

where c is the channel index in the input space, while l is the channel index in the output space.
Each pair of channels defines corresponding single-channel convolution operation Kw,cl : Bw(D) →
Bw(D). For a ∈ Bw(D,Rdin), the multi-channel convolution operation Kw is defined as(

Kwa(x)
)
l
=

din∑
c=1

Kw,cl ac(x), l = 1 . . . dout.

17

Upsampling and Downsampling Operators. To upsample a signal a ∈ Bw(D,Rd) with d
channels from the bandlimit w > 0 to the bandlimit w > w, one should apply the single-channel
upsampling operator Uw,w to each individual channel of the input signal, independently. Formally,
for a ∈ Bw(D,Rd), the multi channel upsampling Uw,w : Bw(D,Rd) → Bw(D,Rd) is defined as

(Uw,wa(x))c = ac(x), ∀x ∈ D, c = 1 . . . d.

The downsampling operator of a signal a ∈ Bw(D,Rd) from the bandlimit w > 0 to the bandlimit
w < w is defined in a similar manner (independent applications of the single-channel downsampling
operators).

Activation layer. The multi-channel version of the activation layer, namely Σw,w : Bw(D,Rd) →
Bw(D,Rd), is realized by applying the single-channel activation layer to each of the d channels,
independently.

A.4 Discrete operators for CNO

In this section, we will define the discrete versions of the elementary mappings in (2.3). Given a
discrete, multi-channel signal as ∈ Rs×s×d on s × s × d uniform grid, we will use the notation
as[i, j, c] to refer to the (i, j)-th coordinate of the c-th channel of the signal, where i, j = 1 . . . s and
c = 1 . . . d.

Convolution operator. Assume that instead of a continuous, single-channel signal a ∈ Bw(D),
one has an access only to its sampled version as ∈ Rs×s on s× s uniform grid on D. Assume that
as is to be convolved with a discrete kernel Kw ∈ Rk×k with k = 2k̂ + 1. Let âs ∈ Rs+2k̂×s+2k̂

be an extended version of as obtained by circular-padding or zero-padding of as. The discrete,
single-channel convolution Ks : Rs×s → Rs×s of the signal as and the kernel Kw is given by

Ks(as) = (as ⋆ Kw)[i, j] =

k̂∑
m,n=−k̂

Kw[m,n] · âs[i−m, j − n], i, j = 1 . . . s,

where indices of âs outside the range 1 . . . s correspond to the padded samples. By performing the
convolution in a described way, we ensure that the input and the output signals have the same spatial
dimension s× s.

Let as ∈ Rs×s×din be a discrete, multi-channel signal and Kw ∈ Rk×k×din×dout a discrete kernel
with k = 2k̂ + 1. The multi-channel convolution of as and Kw is defined by

(as ⋆ Kw)[i, j, l] =

k̂∑
m,n=−k̂

din∑
c=1

Kw[m,n, c, l] · âs[i−m, j − n, c], i, j = 1 . . . s,

where l corresponds to the index of the output channel and c to the index of the input channel.

Upsampling and Downsampling Operators. In this section, we will define the discrete upsampling
and downsampling operators. For w > 0, let hw be the interpolation sinc filter defined in 2.5. For a
discrete, single-channel signal as ∈ Rs×s, let (ãs[n])n∈Z be its periodic extension into infinite length.
In other words, ãs[n] = as[n mod s] for n ∈ Z. The discrete upsampling Us,N : Rs×s → RNs×Ns

by an integer factor N ∈ N of the signal as ∈ Rs×s is done in two phases:

1. First step is to increase the number of samples of the signal as from s2 to (Ns)2. One
transforms the signal as into the signal as,↑Ns obtained by separating each two signal
samples of as with N − 1 zero-valued samples. In other words, it holds that as,↑Ns ∈
RNs×Ns and

as,↑Ns[i, j] = 1S(i) · 1S(j) · as[i mod s, j mod s], i, j = 1 . . . Ns,

where S = {1, s+ 1, . . . (N − 1)s+ 1} and 1S is the indicator function.

18

2. Second step is to convolve the periodic extension of as,↑Ns with the hs/2 interpolation filter
to eliminate high frequency components. The upsampled signal is formally obtained by

Us,N (as)[i, j] =
∑

n,m∈Z
ãs,↑Ns[n,m] · hs/2(is− ns, js−ms), i, j = 1 . . . Ns.

The discrete downsampling Ds,N : Rs×s → Rs/N×s/N by an integer factor N ∈ N of the signal
as ∈ Rs×s is also done in two phases (under the assumption that s/N ∈ N):

1. First step is to convolve the periodic extension of as with the hs/(2N) interpolation filter to
eliminate high frequency content. Formally, the first step is defined by

as,s/N [i, j] =
∑

n,m∈Z
ãs[n,m] · hs/(2N)(is− ns, js−ms), i, j = 1 . . . s/N.

2. Second step is to decrease the sampling rate of as,N/s by keeping every N−th sample of
the signal. The downsampled signal is formally defined by

Ds,N (as)[i, j] = as,N/s[(i− 1)s+ 1, (j − 1)s+ 1], i, j = 1 . . . s/N.

Multi-channel discrete upsampling and downsampling are performed by independent applications of
the corresponding single-channel operators.

Since perfect filters hw have infinite impulse response and cause ringing artifacts around high-gradient
points (e.g. discontinuities) due the Gibbs phenomenon, one usually uses windowed-sinc filters in the
implementation. We will describe these filters later in the text (see C.1.4)

Activation layer. Given the definitions of the discrete operators, the discrete, single-channel
activation layer is defined as

Σs : Rs×s → Rs×s, Σs(as) = Ds,N ◦ σ ◦ Us,N (as),

where σ : R → R is an activation function applied point-wise and N ∈ N is a fixed constant. In
our experiments, we noticed that N = 2 is sufficient for accurate predictions. The multi-channel
activation layer is performed by independent applications of the single-channel activation layer.

A.5 Proof of Proposition 2.1 of Main Text

We use the same notation as in Section 2 and Appendix A.2. The layers of a convolutional neural
operator (2.3) are given by,

vl+1 = Pl ◦ Σl ◦ Kl(vl), 0 ≤ l ≤ L− 1, (A.8)

Hence, they consist of three elementary mappings between spaces of bandlimited functions, i.e., Kl

is a convolution operator, Σl is a non-linear operator whose definition depends on the choice of an
activation function σ : R → R, and Pl is a projection operator. We now show that CNO layers, whose
discrete versions are outlined in the previous section, respect equation (A.6) and consequently CNOs
are Representation equivalent Neural Operators (ReNOs) in the sense of [2, Definiton 3.4] and [2,
Remark 3.5]. We recall that the convolutional operator appearing in (A.8) takes the form

Kwf(x) =

k∑
m,n=−k

km,nf(x− zm,n), x ∈ R,

for some w > 0, where k ∈ N, km,n ∈ C and zm,n =
{(

m
2w ,

n
2w

)}
m,n∈Z. By definition, Kw is a

well-defined operator from Bw(R2) into itself. Moreover, its discretized version is defined by the
mapping

{
f
(m
2w

,
n

2w

)}
m,n∈Z

→
{
Kwf

(m
2w

,
n

2w

)}
m,n∈Z

=

k∑

m′,n′=−k

km′,n′f(zm,n − zm′,n′)

m,n∈Z

,

19

and thus results in the commutative diagram

Bw Bw

ℓ2(Z2) ℓ2(Z2)

Kw

T∗
Ψw

TΨw

Equivalently, the discretized verion of Kw is defined via (A.6), which was to be shown. In order to
define the activation layer Σl, we first assume that the activation function σ : R2 → R2 is such that
for every f ∈ Bw(R2)

σ(f) ∈ Bw(R2), (A.9)
for some w > w. In fact, in Section 2 we assume that the pointwise activation can be approximated
by an operator between bandlimited spaces and consequently (A.9) is satisfied up to negligible
frequencies. Thus, the activation layer Σw,w : Bw(R2) → Bw(R2) in (A.8) is defined by the
composition

Σw,w = PBw(R2) ◦ σ ◦ PBw(R2), (A.10)
where PBw(R2) : Bw(R2) → Bw(R2) denotes the orthogonal projection onto Bw(R2) and
PBw(R2) : Bw(R2) → Bw(R2) denotes the natural embedding of Bw(R2) into Bw(R2). The dis-
cretized version of each mapping in (A.10) is defined in order to guarantee a continuous-discrete
equivalence (CDE) between the continuous and discrete levels. More precisely, PBw(R2) and PBw(R2)

are discretized via (A.6) as

Dw,w = T ∗
Ψw

◦ PBw(R2) ◦ TΨw
, Uw,w = T ∗

Ψw
◦ PBw(R2) ◦ TΨw

,

which are respectively called downsampling and upsampling. Consequently, the discretized version
of the activation layer is given by the composition

Dw,w ◦ σ ◦ Uw,w,

which yields the commutative diagram

Bw Bw Bw Bw

ℓ2(Z2) ℓ2(Z2) ℓ2(Z2) ℓ2(Z2)

PBw(R2) σ

T∗
Ψw

PBw(R2)

T∗
Ψw

Uw,w

TΨw

σ Dw,w

TΨw

which we wanted to show. Finally, the activation layer might be followed by an additional projective
operator, i.e., by a downsampling or an upsampling. Thus, this exact correspondence between its
constituent continuous and discrete operators establishes CNO as an example of Representation
equivalent neural operators or ReNOs in the sense of [2, Definiton 3.4] and [2, Remark 3.5], thus
proving Proposition 2.1 of the main text. As in Appendix A.2, the above proofs can be readily adapted
to bandlimited periodic functions, i.e. periodic functions with a finite number of non-zero Fourier
coefficients.

B Proof of Theorem 3.1 of Main Text

We present the proof of a generalization of the universality result of Theorem 3.1. The theorem in the
main text only holds when the differential operator L only depends on the coordinate x through a
coefficient function a ∈ Hr(D). Although all benchmark PDEs in Section 4 satisfy this requirement,
there are other important PDEs that do not, such as the standard elliptic PDE ∇ · (a∇u)) = f . We
therefore generalize this requirement in the following setting,
Setting B.1. We set D = T2 and assume that the following is true,

1. L only depends on the coordinate x through functions a, f1, . . . , fℓ ∈ Hr(T2).

2. The solution of the PDE characterized by a and f = (f1, . . . , fℓ) is given by a continuous
operator G̃ : X̃ ⊂ (Hr(T2))ℓ+1 → Hr(T2) : (a, f) 7→ u or u(T), depending on the
PDE. The operator of interest G† is a restriction of G̃ for fixed f1, . . . , fℓ i.e., G† : X ∗ ⊂
Hr(Td) → Hr(Td) : a 7→ G̃(a, f1, . . . , fℓ).

20

3. Similar to (2.1), it holds for all (a, f), (a′, f ′) ∈ X ∗ it holds that∥∥∥G̃(a, f)− G̃(a′, f ′)
∥∥∥
Lp(T2)

≤ ω
(
∥a− a′∥Hσ(T2) +max

i
∥fi − f ′i∥Hσ(T2)

)
, (B.1)

for some p ∈ {2,∞} and σ ∈ N0 with σ < r. This is automatically satisfied if X ∗ is
compact and G̃ is continuous [24].

4. It holds that the activation function σ is at least r times continuously differentiable and not
a polynomial. (See Remark B.4 for a generalization.)

In addition, we will use the following notation in the proof.

• For J ∈ N we define for every j ∈ {0, . . . , J − 1}2 the grid xJ
j = (2πj1/J, 2πj2/J).

