
Appendix
A Datasheet for Datasets

The following section is answers to questions listed in datasheets for datasets.

A.1 Motivation

• For what purpose was the dataset created?
VisAlign is created to serve as a benchmark for measuring visual perception alignment
between AI models and humans.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?
The authors of this paper.

• Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant (No.2019-0-00075, Artificial Intelligence Graduate
School Program(KAIST)) and National Research Foundation of Korea (NRF) grant (NRF-
2020H1D3A2A03100945), funded by the Korea government (MSIT).

A.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)?
VisAlign contains eight different types of images and their corresponding gold human labels.

• How many instances are there in total (of each type, if appropriate)?
There are a total of 12500 images in the train set, distributed equally among the 10 classes.
The open test set and the closed test each contain 900 images: 100 images each in Categories
1 to 7 and 200 images in Category 8.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set?
The train set is a sample of instances of ImageNet-21K, where images have been randomly
sampled from synsets and corresponding hyponyms related to each of our classes. The test
sets are samples carefully selected by the authors without replacement to match each of the
categories’ requirements.

• What data does each instance consist of?
Each instance consists of an image and its corresponding gold human label.

• Is there a label or target associated with each instance?
Yes, the label represents the gold label (e.g., human visual perception).

• Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.
N/A.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)?
N/A.

• Are there recommended data splits (e.g., training, development/validation, testing)?
No, since VisAlign is an universal benchmark that any model can be tested on regardless of
its train set, a developer may feel free to use any training strategies.

• Are there any errors, sources of noise, or redundancies in the dataset?
N/A.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?
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The dataset relies on open source databases: ImageNet [60], ImageNet21K [58], ImageNet-C
[22], DomainNet [50], and ImageNet-R [24].

• Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor– patient confidentiality, data that includes the content of
individuals’ non-public communications)?
N/A.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?
N/A.

• Does the dataset relate to people?
Yes.

• Does the dataset identify any subpopulations (e.g., by age, gender)?
N/A.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset?
N/A.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)?
N/A.

A.3 Collection Process

• How was the data associated with each instance acquired?
We leveraged open source datasets. For Category 2 and Category 5, we synthesized images
using Stable Diffusion [59]. For Category 3, we manually applied FGSM [20] on samples
in Category 1. For Category8, we applied corruptions on Category 1 samples by using
corruption code available in ImageNet-C [22].

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)?
We used the website Amazon Mechanical Turk (MTurk) to create gold human labels for
Uncertain. After the poll, we used Excel, Google Sheets, and Python to process and label
the collected data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?
We first removed images that are hard to recognize or have more than two different objects.
After the curating, when it involves sampling, we sampled with a fixed random seed.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?
There were one part that required human involvement in the data collection process, deriving
gold human label ratio for Uncertain. We provided $ 0.05 for classifying 25 images. We did
not put any restrictions on participants.

• Over what timeframe was the data collected?
The poll was conducted in March of 2023, but the results do not depend much on the date of
date collection.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
N/A.

• Does the dataset relate to people?
Yes.

• Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?
We obtained via Amazon Mechanical Turk MTurk website.

• Were the individuals in question notified about the data collection?
Yes.

17



• Did the individuals in question consent to the collection and use of their data?
Yes.

• If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses?
N/A.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a
data protection impact analysis) been conducted?
The dataset does not have individual-specific information.

A.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, process-
ing of missing values)?
For the data quality, we removed inappropriate responses (that fall under the distractors).

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?
N/A.

• Is the software that was used to preprocess/clean/label the data available?
Preprocessing, cleaning, and labeling are done via Excel, Google Sheets, and Python.

A.5 Uses

• Has the dataset been used for any tasks already?
No.

• Is there a repository that links to any or all papers or systems that use the dataset?
No.

• What (other) tasks could the dataset be used for?
N/A.

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?
N/A.

• Are there tasks for which the dataset should not be used?
N/A.

A.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?
No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
The dataset will be released upon acceptance.

• When will the dataset be distributed?
After the whole process of reviewing.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?
The dataset will be released under MIT License.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances?
No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?
No.
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A.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset?
The authors of this paper.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Contact the first author (jiyounglee0523@kaist.ac.kr) or other authors.

• Is there an erratum?
No.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?
If any correction is needed, we plan to upload a new version.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data would
be retained for a fixed period of time and then deleted)?
N/A

• Will older versions of the dataset continue to be supported/hosted/maintained?
We plan to maintain the newest version only.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?
Contact the authors of the paper.

B Training Details

For the experiments in Section 5, we use a batch size of 16 with a learning rate starting at 1× 10−5.
The learning rate is decreased by a factor of 0.5 if there is no improvement for 10 epochs or until it
reaches 1× 10−6. We approximately match the size of each model to 300M parameters. For ViT, we
use the variant with 30 layers and 16 heads in each layer. For Swin Transformer, we use a hidden
layer of size 256 with layer numbers {2, 2, 15, 2}. For DenseNet, we use a growth rate of 64 with the
block configuration {24, 48, 84, 64}. For ConvNeXt, we use the large variant with block numbers
{3, 3, 50, 3}. For MLP-Mixer, we use a hidden size of 2048 with 60 layers. We trained all models
using either a single NVIDIA RTX A6000 or NVIDIA GeForce RTX 3090 graphics card.

C Class Selection

Table 4 shows the scientific names and sub-species for each class. The classes are selected based on
the following four criteria.

• They should be grouped into one scientific name for clear definitions
• They should be visually distinguishable from other species to avoid multiple correct answers
• They should have typical visual features allowing them to be identified by a single image
• They should be familiar to humans so that any MTurk worker can participate in our survey

The final 10 classes are Tiger, Rhinoceros, Camel, Giraffe, Elephant, Zebra, Gorilla, Bear, and
Human. These labels are revised and verified by two zoologists.

D Dataset Construction

This section will describe the details of our dataset construction.

D.1 Cronbach’s Alpha

Our dataset should contain sufficient test samples to serve as a universal benchmark. For instance, if
the test set does not have enough test samples, it will fail to test the model’s capacity appropriately.
Cronbach’s alpha [9] is an indicator that represents the validity of the number of questions in a
test. To calculate this value, we first need responses from humans. Therefore, we can only calculate
Cronbach’s alpha for the Uncertain group, as it is the only group with human responses. However,
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Table 4: The scientific names and subspecies of the each class.

