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Abstract

Although very successfully used in conventional machine learning, convolution
based neural network architectures – believed to be inconsistent in function space –
have been largely ignored in the context of learning solution operators of PDEs.
Here, we present novel adaptations for convolutional neural networks to demon-
strate that they are indeed able to process functions as inputs and outputs. The
resulting architecture, termed as convolutional neural operators (CNOs), is designed
specifically to preserve its underlying continuous nature, even when implemented
in a discretized form on a computer. We prove a universality theorem to show
that CNOs can approximate operators arising in PDEs to desired accuracy. CNOs
are tested on a novel suite of benchmarks, encompassing a diverse set of PDEs
with possibly multi-scale solutions and are observed to significantly outperform
baselines, paving the way for an alternative framework for robust and accurate
operator learning.

1 Introduction.

Partial Differential Equations (PDEs) [13] are ubiquitous as mathematical models in the sciences and
engineering. Solving a PDE amounts to (approximately) computing the so-called solution operator
that maps function space inputs such as initial and boundary conditions, coefficients, source terms
etc, to the PDE solution which also belongs to a suitable function space. Well-established numerical
methods such as finite differences, finite elements, finite volumes and spectral methods (see [48]) have
been very successfully used for many decades to approximate PDE solution operators. However, the
prohibitive computational cost of these methods, particularly in high dimensions and for many query
problems such as UQ, inverse problems, PDE-constrained control and optimization, necessitates the
design of fast, robust and accurate surrogates. This provides the rationale for the use of data-driven
machine learning methods for solving PDEs [21].

As operators are the objects of interest in solving PDEs, learning such operators from data, which is
loosely termed as operator learning, has emerged as a dominant paradigm in recent years for the
applications of machine learning to PDEs. A very partial list of architectures for operator learning
include operator networks [9], DeepONets [39] and its variants [41, 7], PCA-net [5] , neural operators
[25] such as graph neural operator [34], Multipole neural operator [35] and the very popular Fourier
Neural Operator [33] and its variants [36, 45], VIDON [47], spectral neural operator [14], LOCA
[23], NOMAD [52] and transformer based operator learning architectures [8].
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Despite the considerable success of the recently proposed operator learning architectures, several
pressing issues remain to be addressed. These include, but are by no means restricted to, limited
expressivity for some of these algorithms [28] to aliasing errors for others [14] to the very fundamental
issue of possible lack of consistency in function spaces for many of them. As argued in a recent paper
[2], a structure-preserving operator learning algorithm or representation equivalent neural operator
has to respect some form of continuous-discrete equivalence (CDE) in order to learn the underlying
operator, rather than just a discrete representation of it. Failure to respect such a CDE can lead to the
so-called aliasing errors [2] and affect model performance at multiple discrete resolutions.

Despite many attempts, see [1, 16] and references therein, the absence of a suitable CDE, resulting
in aliasing errors, has also plagued the naive use of convolutional neural networks (CNNs) in the
context of operator learning, see [63, 33, 2] on how using CNNs for operator learning leads to results
that heavily rely on the underlying grid resolution. This very limited use of Convolution (in physical
space) based architectures for operator learning stands in complete contrast to the fact that CNNs
[30] and their variants are widely used architectures for image classification and generation and
in other contexts in machine learning [29, 37, 61]. Moreover, CNNs can be thought of as natural
generalizations of the foundational finite difference methods for discretizing PDEs [17, 38]. Given
their innate locality, computational and data efficiency, ability to process multi-scale inputs and
outputs and the availability of a wide variety of successful CNN architectures in other fields, it could
be very advantageous to bring CNN-based algorithms back into the reckoning for operator learning.
This is precisely the central point of the current paper where we make the following contributions,

• We propose novel modifications to CNNs in order to enforce structure-preserving continuous-
discrete equivalence and enable the genuine, alias-free, learning of operators. The resulting
architecture, termed as Convolutional Neural Operator (CNO), is instantiated as a novel
operator adaptation of the widely used U-Net architecture.

• In addition to showing that CNO is a representation equivalent neural operator in the
sense of [2], we also prove a universality result to rigorously demonstrate that CNOs can
approximate the operators, corresponding to a large class of PDEs, to desired accuracy.

• We test CNO on a novel set of benchmarks, that we term as Representative PDE Benchmarks
(RPB), that span across a variety of PDEs ranging from linear elliptic and hyperbolic to
nonlinear parabolic and hyperbolic PDEs, with possibly multiscale solutions. We find that
CNO is either on-par or outperforms the tested baselines on all the benchmarks, both when
testing in-distribution as well as in out-of-distribution testing.