• We denote the Fourier basis by {ek}k∈Z2 , following the notation of [24]. For k =
(k1, . . . ,kd) ∈ Zd, we let σ(k) be the sign of the first non-zero component of k and
we define

ek := Ck

1, σ(k) = 0,

cos(k · x), σ(k) = 1,

sin(k · x), σ(k) = −1,

(B.2)

where the factor Ck > 0 ensures that ek is properly normalized, i.e. that ∥ek∥L2(Td) = 1.
• For N ∈ N let PN denote a trigonometric polynomial interpolation operator as in (B.16) in

SM B.1.

Assuming Setting B.1 we can now prove the following theorem on the universality of CNOs. In
the proof we will construct an operator G : Hr(T2) → C(T2), mapping between function spaces,
and we will therefore allow to apply the activation function to the continuous representation of the
signal rather than an upsampled version. We then make the link to the discrete implementation of the
CNO by considering an encoder EK that maps the input function a to the evaluation of a on a grid,
enhanced by some Fourier features [53] in case ℓ > 0 in Setting B.1.
Theorem B.2. Let σ ∈ N0 and p ∈ {2,∞} as in (B.1), r > max{σ, 2/p} andB > 0. For any ε > 0
and any operator G† satisfying Setting B.1, there exist K,N ∈ N0 and a CNO G : Hr(T2) → C(T2)
such that for every a ∈ X ∗ with ∥a∥Hr(T2) ≤ B it holds,∥∥G†(a)− G(a)

∥∥
Lp(T2)

< ε. (B.3)

The CNO is implemented through an encoder

EK : Hr(T2) → (RN×N)(K+1)2 : a 7→ (a(xN), (cos(k · xN), sin(k · xN))1≤∥k∥∞≤K) (B.4)

and a single invariant block Φ̂ : (RN×N)(K+1)2 → RN×N such that G(a)(xN) = (Φ̂ ◦ EK)(a). If
ℓ = 0 (see Setting B.1) then K = 0, meaning that no Fourier features are needed.

Proof. Let M,N ∈ N with N/M ∈ N. We will construct a CNO with input a(xN) and the
Fourier features ek(xN) for k ∈ K := {−M/2,−M/2 + 1, . . . ,M/2}2 \ {0, 0}, summarized in
the tensor (a(xN), eM/2(xN)) := (a(xN), (ek(x

N))k∈K). In the proof, we will use the property
that bandlimited functions can be represented by their function values on a fine enough grid. We will
therefore first construct a continuous operator G : Hr(T2) → C(T2) that is a good approximation of
G†. In the second step, we will then prove that G(a)(xN) indeed corresponds to a CNO.

Step 1: construction of G. First, since a, f ∈ Hr(T2) we can use Lemma A.1 and assumption
(B.1) on the stability of G̃ to find that,∥∥∥G̃(a, f)− G̃(PM (a, f))

∥∥∥
Lp(T2)

≤ ω
(
CB,fM

−(r−σ)
)
. (B.5)

Next, we define for any J ∈ N the set

AJ = {y ∈ (RJ×J)(M+1)2 | ∃a ∈ Hr(T2) : y = (a(xJ), eM/2(xJ)) and ∥a∥Hr(T2) ≤ B},
(B.6)

21

and the map,

G : AM ⊂ (RM×M)(M+1)2 → R : (a(xM), eM/2(xM)) 7→ G̃(PM (a, f))(x0,0). (B.7)

The existence of the map G can be justified as follows. Let PM denote a trigonometric polyno-
mial interpolation operator as in (B.16) in SM B.1. By the Nyquist–Shannon sampling theorem
and the Whittaker–Shannon interpolation formula there is a bijection between the discrete values
(a(xM), eM/2(xM)) and PMa and eM/2, and therefore also PMa and PMfi for all 1 ≤ i ≤ ℓ.
Hence, the mapping G is equivalent to the mapping PM (a, f) 7→ PMu, and therefore well-defined.
The continuity of G follows from that of G̃. By the universal approximation theorem (Theorem B.6)
there exists a shallow neural network Ψ such that |Ψ(y)−G(y)| < ε for all y ∈ AM . Note that Ψ
only provides an approximation in the point x0,0. We can expand Φ to the whole T2 by defining the
operator Ψ∗ as follows,

Ψ∗ : X ∗ → C(T2) : a 7→
[
T2 ∋ z 7→ Ψ

(
a(z+ xM), eM/2(z+ xM)

)]
. (B.8)

For the intuition of the reader: the extension from Ψ to Ψ∗ is similar to the extension from the local
stencil of a finite difference scheme to its corresponding global approximation. As a result, Ψ∗ has
the same accuracy as Ψ, ∥∥G†(PMa)−Ψ∗(PMa)

∥∥
C0(T2)

< ε. (B.9)

We finalize our construction by projecting Ψ∗(PMa) on to the space of trigonometric polynomials.
The accuracy of such a projection is given by Lemma A.1,

∥(PN − Id)Ψ∗(a)∥Lp(T2) ≤ ∥(PN − Id)Ψ∗(a)∥H1−2/p(T2) ≤ CN−(r−2/p) ∥Ψ∗(a)∥Hr(T2) ,

(B.10)
where we used that either p = 2 or p = ∞. It is important to note that ∥Ψ∗(a)∥Hr(T2) is independent
of N . We then define the operator G as,

G(a)(z) = (PN ◦Ψ∗)(PMa)(z). (B.11)

Finally, we can put all obtained estimates together to find,∥∥G†(a)− G(a)
∥∥
Lp(T2)

≤
∥∥G†(a)− G†(PMa)

∥∥
Lp(T2)

+
∥∥G†(PMa)−Ψ∗(PMa)

∥∥
C0(T2)

+ ∥Ψ∗(PMa)− G(a)∥Lp(T2)

≤ ω
(
CB,fM

−(r−σ)
)
+ ε+ CB,M,εN

−(r−2/p).

(B.12)

It then follows that one can make this upper bound arbitrarily small by choosing ε sufficiently small
and M,N sufficiently large (in that order).

Step 2: G corresponds to a CNO. We will now show that the operator G is in agreement with
our definition of a convolutional neural operator (CNO). To do so, we will use that trigonometric
polynomials up to a certain degree can be exactly retrieved based on their values on a grid (see SM
B.1 and [19]).

First of all, given that N/M ∈ N we find that the functions PMa and eM/2 can be exactly recovered
from their discrete values on the grid xN . We therefore will look for a CNO with input y =
(a(xN), eM/2(xN)) ∈ AN for which the continuous representation of the output agrees with G(a).
A crucial next observation is that G is equivariant with respect to translations in space of the input
(simultaneously across all channels). By [46, Theorem 1.1] there then exists a shallow CNN Φ such
that π ◦ Φ = Ψ, where π is the projection on the first coordinate π : (RN×N)(M+1)2 → R(M+1)2 :
X 7→ (X1

1,1, . . . , X
ℓ
1,1) (as in [46]). For simplicity we will assume that the CNN is of the form

Φ(y) = K2 ∗ σ(K1 ∗ y), i.e. that it only has one channel at every layer. The proof of the general
case is completely analogous, but much heavier on notation.

We then lift the convolution filter K1 ∈ RM×M to the grid RN×N by using a stride of N/M
and filling up the rest by zeroes. More rigorously, we consider the matrix K̂1 := K1 ⊗ E with

22

Eij = δi1δj1. Similarly we define K̂2 := K2 ⊗ E. We can then define a new CNN Φ̂ : AN →
RN×N : y 7→ K̂2 ⋆σ(K̂1 ⋆y). The output of Φ̂ then consists of approximations of G†(a) at (N/M)2

different M ×M subgrids of xN , i.e. all possible translations of xM within xN . More precisely, it
holds that

Ψ∗(xN) = Φ̂
(
PMa(x

N), eM/2(xN)
)
∈ RN×N . (B.13)

Moreover, since the operator PN only uses the values of Ψ∗ on the grid xN it follows that applying PN

to the right-hand side of the above equation or applying an interpolation sinc filter with corresponding
frequency gives the exact same result,

G(a)(xN) = (PN ◦Ψ∗)(PMa)(x
N) = hN ⋆ Φ̂

(
PMa(x

N), eM/2(xN)
)
. (B.14)

The right-hand side exactly corresponds to our definition of a CNO, thereby concluding the universal-
ity proof.

Remark B.3 (Alternative proof). We stress that it is crucial in the proof that M can be chosen
independently of N . A straightforward application of [46, Theorem 1.1] on the map G with N =M
would not lead to an accurate CNO approximation as the ∥Ψ∗(a)∥Hr(T2) will depend on N = M

such that N−(r−2/p) ∥Ψ∗(a)∥Hr(T2) might not convergence to zero. In addition, because of the used
trick we obtain convolution kernels with a stride ofN/M and therefore a sparse kernel. An alternative
strategy could be to replace the universal approximation (Theorem B.6) by an approximation theorem
that provides explicit control on the network size and upper bounds on the weights such as those
in [10]. Other than a much more complicated proof, one will also need to put stronger regularity
conditions on G†.
Remark B.4 (Polynomial and rational activations). The CNO constructed in the above theorem
is exactly equivariant. As suggested in [22], it can be sufficient in practice to break this perfect
equivariance by applying the activation function σ to an upsampled discrete version of the signal
rather than the continuous representation of the signal. We do the same in our implementation of CNO.
Note that if one would use polynomial activation functions one could still recover exact equivariance
by choosing a high enough upsampling rate. In this case the universality of CNOs can be proven by
replacing the universal approximation theorem for neural networks (Theorem B.6) by the Weierstrass
approximation theorem. The rest of the proof of Theorem B.2 remains unchanged. Similarly, one
could consider using Padé and rational approximants as activation functions [54, 43, 12, 6]. The
computation of a rational activation function σ(x) = p(x)/q(x) can then be approximated by
iteratively minimizing ∥p(x)σ(x)− q(x)∥22, following the idea of [60]. Methods such as Newton-
Raphson only involve multiplications and can therefore be completely applied in an alias-free way
through proper upsampling before, and downsampling after each multiplication.
Remark B.5 (Physics-informed CNOs). Physics-informed learning employs a PDE residual-based
loss to circumvent the need for training data. Examples of such frameworks include physics-informed
neural networks (PINNs) [49], physics-informed DeepONets [59] and physics-informed FNOs [36].
Using the continuous representation of the CNO output, one can use automatic differentation to
created a physics-informed CNO loss. In order to use the tools provided in [11, Theorem 3.9] to
obtain a bound on the approximation error for physics-informed CNOs, one needs to prove that the
CNO error converges at a certain rate in terms of its size. Although Theorem B.2 does not provide
such a rate, its proof does give a hint of which stronger assumptions are needed to obtain this result.
The most notable ingredients include a stronger stability result (B.1) with a continuity modulus ω
decreasing at least at a polynomial rate, and a stronger regularity assumption on G (B.7), and hence
G†.

B.1 Auxiliary results

We list the auxiliary results that are used in the proof of Theorem B.2. First, we state a well-known
version of the universal approximation theorem for feedforward neural networks [31]:
Theorem B.6 ([31]). Let σ : R → R be a function that is locally essentially bounded with the
property that the closure of the set of points of discontinuity has zero Lebesgue measure. For
1 ≤ j ≤ n, let αj , θj ∈ R and yj ∈ Rd. Then finite sums of the form

G(x) =

N∑
j=1

αjσ(y
T
j x+ θj), x ∈ Rd (B.15)

23

are dense in C(Rd) if and only if σ is not an algebraic polynomial.