Class Scientific Name Subspecies

Tiger Panthera tigris Amur tiger, Chinese tiger, North Indochinese tiger,
Malayan tiger, Sumatran tiger, Bengal tiger

Rhinoceros Rhinoceros White rhino, Black rhino, Indian rhino, Javan rhino, Sumatran rhino

Camel Camelus Bactrian camel, Arabian camel, Wild bactrian camel

Giraffe Giraffa
Giraffa camelopardalis

Angolan giraffe, Kordofan giraffe, Transvaal giraffe,
Reticulated giraffe, Baringo giraffe, Masai giraffe

Elephant Elephas maximus,
Loxodonta africana

Asiatic elephant, Malayan elephant, Indian elephant,
Sri Lankan elephant, Sumatran elephant, African elephant,
South African bush elephant, East African bush elephant

Zebra
Equus grevyi,
Equus quagga,
Equus zebra

Grevy’s zebra, Plains zebra, Grant’s zebra,
Half-maned zebra, Damara zebra, Chapman’s zebra,

Hartmann’s mountain zebra

Gorilla Gorilla Western lowland gorilla, Cross River gorilla,
Mountain gorilla, Eastern lowland gorilla

Bear Ursus Giant panda, Spectacled bear, Sun Bear, Sloth Bear,
American Black Bear, Brown Bear, Polar Bear, Asiatic black bear

Kangaroo / Wallaby

Macropus,
Notamacropus,
Onychogalea,

Osphranter

Western grey kangaroo, Eastern grey kangaroo, Agile wallaby,
Black-striped wallaby, Tammar wallaby, Western brush wallaby,

Parma wallaby, Pretty-faced wallaby, Red-necked wallaby, Genus Onychogalea,
Bridled nail-tail wallaby, Northern nail-tail wallaby, Genus Osphranter,
Antilopine kangaroo, Black wallaroo, Common wallaroo, Red kangaroo

Human Homo sapiens sapiens Homo sapiens sapiens

we believe that the Cronbach’s alpha value for the Uncertain group can also be applied to other
categories, given that samples in other categories are more straightforward than those in Uncertain
(e.g., they have clear images and optimal actions are explicit). To calculate this value, we first treat
the original label as a gold standard answer if more than 50% of MTurk workers correctly classify
the image. Otherwise, we set Abstention as the gold standard answer. We then evaluate whether each
response for each image is correct based on the gold standard answer and set it to a binary value (1
for a correct response and 0 for an incorrect response). We denote the binary response for the i-th
image as xi.

Next, we calculate the variance of responses for each image, denoted as V ar(xi) for the i-th image,
and the variance of the sum of responses from all images, denoted as V ar(X). Here, X is the sum of
responses for all images, i.e., X =

∑N
i=1 xi, and N is the total number of images. We then employ

Cronbach’s Alpha formula as shown in Equation 2 below.

In our case,
∑N
i=1 V ar(xi) = 127.134, V ar(X) = 976.564, and N = 100 which yields a Cron-

bach’s Alpha of 0.88. A Cronbach’s Alpha value between 0.75 and 0.9 is considered ideal. A value
higher than 0.9 might indicate redundancy in the questions, as it suggests that there are more questions
than necessary.

α =
N

N − 1

(
1−

∑N
i=1 V ar(xi)

V ar(X)

)
, where X =

N∑
i=1

xi (2)

D.2 Stable Diffusion Prompt

Since there is a limited amount of data for Category 2 and Category 5, we manually generated samples
with using Stable Diffusion [59]. We filtered all images to ensure that there is only one object in an
image and images look as realistic as Category 1.

D.2.1 Category 2 Prompts

The prompt used is "RAW photo of a {subspecies} {background_prompt}, 8k uhd, dslr, soft lighting,
high quality, film grain, Fujifilm XT3," where {subspecies} is one of the subspecies listed in Table 4
and {background_prompt} is one of the following:
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on the moon surrounded by fire underwater
in New York city in a construction site inside an office
near a swimming pool on the playground on a volcano
on the clouds on an iceberg in a rainforest
on a snowy mountain on top of a roof on a pile of garbage
at night taken using an infrared camera on top of a tree inside a tunnel
inside a large bathroom on top of a bus with a static background
with a rainbow background in a dystopian world in the middle ages
with a purple background with a pink background with a red background
with a bright orange background

The negative prompt used is "unrealistic, bad anatomy, wrong anatomy, extra limb, missing limb,
floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation."

D.2.2 Category 5

To create a Category 5 image, we first create an image using the following prompts: "{subspecies}
that looks like {other_animal}", "a picture of {subspecies} with head of an {other_animal}". For
{other_animal}, we choose species that in not in-class (e.g., eagle, bird, fish, alligator). Some
samples were generated using a variant of Stable Diffusion called MagicMix [36], which performs
semantic mixing by blending the semantics of an image and a text prompt to create a new image. To
use MagicMix, we first create an image using a prompt similar to the one used for Category 2, except
we also choose species that are not in-class. Then, we insert any other species as the target prompt
into MagicMix to blend the semantics of another species into the image.

E AI-Human Visual Alignment for Uncertain Images

In this section, we explain why corrupted images should be evaluated based on human perception
ratios obtained from MTurk workers. Some researchers might argue that since the corrupted images
come from clean images, the models should be able to correctly classify the original label despite the
existence of corruption severity regardless of human perception ability. However, when the images
are gradually corrupted, the essential features of objects will eventually be lost and become images
with complete noises (e.g., black images or images with pure Gaussian noise). In such cases, it is
meaningless for AI models to make predictions because they would predict based on noise rather
than using related features to classes. Therefore, we need new labels for corrupted images, indicating
whether images are unrecognizable or contain essential features. However, setting a unified guideline
is impossible since visibility varies by objects, corruption types, and images themselves. Therefore,
we must newly obtain labels by asking qualified humans. Here, the qualified humans we refer to
are people with commonsense knowledge (i.e., must know the 10 mammals) and have functioning
visual perception (i.e., we test this via intra-annotator agreement and we also rejected responses
from workers who chose other than ‘Abstention’ for distractor images that are corrupted images
from Category 4). To obtain a gold human ratio, we asked 134 people from diverse age groups and
backgrounds to achieve the error bound of 5%.

Nevertheless, some might still argue that AI should aim to identify the original class because we can
set up a controlled experiment where we can test if its guess was correct. For example, we can put an
elephant in a dark room, let the machine take a guess, then increase the brightness of the room. In
such experiments, we may be able to identify if some AI possesses superhuman visual perception
(e.g., only 1 out of 100 human participants were able to confidently tell the object in the dark room
was an elephant, but the AI had a 95% confidence in the elephant class). However, making a decision
based on a single image and setting a controlled experiment are completely different settings since it
is infeasible to set a controlled experiment with static images. It is not correct to claim that AI must
always try to identify the original class in the former (i.e., deciding based on a single image) because
the latter (i.e., running a controlled trial) is also possible. The main objective of VisAlign is to test
the model’s safety (or potential harmfulness), as well-aligned models are less likely to cause harm.
Potentially, our dataset can be used as a prerequisite such that, if models pass our dataset by some
threshold, then the models are less likely to make harmful decisions. Then, the model’s superhuman
capability can be tested using a separate dataset under controlled experiments. This is somewhat
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Figure 2: Labeling examples provided to MTurk Workers as part of the instructions.

similar to the multi-phase drug development process, where the initial phases always test the basic
safety of the drug (toxicity, side effects) before advancing to latter phase to test the clinical efficacy
of the drug.

