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Abstract

Reaching consensus and convergence to equilibrium are two major challenges of
multi-agent systems. Although each has attracted significant attention, relatively
few studies address both challenges at the same time. This paper examines the
connection between the notions of consensus and equilibrium in a multi-agent sys-
tem where multiple interacting sub-populations coexist. We argue that consensus
can be seen as an intricate component of intra-population stability, whereas equi-
librium can be seen as encoding inter-population stability. We show that smooth
fictitious play, a well-known learning model in game theory, can achieve both con-
sensus and convergence to equilibrium in diverse multi-agent settings. Moreover,
we show that the consensus formation process plays a crucial role in the seminal
thorny problem of equilibrium selection in multi-agent learning.

1 Introduction

Two fundamental problems of multi-agent systems are consensus formation [26, 3, 12, 30, 5, 28,
86, 68] and learning in games [48, 33, 66, 58, 57, 70, 71, 13, 55]. The former (sometimes also
referred to as cooperative control, flocking, synchronization, and social norms) aims to understand
how a decentralized system of agents, which starts off in an initially disordered state, is able to
develop shared coordinated beliefs, opinions, or behaviors [7]. The latter (also known as multi-agent
learning) examines whether, how and what type of equilibrium arises as the result of the long-run
learning processes of individual agents [33]. Each problem has attracted significant interest, yet,
these two problems are largely studied in isolation.

Is there a unified way to think about consensus formation and learning in games? We argue that con-
sensus and equilibrium, the fundamental notions of these two fields, can be both understood as sta-
bility concepts in a multi-agent system where there co-exist multiple interacting sub-populations (or
populations hereafter). Consensus can be seen as an intricate component of intra-population stability
that reflects whether each population is internally cohesive, i.e., a population is stable if all the agents
belonging to this population achieve consensus and develop the same belief, opinion, or behavior.
In contrast, game-theoretic (e.g., Nash) equilibrium can be seen at a more macro level as encoding
inter-population stability, i.e., the stability between different populations is achieved by alignment
to their population-wise incentives. Namely, a stable system of populations is characterized by the
internal cohesion of each population as well as the game-theoretic equilibration between different
populations. The merits of this way of thinking are twofold. It presents a non-trivial connection
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between consensus and equilibrium, bringing them together under the same umbrella of stability
concepts for a system of populations. Moreover, it distinguishes between intra-population stability
and inter-population stability so that the emerging phenomena that it can describe are significantly
richer, and that it allows for important distinctions that would have otherwise been impossible.

In the rich literature on consensus formation, the idea of building up a connection to game-theoretic
equilibration is not entirely new. Classic mathematical models, such as the Degroot model [27] and
the Friedkin-Johnsen model [31], showed that consensus of opinions can be reached if individuals
form their opinions taking a weighted average of their own opinions and the opinions of others. In
seminal work, Bindel et al. [15] showed that such a repeated averaging process is equivalent to
a best-response play in the game with a quadratic reward function measuring the distance between
individuals’ opinions, leading to interest in understanding consensus from the perspective of learning
in games [38, 23, 2, 14, 36, 10, 9]. In parallel, Marden et al. [62] demonstrated how the cooperative
control problem of consensus can be formulated as better reply with inertia dynamics in potential
games, while Young [89] proved the emergence of social norms using evolutionary game theory.
These notable advances, however, typically assumed the reward structure to encode an incentive
to align individual agents’ opinions or behaivors with those of others. Little is formally known
about consensus formation in the absence of such a coordinative reward structure, or whether such
a coordinative reward structure is a prerequisite for achieving both consensus formation and game-
theoretic equilibration.

In the literature on multi-agent learning, the concept of consensus has been less explored compared
to the abundant study of convergent or non-convergent learning behaviors in games [13, 79, 66,
81, 77, 6, 57, 16]. We argue that consensus is of crucial importance to multi-agent learning—it
ensures not only intra-population stability when there co-exist multiple interacting populations but
also complete predictability and computational efficiency in more general settings. Imagine the case
that for a system of agents, the average probability (x̄A and x̄B) of choosing between two strategies
(A and B) is shown to equilibrate at x̄A = x̄B = 0.5. If consensus is reached, it is completely
predictable that every agent plays A and B with equal probability 0.5. However, if consensus is
not reached, there are many possibilities for agents’ behaviors, to name a few—it is possible (i)
that exactly half of the agents play A with probability 1 and the other half plays B with probability
1, and (ii) that some agents play A and B with equal probability 0.5 whereas the rest constantly
switches between these two strategies. The unpredictability in agents’ behaviors can be problematic
for system design, especially in safety-critical scenarios, where a system designer ought to rule
out the possibility of getting the system to evolve into some (e.g., unsafe) states [74, 76, 73, 91].
From the perspective of computational efficiency, consensus is usually a desirable property and
is embedded in the mean field game literature to simplify the characterization of equilibrium—by
exploiting the homogeneity of the population, it suffices to understand the behavior of a single
representative agent facing the mean field [55, 54, 51, 71, 42, 87, 1].

Putting these together motivates our central questions:

• Are there natural multi-agent learning models that can achieve the best of both worlds—
reaching consensus as well as convergence to equilibrium—in diverse settings?

• How does the consensus formation process affect equilibrium selection in multi-agent
learning?

Our Model. We provide an affirmative answer to the first question, and our solution is—smooth
fictitious play (SFP) [32]—a well-known belief-based learning model in game theory. In this paper,
we consider a network of populations, where each vertex represents a population (or continuum) of
agents and each edge denotes that agents from connected populations are paired up to play 2-player
subgames. We call this type of game a network population game,1 as it has a close connection to
the network (or graphical polymatrix) games [52] and the population games [75]. By SFP, each
agent forms beliefs about the strategies of agents of the connected populations based on the average

1A good survey for network population games and variants thereof is [83]. A prototypical example is
the men-women interactions that give rise to a 2-population Battle of the Sexes game, which corresponds to
a single-edge network in our case. Similarly, one can think of an ecosystem with a graph of predator-prey
interactions; the fact that there is no self-interaction within a population captures that there is no in-species
cannibalism. Another example is the multi-army combat setting; combatants of the same army do not face each
other.
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(a) The initial beliefs are distributed according to Beta(14, 6) for both populations. The variance of initial
beliefs is 0.01 and the mean of initial beliefs is 0.7.

(b) The initial beliefs are distributed according to Beta(280, 120) for both populations. The variance of initial
beliefs is ≈ 0.0005 and the mean of initial beliefs is 0.7.

Figure 1: System evolution in 2-population stag hunt games. Over time, the belief distributions
become more concentrated (left panel: the predictions of our continuity equations, middle panel:
the empirical distributions in agent-based simulations), and the variance of beliefs and the distance
(L1 norm) to the equilibrium are both decreasing (right panel). Even though the consensus formation
process starts with the same initial mean belief, a small variance of initial beliefs results in the risk
dominant equilibrium (H,H) (subplot (b)), whereas a large variance of initial beliefs results in the
payoff dominant equilibrium (S, S) (subplot (a)). A video for the evolution of these two belief
distributions is available at https://sites.google.com/view/shuyue-hu.

plays of those populations, and responds with an aggregated smoothed best response. To allow for a
meaningful study of consensus formation, we assume that agents within each population have differ-
ent beliefs and different behaviors in the initial state. In other words, our model is a heterogeneous
belief model [35], unlike the homogeneous belief models extensively studied in the SFP literature
[8, 82, 11, 32, 44, 47, 46].