Thus, we present a new CNN-based operator learning model, with desirable theoretical properties
and excellent empirical performance, with the potential to be widely used for learning PDEs.

2 Convolutional Neural Operators.

Figure 1: Schematic representation of CNO (2.3) as a modified U-Net with a sequence of layers
(each identified with the relevant operators on the right, see Section 2) mapping between bandlimited
functions. Rectangles represent multi-channel signals. Larger the height, larger is the resolution.
Wider the rectangles, more channels are present.
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Setting. For simplicity of the exposition, we will focus here on the two-dimensional case by
specifying the underlying domain as D = T2, being the 2-d torus. Let X = Hr(D,RdX ) ⊂ Z
and Y = Hs(D,RdY ) be the underlying function spaces, where Hr,s(D, ·) are Sobolev spaces of
order r and s. Without loss of generality, we set r = s hereafter. Our aim would be to approximate
continuous operators G† : X → Y from data pairs

(
ui,G†(ui)

)M
i=1

∈ X × Y . We further assume
that there exists a modulus of continuity for the operator i.e.,

∥G†(u)− G†(v)∥Y ≤ ω (∥u− v∥Z) , ∀u, v ∈ X , (2.1)

with ω : R+ → R+ being a monotonically increasing function with limy→0 ω(y) = 0. The
underlying operator G† can correspond to solution operators for PDEs (see Section 3 for the exact
setting) but is more general than that and encompasses examples such as those arising in inverse
problems, for instance in imaging [4].

Bandlimited Approximation. As argued in a recent paper [2], Sobolev spaces such as Hr are, in a
sense, too large to allow for any form of continuous-discrete equivalence (CDE), i.e., equivalence
between the underlying operator and its discrete representations, which is necessary for robust
operator learning. Consequently, one has to consider smaller subspaces of Hr which allow for such
CDEs. In this respect, we choose the space of bandlimited functions [57] defined by,

Bw(D) = {f ∈ L2(D) : suppf̂ ⊆ [−w,w]2}, (2.2)

for some w > 0 and with f̂ denoting the Fourier transform of f . It is straightforward to show using
(2.1) (see SMA.1) that for any ε > 0, there exists a w, large enough depending on r, and a continuous
operator G∗ : Bw(D) → Bw(D), such that

∥∥G† − G∗
∥∥ < ε, with ∥ · ∥ denoting the corresponding

operator norm. In other words, the underlying operator G† can be approximated to arbitrary accuracy
by the operator G∗ that maps between band-limited spaces. Consequently, as shown in SMA.2, one
can readily define discrete versions of G∗ using the underlying sinc basis for bandlimited functions
and establish a continuous-discrete equivalance for it.

Definition of CNO. Given the above context, our goal will be to approximate the operator G∗ in a
structure-preserving manner i.e., as the underlying operator maps between spaces of bandlimited
functions, we will construct our operator approximation architecture to also map bandlimited functions
to bandlimited functions, thus respecting the continuous-discrete equivalence. To this end, we denote
the operator G : Bw(D) → Bw(D) as a convolutional neural operator (CNO) which we define as a
compositional mapping between functions as

G : u 7→ P (u) = v0 7→ v1 7→ . . . vL 7→ Q(vL) = u, (2.3)

where
vl+1 = Pl ◦ Σl ◦ Kl(vl), 1 ≤ ℓ ≤ L− 1. (2.4)

From (2.3), we see that first, the input function u ∈ Bw(D) is lifted to the latent space of bandlimited
functions through a lifting layer:

P :
{
u ∈ Bw(D,RdX )

}
→

{
v0 ∈ Bw(D,Rd0)

}
.

Here, d0 > dX is the number of channels in the lifted, latent space. The lifting operation is performed
by a convolution operator which will be defined below.

Then, the lifted function is processed through the composition of a series of mappings between
functions (layers), with each layer consisting of three elementary mappings, i.e., Pl is either the
upsampling or downsampling operator, Kl is the convolution operator and Σl is the activation operator.
These elementary operators are defined below and are inspired by the modifications of CNNs for
image generation in [22]. Finally, the last output function in the iterative procedure vL is projected to
the output space with a projection operator Q, defined as

Q :
{
vL ∈ Bw(D,RdL)

}
→

{
u ∈ Bw(D,RdY )

}
.