F Amazon Mechanical Turk Survey

This section will describe in detail of Amazon Mechanical Turk to obtain gold human ratio of
Uncertain samples. We paid $0.05 for classifying 35 images per worker.

F.1 Instructions

This section contains the instructions given to the survey participants. We also present detailed
labeling instruction examples in Figure 2 for ease of labeling for MTurk workers to understand the
variety of cases in which to abstain. Specifically, we provide a clear images of Tiger and instruct the
workers to choose label "Tiger". For other cases (e.g., only a part of a tiger, a bag with a tiger pattern,
species similar to tiger, other animals), we instruct the workers to choose "None of the 10 mammals,
uncertain, or unrecognizable". The following box contains the exact instructions given to the MTurk
Workers:

There are 11 labels to choose from:
• Tiger
• Zebra
• Camel
• Giraffe
• Elephant
• Rhino
• Gorilla
• Bear or Giant Panda
• Kangaroo
• Human
• None of the above, uncertain, or unrecognizable

Please choose one of the first 10 labels only if you are certain the image belongs to that label.
Please choose the 11th label (None of the above, uncertain, or unrecognizable) for any of the
situations below.

• None of the 10 labels describe the object observed in the image
• The object observed in the image is unrecognizable
• You are not sure which label describes the object observed in the image
• Any other similar situation
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F.2 Filtering Process

To ensure high data quality, we filtered noisy collected responses of the survey. We added distractors
(Category 4 samples corrupted with a severity between 1 and 10) in our survey. Among them, the
authors identified clear distractors that should always be chosen as "None of the above, uncertain,
or unrecognizable" (e.g., a clear image of a cup or a truck). We reject all the responses from the
survey participants who chose other than "None of the above, uncertain, or unrecognizable" for clear
distractors.

F.3 Participant Statistics

This section provides the characteristics of the MTurk workers participated in our survey.

MTurk workers are equal in gender (44.9% of male, 53.8% of female, and 1.3% of others).

People from diverse age groups (from 10s to 70s) participated (2.1% of 10s, 19.7% of 20s, 35.1% of
30s, 24.8% of 40s, 14.3% of 50s, 3.5% of 60s, and 0.4% of 70s).

The participant locations were focused on largely five countries, namely USA (71.1%), India (13.1%),
Italy (5%), UK (3.1%), and Canada (2.3%). Other responses are from other countries including
Phillippines, Brazil, Nigeria, Mexcio, Pakistan, UAE, and Malaysia.

F.4 Sampling Theory

Given an image x and its corresponding label y, we can assume y ∼ Bernoulli(p), where p is the
probability of the true class.

Let N denote the number of individuals in the population and n denote the number of samples,
then the approximated variance of p̂, assuming sampling without replacement and a 95% confidence
level, can be expressed as in Eq. 3. In this equation, z0.975 represents the z-score under the normal
distribution corresponding to a probability of 0.975, and q = 1− p.

z0.975

√
V̂ (p̂) = z0.975

√(
1− n

N

)
×
(

p̂q̂

n− 1

)

≈ z0.975

√(
p̂q̂

n− 1

)
(∵ N =∞)

(3)

Given an error bound ξ, we can derive the required minimum number of samples to achieve the error
bound by setting the 95% confidence interval of the approximated variance to be lower than ξ. For
ease of calculation, we round z0.975 = 1.96 to 2.

2

√(
p̂q̂

n− 1

)
≤ ξ

n ≥ 4p̂q̂

ξ2
+ 1

(4)

Since we do not have prior knowledge of p̂, we set p̂ to 1
11 , which represents a uniform distribution

over the 11 classes (10 mammals + abstention). We drop the constant for simplicity.

n ≥
4× 1

11 ×
10
11

ξ2
=

40

112 × ξ2
(5)

For ξ = 0.05, 0.1, 0.15, the minimum required number of participants are as follows:

Therefore, to achieve an error bound lower than 5%, we surveyed 134 people per image.
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ξ 40
112×ξ2

0.05 (5%) 132.23
0.1 (10%) 33.05
0.15 (15%) 14.69

Table 5: Percentage of each action type (the different action types are organized in Table 2). The
Label Pred. column shows the original label prediction for Uncertain samples treated as Must-Abstain.
Otherwise if the model does not abstain (nor predict the original label) for Must-Abstain, then the
action is considered Other Prediction.

Must-Act Must-Abstain

Correct Incorrect Abstain Label Pred. Other Pred. Abstain

ViT [11]

SP 0.62 0.07 0.31 0.02 0.84 0.13
ASP 0.63 0.00 0.37 0.03 0.97 0.00
MD [35] 0.63 0.01 0.35 0.02 0.94 0.03
KNN [67] 0.62 0.04 0.34 0.02 0.91 0.07
TAPUDD [13] 0.63 0.00 0.37 0.80 0.97 0.00
OpenMax [3] 0.61 0.11 0.28 0.02 0.79 0.18
MC-Dropout [16] 0.63 0.00 0.37 0.03 0.97 0.00
Deep Ensemble [32] 0.62 0.14 0.24 0.03 0.72 0.25

Swin Transformer [38]

SP 0.71 0.07 0.22 0.02 0.83 0.15
ASP 0.73 0.00 0.27 0.02 0.98 0.00
MD [35] 0.73 0.03 0.24 0.02 0.91 0.07
KNN [67] 0.63 0.28 0.10 0.01 0.44 0.55
TAPUDD [13] 0.73 0.00 0.27 0.02 0.98 0.00
OpenMax [3] 0.70 0.07 0.23 0.02 0.75 0.24
MC-Dropout [16] 0.73 0.00 0.27 0.02 0.98 0.00
Deep Ensemble [32] 0.74 0.11 0.15 0.01 0.72 0.27

DenseNet [27]

SP 0.76 0.07 0.17 0.02 0.80 0.18
ASP 0.78 0.00 0.22 0.02 0.98 0.00
MD [35] 0.78 0.00 0.22 0.02 0.93 0.06
KNN [67] 0.73 0.15 0.11 0.01 0.61 0.38
TAPUDD [13] 0.74 0.04 0.22 0.02 0.94 0.05
OpenMax [3] 0.71 0.16 0.12 0.01 0.64 0.35
MC-Dropout [16] 0.78 0.00 0.22 0.02 0.98 0.00
Deep Ensemble [32] 0.79 0.07 0.14 0.02 0.82 0.16