Next, we demonstrate the equivalence of using the interpolation sinc filter (2.5) and trigonometric
polynomial interpolation. If you sample a function f ∈ C(T = [0, 2π)) with sampling frequency 2π

N ,
the result obtained through trigonometric polynomial interpolation PNg is given by [19],

PNf(x) =

{∑
|n|≤(N−1)/2

1
N

∑N−1
j=0 f(xj) exp(in(x− xj)), for n odd,∑

|n|≤N/2
1

Ncn

∑N−1
j=0 f(xj) exp(in(x− xj)), for n even,

(B.16)

where xj = 2πj/N , cn = 1 for |n| < N/2 and cn = 2 for |n| = N/2. We will prove that one
obtains the exact same result by using an interpolation sinc filter with the same frequency on the
periodic extension of f . We prove this result in the one-dimensional case for odd N . The result for
even N follows in an identical way, the result for the multi-dimensional case through tensorisation.

Lemma B.7. For any N ∈ 2N+ 1 and f ∈ C(T) it holds that,

PNf(x) =
1

N

∑
|n|≤(N−1)/2

N−1∑
j=0

f(xj) exp(in(x− xj)) =
∑
n∈Z

f(xn) sinc

(
N · x− xn

2π

)
(B.17)

Proof. As a first step, it follows from [19, Section 2.2.2] that

PNf(x) =
1

N

∑
|n|≤(N−1)/2

N−1∑
j=0

f(xj) exp(in(x− xj)) =
1

N

N−1∑
n=0

f(xn)
sin(N(x− xn)/2)

sin((x− xn)/2)
.

(B.18)

Then we use the result from [51], where we replace their N -periodic signal x(t) by the function f(x)
through the transformation t = Nx/2π and x(t) = f(2πt/N). In their notation, but with the change
that here we use the normalized sinc function (sinc(x) = sin(πx)/πx for x ̸= 0), [51] shows that

∑
n∈Z

x(n) sinc (t− n) =
sin(πt)

N

M−1∑
n=−L

x(n)(−1)n csc(π(t− n)/N) (B.19)

with L,M ∈ N0 such that L + M = N . We will take L = 0 and M = N , and use that
csc(z) = 1/ sin(z) and that cos(πn) = (−1)n and sin(πn) = 0 to obtain,

∑
n∈Z

x(n) sinc (t− n) =
1

N

M−1∑
n=−L

x(n)
sin(π(t− n))

sin(π(t− n)/N)
, (B.20)

which is equivalent to,

∑
n∈Z

f(xn) sinc (N(x− xn)/2π) =
1

N

N−1∑
n=0

f(xn)
sin(N(x− xn)/2)

sin((x− xn)/2)
. (B.21)

Combining all obtained equalities proves the claim.

C Technical Details for Section 4 of Main Text

C.1 Training and Implementation Details

We start with a succinct description of the baselines that were used in the main text.

C.1.1 Feed Forward Dense Neural Networks

Given an input u ∈ Rm, a feedforward neural network (also termed as a multi-layer perceptron),
transforms it to an output, through a layer of units (neurons) which compose of either affine-linear

24

maps between units (in successive layers) or scalar nonlinear activation functions within units [15],
resulting in the representation,

uθ(y) = CL ◦ σ ◦ CL−1 . . . ◦ σ ◦ C2 ◦ σ ◦ C1(u). (C.1)

Here, ◦ refers to the composition of functions and σ is a scalar (nonlinear) activation function. For
any 1 ≤ ℓ ≤ L, we define

Cℓzℓ =Wℓzℓ + bℓ, forWℓ ∈ Rdℓ+1×dℓ , zℓ ∈ Rdℓ , bℓ ∈ Rdℓ+1 ., (C.2)

and denote,
θ = {Wℓ, bℓ}Lℓ=1, (C.3)

to be the concatenated set of (tunable) weights for the network. Thus in the terminology of machine
learning, a feed forward neural network (C.1) consists of an input layer, an output layer, and L
hidden layers with dℓ neurons, 1 < ℓ < L. In all numerical experiments, we consider a uniform
number of neurons across all the layer of the network dℓ = dℓ−1 = d, 1 < ℓ < L. The first baseline
model consists into a feed forward neural network with residual blocks which use skip or shortcut
connections [18]. A residual block spanning k layers is defined as follows,

r(zℓ, zℓ−k) = σ(Wℓzℓ + bℓ) + zℓ−k. (C.4)

The residual network takes as input a sample function u ∈ X , encoded at m = s × s Cartesian
grid points (x1, . . . , xm), E(u) = (u(x1), . . . , u(xm)) ∈ Rm, and outputs the output sample
G(u) ∈ Y encoded at the same set of points, E(G(u)) = (G(u)(x1), . . . ,G(u)(xm)) ∈ Rm. In
all the experiments, but the compressible Euler, s = 64. Instead, for the compressible Euler equation,
the sampling rate is s = 128. The number of layers L, neurons d are chosen though cross-validation,
whereas the activation function σ corresponds to a Leaky ReLU and the depth of the residual block k
is fixed and equal to 2.

C.1.2 ResNet

For the ResNet baseline, we adopt a convolutional neural network architecture with additional skip
connections, as described in [18] and . The architecture begins with an initial block composed of a
convolutional layer with a 7× 7 kernel, zero padding, and a ReLU activation function, all followed
by batch normalization. The first layer generates an output with a channel count of c.

Subsequently, the output from the initial block undergoes downsampling via a second block. This
second block consists of two sub-blocks, each mirroring the structure of the initial block but with a
smaller 3× 3 convolutional layer, a stride of 2, and padding of 1. The channel count doubles within
each of these sub-blocks.

The downsampled output is then processed through a series of Nres residual blocks, as defined in
equation C.4. Each residual block consists of a convolution operation, batch normalization, and
ReLU activation.

Finally, the signal is upsampled through a pair of blocks comprising transposed convolution, batch
normalization, and ReLU activation.

The complete architecture is available at repository of the paper [20] f:https://github.com/
junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py.

C.1.3 UNet

For the UNet baseline we use the model architecture proposed in [50]. However, we slightly modify
the proposed architecture by varying the number of output channels c of the first convolutional
layer, which is chosen through cross validation. We ensure that the number of channels used in the
subsequent layers align with the chosen value of c. Specifically, we respect the progressive increase or
decrease in the number of channels as established in the original architecture across different layers.

C.1.4 Convolutional Neural Operator

Design of the filters. As we noted before, perfect sinc interpolation filters hw have infinite impulse
response and cause ringing artifacts around high-gradient points due the Gibbs phenomenon. In

25

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py

practice, one uses windowed-sinc filters which serve as convenient approximations of hw. They have
finite impulse response and weakened ringing effect [57].

The windowed-sinc filters are constructed by multiplying the ideal filter hw by a corresponding
window function of finite length. That is equivalent to convolving the filter with the window function
in the frequency domain. To design the windowed filter, one can use standard Python libraries and
their functions such as scipy.signal.firwin. By using this function, we are enabled to manually control
the cutoff frequency wc and the half-width of the transition band wh of the designed filters. We design
discrete filters with a prescribed compact support Ntap ∈ N. In this case, we say that a designed filter
has Ntap taps. Implementation of the filters is borrowed from [22] (CUDA programming model).

We show several 1D designed filters in the Figure 4, where we set wc = s/(2 + ε), for ε≪ 1. We
control the half-width of the filter wh = ch · s by controling the coefficient ch. When ch is set to 0.5,
one would anticipate the design of an almost perfect sinc filter. However, the presence of undesirable
oscillations in the frequency domain can be observed due to the finite impulse response of windowed
filters, as depicted in Figure 4. That is why we set ch to be at least 0.6. One can implement a 2D
filter by first convolving a 1D filter with each row and then with each column.

The activation layer Σw,w plays a vital role in the CNO model. It is essential to closely examine the
ratio Nσ = w/w as a significant parameter. To facilitate implementation of the CNO, we make the
assumption that Nσ ∈ N and Nσ ≥ 2. Throughout the entire architecture, we make the assumption
that the value of Nσ remains fixed. In our implementation of the CNO, it is worth noting that the
value of Nσ can also be a rational number if the sampling rate of an input signal requires it (e.g. if
one wants to upsample a signal from the sampling rate 11 to the sampling rate 20).

We choose to fix the coefficient wc = s/2.0001, so that the cutoff frequency is very close to the
Nyquist critical frequency. It remains to choose the number of taps Ntap, the coefficient related to the
half-width of the filter ch and the ratio related to the activation layer Nσ .

Choice of parameters. Throughout our experiments, we maintained a consistent configuration,
setting Nσ to 2, ch to 0.8, and Ntap to 12. Prior to finalizing the filter parameters, we conducted
experiments using various filters; however, no significant differences were observed. To further
validate this assumption, we conducted the Navier-Stokes experiment using different filter designs.
First, we selected the best-performing CNO model based on the criteria described in C.2 using filter
parameters Nσ = 2, ch = 0.8 and Ntap = 12. For this chosen model, we conducted training with
identical model settings as outlined in 12, but with different values for coefficients ch, Nσ and Ntap.

In the first set of experiments, we set Ntap = 12 and vary ch and Nσ. Note that increasing the
coefficient Nσ leads to a significant increase in computational time. We show different test errors in
the Table 2. Once the coefficient ch reaches a sufficiently high value (i.e. ch ≥ 0.8), we observe no
significant difference in test errors. Additionally, we do not find a high correlation between the error
and the coefficient Nσ. We set the Nσ as low as possible, to a fixed value of Nσ = 2. Similarly, we
set the coefficient ch to a fixed value of 0.8.

In the second experiment, we fix Nσ = 2 and ch = 0.8 and vary the number of taps Ntap. By
increasing the number of taps, the computational time also increases. We show different test errors
in the Table 3. Although there is an improvement of approximately 1.5% in the test error when
Ntap = 20 compared to when Ntap = 12, it comes at the cost of increased training time. Specifically,
the training time per one epoch increases from 4.37s to 5.26s, representing more than 20% increase.
Due to this significant increase in training time, but not very significant improvement in performance,
we decide to fix the number of taps at Ntap = 12.

Remark C.1. Given the above description, it is important to emphasize that, although in principle,
the activation layer of CNO (2.3) needs to be exactly equivariant, i.e., σ(Bω) ⊂ Bω′ for the pair
(ω, ω′), for the CNO architecture to be representation equivariant in the sense of [2], definition 3.4,
see also section A.5, several approximations are used in practice that might be lead to this condition
to hold only approximately. However, as the above results show, once the upsampling frequency is
choosen high enough, this approximation of equivariance seems to suffice in practice, see also results
in Section C.4. Neverthelesss, if exact equivariance is sought for, it can be realized through either
polynominal or rational activation functions as suggested in Remark B.4 although this choice might
be of little practical utility.

26

Figure 4: On the left: Frequency responses of different designed filters. On the right: Impulse
responses of different designed filters. The sampling rate is s = 128, the cutoff frequency is
wc = s/2.0001, while the half-width of each filter is wh = ch · s. Each filter has Ntap = 12 taps.