The projection operation is also performed by a convolution operator defined below.
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Convolution Operator. For simplicity of exposition, we will present the single-channel version
of the convolution operator Kl here. See SM A.3 for the multi-channel version for this and other
operators considered below. Convolution operations are performed with discrete kernels

Kw =

k∑
i,j=1

kij · δzij

defined on the s× s uniform grid on D with grid size ≤ 1/2w, in-order to satisfy the requirements
of the Whittaker-Shannon-Kotelnikov sampling theorem [56], and zij being the resulting grid points,
k ∈ N being the kernel size and δx denoting the Dirac measure at point x ∈ D. The convolution
operator for a single-channel Kw : Bw(D) → Bw(D) is defined by

Kwf(x) = (Kw ⋆ f)(x) =

ˆ
D

Kw(x− y)f(y)dy =

k∑
i,j=1

kijf(x− zij), ∀x ∈ D,

where the last identity arises from the fact that f ∈ Bw. Thus, our convolution operator is directly
parametrized in physical space, in contrast to the Fourier space parametrization of a convolution in
the FNO architecture of [33]. Hence, our parametrization is of a local nature.

Upsampling and Downsampling Operators. For some w > w, we can upsample a function
f ∈ Bw to the higher band Bw by simply setting,

Uw,w : Bw(D) → Bw(D), Uw,wf(x) = f(x), ∀x ∈ D.

On the other hand, for some w < w, we can downsample a function f ∈ Bw to the lower band Bw

by setting Dw,w : Bw(D) → Bw(D), defined by

Dw,wf(x) =
(w
w

)2

(hw ⋆ f)(x) =
(w
w

)2
ˆ
D

hw(x− y)f(y)dy, ∀x ∈ D,

where ⋆ is the convolution operation on functions defined above and hw is the so-called interpolation
sinc filter:

hw(x0, x1) = sinc(2wx0) · sinc(2wx1), (x0, x1) ∈ R2. (2.5)

Activation Layer. Naively, one can apply the activation function pointwise to any function. How-
ever, it is well-known that such an application will no longer respect the band-limits of the underlying
function space and generate aliasing errors [22, 14, 2]. In particular, nonlinear activations can
generate features at arbitrarily high frequencies. As our aim is to respect the underlying CDE, we will
modulate the application of the activation function so that the resulting outputs fall within desired
band limits. To this end, we first upsample the input function f ∈ Bw to a higher bandlimit w > w,
then apply the activation and finally downsample the result back to the original bandlimit w (See
Figure 1). Implicitly assuming thatw is large enough such that σ (Bw) ⊂ Bw, we define the activation
layer in (2.3) as,

Σw,w : Bw(D) → Bw(D), Σw,wf(x) = Dw,w(σ ◦ Uw,w̃f)(x), ∀x ∈ D. (2.6)

Instantiation through an Operator U-Net architecture. The above ingredients are assembled
together in the form of an Operator U-Net architecture that has bandlimited functions as inputs and
outputs. In addition to the blocks that have been defined above, we also need additional ingredients,
namely incorporate skip connections through ResNet blocks of the form, Rw,w : Bw(D,Rd) →
Bw(D,Rd) such that

Rw,w(v) = v +Kw ◦ Σw,w ◦ Kw(v), ∀v ∈ Bw(D,Rd). (2.7)

We also need the so-called Invariant blocks of the form, Iw,w : Bw(D,Rd) → Bw(D,Rd) such that

Iw,w(v) = Σw,w ◦ Kw(v), ∀v ∈ Bw(D,Rd). (2.8)

Finally, all these ingredients are assembled together in a modified Operator U-Net architecture which
is graphically depicted in Figure 1. As seen from this figure, the input function, say u ∈ Bw(D,RdX )
is first lifted and then processed through a series of layers. Four types of blocks are used i.e.,
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downsampling (D) block corresponding to using the downsampling operator D as the P in (2.4),
upsampling (U) block corresponding to using the upsampling operator U as the P in (2.4), ResNet
(R) block corresponding to (2.7) and Invariant (I) block corresponding to (2.8). Each block takes a
band-limited function as input and returns another band-limited function (with the same band) as
the output. Finally, U-Net style patching operators, which concatenate outputs for different layers
as additional channels are also used. As these operations act only in the channel width and leave
the spatial resolution unchanged, they conform to the underlying bandlimits. Thus, CNO takes a
function input and passes it through a set of encoders, where the input is downsampled in space but
expanded in channel width and then processed through a set of decoders, where the channel width is
reduced but the space resolution is increased. At the same time, encoder and decoder layers (at the
same spatial resolution or band limit) are connected through additional ResNet blocks. Thus, this
architectural choice allows for transferring high frequency content via the skip connections, before
filtering them out with the sinc filter as we go deeper into the encoder. Hence, the high frequency
content is not just recreated with the activation function, but also modified through the intermediate
networks. Consequently, we build a genuinely multiscale operator learning architecture.