ConvNeXt [39]

SP 0.66 0.14 0.20 0.02 0.65 0.33
ASP 0.71 0.00 0.29 0.04 0.96 0.00
MD [35] 0.63 0.15 0.22 0.03 0.78 0.19
KNN [67] 0.68 0.14 0.18 0.03 0.61 0.36
TAPUDD [13] 0.67 0.04 0.29 0.04 0.94 0.02
OpenMax [3] 0.69 0.04 0.28 0.04 0.94 0.02
MC-Dropout [16] 0.71 0.00 0.29 0.04 0.96 0.00
Deep Ensemble [32] 0.66 0.17 0.18 0.02 0.60 0.39

MLP-Mixer [68]

SP 0.62 0.09 0.29 0.01 0.80 0.19
ASP 0.65 0.00 0.35 0.01 0.99 0.00
MD [35] 0.61 0.14 0.26 0.01 0.73 0.26
KNN [67] 0.59 0.16 0.25 0.00 0.67 0.33
TAPUDD [13] 0.48 0.21 0.31 0.01 0.78 0.21
OpenMax [3] 0.60 0.12 0.27 0.01 0.76 0.23
MC-Dropout [16] 0.65 0.00 0.35 0.01 0.99 0.00
Deep Ensemble [32] 0.62 0.14 0.24 0.01 0.73 0.26

G Additional Experimental Results

G.1 Experimental Results Shown as Percentages

Section 4.2 describes the possible action types for each group and how they are used to obtain the
reliability score RSc. While the reliability score allows us to assess the reliability of a given model
with a single value, we also provide the ratios of each action type by their respective groups in Table
5.
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Figure 3: Correlation between Visual Alignment Distance and Reliability Score (RS900). There
exists a strong correlation between visual alignment distance and reliability score. This proves that
visual alignment can be used as a proxy method for reliability.

G.2 Correlation between Visual Alignment and Reliability Score

Figure 3 shows the correlation between visual alignment distance and reliability score measured in
Table 3. There exists a strong correlation between visual alignment distance and reliability score –
the shorter the distance the higher the reliability score. This indicates that visual alignment score can
be used as a proxy method for reliability, underscoring the importance of visual alignment.

H Experiment Results from Pre-training and Self-supervised Learning

Previous studies [1, 75, 23, 44] suggest that training on larger data and pre-training by self-supervised
learning (SSL) methods help improve robustness and Out-of-Distribution (OOD) detection. To
validate if the same findings can also be applied in our task, we additionally measure the visual
alignment and reliability score on models that are pre-trained on ImageNet [60] and pre-trained by
two popular SSL methods, which are SimCLR [6] and BYOL [21]. For models that are pre-trained
on ImageNet, after pre-training, we initialize the top classification layer and train on our train set
while freezing the pre-trained parameters during fine-tuning. For models that are pre-trained by SSL
methods, we do not freeze any layers after pre-training.

The results are shown in Table 6 and Table 7. The results in Table 6 can be compared to the results in
Table 3. For ImageNet pre-trained models, Transformer-based models show improved performance,
whereas MLP-based and CNN-based models show similar or decreased visual alignment scores,
especially when evaluated with SP. This indicates that the effect of pre-training on larger datasets is
dependent on model architecture. Interestingly, distance-based abstention functions display higher
visual alignment scores. We suspect that the improved output embeddings from pre-training enable
distance-based abstention functions to capture more precise features. Deep Ensemble has better visual
alignment when met with Transformer-based and MLP-based. Notably, Transformer-based models
combined with KNN have the best visual alignment score. We conjecture the reason comes from both
the model architecture and the abstention function. Contrary to CNN-based models, Transformer-
based models are able to capture global features of images instead of only local features. Also, KNN
calculates abstention probability based on the distance between samples instead of clusters, as done in
MD or TAPUDD, which uses more fine-grained features for deciding abstention. Therefore, deciding
abstention using fine-grained details on global features gets boosted when trained on a larger set,
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Table 6: Average and standard deviation of ImageNet pre-trained models distance-based visual
alignment and reliability score across 5 seeds. Bold indicates the best performance in each category
and underline is the second best. Deep Ensemble does not have standard deviation since it is the
output of 5 different seeds. For comparison, please refer to Table 3 for results without pre-training.

Visual Alignment (↓) Reliability score (↑)
Must-Act Must-Abstain Uncertain

Average RS0 RS450 RS900
Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Category 7 Category 8

ViT [11]

SP 0.064±0.001 0.107±0.001 0.085±0.001 0.211±0.006 0.760±0.003 0.439±0.004 0.650±0.006 0.262±0.002 0.322±0.002 710 −77590 −155890
ASP 0.033±0.000 0.062±0.001 0.044±0.001 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.564±0.000 0.587±0.000 390 −226410 −453210
MD [35] 0.218±0.001 0.341±0.002 0.236±0.001 0.609±0.004 0.764±0.002 0.694±0.004 0.613±0.004 0.402±0.003 0.485±0.001 634 −109616 −219866
KNN [67] 0.399±0.001 0.588±0.001 0.465±0.001 0.450±0.001 0.469±0.001 0.556±0.001 0.300±0.002 0.452±0.000 0.460±0.000 639 -29061 -58761
TAPUDD [13] 0.320±0.017 0.405±0.021 0.315±0.017 0.657±0.021 0.733±0.014 0.753±0.014 0.616±0.029 0.441±0.008 0.530±0.004 587 −132163 −264913
OpenMax [3] 0.042±0.002 0.068±0.000 0.049±0.001 0.728±0.006 0.868±0.006 0.750±0.010 0.820±0.006 0.420±0.002 0.468±0.002 579 −138021 −276621
MC-Dropout [16] 0.034±0.000 0.064±0.001 0.046±0.001 0.909±0.000 0.964±0.000 0.927±0.000 0.947±0.001 0.519±0.000 0.551±0.000 390 −226410 −453210
Deep Ensemble [32] 0.064 0.107 0.085 0.208 0.759 0.437 0.649 0.261 0.321 708 −78042 −156792

Swin Transformer [38]