Table 2: CNO model. Navier-Stokes Equations. Relative median L1-error computed over 128
in-distribution testing samples for different filter designs. The error of the model with original filter
parameters ch = 0.8, Nσ = 2 and Ntap = 12 is marked in blue.

ch = 0.6 ch = 0.8 ch = 1.0 ch = 1.5 ch = 2.0

Nσ = 2 2.87% 2.76% 2.77% 2.91% 2.86%

Nσ = 3 2.93% 2.86% 2.86% 2.87% 2.97%

Nσ = 4 2.80% 2.89% 2.88% 2.87% 2.89%

Nσ = 5 2.93% 2.84% 2.88% 2.98% 2.89%

Nσ = 6 3.02% 2.86% 2.88% 2.99% 2.82%

In the simplest scenario, the architecture consists only of the lifting layer, number of (D) and (U)
blocks, and the projection layer. In this simple scenario, once the input is lifted to higher dimensional
space (in the channel width), one performs first T iterations of (D) blocks. These T iterations define
the encoder, namely

vl+1 = Dsl,sl+1
◦ Σsl,sl+1

◦ Ksl(vl), vl ∈ Bsl(D,Rdl), l = 0 . . . T − 1,

where sl = s/2l is the current bandlimit and dl is the current number of channels. The next T
iterations are (U) blocks and are devoted to the decoder. Let s̃l = s2T−l. The decoder is defined as

vl+1 = Us̃l,s̃l+1
◦ Σs̃l,s̃l+1

◦ Ks̃l(vl), vl ∈ Bs̃l(D,R
dl), l = T . . . 2T − 1.

The last output of the decoder is projected to the output space (in the channel width). In all the
experiments, we use dl = de/2 as the lifting dimension. In the encoder, the number of channels
increases as per

de/2 7→ de 7→ 2de 7→ · · · 7→ 2T−1de.

The number de is a hyperparameter. In this simple case where no UNet style patching is present in
the architecture, the number of channels in the decoder decreases as per

2T−1de 7→ 2T−2de 7→ · · · 7→ de

When the patching is present in the architecture (see Figure 1), number of channels in the decoder
changes differently (as a certain number of transfered channels is concatenated).

Operator UNet architecture. We add 2 (I) block 2.8 before each upsampling block. One block is
applied before patching the additional channels, while the other is applied after patching. Additionally,
we add a few (R) blocks 2.7 between each level of the encoder and decoder. We denote the number
of residual blocks in the bottleneck of the network as a hyperparameter Nres,b, while the number

27

Table 3: CNO model. Navier-Stokes Equations. Relative median L1-error computed over 128
in-distribution testing samples for different number of taps Ntap. The error of the model with original
filter parameters ch = 0.8, Nσ = 2 and Ntap = 12 is marked in blue.

Ntap = 12 Ntap = 16 Ntap = 20 Ntap = 24

Nσ = 2 & ch = 0.8 2.76% 2.72% 2.70% 2.75%

of (R) blocks in the intermediate levels is denoted by Nres,i (each level has the same number of (R)
blocks). Throughout our training and testing, we fix the size of the convolution kernels to k = 3.
Moreover, we apply batch normalization after each convolution operation, except in the lifting and
the projection layers.
Remark C.2. The objectives of cross-validation are T , de, Nres,b and Nres,i.

C.1.5 Galerkin Transformer

The Galerkin Transformer (abbreviated as GT) as presented in [8] is a model founded on attention-
based operator learning. Central to its design is a "softmax-free" attention mechanism. Structurally,
GT is an encoder-decoder model, and it uses the Galerkin-type transformer at its architectural
bottleneck.

The encoder’s role is to convert the input into the latent feature domain. Its design comprises 4
convolutional layers, which incrementally downscale the input’s dimensions while enlarging its
channel dimensions. Further enhancing its function, the encoder incorporates positional encoding at
a coarser level, which is then combined with the extracted features and forwarded to the bottleneck.

The features are flattened, paving the way for the application of scaled dot-product multi-head
attention. Let us characterize the single-head Galerkin-type attention: Given an input embedding
y ∈ Rn×d, and using trainable matrices WQ, QK , QV ∈ Rd×d, we can determine the query, key,
and value as Q = yWQ, K = yWK , and V = yWV , respectively. The formal representation of the
Galerkin-type single-head attention, denoted as Attn : Rn×d → Rn×d is

Attn(y) = y +Q(K̃T Ṽ)/n+ g(y +Q(K̃T Ṽ)/n),

where g is a 2-layer FFNN and ·̃ is the layer normalization.

Lastly, the decoder is made up of a convolutional neural network that upsamples the output of
the transformer to a desired dimension and several spectral convolutional layers. For an in-depth
understanding of spectral convolutional layers, one can refer to [33].

Convolutional neural network in the encoder uses relu activation function, while the one in the
decoder uses silu activation function. Spectral layers in the decoder use silu activation function.

The objectives of the cross-validation are:

• number of attention blocks : n
• number of heads in the attetion: h
• latent dimension in the attetion: d
• number of decoder layers: L
• latent dimension of the decoder: dv
• number of Fourier modes of the decoder: kmax

C.1.6 DeepONet

Let x := (x1, . . . , xm) ∈ D be a fixed set of sensor points. Given an input function u ∈ X , we
encode it by the point values E(u) = (u(x1), . . . , u(xm)) ∈ Rm. DeepONet is formulated in terms
of two neural networks [39]: (1) a branch-net β, which maps the point values E(u) to coefficients
β(E(u)) = (β1(E(u)), . . . , βp(E(u)), resulting in a mapping

β : Rm → Rp, E(u) 7→ (β1(E(u)), . . . , βp(E(u)). (C.5)

28

and (2) a trunk-net τ(y) = (τ1(y), . . . , τp(y)), which is used to define a mapping

τ : U → Rp, y 7→ (τ1(y), . . . , τp(y)). (C.6)

While the branch net provides the coefficients, the trunk net provides the “basis” functions in an
expansion of the output function of the form

G(u)(y) =
p∑

k=1

βk(u)τk(y), u ∈ X , y ∈ U, (C.7)

with βk(u) = βk(E(u)). The resulting mapping G : X → Y , u 7→ G is a DeepONet.

In the numerical experiments, for the trunk-net we use simple feed-forward neural networks. On the
other hand the branch consists of a convolutional network of the following form:

G : X → Y : G = Q ◦ Fl ◦RNres
◦ · · · ◦R1 ◦DM ◦ IM ◦ · · · ◦D1 ◦ I1 (C.8)

where I , D and R are the invariant, downsampling and ResNet blocks defined in 2, where the
downsampling in D and Σ is instead performed by average pooling with kernel size 2. The parameter
r in the residual block is set to 1. The output is then flattened through Fl and linearly transformed by
Q : Rn → Rp, with n being the number of units after flattening. The convolution is performed with
a kernel of size 3 and stride 1, whereas the number of channels across the layers is

32 7→ 64 7→ 128 7→ · · · 7→ 2M−132.

The activation function is chosen as Leaky ReLU. The number of layers L and units d of the trunk,
the number of layers M and residual blocks Nres of the branch, and the number of bases p, are
chosen through cross-validation.

C.1.7 Fourier Neural Operator

A Fourier neural operator (FNO) G [33] is a composition

G : X → Y : G = Q ◦ LT ◦ · · · ◦ L1 ◦R. (C.9)

It has a “lifting operator” u(x) 7→ R(u(x), x), whereR is represented by a linear functionR : Rdu →
Rdv where du is the number of components of the input function and dv is the “lifting dimension”. The
operator Q is a non-linear projection, instantiated by a shallow neural network with a single hidden
layer, 128 neurons and GeLU activation function, such that vL+1(x) 7→ G(u)(x) = Q

(
vL+1(x)

)
.

Each hidden layer Lℓ : v
ℓ(x) 7→ vℓ+1(x) is of the form

vℓ+1(x) = σ
(
Wℓ · vℓ(x) +

(
Kℓv

ℓ
)
(x)

)
,

with Wℓ ∈ Rdv×dv a trainable weight matrix (residual connection), σ an activation function, corre-
sponding to GeLU, and the non-local Fourier layer,

Kℓv
ℓ = F−1

N

(
Pℓ(k) · FNv

ℓ(k)
)
,

where FNv
ℓ(k) denotes the (truncated)-Fourier coefficients of the discrete Fourier transform (DFT)

of vℓ(x), computed based on the given s grid values in each direction. Here, Pℓ(k) ∈ Cdv×dv is a
complex Fourier multiplication matrix indexed by k ∈ Zd, and F−1

N denotes the inverse DFT.

The lifting dimension dv, the number of Fourier layers L and kmax, defined in 2, are objectives of
cross-validation.

C.2 Training Details

The training of the models, including the baselines (except GT), is performed with the ADAM
optimizer, with a learning rate η for 1000 epochs and minimizing the L1-loss function. We also use
a step learning rate scheduler and reduce the learning rate of each parameter group by a factor γ
every epoch. We train FFNN, UNet, and DeepONet in mini-batches of size 10 and FNO and CNO in

29

batches of 32. A weight decay of magnitude w is used. All the parameters mentioned above (η, γ, w)
are chosen through cross-validation.

The GT models are trained with ADAM optimizer, minimizing the weighted L2-loss function (see
[8] implementation for clarification). Number of epochs is 1000. A learning rate scheduler is set
according to a OneCycleLR policy (max_lr = 5 · 10−4, div_fac = 104, pct_start = 0.3). The
selection of max_lr relies on empirical observations.

At every epoch, the relative L1 error is computed on the validation set, and the set of trainable
parameters resulting in the lowest error during the entire process is saved for testing. Early stopping
is used to interrupt the training if the best validation error does not improve after 50 epochs.

The cross-validation is performed by running a random search over a chosen range of hyperparameters
values and selecting the configuration, realizing the lowest relative L1 error on the validation set.
Overall, 30 hyperparameters configurations are tested for the FFNN, UNet and DeepONet , 48 to
72 configurations for GT, 24 to 48 configurations for CNO and 36 to 72 configurations for FNO.
The model size (minimum and maximum number of trainable parameters) covered in this search are
reported in Table 5.

The results of the random search, i.e., the best-performing hyperparameter configurations for each
model and each benchmark, are reported in tables 6, 10 and 7, 11 and 12.

Different Initialization. After selecting the models and computing the test median errors, we
proceed to train the CNO, FNO, and UNet models again using the same settings but different
initializations for the model parameters (by changing the random seeds). Each model is trained
for each experiment a total of 10 times. We report the means and the standard deviations of the 10
different test median errors for each benchmark experiment in the Table 4. We observe from this
table that CNO is very robust with respect to random initializations, with very low standard deviation
to mean ratio for all the benchmarks in the RPB dataset.

Table 4: Means and standard deviations for the 10 relative median L1 test errors, for both in-
distribution testing, for the CNO, FNO and U-Net models. The format is mean ± std.

CNO FNO UNet

Poisson Equation 0.34± 0.09% 4.88± 0.18% 0.76± 0.16%

Wave Equation 0.63± 0.06% 1.08± 0.07% 1.67± 0.12%

Smooth Transport 0.27± 0.04% 0.34± 0.03% 0.79± 0.21%

Discontinuous Transport 1.06± 0.04% 1.18± 0.03% 1.40± 0.09%

Allen-Cahn 0.67± 0.09% 0.28± 0.03% 1.84± 0.33%

Navier-Stokes 2.91± 0.08% 3.68± 0.10% 3.48± 0.07%

Darcy Flow 0.42± 0.02% 0.90± 0.08% 0.65± 0.10%

Compressible Euler 0.35± 0.01% 0.45± 0.01% 0.39± 0.01%

C.3 Details about the description and numerical results in each benchmark

This section provides details about all the experiments that are a part of the RPB benchmarks of the
main text.

C.3.1 Poisson Equation

In this experiment, we study Poisson equation 4.1 with the source term given by

f(x, y) =
π

K2

K∑
i,j

aij · (i2 + j2)r sin(πix) sin(πjy), ∀(x, y) ∈ D,

30

Table 5: Minimum (Top sub-row) and maximum (Bottom sub-row) number of trainable parameters
among the random-search hyperparameters configurations for all the models in every problem
reported in Table 1 in main text.