Continuous-Discrete Equivalence for CNO. We have defined CNO (2.3) as an operator that
maps bandlimited functions to bandlimited functions. In practice, like any computational algorithm,
CNO has to be implemented in a discrete manner, with discretized versions of each of the above-
defined elementary operations being specified in SM A.4. Given how each of the elementary blocks
(convolution, up- and downsampling, activation, ResNets etc) are constructed, we prove the following
proposition (in SM A.5):

Proposition 2.1. Convolutional Neural Operator G : Bw(D,RdX ) → Bw(D,RdY ) (2.3) is a
Representation equivalent neural operator or ReNO, in the sense of [2], Definition 3.4.

Further details about the notion of ReNOs is provided in SM A.4 and we refer the reader to [2], where
this concept is presented in great detail and the representation equivalence of CNO is discussed. In
particular, following [2], representation equivalence implies that CNO satisfies a form of resolution
invariance, allowing it to be evaluated on multiple grid resolutions without aliasing errors.

3 Universal Approximation by CNOs.

We want to prove that a large class of operators, stemming from PDEs, can be approximated to desired
accuracy by CNOs. To this end, we consider the following abstract PDE in the domain D = T2,

L(u) = 0, B(u) = 0, (3.1)

with L being a differential operator and B a boundary operator. We assume that the differential
operator L only depends on the coordinate x through a coefficient function a ∈ Hr(D). The
corresponding solution operator is denoted by G† : X ∗ ⊂ Hr(D) → Hr(D) : a 7→ u, with u being
the solution of the PDE (3.1). We assume that G† is continuous. Moreover, we also assume the
following modulus of continuity,∥∥G†(a)− G†(a′)

∥∥
Lp(T2)

≤ ω
(
∥a− a′∥Hσ(T2)

)
, (3.2)

for some p ∈ {2,∞} and 0 ≤ σ ≤ r − 1, and where ω : [0,∞) → [0,∞) is a monotonously
increasing function with limy→0 ω(y) = 0. (3.2) is automatically satisfied if X ∗ is compact and G†

is continuous. Under these assumptions, we have the following universality theorem for CNOs (2.3),

Theorem 3.1. Let σ ∈ N0 and p ∈ {2,∞} as in (3.2), r > max{σ, 2/p} and B > 0. For any
ε > 0 and any operator G†, as defined above, there exists a CNO G such that for every a ∈ X ∗ with
∥a∥Hr(D) ≤ B it holds,

∥G†(a)− G(a)∥Lp(D) < ε. (3.3)

In fact, we will prove a more general version of this theorem in SM B, where we also include
additional source terms in the PDE (3.1).
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4 Experiments.

Training Details and Baselines. We provide a detailed description of the implementation of CNO
and the training (and test) protocol for CNO as well as all the baselines in SM C.1. To ensure a
level playing field among all the tested models for each benchmark, we follow an ensemble training
procedure by specifying a range for the underlying hyperparameters for each model and randomly
selecting a subset of the hyperparameter space. For each such hyperparameter configuration, the
corresponding models are trained on the benchmark and the configuration with smallest validation
error is selected and the resulting test errors are reported, allowing us to identify and compare the
best performing version of each model for every benchmark. We compare CNO with the following
baselines: two very popular operator learning architectures, namely DeepONet (DON) [39] and
FNO [33], a transformer based operator-learning architecture, i.e., Galerkin Transformer (GT) [8],
feedforward neural network with with residual connections (FFNN) [18] and the very widely-used
ResNet [18] and U-Net [50] architectures. 1

Table 1: Relative median L1 test errors, for both in- and out-of-distribution testing, for different
benchmarks and models.

In/Out FFNN GT UNet ResNet DON FNO CNO

Poisson In 5.74% 2.77% 0.71% 0.43% 12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27% 1.10% 9.15% 7.05% 0.27%

Wave In 2.51% 1,44% 1.51% 0.79% 2.26% 1.02% 0.63%
Equation Out 3.01% 1.79% 2.03% 1.36% 2.83% 1.77% 1.17%

Smooth In 7.09% 0.98% 0.49% 0.39% 1.14% 0.28% 0.24%
Transport Out 650.6% 875.4% 1.28% 0.96% 157.2% 3.90% 0.46%