Our Approach & Key Results. To see whether a consensus is reached, one needs a measure of it.
A natural approach is to assume the system state to be a probability measure (or distribution) over
the set of beliefs (referred to as the belief distribution). This notion of a system state allows us to
quantify how much agents reach a consensus by examining the variance of the belief distribution.
Intuitively, a value of zero for the variance means that agents have the same belief and have achieved
consensus. However, analyzing the evolution of the belief distribution requires new techniques be-
yond the classic approach of stochastic approximation [8, 11, 35, 44, 47]. We address this challenge
by establishing a system of nonlinear partial differential equations—continuity equations2—to de-
scribe the continuous-time change in the belief distribution (Proposition 1). This approach allows
us to analyze the evolution of the variance without deriving an analytical form of the belief distribu-
tion. We show that for any network population games, the variance of beliefs decreases to zero at a
quadratic rate with time in every population (Theorem 1). This means that even if the 2-player sub-
games that agents (of different populations) play are not coordinative but zero-sum, consensus will
still be reached. Put differently, a coordinative reward structure is not a prerequisite for achieving
consensus.

2A continuity equation is a PDE commonly encountered in physics, which describes the transport phenom-
ena of some quantity (e.g., mass, energy, momentum and other conserved quantities) in a physical system.
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The next step is to examine the convergence to equilibrium. Our finding that the variance of beliefs
decreases to zero suggests that the asymptotic behavior of a population that starts with different
beliefs can be understood by studying that of a single representative agent. Inspired by this, we
temporarily override the assumption of the heterogeneous belief model and assume a single repre-
sentative agent for each population, resulting in the classic form of network games with each vertex
representing a single agent. Under this assumption, we use Lyapunov arguments to prove the con-
vergence of SFP to quantal response equilibria (QRE)3 in two classes of network games that capture
network competition and network coordination. Specifically, we show that for a weighted zero-sum
network game, SFP converges to a unique QRE even if the underlying game has many distinct Nash
equilibria (Theorem 2). We also show that for an exact potential network game that exhibits a star
structure, SFP converges to the set of QRE (Theorem 3). We then use the techniques of asymp-
totically autonomous dynamical systems to show that the convergence to QRE holds for network
population games as well (Theorem 4 and Theorem 5). Therefore, SFP converges to QRE in all
weighted zero-sum network (population) games as well as all exact potential star-graph (population)
games.

At this point, we have shown that SFP can achieve consensus as well as convergence to equilibrium
in a wide range of network population games. Specifically, consensus is always reached, regardless
of the specific setting. In the language of stability concepts, by SFP, the intra-population stability
is always guaranteed, but the inter-population stability may require additional assumptions about
the incentive nature as well as the network topology. This may lead to an error-prone intuition that
the consensus formation process is orthogonal to the equilibrium selection process and thus has
little effect on it. This is indeed not true. We illustrate this through an example of a 2-population
stag hunt game, where different variances of initial beliefs result in qualitatively different long-
term system behaviors. As we show in Figure 1, even though the initial mean belief is the same, the
consensus formation process starting with a low level of initial disagreement (a small value for initial
variance) results in the risk dominant equilibrium (H,H), while starting with a high level of initial
disagreement (a large value for initial variance) leads to the payoff dominant equilibrium (S, S). We
provide additional evidence covering all possible initial mean beliefs under the same 2-population
stag-hunt game setting in Figure 2 (Section 6). Figure 2 shows that increasing the variance of
initial beliefs from 0 to 0.02, 0.05, and 0.1 expands the region of attraction of the payoff dominant
equilibrium (S, S), allowing a wider range of initial mean beliefs to approach it. Thus, in the case
of network coordination, consensus formation plays a crucial role in the seminal thorny problem
of equilibrium selection, and a larger initial variance can promote convergence to the equilibrium
(S, S). In the case of network competition, convergence to a unique QRE is formally guaranteed
(Theorem 4); we empirically verify this in 5-population asymmetric matching pennies games with
many distinct Nash equilibria (Section 1 of the Appendix).

Other Related Work. SFP is a well-studied model that converges in various classes of games,
including most 2-player-2-action games [32, 44, 11, 47], n-player potential game s[82, 45], and
zero-sum and identical-interest stochastic games [8, 78, 59]. However, SFP in network (population)
games has not been previously explored. Our research extends the findings of Fudenberg and Taka-
hashi [35] (who showed that agents with different beliefs in a 2-population setting will converge
to the same belief) to the network settings, but we demonstrate that the variance of initial beliefs
plays a crucial role in equilibrium selection, which has not been found in [35]. On the other hand,
networked multi-agent learning is a current frontier in AI research [90, 61, 43, 21, 17, 4, 25]. Previ-
ous studies have shown the non-convergent behavior of replicator dynamics in (weighted) zero-sum
network games [72, 18, 66, 79], the convergence of smooth Q-learning in weighted potential [56]
and weighted zero-sum network games [57], and the convergence of fictitious play in zero-sum net-
work games [29]. This paper provides new convergence results for SFP in both network games
and network population games, covering a wide range of generic 2-population-2-action settings,
star-graph settings that admit an exact potential, and all weighted zero-sum settings. Finally, the
evolution of probability distributions over initial conditions or strategies has also received increas-
ing interest [22, 53, 49, 50, 24, 60]. Continuity equations have been used as a tool to show that
under Cross learning, agents with different mixed strategies in a population game will not converge
to the same mixed strategy [53], and to also describe the more complicated Q-learning dynamics in
various settings [49, 50, 24, 60]. This paper formally shows that the probability distribution over

3Quantual response equilibrium is a game theoretic solution concept under bounded rationality [65].
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initial conditions can eventually degenerate to a point mass, and leveraging on this, presents a novel
technique for proving the convergence of learning dynamics.4

2 Preliminaries

A network population game Γ = (N, (V,E), (Si, ωi)∀i∈V , (Aij)(i,j)∈E) consists of a multi-agent
system N distributed over a connected graph (V,E), where V = {1, ..., n} is the set of vertices
each represents a population (continuum) of agents, and E is the set of pairs, (i, j), of population
i ̸= j ∈ V . For each population i ∈ V , agents of this population has a finite set Si of pure
strategies (or actions) with generic elements si ∈ Si. Agents may also use mixed strategies (or
choice distributions). For an arbitrary agent k in population i, its mixed strategy is a vector xi(k) ∈
∆i, where ∆i is the simplex in R|Si| such that

∑
si∈Si

xisi(k) = 1 and xisi(k) ≥ 0,∀si ∈ Si.
Each edge (i, j) ∈ E defines a series of two-player subgames between populations i and j. We
denote the payoff matrices for agents of population i and j in these two-player subgames by Aij ∈
R|Si|×|Sj | and Aji ∈ R|Sj |×|Si|, respectively. For every time step, each agent chooses a (mixed
or pure) strategy and plays that strategy in all two-player subgames with agents from the connected
(or neighbor) populations. Let x = (xi, {xj}(i,j)∈E) be a mixed strategy profile, where xi (or xj)
denotes a generic mixed strategy in population i (or j). Given the mixed strategy profile x, the
expected payoff of using xi in the game Γ is

ri(x) = ri(xi, {xj}(i,j)∈E) :=
∑

(i,j)∈E

x⊤
i Aijxj . (1)

Smooth (or stochastic) fictitious play (SFP) is a belief-based model for learning in games. By
SFP, agents act as if they are Bayesian such that they assume that the strategies of other agents
are drawn from some fixed but unknown distribution. Given a game Γ, consider an arbitrary agent
k in a population i ∈ V . Let Vi = {j ∈ V : (i, j) ∈ E} be the set of neighbor populations.
Agent k maintains a weight κi

jsj
(k) for each opponent strategy sj ∈ Sj of each neighbor population

j ∈ Vi. For every time step t, agents refine these weights based on the average play of each neighbor
population, i.e., for each opponent strategy sj ∈ Sj , j ∈ Vi,

κi
jsj (k, t+ 1) = κi

jsj (k, t) + x̄jsj (t), (2)

where x̄jsj is the mean probability of playing strategy sj in population j.5 For simplicity, we assume
the initial sum of weights

∑
sj∈Sj

κi
jsj

(k, 0) to be the same for every agent in the system and denote
this initial sum by λ. Based on the weights, agent k forms a belief about the neighbor population j
such that each opponent strategy sj is played with probability

µi
jsj (k) =

κi
jsj

(k)∑
s′j∈Sj

κi
js′j

(k)
. (3)

Let µi
j(k) be the vector of beliefs with the sj-th element equals µi

jsj
(k). Given a game Γ, agent k’s

expected payoff of using a pure strategy si ∈ Si in response to the aggregate beliefs µi
j(k),∀j ∈ Vi

about neighbor populations is
uisi(k) =

∑
j∈Vi

e⊤siAijµ
i
j(k), (4)

where esi is a unit vector with the si-th element equal 1. By convention [33, 34, 44], we suppose that
agents’ payoffs are perturbed and that agents play smooth best responses maximizing their perturbed

4Our approach highlights the consensus property as a valuable tool for establishing the convergence of learn-
ing under population settings. For future research that studies learning dynamics under population settings, one
can find inspiration in our approach by initially verifying the consensus property and subsequently leveraging
this property to establish convergence results.