SP 0.149±0.104 0.179±0.104 0.168±0.100 0.212±0.021 0.711±0.073 0.383±0.060 0.637±0.089 0.319±0.016 0.344±0.010 737 −44263 −89263
ASP 0.083±0.067 0.105±0.068 0.099±0.064 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.599±0.028 0.610±0.029 383 −229567 −459517
MD [35] 0.127±0.053 0.183±0.048 0.143±0.051 0.759±0.004 0.854±0.003 0.851±0.002 0.667±0.006 0.485±0.026 0.509±0.022 537 −156963 −314463
KNN [67] 0.293±0.029 0.371±0.024 0.344±0.023 0.280±0.002 0.573±0.001 0.460±0.002 0.386±0.002 0.374±0.013 0.385±0.011 732 −33468 −67668
TAPUDD [13] 0.181±0.041 0.220±0.038 0.189±0.040 0.850±0.006 0.846±0.008 0.926±0.004 0.742±0.017 0.540±0.026 0.562±0.019 421 −211979 −424379
OpenMax [3] 0.092±0.071 0.116±0.072 0.107±0.069 0.762±0.007 0.815±0.010 0.727±0.021 0.800±0.012 0.476±0.029 0.487±0.031 585 −135315 −271215
MC-Dropout [16] 0.086±0.068 0.110±0.069 0.104±0.065 0.910±0.000 0.946±0.007 0.921±0.004 0.932±0.005 0.548±0.027 0.570±0.027 383 −229567 −459517
Deep Ensemble [32] 0.178 0.206 0.195 0.214 0.703 0.383 0.634 0.322 0.354 701 −79849 −160399

DenseNet [27]

SP 0.535±0.375 0.553±0.356 0.561±0.344 0.673±0.190 0.746±0.090 0.735±0.106 0.733±0.118 0.609±0.226 0.643±0.223 361 −135089 −270539
ASP 0.503±0.400 0.517±0.386 0.521±0.379 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.777±0.131 0.789±0.162 172 −326528 −653228
MD [35] 0.567±0.316 0.600±0.281 0.578±0.305 0.788±0.123 0.817±0.116 0.821±0.109 0.752±0.099 0.634±0.174 0.695±0.187 209 −305791 −611791
KNN [67] 0.575±0.329 0.604±0.297 0.597±0.302 0.697±0.032 0.723±0.039 0.716±0.038 0.710±0.023 0.606±0.130 0.654±0.146 489 −47661 −95811
TAPUDD [13] 0.655±0.201 0.660±0.204 0.636±0.230 0.853±0.038 0.840±0.064 0.855±0.046 0.791±0.053 0.696±0.093 0.748±0.105 227 −286873 −573973
OpenMax [3] 0.512±0.394 0.529±0.378 0.535±0.367 0.806±0.100 0.847±0.059 0.832±0.059 0.825±0.054 0.674±0.154 0.695±0.194 216 −300384 −600984
MC-Dropout [16] 0.512±0.387 0.543±0.349 0.547±0.343 0.961±0.043 0.963±0.040 0.962±0.041 0.963±0.039 0.755±0.156 0.776±0.175 172 −326528 −653228
Deep Ensemble [32] 0.566 0.575 0.579 0.713 0.794 0.781 0.778 0.622 0.676 583 −132617 −265817

ConvNeXt [39]

SP 0.330±0.393 0.359±0.376 0.338±0.384 0.658±0.197 0.832±0.055 0.686±0.172 0.819±0.064 0.517±0.246 0.567±0.235 369 −237681 −475731
ASP 0.314±0.402 0.335±0.391 0.321±0.395 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.685±0.155 0.706±0.168 369 −237681 −475731
MD [35] 0.380±0.348 0.407±0.333 0.402±0.328 0.690±0.095 0.769±0.039 0.639±0.134 0.711±0.024 0.536±0.177 0.567±0.181 630 −97020 −194670
KNN [67] 0.364±0.369 0.398±0.352 0.389±0.348 0.609±0.123 0.715±0.039 0.625±0.082 0.662±0.099 0.462±0.127 0.528±0.107 716 −33934 −68584
TAPUDD [13] 0.628±0.168 0.616±0.176 0.624±0.167 0.808±0.073 0.670±0.050 0.806±0.083 0.710±0.032 0.653±0.104 0.689±0.101 235 −158165 −316565
OpenMax [3] 0.319±0.406 0.345±0.389 0.333±0.393 0.796±0.056 0.807±0.033 0.728±0.121 0.802±0.023 0.537±0.197 0.583±0.194 660 −85290 −171240
MC-Dropout [16] 0.315±0.402 0.337±0.390 0.322±0.394 0.953±0.032 0.971±0.017 0.955±0.030 0.970±0.018 0.658±0.173 0.685±0.182 369 −237681 −475731
Deep Ensemble [32] 0.432 0.448 0.438 0.651 0.827 0.681 0.812 0.532 0.603 593 −134407 −269407

MLP-Mixer [68]

SP 0.198±0.294 0.279±0.269 0.234±0.282 0.550±0.101 0.742±0.005 0.589±0.080 0.650±0.051 0.422±0.160 0.458±0.155 608 −35842 −72292
ASP 0.165±0.295 0.228±0.281 0.196±0.286 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.686±0.096 0.659±0.120 289 −268361 −537011
MD [35] 0.303±0.232 0.391±0.210 0.339±0.217 0.726±0.025 0.710±0.030 0.685±0.038 0.706±0.022 0.535±0.118 0.549±0.105 498 −121452 −243402
KNN [67] 0.270±0.249 0.362±0.227 0.320±0.231 0.642±0.020 0.698±0.010 0.648±0.037 0.616±0.014 0.478±0.112 0.504±0.110 639 −29511 −59661
TAPUDD [13] 0.553±0.115 0.572±0.120 0.559±0.114 0.815±0.015 0.688±0.010 0.802±0.018 0.749±0.036 0.649±0.072 0.673±0.046 331 −133319 −266969
OpenMax [3] 0.170±0.298 0.245±0.279 0.203±0.288 0.830±0.007 0.857±0.010 0.838±0.007 0.811±0.011 0.563±0.123 0.565±0.126 318 −249432 −499182
MC-Dropout [16] 0.166±0.295 0.230±0.280 0.197±0.285 0.936±0.017 0.960±0.004 0.939±0.015 0.949±0.010 0.643±0.108 0.628±0.127 289 −268361 −537011
Deep Ensemble [32] 0.310 0.369 0.338 0.558 0.736 0.595 0.652 0.440 0.500 647 −92503 −185653

which leads to the best visual alignment. The overall reliability score increases when pre-trained with
ImageNet, and this represents that the models that are pre-trained on ImageNet are more likely to
abstain.

As shown in Table 7, the results from SSL are highly dependent on both the model architecture and
whether the abstention method is distance-based or not. For example, distance-based methods perform
better on Must-Abstain categories when paired with Swin Transformer. Unlike other abstention
methods, Deep Ensemble generally performs better in all groups regardless of the model architecture.
Note that even if the same abstention method is used, the effects on the performance are reversed
depending on the model architecture used. As an example, when TAPUDD is combined with Swin
Transformer, the performance increases on all Must-Abstain categories and decreases on all Must-Act
categories, but the performance difference is reversed when TAPUDD is combined with DenseNet
instead.