FFNN GT ResNet UNet DON FNO CNO

Poisson Equation 0.3M
8.2M

8.5M
19.1M

0.1M
10.2M

0.5M
31.0M

0.8M
48.1M

0.2M
18.9M

0.5M
26.8M

Wave Equation 0.3M
6.0M

8.5M
19.1M

0.1M
10.2M

0.5M
31.0M

0.8M
48.1M

0.2M
7.9M

1.5M
23.6M

Smooth Transport 0.3M
8.2M

8.5M
19.1M

0.1M
10.2M

0.5M
7.7M

0.7M
49.2M

0.2M
23.6M

0.5M
18.9M

Discontinuous Transport 0.3M
5.5M

8.5M
19.1M

0.1M
10.2M

0.5M
7.7M

0.7M
49.2M

0.2M
23.6M

0.5M
18.9M

Allen-Cahn 0.3M
7.1M

2.1M
19.1M

0.1M
10.2M

0.5M
31.0M

1.0M
47.9M

0.9M
65.6M

0.5M
8.4M

Navier-Stokes 0.3M
7.1M

2.1M
19.1M

0.1M
10.2M

0.5M
31.0M

1.0M
47.9M

0.2M
65.6M

0.5M
14.1M

Darcy Flow 0.3M
7.1M

2.1M
19.1M

0.1M
10.2M

0.5M
31.0M

1.0M
47.9M

0.2M
23.6M

0.5M
8.4M

Compressible Euler 1.1M
18.6M

2.1M
19.1M

0.1M
10.2M

0.5M
31.0M

0.8M
49.4M

0.2M
23.6M

1.5M
31.7M

Table 6: FFNN best-performing hyperparameters configuration for different benchmark problems.

η γ w L d
Trainable
Params

Poisson Equation 0.0005 0.98 1e-06 10 512 6.6M

Wave Equation 0.001 0.98 1e-06 4 256 2.3M

Continuous Translation 0.001 1.0 0.0 16 256 3.1M

Discontinuous Translation 0.0005 1.0 0.0 6 512 5.5M

Allen-Cahn 0.0005 0.98 0.0 8 512 6.0M

Navier-Stokes 0.001 1.0 1e-06 16 256 3.1M

Darcy Flow 0.0005 0.98 1e-06 16 256 3.1M

Compressible Euler 0.0005 1.0 0.0 16 32 1.1M

where K = 16, r = 0.5 and aij are i.i.d. uniformly distributed from [−1, 1]. Given the source term
above, the exact solution u of the Poisson equation is given by

u(x, y) =
1

πK2

K∑
i,j

aij · (i2 + j2)r−1 sin(πix) sin(πjy), ∀(x, y) ∈ D.

During the out-of-distribution testing, we augment the number of modes to K = 20 and evaluate
the models’ ability to generalize to inputs with frequencies higher than those encountered during
training. We approximate the operator G†, which maps f to u. An illustration of the operator G† is
given in the Figure 28. For training purposes, we generate 1024 samples and for testing, we generate
256 samples for both in-distribution and out-of-distribution testing, by sampling the exact solution
u at a resolution of 64 × 64 points on D = [0, 1]2. We also create a validation set consisting of
128 samples for model selection. The training data is normalized to the interval [0, 1]. The testing
data is normalized with the same normalization constants as the training data. In Figure 5, we show
empirical test error distributions for UNet, FNO and CNO models (in-distribution in the left Figure

31

Table 7: UNet best-performing hyperparameters configuration for different benchmark problems.

η γ w c
Trainable
Params

Poisson Equation 0.001 0.98 0.0 32 7.8M

Wave Equation 0.001 1.0 1e-06 64 31.0M

Continuous Translation 0.001 0.98 1e-06 16 1.9M

Discontinuous Translation 0.001 0.98 1e-06 32 7.8M

Allen-Cahn 0.0005 0.98 1e-06 64 31.0M

Navier-Stokes 0.0005 0.98 1e-06 64 31.0M

Darcy Flow 0.001 0.98 0.0 32 7.8M

Compressible Euler 0.001 0.98 1e-06 32 7.8M

Table 8: ResNet best-performing hyperparameters configuration for different benchmark problems.

η γ w c Nres
Trainable
Params

Poisson Equation 0.001 0.98 0.0 8 8 0.2M

Wave Equation 0.001 0.98 1e-06 16 8 0.6M

Continuous Translation 0.001 0.98 1e-06 32 6 2.0M

Discontinuous Translation 0.001 0.98 1e-06 32 4 1.4M

Allen-Cahn 0.001 0.98 1e-06 32 4 1.4M

Navier-Stokes 0.001 0.98 1e-06 64 8 10.2M

Darcy Flow 0.001 0.98 0.0 8 8 0.2M

Compressible Euler 0.001 1.0 0.0 32 8 2.6M

Table 9: DeepONet best-performing hyperparameters configuration for different benchmark problems.

η γ w p L d M Nres
Trainable
Params

Poisson Equation 0.001 0.98 0.0 500 8 128 4 4 5.2M

Wave Equation 0.0005 0.98 0.0 100 4 512 4 4 4.2M

Continuous Translation 0.0005 0.98 0.0 500 8 128 4 0 2.8M

Discontinuous Translation 0.0005 0.98 0.0 100 8 512 4 4 5.3M

Allen Cahn 0.0005 0.98 1e-06 50 8 512 4 4 5.0M

Navier Stokes 0.0005 0.98 1e-06 100 8 512 6 2 30.3M

Darcy Flow 0.0005 0.98 0.0 500 8 512 4 4 7.1M

Compressible Euler 0.0005 0.98 1e-06 500 8 256 4 4 11.7M

and out-of-distribution in the right Figure). We show a random in-distribution testing sample and an
out-of-distribution testing sample, as well as predictions made by CNO, FNO and UNet in Figure 6.

32

Table 10: Galerkin Transformer best-performing hyperparameters configuration for different bench-
mark problems.

n h d L dv kmax
Trainable
Params

Poisson Equation 4 4 64 2 64 16 8.6M

Wave Equation 4 4 64 2 64 16 8.6M

Continuous Translation 4 2 128 3 64 16 17.4M

Discontinuous Translation 8 2 128 4 64 16 17.4M

Allen-Cahn 2 4 128 2 32 16 2.5M

Navier-Stokes 2 2 256 2 64 16 10.0M

Darcy Flow 4 2 256 2 32 16 4.4M

Compressible Euler 2 4 64 4 64 16 16.9M

Table 11: FNO best-performing hyperparameters configuration for different benchmark problems.

η γ w pad kmax dv L
Trainable
Params

Poisson Equation 0.001 0.98 1e-6 0 16 16 5 0.7M

Wave Equation 0.001 0.98 1e-6 0 20 16 4 0.8M

Smooth Transport 0.001 0.98 1e-6 4 20 32 5 4.1M

Discontinuous Transport 0.001 0.98 1e-6 4 16 32 5 2.6M

Allen-Cahn 0.001 0.98 1e-6 0 20 16 3 0.6M

Navier-Stokes 0.001 0.98 1e-6 0 16 128 5 42.1M

Darcy Flow 0.001 0.98 1e-6 0 24 16 2 0.6M

Compressible Euler 0.001 0.98 1e-6 8 24 32 3 3.6M

Table 12: CNO best-performing hyperparameters configuration for different benchmark problems.

η γ w M de Nres,b Nres,i
Trainable
Params

Poisson Equation 0.001 0.98 1e-6 3 16 6 4 0.7M

Wave Equation 0.001 0.98 1e-10 3 48 6 4 6.6M

Smooth Transport 0.001 0.98 1e-6 3 32 6 2 2.8M

Discontinuous Transport 0.001 0.98 1e-6 3 32 4 5 2.5M

Allen-Cahn 0.001 0.98 1e-6 3 48 8 4 3.5M

Navier-Stokes 0.001 0.98 1e-10 3 32 8 1 3.3M

Darcy Flow 0.001 0.98 1e-6 3 48 4 4 5.3M

Compressible Euler 0.001 0.98 1e-10 4 48 8 1 7.3M

As was already evidenced in Table 1 of the main text, Figure 5 demonstrates that CNO is clearly the

33

best performing model here with U-Net a distant second. FNO performs very poorly on this problem,
with test errors that are more than an order of magnitude higher than CNO. A closer perusal of Figure
6 reveals that FNO approximates the multiple scales in the exact solution very poorly and this is
particularly striking for the out of distribution testing example shown in this figure. On the other
hand, CNO approximates the multiple frequencies in the solution very accurately.

Finally, to further investigate the poor performance of FNO, as compared to CNO, for this problem,
we present in Figure 7,the averaged logarithmic amplitude spectra, which compare the ground truth,
CNO, FNO, and UNet models. We see from this spectrogram that i) the ground truth solution contains
multiple scales, corresponding to a range of frequencies ii) the CNO model successfully captures the
complete spectra with high accuracy, iii) FNO (and to some extent UNet) resolves the underlying
spectrum with quite a lot of error, particularly in the high-frequency components, perhaps attributable
to aliasing errors in this case.

Figure 5: Poisson equation. Empirical test error distributions for UNet, FNO and CNO. Left: In-
distribution testing. Right: Out-of-distribution testing.

C.3.2 Wave Equation

In this experiment, we study Wave equation 4.3 with constant speed of propagation c = 0.1 and the
initial condition given by 4.2 with K = 24 and r = 1. The exact solution at time t > 0 is given by

u(x, y, t) =
π

K2

K∑
i,j

aij · (i2 + j2)−r sin(πix) sin(πjy) cos
(
cπt

√
i2 + j2

)
, ∀(x, y) ∈ D.

The objective is to approximate the operator G† : f 7→ u(·, T = 5). An illustration of G† is given in
Figure 29. During the out-of-distribution testing, we decrease the decay parameter to r = 0.85. This
adjustment changes the ratio between the amplitudes of different modes, which alters the dynamics

Figure 6: Poisson equation. Exact and predicted coefficients for an in-distribution (top row) and
an out-of-distribution (bottom row) samples and for different models (columns). From left to right:
input, output (ground truth), FNO, UNet and CNO.

34

Figure 7: Poisson equation. Averaged logarithmic amplitude spectra comparing Ground Truth, CNO,
FNO and UNet.

of the solution. For the training set, we generate a total of 512 samples. In addition, we generate
256 samples for both in-distribution and out-of-distribution testing, all by sampling the above exact
solution at a resolution of 64× 64. Furthermore, we create a validation set comprising 128 samples.
The training data is normalized to the interval [0, 1]. The testing data is normalized with the same
normalization constants as the training data.

In Figure 8, we present the empirical test error distributions for UNet, FNO and CNO models during
in-distribution and out-of-distribution testing. We also show a random in-distribution testing sample
and a random out-of-distribution testing sample, as well as predictions made by CNO, FNO and
UNet in Figure 9. Both these figures demonstrate that CNO is the best performing model in this case,
reinforcing the conclusion of Table 1 of the main text.

Figure 8: Wave equation. Empirical test error distributions for UNet, FNO and CNO. Left: In-
distribution testing. Right: Out-of-distribution testing.

Figure 9: Wave equation. Exact and predicted coefficients for an in-distribution (top row) and an
out-of-distribution (bottom row) samples and for different models (columns). From left to right:
input, output (ground truth), CNO, FNO and UNet.