5Observing the average play of other populations is natural in settings with a large number of agents and
can be viewed as mean-field observations [88, 37]; for example, the average household income of each state is
made publicly available, and people form beliefs about the behaviors of taxi drivers vs non-professional drivers
after observing the numerous driving behaviors on the road.
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payoffs. Agent k’s perturbed payoff of using a mixed strategy xi(k) ∈ ∆i is defined as

πi

(
xi(k), {µi

j(k)}j∈Vi

)
=
∑
j∈Vi

xi(k)
⊤Aijµ

i
j(k) + ϵv (xi(k)) , (5)

where ϵ > 0, and the function v is strictly concave and its gradient becomes arbitrarily large
near the boundary of the simplex ∆i [44].6 For the function v, a typical choice is v (xi(k)) =
− 1

β

∑
si∈Si

xisi(k) ln(xisi(k)). Under this form, the maximization of the perturbed payoff πi yields
a unique choice distribution xi(k) from the logit choice rule [45], that is,

xisi(k) =
exp(βuisi(k))∑

s′i∈Si
exp(βuis′i

(k))
, (6)

where β is the temperature (or the degree of rationality). For clarity of our presentation, we choose
to focus on the logit choice rule in this paper; however, all our results readily generalize to any
function v satisfying the above two standard assumptions. In the following, we usually drop the
time index t and agent index k in the bracket (depending on the context) for notational convenience.

3 Belief Dynamics in Network Population Games

Observe that for an arbitrary agent k of population i, its belief µi
j(k) about population j is in the

simplex ∆j = {µi
j(k) ∈ R|Sj ||

∑
sj∈Sj

µi
jsj

(k) = 1, µi
jsj

(k) ≥ 0,∀sj ∈ Sj}. We assume that
the system state is characterized by a Borel probability measure P defined on the state space ∆ =∏

i∈V ∆i. Given µi ∈ ∆i, we write the marginal probability density function as p(µi, t). Note
that p(µi, t) represents the density of agents having the belief µi about population i throughout
the system; it does not represent the density of agents of population i that have the belief µi ,
nor the density of agents having the belief µi about population i in a certain population. Define
µ = {µi}i∈V ∈ ∆. Since agents maintain separate beliefs about different neighbor populations, the
joint probability density function p(µ, t) can be factorized, i.e., p(µ, t) =

∏
i∈V p(µi, t). We make

the following assumption for the initial marginal density functions.
Assumption 1. At time t = 0, for each population i ∈ V , the marginal density function p(µi, t) is
continuously differentiable and has zero mass at the boundary of the simplex ∆i.

This assumption excludes the setting that a population of agents starts off with the same belief as
well as the setting that agents start off with extreme beliefs. Under this mild condition, we derive a
partial differential equation to describe the evolution of the belief distribution.
Proposition 1. The continuous-time dynamic of the marginal density function p(µi, t) for each
population i ∈ V is described by a partial differential equation

−∂p(µi, t)

∂t
= ∇ ·

(
p(µi, t)

x̄i − µi

λ+ t+ 1

)
(7)

where ∇· is the divergence operator and x̄i is the mean mixed strategy with each si-th element

x̄isi =

∫
∏

j∈Vi
∆j

exp (βuisi)∑
s′i∈Si

exp (βuis′i
)

∏
j∈Vi

p(µj , t)

∏
j∈Vi

dµj

 (8)

where uisi =
∑

j∈Vi
e⊤siAijµj .

The partial differential equation in Equation 7 is also known as a continuity equation in the study
of transport phenomena (e.g., of mass or energy) in a physical system. We remark that continuity
equations, tracking the evolution of a probability distribution, do not allow for general solutions.
However, continuity equations provide a tractable way to examine the evolution of the moments of
the probability distribution, without obtaining an analytical form of that distribution. The analytical
form for the dynamic of the variance of beliefs (the second moment of the belief distribution) is
given as follows.

6Alternatively, SFP can be defined through a truly stochastic perturbation of payoffs [32].
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Theorem 1. The dynamic of the variance of beliefs µi about each population i ∈ V is governed by
an ordinary differential equation such that for each strategy si,

dVar(µisi)

dt
= −2Var(µisi)

λ+ t+ 1
. (9)

At given time t, Var(µisi) =
(

λ+1
λ+t+1

)2
σ2(µisi), where σ2(µisi) is the initial variance. Thus, the

variance Var(µisi) decays to zero at a quadratic rate with time.

Note that the above theorem makes no assumption about the 2-player subgames agents play, the
network structure of populations, or even the initial belief distribution. Therefore, it shows that for
any network of populations, the variance of beliefs about each population always asymptotically
tends to zero. As an immediate consequence of this theorem, the asymptotic distribution of the
beliefs is as follows:
Corollary 1. The probability density function p(µi, t) for every population i ∈ V will eventually
evolve into a Dirac delta function, implying that in the long run agents reach a consensus and play
the same mixed strategy within each population.

The intuition of Theorem 1 and Crollary 1 is that under SFP, agents revise their beliefs about other
populations based on the average play of those populations; consequently, the observations are the
same within an agent population, and thus it is only a matter of time that the agent population will
develop the same belief and play the same strategy. Once consensus is reached, agents within a
population will not develop different beliefs afterwards, as ensured by Theorem 1. In this sense, the
agent population is internally cohesive and achieves intra-population stability.

However, it does not mean that different agent populations will eventually play the same strategy.
This is because agents’ strategies are the smooth best responses to their aggregated beliefs about
their own set of neighbor populations (which generally vary depending on the network topology).
This naturally raises the question of how different agent populations align with their population-wise
incentives (which can be of a competitive nature). This also sets our paper apart from previous work
that studies game-theoretic equilibration in the context of consensus formation [15, 62, 38, 23, 2, 14,
36, 10, 9], in which consensus is achieved as the result of agents’ incentives to align their opinions
or behaiviors to those of others (i.e., the incentives are of a coordinative nature).

Before diving into the convergence results, we take a moment to analyze the mean belief (first
moment) dynamic. Intuitively, the mean belief represents the average system state. The following
proposition provides an analytical form of the mean belief dynamic.
Proposition 2. The mean belief dynamic for each population i ∈ V is governed by an ordinary
differential equation such that for each strategy si,

dµ̄isi

dt
≈ fsi({µj}j∈Vi

)− µ̄isi

λ+ t+ 1
+

∑
j∈Vi

∑
sj∈Sj

∂2fsi ({µj}j∈Vi
)

(∂µjsj
)2 Var(µjsj )

2(λ+ t+ 1)
, (10)

where fsi({µ}j∈Vi
) is the logit choice rule (Equation 6) applied to strategy si ∈ Si, and Var(µjsj )

is the variance of belief µjsj in the entire system.

We remark that the mean belief dynamic, to be exact, should be under the joint influence of infinitely
many moments of the belief distribution. However, the higher the order of the moments, the less of
the influence of the moments, and by convention, the effects of the third and higher moments can be
assumed negligible [39, 41, 64].7 Thus, in this proposition, the mean belief dynamic depends on the
current mean belief and also on the current variance of beliefs.