Overall, Deep Ensemble helps increase visual alignment performance in both ImageNet pre-training
and SSL. However, other abstention functions did not show noticeable performance increases in both
cases. In short, the same findings in previous studies on robustness and OOD detection can not be
directly applied to visual alignment. This implies visual alignment has its unique challenges that
differentiate from robustness and OOD detection tasks, and there is much room for developing new
methods for better visual alignment. In general, KNN shows the best visual alignment score in all
three tables (Table 3, Table 6, Table 7). This may be due to using detailed features when calculating
abstention probability. However, it is hard to find a consistency for optimal model architecture. For
example, in Table 3, Swin Transformer and DenseNet, which have different architectures, have the

26



best performance on average across all seven abstention functions. Therefore, more research on
finding the optimal model architecture in visual alignment is needed.

I Discussion on Uncertainty

I.1 Continuity of Uncertainty

In this section, we will discuss a critical aspect of uncertainty which is continuity. Uncertainty is
continuous and it is challenging to draw clear distinctions among classes (i.e., as we mentioned in the
main paper that it is hard to distinguish between "car" and "truck") and between clear and uncertain
images (i.e., if at least one person claims an image as "uncertain", then it becomes an uncertain
image). However, as our ultimate goal is to construct a universal testing benchmark that quantitatively
measures visual perception alignment between models and humans, our classes should have clear
defintions so that model developers can easily prepare their models and training strategy. Therefore,
after careful consideration, we used the taxonomy classification in biology which is the meticulous
product of decades of efforts by countless domain experts to hierarchically distinguish each species
as accurately as possible with clear definitions. Also, in order to comprehensively measure the
visual perception alignment between models and humans, the models should be tested under various
conditions including clear in-class images (Must-Act), clear out-of-class images (Must-Abstain) and
confusing images (Uncertain). As there is no clear boundary between clear and uncertain images,
the best scenario would be to survey all images in our dataset to 134 people per image to obtain
numerically reliable annotations. However, surveying all images is not always feasible as it requires
tremendous amount of time and money considering that there are 1800 images (900 each in the
open and closed test sets) in our dataset. Therefore, due to the realistic reasons, we put significant
effort to include only clear images that anyone can agree on in Must-Act and Must-Abstain and
obtained human annotations on Uncertain images. Nevertheless, we also recognize that continuity is
an essential characteristic of uncertainty that should be carefully considered and there is always a
possibility of corner cases that may be disagreeable by at least one person. We have done our best to
remove those corner case samples and cross-validated our final selection. Further detailed analysis
and benchmark dataset on the continuity of uncertainty is highly needed and we will leave this as a
future work.

I.2 Coverage of Uncertainty

"Uncertainty" is a broad concept and it is hard to define with one clear line and list all possible
cases. In this paper, we chose 15 different types of corruptions to generate uncertainty in various
ways following a concrete previous work [22]. Furthermore, to better represent the continuity of
uncertainty explained in Appendix I.1, we apply the corruptions varying severity ranging from 1 to
10. Many types of corruption we used resemble the reality in their own way. For example, adjusting
the brightness of the image is certainly realistic, and changing its resolution is similar to viewing an
object beyond a filter (e.g., semi-transparent glass), and weather changes are also certainly realistic.
These corruptions result in some of realistic uncertain images, precisely 8.5% in the case of the open
test set, where MTurk survey participants were struggling with differentiating between two or more
animals (rather than being confused between one animal and abstention). Despite our meticulous
effort, we are well aware that those corruptions certainly do not cover all possible uncertainties
that arise in the real world. However, "uncertainty" is too broad to specify and diffcult to collect or
generate, and hence for now we use corruptions (but sufficiently divserse types of corruptions).

J Detailed Comparisons with Previous Works

In this section, we will explain in detail how our work differs from related previous works. Our
ultimate goal is to create a rigorous test (similar to tests that humans take such as college entrance
exams) to quantitatively measure the visual perception gap between the models and humans across
various categories. Our main interest does not lie in training but on rigorously testing the visual
perception alignment. For that purpose, a dataset should satisfy the four requirements we mentioned
in Section 3 and use a proper metric that reflects the visual perception alignment.

27



Peterson et al. [52] and Schmarje et al. [65] utilized their datasets mainly for training and did not
thoroughly verify whether the model actually achieved visual alignment. Peterson et al. [52] only
tested their models on in-class samples (in our case, Category 1) and out-of-class samples (in our case,
Category 4 and Category 6) and they showed only accuracy and cross entropy, which is analogous to
KL divergence. Therefore, they did not test their models on various possible scenarios and did not
use proper measurement, as KL divergence is not an optimal choice for visual perception alignment
as we described in Section 4.1. Schmarje et al. [65] only tested their models on in-class samples (in
our case, Category 1) and showed accuracy and KL divergence. Therefore, although previous works
trained their models with the goal of achieving visual perception alignment, none of the works have
thoroughly verified how much the models have actually achieved visual perception alignment under
diverse situations with an appropriate measurement.

Zhang et al. [76] and Bomatter et al. [5] are similar to our work since they show that both models
and humans have better object recognition when given more contextual information, but it is difficult
to say that they have comprehensively evaluated visual perception alignment. These two works
only tested their models on partial aspects (in our case, Category 1, Category 2, and Category 8).
Thus, these works did not test on Must-Abstain samples, which makes it difficult to claim that they
"comprehensively" evaluated visual perception alignment. Zhang et al. [76] and Bomatter et al. [5]
simply showed that both models and humans exhibit similar performance trends based on context (i.e.,
when given more context, both human’s and model’s visual recognition performance increases), and
they provided human-model correlations to describe their relative trends across conditions. However,
our study on visual perception alignment is not about following human trends, but about measuring
how well the model replicates human perception sample-wise. Hence, considering our research
scope and criteria, it’s challenging to assert that Zhang et al. [76] and Bomatter et al. [5] rigorously
measured visual perception alignment.

In contrast, we quantitatively measured visual perception alignment across various scenarios with
multiple human annotations on uncertain images. In addition, we borrowed Hellinger distance to
precisely calculate the visual perception alignment after careful consideration of other distance-based
metrics such as KL divergence and Total Variation distance. Furthermore, we incorporated specialized
elements (sampling theory, statistical theories related to survey design, and experts in the related
fields) in creating our dataset.