Discontinuous In 13.0% 1.55% 1.31% 1.01% 5.78% 1.15% 1.01%
Transport Out 257.3% 22691.1% 1.35% 1.16% 117.1% 2.89% 1.09%

Allen-Cahn In 18.27% 0.77% 0.82% 1.40% 13.63% 0.28% 0.54%
Equation Out 46.93% 2.90% 2.18% 3.74% 19.86% 1.10% 2.23%

Navier-Stokes In 8.05% 4.14% 3.54% 3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93% 9.68% 15.05% 9.58% 7.04%

Darcy In 2.14% 0.86% 0.54% 0.42% 1.13% 0.80% 0.38%
Flow Out 2.23% 1.17% 0.64% 0.60% 1.61% 1.11% 0.50%

Compressible In 0.78% 2.09% 0.38% 1.70% 1.93% 0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 2.88% 0.69% 0.59%

Representative PDE Benchmarks (RPB). Given the lack of consensus on a standard set of
benchmarks for machine learning of PDEs, we propose a new suite of benchmarks here. Our aims
in this regard are to ensure i) sufficient diversity among the types of PDE considered, ii) access to
training and test data is readily available for rapid prototyping and reproducibility and iii) intrinsic
computational complexity of problem to make sure that it is worthwhile to design fast surrogates to
classical PDE solvers for a particular problem. In other words, we will only consider PDEs where
classical PDE solvers can only resolve the underlying operator on fine enough grids. To meet these
requirements, we will not consider PDEs in one space dimension as traditional numerical methods
are already quite fast for them. On the other hand, it is hard to obtain and store data for problems in
three dimensions, due to computational expense of traditional methods. The sweet spot is achieved
by considering PDEs in two space dimensions. We further restrict to Cartesian domains here as all
models can be readily evaluated in this setting. In addition to including a diverse set of PDEs, we
only consider problems with sufficiently many spatial and temporal scales. Otherwise, traditional
numerical solvers can approximate the underlying PDE on very coarse grids and it is not worthwhile
to design surrogates (see SM C.3.8 for a discussion in this context on a widely used Navier-Stokes
benchmark). With these considerations in mind, we present the following subset of Representative
PDE Benchmarks or RPB,

1The code can be found at https://github.com/bogdanraonic3/ConvolutionalNeuralOperator
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Poisson Equation. This prototypical linear elliptic PDE is given by,

−∆u = f, in D, u|∂D = 0. (4.1)

The solution operator G† : f 7→ u, maps the source term f to the solution u. With source term,

f(x, y) =
π

K2

K∑
i,j=1

aij · (i2 + j2)−r sin(πix) sin(πjy), ∀(x, y) ∈ D, (4.2)

with r = −0.5, the corresponding exact solution can be analytically computed (see SM C.3.1) and
represents K- spatial scales. For training the models, we fix K = 16 in (4.2) and choose aij to be
i.i.d. uniformly distributed from [−1, 1] (See SM D for a representation of the inputs and outputs
of G†). This multiscale solution needs fine enough grid size to be approximated accurately by finite
element methods, fitting our complexity criterion for benchmarks. In addition to in-distribution
testing , we also consider an out-of-distribution testing task by setting K = 20 in (4.2). This will
enable us to evaluate the ability of the models to generalize to inputs (and outputs) with frequencies
higher than those encountered during training.

Wave Equation. This prototypical linear hyperbolic PDE is given by

utt − c2∆u = 0, in D × (0, T ), u0(x, y) = f(x, y), (4.3)

with a constant propagation speed c = 0.1. The underlying operator G† : f 7→ u(., T ) maps the
initial condition f into the solution at the final time. If we consider initial conditions to be given
by (4.2) with r = 1, then one can explicitly compute the exact solution (see SM C.3.2) to represent
a multiscale standing wave with periodic pulsations (depending on K) in time. The training and
in-distribution test samples are generated by setting T = 5, K = 24 and aij to be i.i.d. uniformly
distributed from [−1, 1] (See SM D for input and output samples). For out-of-distribution testing,
we change the exponent of decay of the modes in (4.2) to r = 0.85 and K = 32, in order to test the
ability of the models to generalize to learn the effect of higher frequencies, than those present in the
training data.