Recall that Theorem 1 shows that the variance of beliefs will eventually decrease to zero. As a result,
the second term of the mean belief dynamic (Equation 10) will asymptotically tend to zero. This
suggests that the asymptotic mean belief dynamic of a population that starts with different beliefs in
the initial state might be understood by studying the belief dynamic of a single representative agent.

7This is formally known as the moment closure approximation [39, 41, 64], which is a common method used
to estimate moments of population models. As we detail in the appendix, the effects of the higher moments are
counter-balanced by their coefficients as a result of Taylor expansion; moreover, the beliefs µisi , ∀i ∈ V, ∀si ∈
Si are between 0 and 1, which also lead to small values of higher moments.
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Intuitively, if each population can be represented by a single agent, then the concerned network
population games will effectively degenerate into the classic form of network games with each
vertex representing a single agent. Inspired by this, in the next section, we temporarily focus on SFP
in the classic network games.

4 Convergence of Smooth Fictitious Play in Classic Network Games

In a classic network game (or network game for short), the only difference with respect to the
network population games is that now each vertex represents a single agent. We derive the belief
dynamic of each vertex (or agent) in the following proposition.
Proposition 3. In a network game, the belief dynamic of each agent is governed by an ordinary
differential equation such that for each agent i and each strategy si,

dµisi

dt
=

fsi({µj}j∈Vi
)− µisi

λ+ t+ 1
=

xisi − µisi

λ+ t+ 1
. (11)

It follows from this proposition that the equilibrium state should satisfy the following property.
Proposition 4. In a network game, the equilibrium state should satisfy that x∗

i = µ∗
i for every

strategy si ∈ Si and every population i ∈ V . Thus, the equilibrium state corresponds to the
solution to the system of equations

x∗
isi =

exp
(
β
∑

j∈Vi
e⊤siAijx

∗
j

)
∑

s′i∈Si
exp

(
β
∑

j∈Vi
e⊤s′i

Aijx∗
j

) , ∀si ∈ Si,∀i ∈ V. (12)

Such an equilibrium state coincides with the Quantal Response Equilibria [65] of the network game.

By QRE, in this paper, we refer to their canonical form also referred to as logit QRE in the litera-
ture [40]. We remark that QRE [65] is a game theoretic solution concept under bounded rationality,
and is an extension of the standard Nash equilibrium which allows for errors in choice.

Weighted zero-sum network games capture the case of network competition, and are the gen-
eralization of 2-player zero-sum games to the network settings [19]. A network game is weighted
zero-sum if there exist positive constants (or weights) ω1, . . . , ωn such that∑

i∈V

ωiri(x) =
∑

(i,j)∈E

(
ωix

⊤
i Aijxj + ωjx

⊤
j Ajixi

)
= 0, ∀x ∈

∏
i∈V

∆i, (13)

where ri(x) is the expected payoff of using a mixed strategy xi given the mixed strategy profile x =
(xi, {xj}(i,j)∈E). If subgames along every edge (i, j) ∈ E are 2-player zero-sum, i.e., x⊤

i Aijxj +

x⊤
j Ajixi = 0, then the network game is zero-sum; however, the converse is not generally true.

As opposed to 2-player zero-sum games that admit a unique value at equilibrium [85], the Nash
equilibrium payoffs in weighted zero-sum network games need not be unique, and it generally allows
for infinitely many Nash equilibria. In the following theorem, we show that regardless of the number
of Nash equilibria in a network game, the belief dynamic is guaranteed to converge to a unique QRE.
Theorem 2. For any weighted zero-sum network game, the belief dynamic converge to a unique
QRE which is globally asymptotically stable.

Exact potential network games capture the case of network coordination. A network game ad-
mits an exact potential if for each edge (i, j) ∈ E, the payoff matrices of the two-player subgame
satisfy Aij = A⊤

ji [21, 20]. Pure or mixed Nash equilibria in network coordination are complex.
As reported in recent works [20, 17, 4], finding a pure Nash equilibrium is PLS-complete. Hence,
learning in the general case of network coordination is difficult and generally requires some condi-
tions [67, 69]. In the following theorem, we show the convergence result in some cases of network
coordination.
Theorem 3. For any exact potential network game that exhibits a star structure, each orbit of the
belief dynamic converges to the set of QRE.

We remark that we employ the Lyapunov approach (i.e., establishing the existence of the Lyapunov
function) to prove the above convergence results. As a result, the convergence to equilibrium is
equivalent to the network of agents being stable in the sense of Lyapunov.
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Figure 2: Initial disagreement helps select the payoff dominant equilibrium (S, S) (yellow: the
equilibrium (S, S), blue: the equilibrium (H,H)). As the variance of initial beliefs (denoted by
σ2(µ1H)) increases from the left to right panel, a wider range of initial mean beliefs will approxi-
mately reach the equilibrium (S, S) in the limit. For simplicity, we set σ2(µ1H) = σ2(µ2H). The
black line on the diagonal is there for ease of comparison across different panels.

5 Convergence of Smooth Fictitious Play in Network Population Games

We shall now formalize that the convergence results in network games can be seamlessly carried
over to network population games with different beliefs in the initial state, and establish the inter-
population stability in network population games. Recall that the mean belief dynamic (Proposition
2) depends on the current mean belief as well as the current variance of beliefs, with the variance
decreasing over time (Theorem 1). Leveraging on the definition of asymptotically autonomous dy-
namical systems [63], we establish the following lemma.
Lemma 1. In a network population game, for every population i ∈ V , the mean belief dynamic
(Equation 10) is asymptotically autonomous with the limit equation being dµi

dt = xi − µi, which
after time-reparmeterization is equivalent to the belief dynamic in a network game (Equation 11).

Thieme [84] provided the following seminal result that formally connects the asymptotic behavior
of an asymptotically autonomous dynamical system to that of its associated limit equation.
Lemma 2 (Thieme [84] Theorem 4.2). Given a metric space (X, d), let the solution flows of an
asymptotically autonomous system and its limit equation be ϕ and Θ, respectively. Assume that
the equilibria of Θ are isolated compact Θ-invariant subsets of X . The ω-Θ-limit set of any pre-
compact Θ-orbit contains a Θ-equilibrium. The point (s, x), s ≥ t0, x ∈ X , have a pre-compact
ϕ-orbit. Then the following alternative holds: 1) ϕ(t, s, x) → e, t → ∞, for some Θ-equilibrium
e, and 2) the ω-ϕ-limit set of (s, x) contains finitely many Θ-equilibria which are chained to each
other in a cyclic way.

Combining the above lemmas and the convergence results under the setting of classic network
games, the convergence results of SFP in network population games are readily deducible:
Theorem 4. For any weighted zero-sum network population game, the belief (as well as the choice
distribution) of every individual converges to a unique QRE.
Theorem 5. For any exact potential network population game that exhibits a star structure, the
belief (as well as the choice distribution) of every individual converges to the set of QRE.

Note that under the 2-population settings, there is only one possible graph structure—one edge
connecting the two populations. Hofbauer and Hopkins [44] have shown that SFP converges in all
2-player weighted potential games, and observed that almost all 2-player-2-action games are either
2-player weighted potential games or 2-player weighted zero-sum games. Therefore, combining
their results and our aforementioned results, SFP converges to the set of QRE under almost all the
2-population-2-action settings (including all the 2-population-2-action weighted potential settings
and all the 2-population-2-action weighted zero-sum settings).

6 Experiments: Equilibrium Selection in Two-Population Stag Hunt Games

In a two-population stag hunt game, agents from two populations are paired up to choose between
two actions H (hare) and S (stag). If both players hunt a hare, they both receive a reward of 1. If
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both players hunt a stag, they both receive a reward of 4. If one hunts a hare and the other hunts
a stag, the former receives a reward of 2 whereas the latter receives nothing. There are two pure
strategy Nash equilibria in each subgame: the risk dominant equilibrium (H,H) and the payoff
dominant equilibrium (S, S), which naturally raises the problem of equilibrium selection.