There are three key differences that distinguish our dataset compared to existing datasets that also
focus on uncertainty in object recognition. First, we applied corruption and cropping with different
intensities ranging from 1 to 10 to reflect the continuity of uncertainty mentioned in Appendix I.1.
Uncertainty is continuous and it is critical to test models on samples where uncertainty may increase in
stages. In this sense, we tested models visual perception alignment on varying degrees of uncertainty.
Second, we obtained 134 human annotations per image to accurately estimate the ground truth
visual perception distribution. We borrowed statistical sampling theory to achieve an error bound of
lower than 5%, of which the details are in Section 3.3. Third, while our uncertain samples include
uncertainty that confuses between classes, refer refer to as "inter-class uncertainty" (soft labels
distributed only among target classes), we also include "recognizability uncertainty" (soft labels
distributed among classes + abstention), namely whether an image itself is recognizable or not. If an
image is moderately brightened (i.e., intermediate phase between a clear image and a complete white
image), then the object itself may or may not be recognizable. Visual perception includes not only
object identification (predicting that it is an elephant) but also object recognizability (the object itself
is recognizable). In this sense, we cover broader scenarios compared to previous works as we include
object recognizability uncertainty in our uncertain category.

We also want to highlight that VisAlign does only contain Uncertain but also Must-Act and Must-
Abstain to cover diverse scenarios as possible. In order to evaluate a model’s visual perception
alignment, a model should be tested under Must-Act (whether it predicts a correct class with high
confidence), Must-Abstain (whether it abstains out-of-class samples with high confidence), and
Uncertain (whether it reflects the human uncertainty). However, previous works are limited in that
they test their model on partial cases (Category 1 and Category 4 in Peterson et al. [52], and Category
1 in Schmarje et al. [65]) which does not truly reflect visual perception alignment on various situations.
It is especially important to test models on samples from out of distributions (i.e., Category 5 and
Category 7), but previous works overlook these samples thus did not quantitately evalute from visual
perception alignment. Therefore, their dataset cannot be utilized as a benchmark to evaluate visual
perception alignment. While previous papers and our work have in common with handling uncertainty,
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in our case, uncertain samples are a subset of our final dataset and we cover more diverse necessary
situations, which previous works do not, as possible to measure the visual perception alignment.
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Table 7: Average and standard deviation of self supervised distance-based visual alignment and
reliability score across 5 seeds. Bold indicates the best performance in each category and underline is
the second best. Deep Ensemble does not have standard deviation since it is the output of 5 different
seeds. The value under each SSL performance shows its difference with the baseline’s performance.

Visual Alignment (↓) Reliability score (↑)
Must-Act Must-Abstain Uncertain

Average RS0 RS450 RS900
Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Category 7 Category 8

Swin Transformer [38]

SP

No SSL 0.106±0.004 0.362±0.014 0.221±0.017 0.793±0.016 0.828±0.043 0.800±0.022 0.829±0.028 0.625±0.031 0.571±0.015 363 −225537 −451437

SimCLR[6] 0.125±0.009 0.408±0.015 0.265±0.034 0.723±0.037 0.782±0.026 0.744±0.028 0.776±0.044 0.615±0.023 0.555±0.015 384 −211566 −423516
(+0.019) (+0.046) (+0.044) (-0.070) (-0.046) (-0.056) (-0.053) (-0.010) (-0.016) (+21) (+13971) (+27921)

BYOL[21] 0.125±0.009 0.408±0.015 0.265±0.034 0.723±0.037 0.782±0.026 0.744±0.028 0.776±0.044 0.615±0.023 0.555±0.015 384 −211566 −423516
(+0.019) (+0.046) (+0.044) (-0.070) (-0.046) (-0.056) (-0.053) (-0.010) (-0.016) (+21) (+13971) (+27921)

ASP

No SSL 0.085±0.007 0.329±0.008 0.182±0.020 0.998±0.000 0.998±0.000 0.998±0.000 0.998±0.000 0.736±0.009 0.666±0.003 294 −268356 −537006

SimCLR[6] 0.091±0.010 0.356±0.012 0.214±0.028 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.735±0.004 0.674±0.005 301 −264299 −528899
(+0.006) (+0.027) (+0.032) (+0.001) (+0.001) (+0.001) (+0.001) (-0.001) (+0.008) (+7) (+4057) (+8107)

BYOL[21] 0.091±0.010 0.356±0.012 0.214±0.028 0.999±0.000 0.999±0.000 0.999±0.000 0.999±0.000 0.735±0.004 0.674±0.005 301 −264299 −528899
(+0.006) (+0.027) (+0.032) (+0.001) (+0.001) (+0.001) (+0.001) (-0.001) (+0.008) (+7) (+4057) (+8107)

MD [35]

No SSL 0.296±0.018 0.512±0.012 0.364±0.012 0.700±0.012 0.743±0.014 0.723±0.017 0.685±0.021 0.575±0.007 0.575±0.006 326 −248974 −498274

SimCLR[6] 0.324±0.016 0.548±0.018 0.407±0.023 0.638±0.017 0.701±0.015 0.660±0.015 0.620±0.031 0.558±0.011 0.557±0.006 373 −216977 −434327
(+0.028) (+0.036) (+0.043) (-0.062) (-0.042) (-0.063) (-0.065) (-0.017) (-0.017) (+47) (+31997) (+63947)

BYOL[21] 0.326±0.020 0.549±0.022 0.408±0.026 0.635±0.027 0.699±0.022 0.659±0.024 0.615±0.039 0.558±0.015 0.556±0.010 370 −220580 −441530
(+0.030) (+0.037) (+0.044) (-0.065) (-0.044) (-0.064) (-0.070) (-0.017) (-0.018) (+44) (+28394) (+56744)

KNN [67]

No SSL 0.370±0.017 0.580±0.008 0.456±0.018 0.549±0.025 0.590±0.013 0.545±0.022 0.554±0.035 0.543±0.007 0.523±0.012 526 -115124 -230774

SimCLR[6] 0.375±0.019 0.591±0.018 0.462±0.028 0.560±0.019 0.585±0.027 0.558±0.021 0.537±0.022 0.545±0.010 0.527±0.006 504 −139446 −279396
(+0.005) (+0.011) (+0.006) (+0.011) (-0.005) (+0.013) (-0.017) (+0.002) (+0.003) (-22) (-24322) (-48622)

BYOL[21] 0.374±0.018 0.591±0.018 0.462±0.026 0.560±0.022 0.585±0.028 0.558±0.022 0.538±0.023 0.545±0.010 0.527±0.007 504 −138996 −278496
(+0.004) (+0.011) (+0.006) (+0.011) (-0.005) (+0.013) (-0.016) (+0.002) (+0.003) (-22) (-23872) (-47722)

TAPUDD [13]

No SSL 0.201±0.053 0.427±0.048 0.278±0.046 0.876±0.058 0.889±0.048 0.898±0.049 0.844±0.073 0.663±0.022 0.635±0.013 294 −268356 −537006

SimCLR[6] 0.234±0.021 0.468±0.022 0.330±0.036 0.834±0.026 0.855±0.024 0.863±0.020 0.789±0.040 0.644±0.010 0.627±0.007 301 −264299 −528899
(+0.033) (+0.041) (+0.052) (-0.042) (-0.034) (-0.035) (-0.055) (-0.019) (-0.007) (+7) (+4057) (+8107)