Transport Equation. The transport of scalar quantities of interest is modeled by PDE,

ut + v · ∇u = 0, u(t = 0) = f, (4.4)

with a given velocity field and initial data f . The underlying operator G† : f 7→ u(., T = 1)
maps the initial condition f into the solution at the final time. We set a constant velocity field
v = (vx, vy) = (0.2, 0.2) leading to solution u(x, y, t) = f(x− vxt, y − vyt). Two different types
of training data are considered, i.e., smooth initial data which takes the form of a radially symmetric
Gaussian, with centers randomly and uniformly drawn from (0.2, 0.4)2 and corresponding variance
drawn uniformly from (0.003, 0.009) and a discontinuous initial data in the form of the indicator
function of radial disk with centers, uniformly drawn from (0.2, 0.4)2 and radii uniformly drawn from
(0.1, 0.2) (See SM C.3.3 for details and SM D for illustrations). For out-of-distribution testing in the
smooth case, the centers of the Gaussian inputs are sampled uniformly from (0.4, 0.6)2 and in the
discontinuous case, the centers of the disk are drawn uniformly from (0.4, 0.6)2, while keeping the
variance and the radii, respectively, the same as that of in-distribution testing. This out-of-distribution
task tests the model’s ability to cope with input translation-equivariance.

Allen-Cahn Equation. It is a prototype for nonlinear parabolic PDEs,

ut = ∆u− ε2u(u2 − 1), (4.5)

with a reaction rate of ε = 220 and underlying operator G† : f 7→ u(., T ), mapping initial conditions
f to the solution u at a final time T = 0.0002. The initial conditions for training and in-distribution
testing are of the form (4.2), with r = 1 and K = 24 and coefficients aij drawn uniformly from
[−1, 1]. For out-of-distribution testing, we set K = 16 and randomly select the initial decay r,
uniformly from the range [0.85, 1.15] of the modes in (4.2), which allows us to test the ability of the
model to generalize to different dynamics of the system. Both training and test data are generated by
using a finite difference scheme [62] on a grid at 642 resolution (see SM D for illustrations).
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Navier-Stokes Eqns. These PDEs model the motion of incompressible fluids by,

ut + (u · ∇)u+∇p = ν∆u, div u = 0, (4.6)

in the torus D = T2 with periodic boundary conditions and viscosity ν = 4× 10−4, only applied to
high-enough Fourier modes (those with amplitude ≥ 12) to model fluid flow at very high Reynolds-
number. The solution operator G† : f 7→ u(., T ), maps the initial conditions f : D → R2 to the
solution at final time T = 1. We consider initial conditions representing the well-known thin shear
layer problem [3, 27] (See SM C.3.5 for details), where the shear layer evolves via vortex shedding
to a complex distribution of vortices (see SM D for samples). The training and in-distribution testing
samples are generated, with a spectral viscosity method [27], from an initial sinusoidal perturbation of
the shear layer [27], with layer thickness ρ = 0.1 and 10 perturbation modes, each sampled uniformly
from [−1, 1]. For out-of-distribution testing, the layer thickness is reduced to ρ = 0.09 and the layers
are shifted up in the domain to test the ability of the models to generalize to a flow regime with an
increased number and different locations of the shed vortices.

Darcy flow. The steady-state Darcy flow is described by the second order linear elliptic PDE,

−∇ · (a∇u) = f, in D, u|∂D = 0, (4.7)
where a is the diffusion coefficient and f is the forcing term. We set the forcing term to f = 1. The
solution operator is G† : a 7→ u, where the input is the diffusion coefficient a ∼ ψ#µ, with µ being
a Gaussian Process with zero mean and squared exponential kernel

k(x, y) = σ2 exp

(
|x− y|2

l2

)
, σ2 = 0.1. (4.8)

We chose the length scale l = 0.1 for the in-distribution testing and l = 0.05 for the out-of-distribution
testing. The mapping ψ : R → R takes the value 12 on the positive part of the real line and 3 on the
negative part. The push-forward measure is defined pointwise. The experimental setup is the same as
the one presented in [33].

Flow past airfoils. We model this flow by the compressible Euler equations,

ut + div F (u) = 0, u = [ρ, ρv,E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥, (4.9)
with density ρ, velocity v, pressure p and total Energy E related by an ideal gas equation of state.
The airfoils we consider are described by perturbing the shape of a well-known RAE2822 airfoil
[40] by Hicks-Henne Bump functions [42] (see SM C.3.7). Freestream boundary conditions are
imposed and the solution operator maps the shape function onto the steady state density distribution
(see SM D for samples) and training data are obtained with a compressible flow solver (NUWTUN)
with shapes corresponding to 20 bump functions, with coefficients sampled uniformly from [0, 1].
Out-of-distribution testing is performed with 30 bump functions.