Figure 1 showed that given the same initial mean belief, changing the variances of initial beliefs can
result in different limit behaviors. In Figure 2, we systematically studied the effect of the variance
of initial beliefs by visualizing how it affects the regions of attraction to different equilibria. To
be more specific, we numerically solved the mean belief dynamics for a wide range of initial mean
beliefs, given different variances of initial beliefs, and colored the regions of attraction. We observed
in Figure 2 that as the variance of initial beliefs increases (from the left to right panel), a wider range
of initial mean beliefs results in the convergence to the QRE that approximates the payoff dominant
equilibrium (S, S). Hence, consensus is inevitable, but the initial disagreement still provides an
approach to equilibrium selection and helps select the highly desirable equilibrium.

Note that in the case of network competition, the convergence to a unique QRE is formally guar-
anteed; we empirically verified this through a 5-population asymmetric matching pennies game
presented in Appendix A.

7 Conclusions

This paper presents a formal treatment for SFP in network population games where each population
of agents start off with different beliefs and strategies. Representing the system state with a distri-
bution over beliefs, we show that consensus is always reached, and that agents eventually pointwise
converge to the same belief, regardless of specific settings. In addition, we establish the convergence
of SFP to Quantal Response Equilibria in general competitive network population games as well as
exact potential network population games with star structure. Empirically, we show that although
the initial belief heterogeneity vanishes in the limit, it plays a crucial role in equilibrium selection
and helps select highly desirable equilibria.
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A Experiments on Network Competition

We have shown in Theorem 5 (of the main paper) that SFP converges to a unique QRE in any
weighted zero-sum network population game even if there are multiple Nash equilibria underlying
that game. In the following, we corroborate this by providing empirical evidence in agent-based
simulations with different belief initialization.

Game Description. Consider a five-population asymmetric matching pennies game [56], where
the network structure is a line (depicted in Figure 1). Each agent has two actions {H,T}. Agents in
populations 1 and 5 do not learn; they always play strategies H and T , respectively. For agents in
populations 2 to 4, they receive +1 if they match the strategy of the opponent in the next population,
and receive −1 if they mismatch. On the contrary, they receive +1 if they mismatch the strategy
of the opponent in the previous population, and receive −1 if they match. Hence, this game has
infinitely many Nash equilibria of the form: agents in populations 2 and 4 play strategy T , whereas
agents in population 3 are indifferent between strategies H and T .

Experimental Setups. In this game, agents in each population form two beliefs (one for the pre-
vious population and one for the next population). We are mainly interested in the strategies of
population 3, as the Nash equilibria differ in the strategies in population 3. Thus, we let the initial
beliefs about populations 1, 3 and 5 remain unchanged across different cases, and vary population
3’s initial beliefs about populations 2 and 4. The initial beliefs about populations 1, 3 and 5, denoted
by µ1H , µ3H and µ5H , are distributed according to the distributions Beta(20, 10), Beta(6, 4), and
Beta(10, 5), respectively. The initial beliefs about populations are given in the legends of Figure 2.
In all cases, the initial sum of weights λ = 10 and the temperature β = 10. Note that µiT = 1−µiH

for all populations i = 1, 2, 3, 4, 5. We run 100 simulation runs for each initialization, and each
simulation run consists of 1, 000 agents in each population.

Results. As shown in Figure 4, given differential initialization of beliefs, agents in population 3
converge to the same equilibrium where they all take strategy H with probability 0.5. Therefore,
even when the underlying zero-sum game has many Nash equilibria, SFP with different initial belief
heterogeneity selects a unique equilibrium, addressing the problem of equilibrium selection.

Figure 3: Asymmetric Matching Pennies.

Figure 4: With different belief initialization, SFP selects a unique equilibrium where all agents in
population 3 play strategy H with probability 0.5. The thin lines represent the mean mixed strategy
(the choice probability of H) and the shaded areas represent the variance of the mixed strategies in
the population. In the legends, B denotes Beta distribution; the two Beta distributions correspond to
the initial beliefs about the neighbor populations 2 and 4, respectively.
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B Proof of Proposition 1

It follows from Equation 2 and Equation 3 of the main paper that the change in µi
j(k, t) between

two discrete time steps is

µi
j(k, t+ 1) = µi

j(k, t) +
x̄j(t)− µi

j(k, t)

λ+ t+ 1
. (14)

Lemma 3. Under Assumption 1 of the main paper, for an arbitrary agent k in population i, its
belief µi

j(k, t) about a neighbor population j will never reach the extreme belief, i.e., the probability
density for the boundary of the simplex ∆i will remain zero.

Proof. Assumption 1 ensures that x̄j(0) is in the interior of the simplex ∆j . Moreover, the logit
choice function (Equation 5 in the main paper) also ensures that x̄j(t) stays in the interior of ∆j

afterwards for a finite temperature β. Hence, from Equation 14, one can see that µi
j(k, t) for every

time step t will stay in the interior of ∆j .

In the following, for notation convenience, we sometimes drop the agent index k and the time index
t depending on the context. Consider a population i. We rewrite the change in the beliefs about this
population as follows.

µi(t+ 1) = µi(t) +
x̄i(t)− µi(t)

λ+ t+ 1
. (15)

Suppose that the amount of time that passes between two successive time steps is δ ∈ (0, 1]. We
rewrite the above equation as

µi(t+ δ) = µi(t) + δ
x̄i(t)− µi(t)

λ+ t+ 1
. (16)

Next, we consider a test function θ(µi). Define

Y =
E[θ(µi(t+ δ))]− E[θ(µi(t))]

δ
. (17)

Applying Taylor series for θ(µi(t+ δ)) at µi(t), we obtain

θ(µi(t+ δ)) = θ(µi(t)) +
δ

λ+ t+ 1
∂µi

θ(µi) [x̄i(t)− µi(t)]

+
δ2

2(λ+ t+ 1)2
[x̄i(t)− µi(t)]

⊤
Hθ(µi) [x̄i(t)− µi(t)]

+ o

([
δ
x̄i(t)− µi(t)

λ+ t+ 1

]2)
(18)

where H denotes the Hessian matrix. Hence, the expectation E[θ(µi(t+ δ))] is

E[θ(µi(t+ δ))] = E[θ(µi(t))] +
δ

λ+ t+ 1
E[∂µiθ(µi(t))(x̄i(t)− µi(t))]

+
δ2

2(λ+ t+ 1)2
E
[
[x̄i(t)− µi(t)]

⊤Hθ(µi) [x̄i(t)− µi(t)]
]

+
δ2

2(λ+ t+ 1)2
E[o([x̄i(t)− µi(t)]

2)] (19)

Moving the term E[θ(µi(t))] to the left hand side and dividing both sides by δ, we recover the
quantity Y , i.e.,

Y =
1

λ+ t+ 1
E[∂µi

θ(µi(t))(x̄i(t)− µi(t))]

+
δ

2(λ+ t+ 1)2
E[[x̄i(t)− µi(t)]

⊤Hθ(µi(t))[x̄i(t)− µi(t)] + o
(
(x̄i(t)− µi(t))

2
)
] (20)
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Taking the limit of Y with δ → 0, the contribution of the second term on the right hand side vanishes,
yielding

lim
δ→0

Y =
1

λ+ t+ 1
E[∂µiθ(µi(t))(x̄i(t)− µi(t))] (21)

=
1

λ+ t+ 1

∫
p(µi(t), t) [∂µi

θ(µi(t))(x̄i(t)− µi(t))] dµi(t). (22)

Apply integration by parts. We obtain

lim
δ→0

Y = 0− 1

λ+ t+ 1

∫
θ(µi(t))∇ · [p(µi(t), t)(x̄i(t)− µi(t))] dµi(t) (23)

where we have leveraged that the probability mass p(µi, t) at the boundary ∂∆i remains zero as a
result of Lemma 1. On the other hand, according to the definition of Y ,

lim
δ→0

Y = lim
δ→0

∫
θ(µi(t))

p(µi, t+ δ)− p(µi, t)

δ
dµi =

∫
θ(µi(t))∂tp(µi, t)dµi. (24)

Therefore, we have the equality∫
θ(µi(t))∂tp(µi, t)dµi = − 1

λ+ t+ 1

∫
θ(µi(t))∇ · [p(µi(t), t)(x̄i(t)− µi(t))] dµi(t). (25)

As θ is a test function, this leads to

∂tp(µi, t) = − 1

λ+ t+ 1
∇ · [p(µi(t), t)(x̄i(t)− µi(t))] . (26)

Rearranging the terms, we obtain Equation 7 of the main paper. By the definition of expectation
given a probability distribution, it is straightforward to obtain Equation 8 of the main paper. Q.E.D.