35

C.3.3 Transport Equation

In this experiment, we study Transport equation 4.4. We fix the velocity field to v = (vx, vy) =
(0.2,−0.2) leading to solution u(x, y, t) = f(x−vxt, y−vyt). We conduct two different experiments,
i.e., Smooth Transport and Discontinuous Transport. In both cases, the goal is to approximate the
operator G† : f 7→ u(·, T = 1). Moreover, in both cases, we generate 512 training samples, 256
validation samples and 256 in-distribution and out-of-distribution testing samples, all from the exact
solution. Each sample is normalized to the interval [0, 1].

Smooth Transport. In this case, the data takes form of of a radially symmetric Gaussian. The data
is drawn from a Gaussian distribution with centers randomly and uniformly drawn from (0.2, 0.4)2

and corresponding variance drawn uniformly from (0.003, 0.009). Formally, the initial conditions
are given by

f(x) =
1√

(2π)2 det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x = (x, y), µ = (µx, µy),

where Σ = σI such that σ ∼ U(0.003, 0.009) and µx, µy ∼ U(0.2, 0.4). Here, I is the identity
matrix and U(·) is the uniform distribution. Finally, each initial condition is normalized to (0, 1).

For out-of-distribution testing, the centers of the Gaussian inputs are sampled uniformly from
(0.4, 0.6)2 (i.e. µx, µy ∼ U(0.4, 0.6)). The data is generated at 64× 64 resolution. An illustration of
the operator G† for the Smooth Transport experiment is shown in Figure 30. We show empirical test
error distributions for UNet, FNO and CNO models (in-distribution and out-of-distribution testing)
in Figure 10. We show a random in-distribution testing sample and an out-of-distribution testing
sample, as well as predictions made by CNO, FNO and UNet in Figure 11. The figures reinforce the
conclusions drawn from Table 1 i.e., CNO is slightly superior to UNet and FNO for in-distribution
testing. However, there is a significant advantage for CNO over UNet on out-of-distribution testing.
On the other hand, FNO generalizes poorly out-of-distribution, as clearly seen from the sample
shown in Figure 11. Similarly, DeepONet and FFNN are even poorer in terms of their generalization
abilities, justfitying the very high errors seen in Table 1. An example of this very poor generalization
for DeepONet and FFNN can be seen in Figure 12.

Figure 10: Smooth Transport. Empirical test error distributions for UNet, FNO and CNO. Left:
In-distribution testing. Right: Out-of-distribution testing.

Discontinuous Transport. In this case, initial data in the form of the indicator function of radial
disk with centers, uniformly drawn from (0.2, 0.4)2 and radii uniformly drawn from (0.1, 0.2). For
out-of-distribution testing, the centers of the disk are drawn uniformly from (0.4, 0.6)2. Formally,
the initial conditions are given by

f(x) = 1Sr(µ)(x), x = (x, y), µ = (µx, µy),

where r ∼ U(0.1, 0.2) and µx, µy ∼ U(0.2, 0.4). Also, 1· is an indicator function and Sr(µ) is the
sphere of radius r with the center µ ,defined by

Sr(µ) =
{
x : ||x− µ||2 ≤ r

}
.

Note that discontinuous data has infinite spectral content, so the aliasing error is always present when
the data is sampled. For that reason, we first generate the samples at 128× 128 resolution, to reduce

36

Figure 11: Smooth Transport. Exact and predicted coefficients for an in-distribution (top row) and
an out-of-distribution (bottom row) samples and for different models (columns). From left to right:
input, output (ground truth), CNO, FNO and UNet.

Figure 12: Smooth Transport. An out-of-distribution sample and predictions for DeepONet and
FFNN. From left to right: output (ground truth), DeepONet and FFNN.

the aliasing error that emerges in data generation. We get our actual samples by downsampling
the generated data in the frequency domain to the resolution 64 × 64. As the Gibbs phenomenon
is strongly present when discontinuous data is downsampled in this way, we reduce the impact of
this phenomenon by applying a Gaussian filter with a standard deviation σ = 1.75 to the generated
samples, before downsampling them to the final resolution. An example of a random sample with
horizontal cut plots is shown in the Figure 13.

Figure 13: Discontinuous Transport. An example with horizontal cut plots of the disks.

We also plot empirical test error distributions for UNet, CNO and FNO models (in-distribution and
out-of-distribution testing) in Figure 14. We plot a random in-distribution testing sample and an
out-of-distribution testing sample, as well as predictions made by CNO, FNO and UNet in Figure 15.
These figures clearly reinforce the conclusions from Table 1 that UNet performs as good as the CNO
on out-of-distribution testing. On the other hand, FNO, DeepONet, FFNN and GT (in that order)
generalize very poorly as they fail to be translation equivariant.

37

Figure 14: Discontinuous Transport. Empirical test error distributions for UNet, FNO and CNO. Left:
In-distribution testing. Right: Out-of-distribution testing.

Figure 15: Discontinuous Transport. Exact and predicted coefficients for an in-distribution (top row)
and an out-of-distribution (bottom row) samples and for different models (columns). From left to
right: input, output (ground truth), CNO, FNO and UNet.

C.3.4 Allen-Cahn Equation

In this experiment, we study Allen-Cahn equation 4.5 with fixed reaction rate ε = 220 and initial
condition given by 4.2 with K = 24 and r = 1. The goal is to approximate the operator G† : f 7→
u(·, T = 0.0002) (see Figure 32 for illustrations).

As exact solutions are no longer available, we generate the training and test data using a standard
finite difference discretization of the Allen-Cahn equation. We uniformly discretize space at the
resolution s2 = 64 × 64 and set ∆x = 1/s. As we are using an explicit method, we uniformly
discretize the time domain with the time step ∆t ≈ 5.47 · 10−7 and set N = ⌊T/∆t⌋+1. We denote
Un
i,j = u(i∆x, j∆x, n∆t) for i, j = 0, 1, . . . , s and n = 0, 1, . . . , N . Additionally, we also add the

zero-valued ghost cells at the boundaries. The Finite Difference scheme is given by

Un+1
i,j = Un

i,j +
∆t

∆x

(
Un
i+1,j + Un

i,j+1 + Un
i−1,jU

n
i,j−1 − 4Un

i,j

)
−∆tε2Un

i,j

(
Un
i,j · Un

i,j − 1
)
,

for i, j = 0, 1, . . . , s and n = 0, 1, . . . , N . With our choice of ∆t, the CFL condition ∆t < (∆x)2

2ε
is satisfied. We generate 256 training samples, 128 validation samples and 128 in-distribution and
out-of-distribution testing samples, all at the 64×64 resolution. The training data is normalized to the
interval [0, 1]. The testing data is normalized with the same normalization constants as the training
data. In Figure 16, we present the empirical test error distributions for UNet, FNO and CNO models
during in-distribution and out-of-distribution testing. We also plot a random in-distribution testing
sample and an out-of-distribution testing sample, as well as predictions made by CNO, FNO and UNet
in Figure 17. Again, these figures reinforce the conclusions of Table 1 as FNO is marginally superior
to CNO and UNet on in-distribution testing whereas UNet is the best model on out-of-distribution
testing.

38

Figure 16: Allen-Cahn equation. Empirical test error distributions for UNet, FNO and CNO. Left:
In-distribution testing. Right: Out-of-distribution testing.

Figure 17: Allen-Cahn equation. Exact and predicted coefficients for an in-distribution (top row) and
an out-of-distribution (bottom row) samples and for different models (columns). From left to right:
input, output (ground truth), CNO, FNO and UNet.

C.3.5 Navier-Stokes

In this experiment, we study a motion of an incompressible fluid with high Reynolds number. We
study Navier-Stokes equations 4.6 in the torus D = T2 with periodic boundary conditions and, for
stabilization, viscosity ν = 4× 10−4 only applied to high-enough Fourier modes. We take as initial
conditions

u0(x, y) =

tanh
(
2π y−0.25

ρ

)
for y + σδ(x) ≤ 1

2

tanh
(
2π 0.75−y

ρ

)
otherwise

v0(x, y) = 0

(C.10)

where σδ : [0, 1] → R is a perturbation of the initial data given by

σδ(x) = δ

p∑
k=1

αk sin(2πkx− βk). (C.11)

The random variables αk and βk are i.i.d. uniformly distributed on [0, 1] and [0, 2π] respectively. The
parameters δ and p are chosen to be δ = 0.025 and p = 10. For the smoothing parameter we choose
ρ = 0.1. (see Figure 33 for illustrations). For the out-of-distribution experiments, we reduced ρ to
ρ = 0.09 and shifted the location of the shear layers towards the middle of the domain so that they
were located at y = 0.3 and y = 0.7 instead of y = 0.25 and y = 0.75 like in the original initial
condition.

39

Fix a mesh width ∆ = 1
N for some N ∈ N. We consider the following discretization of the

Navier-Stokes equations 4.6 in the Fourier domain
∂tu

∆ + PN (u∆ · ∇u∆) +∇p∆ = εN |∇|2s(QN ∗ u∆)
∇ · u∆ = 0

u∆|t=0 = PNu0

(C.12)

where PN is the spatial Fourier projection operator mapping a function f(x, t) to its first N Fourier
modes: PN =

∑
|k|∞≤N f̂k(t)e

ik·x. We additionally have the hyperviscosity parameter s ≥ 1 which
can be used to dampen the higher Fourier modes strongly, thus allowing for a larger part of the
spectrum to be free of numerical dissipation. The artificial viscosity term we use for the stabilization
of the solver consists of a resolution-dependent viscosity εN and a Fourier multiplier QN controlling
the strength at which different Fourier modes are dampened. This allows us to not dampen the low
frequency modes, while applying some diffusion to the problematic higher frequencies. The Fourier
multiplier QN is of the form

QN (x) =
∑

k∈Zd,|k|≤N

Q̂ke
ik·x. (C.13)

In order to have convergence, the Fourier coefficients of QN need to fulfill [27], [64], [65]

Q̂k = 0 for |k| ≤ mN , 1−
(
mN

|k|

) 2s−1
θ

≤ Q̂k ≤ 1 (C.14)

where we have introduced an additional parameter θ > 0. The quantities mN and εN are required to
scale as

mN ∼ Nθ, εN ∼ 1

N2s−1
, 0 < θ <

2s− 1

2s
. (C.15)

For the experiment described here, we choose s = 1, mN =
√
N , εN = 0.05

N , and N = 128. This
gives rise to the viscosity ν ≈ 4 · 10−4 mentioned above.

Applying the Fourier projection operator to the PDE C.12 causes the solutions to be bandlimited
functions and therefore they only have finitely many nonzero basis function coefficients (at most N).
By writing the above discretization in the Fourier basis, we transform the spatial derivatives into
multiplications with the wave vectors k and obtain

∂tûk + ikT · B̂k + ikp̂k = −ν|k|2ûk (C.16)

where we have substituted B = u ⊗ u. By requiring ûk (and ∂tûk) to be divergence free, we can
compute the pressure p̂k to be

p̂k = −k
T · B̂k · k
|k|2

. (C.17)

Note that the pressure can be computed from local quantities only. This is in contrast to numerical
methods solving the equations in physical space where the pressure is obtained as the solution to a
Poisson equation. Finally, we can solve the incompressible Euler equations by computing

∂tûk +

(
Id− kkT

|k|2

)
· b̂k = −ν|k|2ûk (C.18)

where b̂k = ikT ·B̂k. Timestepping is done using a third-order strong stability preserving Runge-Kutta
scheme (SSPRK3)

u(1) = u(t) + ∆t∂tu(t)

u(2) =
3

4
u(t) +

1

4
u(1) +

1

4
∆t∂tu

(1)

u(t+∆t) =
1

3
u(t) +

2

3
u(2) +

2

3
∆t∂tu

(2).