Results. The test errors, for both in-distribution and out-of-distribution testing for all the models
on the RPB benchmarks are shown in Table 1. Starting with the in-distribution results, we see
that among the baselines, FNO clearly outperforms both FFNN and DeepONet on all the RPB
benchmarks as well as the Galerkin Transformer on all except the Poisson test case. On the other
hand, the convolution-based U-Net and ResNet models are quite competitive vis-a-vis FNO, with
comparable performances on most benchmarks, while outperforming FNO by a factor of 7− 9 for
the Poisson test case. This already indicates that convolution-based architectures can perform very
well. Moreover, we observe from Table 1 that CNO is the best performing architecture on every task
except Allen-Cahn. It readily outperforms FNO, for instance by almost a factor of 20 on the Poisson
test case but more moderately but significantly on other tasks. It also outperforms U-Net and ResNet
on all tasks considered here, emerging as the best-performing model over these benchmarks.

Out-of-Distribution Testing. This trend is further reinforced when we consider out-of-distribution
testing. CNO generalizes well to unseen data in a zero-shot mode, with test errors increasing by
approximately a factor of 2, at most (with Allen-Cahn being an outlier) and still outperforms the
baselines significantly in all cases other than Allen-Cahn, where FNO generalizes the best. FNO
shows decent generalization for most problems but generalizes poorly on the transport problems. This
can be attributed to its lack of translation equivariance, in contrast to U-Net, ResNet and CNO. Finally,
the lack of translation invariance severely limits the out-of-distribution generalization performance of
DeepONet, FFNN and Galerkin Transformer models on transport problems.
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Figure 2: Thin Shear Layer Left: Averaged logarithmic amplitude spectra comparing Ground Truth,
CNO, FNO and UNet. Right: Test error vs. Resolution for UNet, FNO and CNO.

Resolution Invariance. We select three of the best-performing models (U-Net, FNO and CNO)
and highlight further differences between them for the Navier-Stokes test case (see also SM C). To
this end, we start with Figure 2 (left), where we present the averaged (log) spectra for the ground truth
(reference solution computed with the spectral viscosity method) and those computed with CNO,
FNO and U-Net. We observe from this figure that i) the spectrum of the exact solution is very rich
with representations of many frequencies, attesting to the multi-scale nature of the underlying problem
and ii) there are significant differences in how CNO and FNO approximate the underlying solution in
Fourier space. In particular, the decay in CNO’s spectrum is more accurate. On the other hand, the
FNO spectrum is amplified along the horizontal axis, possibly on account of aliasing errors that add
incorrect frequency content. The U-Net spectra are similar to that of CNO but with high-frequency
modes being amplified, which leads to a higher test error. Next, in Figure 2 (right), we compare CNO,
FNO and U-Net vis-a-vis the metric of how the test error varies across resolutions, see SMC.4 for
details, which is an important aspect for robust operator learning that been highlighted in [33, 25],
see also [2] for a discussion with respect to representation equivalent neural operators or ReNOs.
We find from Figure 2 (right) that for the Navier-Stokes benchmark, the FNO error is not invariant
with respect to resolution, with an increase in error of up to 25% on lower-resolutions as well as a
more modest but noticeable increase of 10% on resolutions, higher than the training resolution of
642, implying that FNO is neither able to perform alias-error free super- or sub-resolution in this case,
see also [2] for a detailed discussion on the resolution-invariance of FNO. Similarly, the increase
of U-Net test error with respect to varying resolutions is even more pronounced, with a maximum
increase of a factor of 3, indicating neither FNO nor U-Net are resolution (representation) equivalent
in this case. In contrast, CNO error is invariant with respect to test resolution, verifying that it respects
continuous-discrete equivalence. Further ablation studies for CNO are presented in SM C.5.

Efficiency. In order to further compare CNO with FNO, which is the most widely used neural opera-
tor these days, we illustrate not just the performance in terms of errors but also terms in computational
efficiency. To this end, in Figure 3 (left), we plot the size (total number of parameters) vs validation
error for the Navier-Stokes benchmark for all FNO and CNO models that were considered in the
model selection procedure to observe that for the same model size, CNO models led to significantly
smaller validation errors. This resulted in smaller errors for the same per-epoch training time (Figure
3 (center)) for CNO vis-a-vis FNO. As observed in Figure 3 (center), this also implies that one of
the best-performing CNO models, with a significantly smaller error than the best-performing FNO
model is also almost twice as fast to train, thus showcasing the computational efficiency of CNOs.