C Proof of Theorem 1

Without loss of generality, we consider the variance of the belief µisi about strategy si of population
i. Note that

Var(µisi) = E[(µisi)
2]− (µ̄isi)

2. (27)
Hence, we have

dVar(µisi)

dt
=

dE[(µisi)
2]

dt
− 2µ̄isi

dµ̄isi

dt
. (28)

Consider the first term on the right hand side. We apply the Leibniz rule to interchange differentia-
tion and integration, and then substitute ∂p(µi,t)

∂t with Equation 8 in the main paper.
dE[(µisi)

2]

dt

=

∫
(µisi)

2 ∂p(µi, t)

∂t
dµi (29)

= −
∫
(µisi)

2∇ ·
(
p(µi, t)

x̄i − µi

λ+ t+ 1

)
dµi (30)

= −
∫
(µisi)

2
∑
si∈Si

∂µisi

(
p(µi, t)

x̄isi − µisi

λ+ t+ 1

)
dµi (31)

= γ

∫
(µisi)

2
∑
si∈Si

∂µisi
p(µi, t) (x̄isi − µisi) dµi + γ

∫
(µisi)

2p(µi, t)
∑
si∈Si

∂µisi
(x̄isi − µisi) dµi

(32)

where γ := − 1
λ+t+1 . Applying integration by parts to the first term in Equation 32 yields∫

(µisi)
2
∑
si∈Si

∂µisi
p(µi, t) (x̄isi − µisi) dµi

= −
∫
(µisi)

2p(µi, t)

∑
s′i∈Si

∂µis′
i
(x̄is′i

− µis′i
)

+ p(µi, t)∂µisi

[
(µisi)

2(x̄isi − µisi)
]
dµi

(33)

18



where we have leveraged that the probability mass at the boundary remains zero (Lemma 1). Com-
bining the above two equations, we obtain

dE[(µisi)
2]

dt

= −γ

∫
(µisi)

2p(µi, t)

∑
s′i∈Si

∂µis′
i
(x̄is′i

− µis′i
)

+ p(µi, t)∂µisi

[
(µisi)

2(x̄isi − µisi)
]
dµi

+ γ

∫
(µisi)

2p(µi, t)
∑
si∈Si

∂µisi
(x̄isi − µisi) dµi (34)

= γ

∫ [
−p(µi, t)∂µisi

[
(µisi)

2(x̄isi − µisi)
]]

+ (µisi)
2p(µi, t)∂µisi

(x̄isi − µisi) dµi (35)

= γ

∫
2(µisi)

2p(µi, t)dµi − γ

∫
2x̄isiµisip(µi, t)dµi (36)

= −2E[(µisi)
2]− 2x̄isi µ̄isi

λ+ t+ 1
. (37)

Next, we consider the second term in Equation 28. By Lemma 4, we have

2µ̄isi

dµ̄isi

dt
=

2µ̄isi(x̄isi − µ̄isi)

λ+ t+ 1
. (38)

Combining Equations 37 and 38, the dynamics of the variance is

dVar(µisi)

dt
= −2E[(µisi)

2]− 2x̄isi µ̄isi

λ+ t+ 1
− 2µ̄isi(x̄isi − µ̄isi)

λ+ t+ 1
(39)

=
2(µ̄isi)

2 − 2E[(µisi)
2]

λ+ t+ 1
(40)

= −2Var(µisi)

λ+ t+ 1
. (41)

Q.E.D.

D Proof of Proposition 2

Lemma 4. The dynamics of the mean belief µ̄i about each population i ∈ V is governed by a
differential equation

dµ̄isi

dt
=

x̄isi − µ̄isi

λ+ t+ 1
, ∀si ∈ Si. (42)

Proof. The time derivative of the mean belief about strategy si is

dµ̄isi

dt
=

d

dt

∫
µisip(µi, t)dµi. (43)
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We apply the Leibniz rule to interchange differentiation and integration, and then substitute ∂p(µi,t)
∂t

with Equation 8 in the main paper.

d

dt

∫
µisip(µi, t)dµi (44)

=

∫
µisi

∂p(µi, t)

∂t
dµi (45)

= −
∫

µisi∇ ·
(
p(µi, t)

x̄i − µi

λ+ t+ 1

)
dµi (46)

= −
∫

µisi

∑
si∈Si

∂µisi

(
p(µi, t)

x̄isi − µisi

λ+ t+ 1

)
dµi (47)

= γ

[∫
µisi

∑
si∈Si

(
∂µisi

p(µi, t)
)
(x̄isi − µisi) dµi +

∫
µisip(µi, t)

∑
si∈Si

∂µisi
(x̄isi − µisi) dµi

]
(48)

where γ := − 1
λ+t+1 . Apply integration by parts to the first term in Equation 48.∫

µisi

∑
si∈Si

(
∂µisi

p(µi, t)
)
(x̄isi − µisi) dµi

= −
∫

µisip(µi, t)

∑
s′i∈Si

∂µis′
i
(x̄is′i

− µis′i
)

+ p(µi, t)∂µisi
[µisi(x̄isi − µisi)] dµi (49)

where we have leveraged that the probability mass at the boundary remains zero. Hence, it follows
from Equation 48 that

d

dt

∫
µisip(µi, t)dµi (50)

= −γ

∫
µisip(µi, t)

∑
s′i∈Si

∂µis′
i
(x̄is′i

− µis′i
)dµi − γ

∫
p(µi, t)∂µisi

[µisi(x̄isi − µisi)] dµi

+ γ

∫
µisip(µi, t)

∑
si∈Si

∂µisi
(x̄isi − µisi) dµi (51)

= γ

∫
p(µi, t)

[
µisi∂µisi

(x̄isi − µisi)− ∂µisi
[µisi(x̄isi − µisi)]

]
dµi (52)

= γ

∫
p(µi, t)µisidµi −

∫
p(µi, t)x̄isidµi (53)

=
x̄isi − µ̄isi

λ+ t+ 1
(54)

We repeat the mean probability x̄isi , which has been given in Equation 8 in the main paper, as
follows:

x̄isi =

∫
exp (βuisi)∑

s′i∈Si
exp (βuis′i

)

∏
j∈Vi

p(µj , t)

∏
j∈Vi

dµj

 (55)

where uisi =
∑

j∈Vi
e⊤siAijµj . Define µ̄ := {µ̄j}j∈Vi

and

fsi({µj}j∈Vi
) :=

exp (β
∑

j∈Vi
e⊤siAijµj)∑

s′i∈Si
exp (β

∑
j∈Vi

e⊤s′i
Aijµj)

. (56)
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Applying the Taylor expansion to approximate this function at the mean belief µ̄, we have

fsi({µj}j∈Vi) = fsi(µ̄) +∇fsi(µ̄) · (µ− µ̄) +
1

2!
(µ− µ̄)⊤Hfsi(µ̄)(µ− µ̄) +

1

3!
O(||µ− µ̄||3)

(57)

where H denotes the Hessian matrix. Hence, we can rewrite Equation 55 as

x̄isi =

∫
fsi({µj}j∈Vi)

∏
j∈Vi

p(µj , t)

∏
j∈Vi

dµj

 (58)

≈ fsi(µ̄) +

∫
∇fsi(µ̄) · µ

∏
j∈Vi

p(µj , t)