(C.19)

Note that through the construction of the pressure field, the numerical scheme is not exactly
divergence-free. It merely preserves the divergence of the initial conditions u0. We therefore implic-
itly project all the initial conditions onto divergence free vector fields. This operation is described by

40

the Leray projection P : L2(Ω) →
{
u ∈ L2(Ω) | div u = 0

}
mapping u 7→ u−∇∆−1(div u). In

Fourier space, this can again be simplified to the local equation

Pûk =

(
Id− kkT

|k|2

)
· ûk. (C.20)

For the training set, we generate a total of 750 samples. In addition, we generate 128 samples for
validation set, in-distribution and out-of-distribution testing. To generate the training and test data,
we simulate the Navier-Stokes equations with a spectral viscosity method on a 128× 128 resolution
and downsample the data to a 64 × 64 resolution. The goal is to learn the operator mapping the
initial velocity to velocity at T = 1. The training data is normalized to the interval [0, 1]. The testing
data is normalized with the same normalization constants as the training data. In Figure 18, we
present the empirical test error distributions for UNet, FNO and CNO models during in-distribution
and out-of-distribution testing. We also plot a random in-distribution testing sample and an out-
of-distribution testing sample, as well as predictions made by CNO, FNO and UNet in Figure 19.
These figures demonstrate that CNO is clearly the best performing model, for both in-distribution and
out-of-distribution testing, outperforming UNet and FNO significantly. Moreover, given the highly
multiscale nature of this problem (see Figure 2 of Main Text for spectrograms), it is not surprising
that the errors with all the models are higher than in the other RPB benchmarks.

Figure 18: Navier-Stokes equations. Empirical test error distributions for UNet, FNO and CNO. Left:
In-distribution testing. Right: Out-of-distribution testing.

C.3.6 Darcy Flow

Steady-state Darcy flow is modeled by a PDE 4.7. The solution operator G† : a 7→ u maps the
diffusion coefficient a (represented as a push forward of a Gaussian process) to the solution u.
In-distribution and out-of-distribution samples differ in the length scales of the Gaussian process

Figure 19: Navier-Stokes equations. Exact and predicted coefficients for an in-distribution (top row)
and an out-of-distribution (bottom row) samples and for different models (columns). From left to
right: input, output (ground truth), CNO, FNO and UNet.

41

in 4.8. We chose the length scale l = 0.1 for the in-distribution testing and l = 0.05 for the out-of-
distribution testing. We generate 256 training samples. In addition, we generate 128 samples for
validation set, in-distribution and out-of-distribution testing. The resolution of the data is 64× 64.

In Figure 20, we show the empirical test error distributions for UNet, FNO and CNO models during
in-distribution and out-of-distribution testing. We show an in-distribution and out-of-distributions
predictions made by CNO, FNO and UNet in Figure 21. The CNO model is the best-performing
model in this experiment in both in-distribution and out-of-distribution testing.

Figure 20: Darcy Flow. Empirical test error distributions for UNet, FNO and CNO. Left: In-
distribution testing. Right: Out-of-distribution testing.

C.3.7 Flow past airfoils

The flow past the airfoil is modeled by the two-dimensional compressible Euler equations

ut + div F (u) = 0, u = [ρ, ρv,E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥, (C.21)

with density ρ, velocity v, pressure p and total Energy E related by the ideal gas equation of state:

E =
1

2
ρ|u|2 + p

γ − 1
, (C.22)

where γ = 1.4. Additional important variables associated with the flow include the speed of sound
a =

√
γp
ρ and the Mach number M = |u|

a .

We follow standard practice in aerodynamic shape optimization and consider a reference airfoil shape
with upper and lower surface of the airfoil are located at (x, yU

ref(x/c)) and (x, yL
ref(x/c)) where c is

Figure 21: Darcy Flow. Exact and predicted coefficients for an in-distribution (top row) and an
out-of-distribution (bottom row) samples and for different models (columns). From left to right:
input, output (ground truth), FNO, UNet and CNO.

42

Figure 22: Elliptic mesh for the airfoil problem

the chord length and yU
ref and yL

ref corresponding to the well-known RAE2822 airfoil. The reference
shape is then perturbed by Hicks-Henne Bump functions [40] :

yL(ξ) = yL
ref(ξ) +

10∑
i=1

aL
iBi(ξ), yU(ξ) = yU

ref(ξ) +

10∑
i=1

aU
i Bi(ξ),

Bi(ξ) = sin3(πξqi), qi =
ln2

ln14− lni
, ξ =

x

c
,

aL
i = 2(ψi − 0.5)(i+ 1)× 10−3, aU

i = 2(ψi+10 − 0.5)(11− i)× 10−3, i = 1, ..., 10

with ψ ∈ [0, 1]d.

We can now formally define the airfoil shape as S = {(x, y) ∈ D : x ∈ [0, c], yL ≤ y ≤ yU}
and accordingly the shape function f = χ[S](x, y), with χ being the characteristic function. The
underlying operator of interest G† : f 7→ ρ maps the shape function f into the density of the flow at
steady state of the compressible Euler equations.

The equations are solved with the solver NUWTUN on 243 × 43 elliptic mesh (Fig.22) given the
following free-stream boundary conditions,

T∞ = 1, M∞ = 0.729, p∞ = 1, α = 2.31◦.

The data is ultimately interpolated onto a Cartesian grid of dimensions 128× 128 on the underlying
domain D = [−0.75, 1.75]2, and unit values are assigned to the density ρ(x, y) for all (x, y) in the
set S.

The shapes of the training data samples correspond to 20 bump functions, with coefficients ψ sampled
uniformly from [0, 1]20. Out-of-distribution testing is performed with 30 bump functions. During the
training and evaluation processes, the difference between the learned solution and the ground truth is
exclusively calculated for the points (x, y) that do not belong to the airfoil shape S.

We generate 750 samples for the training set and 128 samples for validation set, in-distribution
testing set and out-of-distribution testing set. In this experiment, the data is not normalized. In
Figure 23, we show the empirical test error distributions for UNet, FNO and CNO models during
in-distribution and out-of-distribution testing. We also show a random in-distribution testing sample
and an out-of-distribution testing sample, as well as predictions made by CNO, FNO and UNet in
Figure 24. The latter figure clearly shows the superiority of CNO and UNet over FNO when it comes
to out-of-distribution testing.

C.3.8 On the Choice of the RPB benchmarks.

As noted in the main text, the rationale for the inclusion of benchmark experiments in the RPB
dataset presented here is three-fold. First, we would like to span a variety of PDEs, ranging from
linear elliptic (Poisson) to linear hyperbolic (wave, transport) to nonlinear parabolic (Allen-Cahn) to

43

Figure 23: Airfoil experiment. Empirical test error distributions for UNet, FNO and CNO. Left:
In-distribution testing. Right: Out-of-distribution testing.

Figure 24: Airfoil experiment. Exact and predicted coefficients for an in-distribution (top row) and
an out-of-distribution (bottom row) samples and for different models (columns). From left to right:
input, output (ground truth), CNO, FNO and UNet.

Figure 25: Comparison of the 32 central frequencies of averaged logarithmic amplitude spectra for
the two Navier-Stokes experiments. Left: Old NS experiment. Right: Thin shear layer experiment.

44

nonlinear hyperbolic (Compressible Euler) to non-local advection-diffusion (Incompressible Navier-
Stokes). Second, we would like the underlying data to be readily available for rapid prototyping and
reproducibility. This limits the use of three-dimensional data-sets as data access can be cumbersome.
This requirement also leads us to prioritize problems with available analytical solutions. Finally, the
selected benchmarks should be sufficiently computationally complex such that traditional numerical
methods for approximating them are expensive and there is a potential pay-off for the design of
efficient machine learning based surrogates. This criterion rules out one-dimensional (in space)
problems as traditional numerical methods are very fast in this case on modern computers and there
is little reason to discard them for ML surrogates. Even among two-dimensional problems, one has to
be careful in selecting appropriate benchmarks to ensure that they entails sufficient computational
complexity.

We illustrate this issue by comparing and contrasting two possible benchmarks. First, we consider
a Navier-Stokes data-set, considered in [33] and widely used in the recent literature on machine
learning for PDEs. In this problem, the incompressible Navier-Stokes equations (4.6) are recast in the
so-called velocity-vorticity formulation by considering the vorticity ω = ∇× u of the fluid. In two
space dimensions, the following evolution equation for the vorticity can be readily derived from (4.6),

ωt + (u · ∇)ω = ν∆ω, ω(0, ·) = ω0. (C.23)
We consider the above evolution of the vorticity with periodic boundary conditions. The underlying
solution operator maps the initial vorticity ω0 to the vorticity ω(·, T) at a final time T . Following [33],
we choose the initial conditions ω0 ∼ µ where µ = N (0, 7

3
2 (−∆+ 49Id)−2.5) and extend (C.23)

with a forcing term f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2)). Furthermore, the viscosity
is chosen to be ν = 10−3. To generate the training and test data, we use a spectral method such as
the one suggested in [27] and references therein. A rough estimate on the computational complexity
of this problem can already be formed by observing Figure 25 (Left) where we present the averaged
logarithmic amplitude spectra corresponding to the ground truth output (vorticity at time T = 30 as
considered in [33]). We clearly see from this figure that only very few frequency modes (2-3) in each
direction have relatively high amplitude and the spectrum decays quite fast for higher frequencies.
Thus, this problem could be potentially approximated to high accuracy on fairly coarse grids.

To provide a quantitative elaboration of the above argument, we write uNf

i = PNf
(ui) where ui is

the solution corresponding to the i-th drawn initial conditions and PN is the spatial Fourier projection
operator mapping a function f(x, t) to its first N Fourier modes: PN =

∑
|k|∞≤N f̂k(t)e

ik·x. For

each sample ui we compute the relative L1error against the downsampled solution uNf

i . This provides
us with an estimate how many Fourier modes need to be accurately approximated in order to achieve
reasonable errors. The supremum and median of the errors over 128 samples, at time T = 30, are
plotted in Figure 26. One can observe from this figure that even after t = 30 time units, only a
maximum of 20 Fourier modes (in each direction) are needed to approximate the solution with an
error of approximately 1%. Hence, a standard numerical method would only need to simulate it
on a grid of 20× 20 points will suffice in order to achieve the same error. Consequently, the time
requirements for solving the problem on very coarse mesh with traditional spectral or finite difference
methods are in the range of 10−3 seconds or lower. In contrast, we tested both FNO and CNO on
this dataset to obtain test errors of 1.15% and 0.96%, respectively. Moreover, the inference time for
both FNO and CNO in this case are of the order of 10−4 secs on a NVIDIA qaudro t2000 GPU. Thus
to achieve similar test errors, FNO and CNO are atmost only one order of magnitude faster than a
traditional numerical method. Given the training time and data generation overheads, it is clear that
there is very little payoff on using such a relatively simple two-dimensional problem as a benchmark
for ML surrogates for PDEs.

On the other hand, we perform exactly the same analysis for the thin shear layer problem for the
incompressible Navier-Stokes equation that is described in the main text. First, from Figure 25
(Right), we see that the ground truth output (horizontal velocity at time T = 1) has much more of a
multiscale structure than in the previous experiment (compare with Figure 25 (Left)) with at least
non-trivial frequencies upto 32 modes, suggesting that it is much more challenging to approximate
it numerically. This is indeed verified from Figure 26 (Right) where we present the averaged (over
128 samples) L1-error for the velocity as a function of the number of modes to observe that almost
100 Fourier modes are needed to get an L1-error of 2%. This corresponds to a 100 × 100 spatial
grid and even a state-of-the-art GPU implementation of the spectral viscosity method of [27] would
require 10−1 seconds of run time. When compared to a CNO inference time of 10−4 secs for an error

45

of approximately 3%, we see that the ML surrogate (CNO) provides three orders of magnitude or
more of speedup in this case, making its deployment worthwhile. Thus, we have demonstrated the
rationale for the choice of this benchmark, rather than the Navier-Stokes benchmark of [33], in our
proposed RPB dataset.