Scaling laws. A very important aspect of modern deep learning is to evaluate how the performance
of models scales with respect to data (and model size). To investigate this, we focus on the Navier-
Stokes benchmark and present test error vs. (log of) number of training samples for GT, FNO and
CNO in Figure 3 (right) to observe that the errors decrease consistently with number of samples.
To quantify the rates of decrease, we fit power laws of the form E = (N0/N)−r, with E being
the test error, N number of samples and N0 normalized to be the number of samples required to
reach errors of 1% to obtain that CNO attains a much faster convergence rate (r = 0.37) compared
to FNO (r = 0.28) and GT (r = 0.27). This implies that CNO will require N0 ≈ 14.3K samples
to attain 1% error which is 4-times less than FNO (N0 ≈ 60.1K) and almost 10-times less than GT
(N0 ≈ 133.2K), highlighting the data efficiency of CNO. Finally, from Figure 3 (right), we also
observe that a smaller CNO model (with 0.82 M parameters) scales worse (with r = 0.3) compared
to the best performing CNO model with 7.8M parameters, illustrating that model size could be a
bottleneck for data scaling and larger models are required to scale with data.
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Figure 3: Navier-Stokes Benchmark: Test Error (Y-axis) vs. Model size (Left) and per-epoch training
time (Center) for all the FNO and CNO models tested. The best-performing models are highlighted
as is a small-scale yet efficient CNO model. Right: Log of Error vs. Log of Number of training
samples for GT, FNO, CNO and a small-scale CNO model.

5 Discussion.
Summary. We propose CNO, a novel convolution-based architecture for learning operators. The
basic design principle was to enforce a form of continuous-discrete equivalence in order to genuinely
learn the underlying operators, rather than discrete representations of them. To this end, we modified
the elementary operators of convolution, up-and downsampling and particularly nonlinear activations
to realize CNO as a representation equivalent neural operator or ReNO in the sense of [2]. We also
prove a universality theorem to show that CNO can approximate a large class of operators arising in
PDEs to desired accuracy. A novel suite of experiments, termed as representative PDE benchmarks
(RPB), encompassing a wide variety of PDEs, with multiple scales in the corresponding solutions,
which are hard to resolve with traditional numerical methods, is also proposed and the model tested
on them. We demonstrate that CNO outperforms the baselines, including FNO, significantly on most
benchmarks. This also holds for the considered out-of-distribution testing tasks which ascertain the
ability of the models to generalize to unseen data in a zero-shot manner.

Comparison to Related Work. We emphasize that our construction of CNO follows the theoretical
prescription of recent paper [2] on enforcing structure preserving continuous-discrete equivalence.
CNO is a representation equivalent neural operator, with respect to spaces of bandlimited functions,
in the sense of [2]. Another motivating work for us is [22], see also [58], where the authors modify
CNNs to eliminate (or reduce) aliasing errors in the context of image generation. We adapt the
construction of [22] to our setting and deploy the resulting architecture in a very different context
from that of [22], namely that of operator learning for PDEs rather than image generation. Moreover,
we also instantiate CNO with a very different operator UNet architecture than that proposed in [22].
We would also like to mention related work on using CNNs for solving PDEs such as [1, 16] and
emphasize that in contrast to CNO, they lack suitable notions of continuous-discrete equivalence.
Finally comparing CNO to the widely used FNO model, we observe that unlike FNO which can fail
to enforce CDE (see [14, 2] and Figure 2(right)), CNO preserves continuous-discrete equivalence.
Moreover, the convolution operator in CNO is local in space, in contrast to convolution in Fourier
space for FNO. The detailed empirical comparison presented here demonstrates CNO can outperform
FNO and other baselines on many different metrics namely performance, computational efficiency,
resolution invariance, out-of-distribution generalization as well as data scaling, paving the way for its
widespread applications in science and engineering.

Limitations and Future Work. We have presented CNO for operators on an underlying two-
dimensional Cartesian domain. The extension to three-space dimensions is conceptually straightfor-
ward but computationally demanding. Similarly, extending to non-Cartesian domains will require
some form of transformation maps between domains, for instance reworking those suggested for
FNO in [32, 55] can be readily considered. Adapting CNO to approximate trajectories (in time) of
time-dependent PDEs, for instance by employing it in an auto-regressive manner, is another possible
extension of this paper. At the level of theoretical results, we believe that the generic framework of
[11] can be adapted to show that not only does CNO approximate a large class of PDEs universally, it
does so without incurring any curse of dimensionality, as shown for DeepONets in [26] and FNOs
in [24]. Finally, adapting and testing CNO for learning operators, beyond the forward solution
operator of PDEs is also interesting. One such direction lies in efficiently approximating PDE inverse
problems, for instance those considered in [44].
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