∏
j∈Vi

dµj

−∇fsi(µ̄) · µ̄

+

∫
1

2
(µ− µ̄)⊤Hfsi(µ̄)(µ− µ̄)

∏
j∈Vi

p(µj , t)

∏
j∈Vi

dµj


+

∫
1

3!
O(||µ− µ̄||)3

∏
j∈Vi

p(µj , t)

∏
j∈Vi

dµj

 (59)

Observe that in Equation 59, the second and the third term can be canceled out. Moreover, for any
two neighbor populations j, k ∈ Vi, the beliefs µj ,µk about these two populations are updated
separately and independently. Hence, the covariance of these beliefs are zero. We apply the moment
closure approximation [64, 39] with the second order and obtain

x̄isi ≈ fsi(µ̄) +
1

2

∑
j∈Vi

∑
sj∈Sj

∂2fsi(µ̄)

(∂µjsj )
2

Var(µjsj ). (60)

Hence, substituting x̄isi in Lemma 4 with the above approximation, we have the mean belief dy-
namics

dµ̄isi

dt
≈ fsi(µ̄)− µ̄isi

λ+ t+ 1
+

∑
j∈Vi

∑
sj∈Sj

∂2fsi (µ̄)

(∂µjsj
)2 Var(µjsj )

2(λ+ t+ 1)
. (61)

Q.E.D.

E Proof of Proposition 3

It follows from Equation 2 and Equation 3 of the main paper that the change in beliefs between two
successive time steps is as follows.

µi(t+ 1) = µi(t) +
xi(t)− µi(t)

λ+ t+ 1
. (62)

Suppose that the amount of time that passes between two successive time steps is δ ∈ (0, 1]. We
rewrite the above equation as

µi(t+ δ) = µi(t) + δ
xi(t)− µi(t)

λ+ t+ 1
. (63)

Move the term µi(t) to the right hand side and divide both sides by δ,

µi(t+ δ)− µi(t)

δ
=

xi(t)− µi(t)

λ+ t+ 1
. (64)

Assume that the amount of time δ between two successive time steps goes to zero. we have

dµi

dt
= lim

δ→0

µi(t+ δ)− µi(t)

δ
=

xi(t)− µi(t)

λ+ t+ 1
. (65)

Q.E.D.
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F Proof of Proposition 4

It is straightforward to see that

dµi

dt
=

xi − µi

λ+ t+ 1
= 0 =⇒ xi = µi. (66)

Denote the equilibrium points of the system dynamics, which satisfies the above equation, by
(x∗

i ,µ
∗
i ) for each population i. By the logit choice rule, we have

x∗
isi =

exp (βuisi)∑
s′i∈Si

exp (βuis′i
)
=

exp (β
∑

j∈Vi
e⊤siAijµ

∗
j )∑

s′i∈Si
exp (β

∑
j∈Vi

e⊤s′i
Aijµ

∗
j )
. (67)

Leveraging that x∗
i = µ∗

i ,∀i ∈ V at equilibrium, we can replace µ∗
j with x∗

j . Q.E.D.

G Proof of Theorem 2

Consider an agent i in a classic network game. The set of neighbors is Vi, the set of beliefs about the
neighbors is {µj}j∈Vi

, and the choice distribution is xi. Given a classic network game, the expected
payoff is given by x⊤

i

∑
(i,j)∈E Aijµj . Define a perturbed payoff function

πi (xi, {µj}j∈Vi) := x⊤
i

∑
j∈Vi

Aijµj + v(xi) (68)

where v(xi) = − 1
β

∑
si∈Si

xisi ln(xisi). Under this form of v(xi), the maximization of πi yields
the choice distribution xi from the logit choice function [33]. Based on this, we establish the fol-
lowing lemma.

Lemma 5. For a choice distribution xi of SFP in a network game,

∂xi
πi (xi, {µj}j∈Vi

) = 0 and
∑
j∈Vi

(Aijµj)
⊤
= −∂xi

v(xi). (69)

Proof. This lemma immediately follows from the fact that the maximization of πi will yield the
choice distribution xi from the logit choice function [33].

The belief dynamics of an agent can be simplified after time-reparameterization.

Lemma 6. Given τ = ln λ+t+1
λ+1 , the belief dynamics of homogeneous systems (given in Equation

11 in the main paper) is equivalent to

dµi

dτ
= xi − µi. (70)

Proof. From τ = ln λ+t+1
λ+1 , we have

t = (λ+ 1)(exp (τ)− 1). (71)

By the chain rule, for each dimension si,

dµisi

dτ
=

dµisi

dt

dt

dτ
(72)

=
xisi − µisi

λ+ t+ 1

d ((λ+ 1)(exp (τ)− 1))

dτ
(73)

=
xisi − µisi

λ+ (λ+ 1)(exp (τ)− 1) + 1
(λ+ 1) exp (τ) (74)

= xisi − µisi . (75)
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Next, we define the Lyapunov function L as

L :=
∑
i∈V

ωiLi s.t. Li := πi (xi, {µj}j∈Vi)− πi (µi, {µj}j∈Vi) . (76)

where {ωi}i∈V is the set of positive weights defined in the weighted zero-sum Γ. The function L
is non-negative because for every i ∈ V , xi maximizes the function πi. When for every i ∈ V ,
xi = µi, the function L reaches the minimum value 0.

Rewrite L as

L =
∑
i∈V

ωiπi (xi, {µj}j∈Vi
)− ωiµ

⊤
i

∑
j∈Vi

Aijµj − ωiv(µi)

 . (77)

We observe that πi (xi, {µj}j∈Vi) is convex in µj , j ∈ Vi by Danskin’s theorem, and −v(µi) is
strictly convex in µi. Moreover, by the weighted zero-sum property given in Equation 2 in the main
paper, we have ∑

i∈V

ωiµ
⊤
i

∑
j∈Vi

Aijµj

 = 0 (78)

since µi ∈ ∆i, µj ∈ ∆j for every i, j ∈ V. Therefore, the function L is a strictly convex function
and attains its minimum value 0 at a unique point xi = µi, ∀i ∈ V.

Consider the function Li. Its time derivative is

L̇i = ∂xiπi (xi, {µj}j∈Vi) ẋi +
∑
j∈Vi

[
∂µjπi (xi, {µj}j∈Vi) µ̇j

]
− ∂µi

πi (µi, {µj}j∈Vi
) µ̇i −

∑
j∈Vi

[
∂µj

πi (µi, {µj}j∈Vi
) µ̇j

]
.

(79)

Note that the partial derivative ∂xi
πi equals 0 by Lemma 5. Thus, we can rewrite this as

L̇i = ∂µi
πi (µi, {µj}j∈Vi

) µ̇i +
∑
j∈Vi

[
∂µj

πi (xi, {µj}j∈Vi
)− ∂µj

πi (µi, {µj}j∈Vi
)
]
µ̇j (80)

= −

∑
j∈Vi

(Aijµj)
⊤
+ ∂µi

v(µi)

 (xi − µi) +
∑
j∈Vi

(
x⊤
i Aij − µ⊤

i Aij

)
(xj − µj) (81)

= [∂xi
v(xi)− ∂µi

v(µi)] (xi − µi) +
∑
j∈Vi

(
x⊤
i Aijxj − µ⊤

i Aijxj − x⊤
i Aijµj + µ⊤

i Aijµj

)
.

(82)

where from Equation 81 to 82, we apply Lemma 5 to substitute
∑

j∈Vi
(Aijµj)

⊤ with −∂xi
v(xi).