Figure 26: Relative L1-error of the vorticity experiment when restricting the solution to Nf Fourier
modes.

C.4 Testing at Different Resolutions.

We have emphasized repeatedly that CNO upholds the principle of continuous-discrete equivalence
(CDE), which implies that there is an equivalence between the underlying operator and its discrete
representations. As a reminder, the CNO models are operators denoted as G∗ : Bw(D) → Bw(D)
and are designed to ensure that the continuous representations of functions align with their discrete
samples on a uniform grid. This holds true when the sampling rate s of the grid is sufficiently high,
specifically s ≥ 2w. It is important to note that the implemented CNO models are specified on a
predefined computational grid with a sampling rate of s ≥ 2w. Hence following [2] Remark 3.7,
the input functions must be compatible with this grid. If the input function is not compatible with
the computational grid, one needs transform it to an appropriate representation. Once the model is
applied, the output is transformed back to the original representation (see Remark 3.5 of [2] for a
formal explanation) and also Formula (A.7) for a precise description of these transformations.

Hence to apply an implemented CNO model to a continuous function f ∈ Bw′(D), it is necessary
to employ a discrete representation of the function on a computational grid with a sampling rate
of s. Essentially, it means that one needs to sample f on that grid. If the band limit w′ exceeds
half the sampling rate s/2, it is crucial to first filter out frequencies above s/2 to prevent aliasing
effects, which involves applying a downsampling filter. Once the function’s representation and the
computational grid are compatible with each other, the model can be applied.

To apply an implemented CNO model to a discrete representation fs′ ∈ Rs′×s′ , it is necessary to
follow (A.7) and transform fs′ into a compatible representation fs ∈ Rs×s. If s′ ≤ s, the signal
needs to be upsampled to the sampling rate s by using an appropriate upsampling filter. However, if
s′ > s, it is necessary to filter out frequencies above s/2 that are present in the signal. One should
downsample the signal to the sampling rate s by applying an appropriate downsampling filter.

As highlighted in the main text, an important characteristic of an operator learning model is to
maintain a relatively consistent test error when evaluated on various resolutions or discretizations.
To assess this aspect, we evaluate the performance of UNet, FNO, and CNO models on different
resolutions for Navier-Stokes equations. The original data is generated at a resolution of 128× 128.
To obtain data at any lower resolution s < 128, we downsample the original data to the desired
resolution. The models that we use to make predictions are the ones that we trained on 64 × 64
resolution. The configurations of all the models are reported in C.2.

We apply the afore-described strategy to practically realize Formula (A.7) and apply CNO to different
resolutions. In contrast, we follow the approach outlined in [33] to evaluate the FNO or UNet models
at different resolutions by applying the underlying model directly to the original, unresized input.

46

We show the variations of the test errors across resolutions for the Navier-Stokes benchmark in Figure
2, right. The CNO model demonstrates the highest stability when it comes to resolution changes
and is (approximately) invariant to resolution, unlike the other two models which exhibit notable
fluctuations at different resolutions. Specifically, the UNet model displays a strong reliance on the
training resolution, whereas the FNO model exhibits a slightly less pronounced dependence. This
example show that the CNO model respects continuous-discrete equivalence, while the other two
models are not resolution (or representation) equivalent.

C.5 Ablation Studies.

We conduct two ablation studies focusing on two key aspects of CNO. Firstly, we examine the impact
of modified operations, assessing how they affect the overall performance. Secondly, we investigate
the influence of ResNets that connect the Encoder and Decoder components within the Operator
UNet architecture (refer to Figure 1). These studies aim to provide valuable insights into the effects
of these key elements.

In our first ablation study, we aim to evaluate the effects of modifying operations, including upsam-
pling operators, downsampling operators, and activation layers, on performance and training time.
It is worth reiterating that the modified operations enable continuous-discrete equivalence (CDE).
Specifically, we replace the upsampling operator in the Operator UNet architecture with a discrete,
nearest neighbor upsampling method, while the downsampling operator is substituted with average
pooling. Additionally, we replace the activation layer with a simple pointwise application of the
activation function. As a result, the model takes on a structure resembling a regular UNet architecture,
but with the inclusion of additional ResNets that establish connections between the Encoder and the
Decoder components. We will refer to this model as CNO w/o Filters.

The second ablation study focuses on evaluating the influence of additional ResNets that connect
the Encoder and the Decoder components on both the overall performance and training time. In this
study, we remove these ResNets while retaining the UNet-like concatenations between corresponding
levels of the Encoder and the Decoder. It is important to note that the ResNet between the deepest
levels of the Encoder and the Decoder is preserved within the model. This ablation model respects
the continuous-discrete equivalence (CDE).

Performance. We train two ablation models for every benchmark experiment that we studied in
the main text. In order to maintain consistency, we use the same hyperparameter configurations for
the ablation models as those of the best-performing CNO models (refer to Table 12 for the specific
values). We report the in-distribution and out-of-distribution test errors in the Table 13.

Among the 16 tests conducted, the original CNO model outperforms the others in 12 of them. In
other 4 cases, the testing errors are close to the testing errors of the best performing models. In
almost all of the tests conducted, the first ablation model exhibits inferior performance compared to
the original CNO model. This observation indicates that the aliasing errors resulting from regular
CNN operations like average pooling, nearest neighbor upsampling and a regular application of the
activation function have an impact on the test error. Furthermore, it is important to note that the first
ablation study does not adhere to the continuous-discrete equivalence (CDE) property, resulting in
the model’s resolution dependence, similar to the UNet model (see Figure 2 and Section C.4).

In one out-of-distribution tests, the second ablation model demonstrates slightly superior performance
compared to the original CNO model. It is worth noting that in many cases, the original CNO
model exhibits significantly better performance than the second ablation model. This disparity in
performance ranges from less than 10% in the Compressible Euler and Darcy Flow benchmarks to
almost 300% in the Poisson Equation benchmark. While it is true that the second ablation model
maintains the continuous-discrete equivalence (CDE) property, we observe that the inclusion of
ResNets is vital for achieving good performance and decent generalization.

Training time. Since the first ablation model does not utilize any interpolation filters, it is reasonable
to anticipate that it will have a faster training time than the original CNO model.

Specifically, it trains approximately 1.75 times faster for the Poisson Equation, while for the Darcy
Flow, it trains around 1.35 times faster. For the Navier-Stokes Equations, the training is 1.25 times
faster. For the Wave Equation, Continuous Transport and Allen-Cahn Equation, it trains approximately

47

1.1 times faster. Finally, for the Discontinuous Transport, they need approximately equal amount of
time to train.

The second ablation model, which excludes the middle ResNets from the architecture, is also expected
to have faster training process than the original CNO model. Specifically, it trains approximately
1.75 times faster for the Poisson Equation. For the Navier-Stokes Equations and Darcy Flow, the
model trains 1.25 times faster. The training for the Wave Equation, Discontinuous Transport and
Compressible Euler is 1.1 to 1.15 times faster. Other benchmarks need similar amount of time to
train.

Table 13: Relative median L1 test errors, for both in- and out-of-distribution testing, for the CNO
models and two ablation models.

In/Out CNO CNO w/o Filters CNO w/o ResNets

Poisson Equation In 0.21% 0.93% 0.85%
Out 0.27% 1.65% 0.82%

Wave Equation In 0.63% 0.59% 1.64%
Out 1.17% 1.12% 1.64%

Smooth Transport In 0.24% 0.31% 0.31%
Out 0.46% 0.46% 0.76%

Discontinuous Transport In 1.03% 1.21% 1.17%
Out 1.18% 1.32% 1.60%

Allen-Cahn In 0.54% 0.69% 0.71%
Out 2.23% 2.16% 2.21%

Navier-Stokes In 2.76% 3.20% 3.00%
Out 7.04% 9.60% 5.85%

Darcy In 0.38% 0.47% 0.41%
Out 0.50% 0.65% 0.58%

Compressible Euler In 0.35% 0.38% 0.37%
Out 0.59% 0.62% 0.59%

C.6 Error vs. number of training samples.

Once again, we revisit the best-performing CNO and FNO model architectures for the Poisson
equation and Wave equation, as reported in C.2. This time, we focus on varying the number of
training samples and retraining the selected CNO and FNO models accordingly. Consequently, we
generate a plot that illustrates the in-distribution test error as we change the cardinality of the training
set, as shown in Figure 27 (left for Poisson equation, right for Wave equation). In the case of Poisson
equation, the CNO model outperforms by far the FNO model in all the data regimes.In the case of
Wave equation, we notice that the FNO performs better than the CNO in low data regime, with the
opposite behaviour in the large data regime. Moreover, CNO shows an approximately error decay
rate of 0.5 with respect to the number of training samples.

D Depiction of the Datasets.

In the following figures, we illustrate the different PDE forward problems considered in the main text.

48

Figure 27: In-distribution testing errors for different cardinalities of the training set for FNO and
CNO. Left: Poisson equation. Right: Wave equation.

f

G†

G†(f)

Figure 28: Illustration of input (left) and output (right) samples for the Poisson Equation.

f

G†

G†(f)

Figure 29: Illustration of input (left) and output (right) samples for the Wave Equation.

49

f

G†

G†(f)

Figure 30: Illustration of input (left) and output (right) samples for the Continuous Transport.

f

G†

G†(f)

Figure 31: Illustration of input (left) and output (right) samples for the discontinous transport problem.

E Additional References

[64] E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM Journal on
Numerical Analysis, 26(1):30–44, 1989.474

[65] E. Tadmor. Burgers’ Equation with Vanishing Hyper-Viscosity. Communications in Mathemati-
cal Sciences, 2(2):317 – 324, 2004

50

f

G†

G†(f)

Figure 32: Illustration of input (left) and output (right) samples for the Allen-Cahn equation.

f

G†

G†(f)

Figure 33: Illustration of input (left) and output (right) samples for the Navier-Stokes equations.

f

G†

G†(f)

Figure 34: Illustration of input (left) and output (right) samples for the Darcy flow.

51

f

G†

G†(f)

Figure 35: Illustration of input (left) and output (right) samples for the compressible Euler equations.

52

	
	Technical Details for Section 2 of main text.
	Approximation of Operators mapping between Sobolev spaces by operators mapping between spaces of bandlimited functions.
	Continuous-Discrete Equivalence for Operator from Section 2.1
	Multi-channel versions of elementary operators for CNO (2.3)
	Discrete operators for CNO
	Proof of Proposition 2.1 of Main Text

	Proof of Theorem 3.1 of Main Text
	Auxiliary results

	Technical Details for Section 4 of Main Text
	Training and Implementation Details
	Feed Forward Dense Neural Networks
	ResNet
	UNet
	Convolutional Neural Operator
	Galerkin Transformer
	DeepONet
	Fourier Neural Operator

	Training Details
	Details about the description and numerical results in each benchmark
	Poisson Equation
	Wave Equation
	Transport Equation
	Allen-Cahn Equation
	Navier-Stokes
	Darcy Flow
	Flow past airfoils
	On the Choice of the RPB benchmarks.

	Testing at Different Resolutions.
	Ablation Studies.
	Error vs. number of training samples.

	Depiction of the Datasets.
	Additional References