Hence, summing over all the populations, the time derivative of L is

L̇ =
∑
i∈V

ωi [∂xi
v(xi)− ∂µi

v(µi)] (xi − µi)

+
∑
i∈V

∑
j∈Vi

ωi

(
x⊤
i Aijxj − µ⊤

i Aijxj − x⊤
i Aijµj + µ⊤

i Aijµj

)
. (83)

The summation in the second line is equivalent to∑
(i,j)∈E

(ωix
⊤
i Aijxj + ωjx

⊤
j Ajixi)− (ωiµ

⊤
i Aijxj + ωjx

⊤
j Ajiµi) (84)

− (ωix
⊤
i Aijµj + ωjµ

⊤
j Ajixi) + (ωiµ

⊤
i Aijµj + ωjµ

⊤
j Ajiµi). (85)

By the weighted zero-sum property given in Equation 2 in the main paper, this summation equals 0,
yielding

L̇ =
∑
i∈V

ωi [∂xi
v(xi)− ∂µi

v(µi)] (xi − µi). (86)

Note that the function v is strictly concave such that its second derivative is negative definite. By this
property, L̇ ≤ 0 with equality only if xi = µi,∀i ∈ V , which corresponds to the QRE. Therefore,
L is a strict Lyapunov function, and the global asymptotic stability of the QRE follows. Q.E.D.
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H Proof of Theorem 3

Consider a root agent j of a star structure. Its set of leaf (neighbor) agents is Vj , the set of beliefs
about the leaf agents is {µi}i∈Vj , and the choice distribution is xj . Given the game Γ, the expected
payoff is x⊤

j

∑
i∈Vj

Ajiµi. Define a perturbed payoff function

πj

(
xj , {µi}i∈Vj

)
:= x⊤

j

∑
i∈Vj

Ajiµi + v(xj) (87)

where v(xj) = − 1
β

∑
sj∈Sj

xjsj ln(xjsj ). Under this form of v(xj), the maximization of πj yields
the choice distribution xj from the logit choice function [33].

Consider a leaf agent i of the root agent j. It has only one neighbor, which is population j. Thus,
given the game Γ, the expected payoff is x⊤

i Aijµj . Define a perturbed payoff function

πi (xi,µj) := x⊤
i Aijµj + v(xi) (88)

where v(xi) = − 1
β

∑
si∈Si

xisi ln(xisi). Similarly, the maximization of πi yields the choice distri-
bution xi from the logit choice function [33]. Based on this, we establish the following lemma.
Lemma 7. For choice distributions of SFP in a network game with a star structure,

∂xj
πj

(
xj , {µi}i∈Vj

)
= 0 and

∑
i∈Vj

(Ajiµi)
⊤
= −∂xj

v(xj) if j is a root agent, (89)

∂xi
πi (xi,µj) = 0 and (Aijµj)

⊤
= −∂xi

v(xi) if i is a leaf agent. (90)

Proof. This lemma immediately follows from the fact that the maximization of πj and πi , respec-
tively, yield the choice distributions xj and xi from the logit choice function [33].

Let R ⊂ V be the set of all root agents. We define

L :=
∑
j∈R

Lj s.t. Lj := µ⊤
j

∑
i∈Vj

Ajiµi + v(µj) +
∑
i∈Vj

v(µi). (91)

Consider the function Lj . Its time derivative L̇j is

L̇j =

∂µj
(µ⊤

j

∑
i∈Vj

Ajiµi)µ̇j +
∑
i∈Vj

∂µi
(µ⊤

j

∑
i∈Vj

Ajiµi)µ̇i

+ ∂µj
v(µj)µ̇j +

∑
i∈Vj

∂µi
v(µi)µ̇i

(92)

=
∑
i∈Vj

(Ajiµi)
⊤(xj − µj) +

∑
i∈Vj

µ⊤
j Aji(xi − µi)

+ ∂µjv(µj)(xj − µj) +
∑
i∈Vj

∂µiv(µi)(xi − µi).

(93)

Since we have (Aijµj)
⊤

= µ⊤
j A

⊤
ij = µ⊤

j Aji, applying Lemma 7, we can substitute∑
i∈Vj

(Ajiµi)
⊤ with −∂xjv(xj), and µ⊤

j Aji with −∂xiv(xi), yielding

L̇j = −∂xj
v(xj)(xj − µj) +

∑
i∈Vj

(−∂xi
v(xi))(xi − µi)

+ ∂µj
v(µj)(xj − µj)

+
∑
i∈Vj

∂µi
v(µi)(xi − µi) (94)

= (∂µj
v(µj)− ∂xj

v(xj))(xj − µj) +
∑
i∈Vj

(∂µi
v(µi)− ∂xi

v(xi))(xi − µi) (95)

Note that the function v is strictly concave such that its second derivative is negative definite. By
this property, L̇j ≥ 0 with equality only if xi = µi,∀i ∈ Vj and xj = µj . Thus, the time derivative
of the function L, i.e., L̇ =

∑
j∈R L̇j ≥ 0 with equality only if xi = µi,∀i ∈ Vj ,xj = µj ,∀j ∈ R.

Q.E.D.
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I Proof of Lemma 1

Definition 1. A nonautonomous system of differential equations in Rn

x′ = f(t, x) (96)

is said to be asymptotically autonomous with limit equation

y′ = g(y), (97)

if f(t, x) → g(x), t → ∞, where the convergence is uniform on each compact subset of Rn. Con-
ventionally, the solution flow of Eq. 96 is called the asymptotically autonomous semiflow (denoted
by ϕ) and the solution flow of Eq. 97 is called the limit semiflow (denoted by Θ).

We first time-reparameterize the mean belief dynamics of heterogeneous systems. Assume τ =
ln λ+t+1

λ+1 . By the chain rule and Equation 61, for each dimension si,

dµ̄isi

dτ
=

dµ̄isi

dt

dt

dτ
(98)

=

fsi(µ̄)− µ̄isi

λ+ t+ 1
+

∑
j∈Vi

∑
sj∈Sj

∂2fsi (µ̄)

(∂µjsj
)2 Var(µjsj )

2(λ+ t+ 1)

 d ((λ+ 1)(exp (τ)− 1))

dτ
(99)

=
fsi(µ̄)− µ̄isi +

1
2

∑
j∈Vi

∑
sj∈Sj

∂2fsi (µ̄)

(∂µjsj
)2

(
λ+1

λ+t+1

)2
σ2(µjsj )

λ+ (λ+ 1)(exp (τ)− 1) + 1
(λ+ 1) exp (τ) (100)

= fsi(µ̄)− µ̄isi +
1

2

∑
j∈Vi

∑
sj∈Sj

∂2fsi(µ̄)

(∂µjsj )
2
σ2(µjsj ) exp (−2τ). (101)

Observe that exp (−2τ) decays to zero exponentially fast and that both σ2(µjsj ) and ∂2fsi (µ̄)

(∂µjsj
)2 are

bounded for every µ in the simplex
∏

j∈Vi
∆j . Hence, Equation 101 converges locally and uni-

formly to the following equation:

dµ̄isi

dτ
= fsi(µ̄)− µ̄isi . (102)

Note that xisi = fsi(µ̄) for a single representative agent, and thus the above equation is algebraically
equivalent to the limit equation in Lemma 1 of the main paper. Q.E.D.

J Numerical Methods, Source Code, and Computing Resource

Numerical Method for the PDE model. Only limited types of PDEs allow analytic solutions.
Hence, we numerically solve the PDE using the finite difference method [80]. The theoretical pre-
dictions in Figure 1 of the main paper are generated using the finite difference method given a
specific initial setting (the initial sum of weights is λ = 10, the temperature is β = 10, the initial
belief distribution is specified in the caption of the figures).

Source Code and Computing Resource. The source code for reproducing our main experiments
is included in the supplementary material (available at https://sites.google.com/view/shuyue-hu).
The Matlab script finitedifference.m numerically solves our continuity equation model. Figure 1
of the main paper is generated using the Origins Lab based on the numerical solution of the con-
tinuity equations. The Matlab script regionofattraction.m visualizes the region of attraction of dif-
ferent equilibria in stag hunt games, which are depicted in Figure 2. The Python scripts simula-
tion(staghunt).py and simulation(matchingpennies).py correspond to the agent-based simulations in
two-population stag hunt games and five-population asymmetric matching pennies games, respec-
tively. We use a laptop (CPU: AMD Ryzen 7 5800H) to run all the experiments.
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