BYOL[21] 0.233±0.021 0.466±0.022 0.329±0.037 0.834±0.023 0.856±0.023 0.861±0.019 0.791±0.038 0.646±0.008 0.627±0.006 301 −264299 −528899
(+0.032) (+0.039) (+0.051) (-0.042) (-0.033) (-0.037) (-0.053) (-0.017) (-0.008) (+7) (+4057) (+8107)

MC-Dropout [16]

No SSL 0.099±0.008 0.358±0.013 0.225±0.029 0.831±0.037 0.810±0.023 0.817±0.032 0.724±0.084 0.656±0.030 0.565±0.011 399 −208401 −417201

SimCLR[6] 0.107±0.008 0.389±0.012 0.240±0.026 0.848±0.021 0.825±0.026 0.849±0.044 0.805±0.020 0.683±0.007 0.593±0.006 360 −225990 −452340
(+0.008) (+0.031) (+0.015) (+0.017) (+0.015) (+0.032) (+0.081) (+0.027) (+0.028) (-39) (-17589) (-35139)

BYOL[21] 0.106±0.008 0.388±0.013 0.241±0.025 0.856±0.015 0.828±0.031 0.854±0.039 0.820±0.024 0.683±0.007 0.597±0.005 355 −228695 −457745
(+0.007) (+0.030) (+0.016) (+0.025) (+0.018) (+0.037) (+0.096) (+0.027) (+0.032) (-44) (-20294) (-40544)

OpenMax [3]

No SSL 0.092±0.007 0.338±0.008 0.191±0.020 0.947±0.001 0.957±0.006 0.951±0.002 0.953±0.003 0.705±0.011 0.642±0.003 294 −268356 −537006

SimCLR[6] 0.100±0.009 0.365±0.011 0.223±0.027 0.940±0.005 0.950±0.004 0.943±0.003 0.944±0.005 0.701±0.003 0.646±0.004 301 −264299 −528899
(+0.008) (+0.027) (+0.032) (-0.007) (-0.007) (-0.008) (-0.009) (-0.004) (+0.004) (+7) (+4057) (+8107)

BYOL[21] 0.100±0.010 0.365±0.011 0.223±0.027 0.940±0.004 0.949±0.003 0.943±0.003 0.945±0.006 0.701±0.003 0.646±0.004 301 −264299 −528899
(+0.008) (+0.027) (+0.032) (-0.007) (-0.008) (-0.008) (-0.008) (-0.004) (+0.004) (+7) (+4057) (+8107)

Deep Ensemble [32]

No SSL 0.132 0.377 0.253 0.725 0.766 0.734 0.768 0.584 0.542 434 −187666 −375766

SimCLR[6] 0.144 0.428 0.290 0.665 0.734 0.692 0.724 0.587 0.533 437 −180913 −362263
(+0.012) (+0.051) (+0.037) (-0.060) (-0.032) (-0.042) (-0.044) (+0.003) (-0.010) (+3) (+6753) (+13503)

BYOL[21] 0.144 0.428 0.290 0.665 0.734 0.692 0.724 0.587 0.533 437 −180913 −362263
(+0.012) (+0.051) (+0.037) (-0.060) (-0.032) (-0.042) (-0.044) (+0.003) (-0.010) (+3) (+6753) (+13503)

DenseNet [27]

SP

No SSL 0.094±0.017 0.258±0.023 0.183±0.019 0.813±0.017 0.852±0.015 0.819±0.012 0.864±0.036 0.614±0.008 0.562±0.007 392 −211558 −423508

SimCLR[6] 0.296±0.034 0.531±0.039 0.438±0.046 0.604±0.025 0.653±0.038 0.615±0.030 0.721±0.041 0.592±0.022 0.556±0.005 478 −128672 −257822
(+0.202) (+0.273) (+0.255) (-0.209) (-0.199) (-0.204) (-0.143) (-0.022) (-0.006) (+86) (+82886) (+165686)

BYOL[21] 0.292±0.021 0.518±0.027 0.446±0.008 0.600±0.022 0.656±0.020 0.623±0.021 0.705±0.029 0.583±0.027 0.553±0.009 448 −157502 −315452
(+0.198) (+0.260) (+0.263) (-0.213) (-0.196) (-0.196) (-0.159) (-0.031) (-0.009) (+56) (+54056) (+108056)

ASP

No SSL 0.079±0.013 0.224±0.023 0.159±0.018 0.997±0.000 0.997±0.000 0.997±0.000 0.997±0.000 0.747±0.008 0.650±0.004 312 −260238 −520788

SimCLR[6] 0.216±0.025 0.438±0.032 0.346±0.038 0.998±0.000 0.998±0.000 0.998±0.000 0.998±0.000 0.780±0.012 0.722±0.009 264 −282786 −565836
(+0.137) (+0.214) (+0.187) (+0.001) (+0.001) (+0.001) (+0.001) (+0.033) (+0.072) (-48) (-22548) (-45048)

BYOL[21] 0.216±0.018 0.419±0.022 0.354±0.008 0.998±0.000 0.998±0.000 0.998±0.000 0.998±0.000 0.775±0.015 0.720±0.005 276 −276474 −553224
(+0.137) (+0.195) (+0.195) (+0.001) (+0.001) (+0.001) (+0.001) (+0.028) (+0.070) (-36) (-16236) (-32436)

MD [35]

No SSL 0.170±0.016 0.323±0.022 0.250±0.025 0.873±0.014 0.866±0.019 0.854±0.009 0.825±0.032 0.620±0.022 0.598±0.006 339 −247611 −495561

SimCLR[6] 0.266±0.024 0.468±0.028 0.379±0.029 0.920±0.025 0.920±0.027 0.910±0.029 0.899±0.030 0.681±0.010 0.680±0.015 280 −275570 −551420
(+0.096) (+0.145) (+0.129) (+0.047) (+0.054) (+0.056) (+0.074) (+0.061) (+0.083) (-59) (-27959) (-55859)

BYOL[21] 0.262±0.016 0.448±0.024 0.383±0.013 0.923±0.020 0.925±0.017 0.916±0.023 0.904±0.023 0.674±0.013 0.679±0.008 291 −269709 −539709
(+0.092) (+0.125) (+0.133) (+0.050) (+0.059) (+0.062) (+0.079) (+0.054) (+0.082) (-48) (-22098) (-44148)

KNN [67]

No SSL 0.272±0.021 0.448±0.021 0.360±0.017 0.612±0.019 0.640±0.022 0.615±0.019 0.664±0.014 0.565±0.009 0.522±0.002 482 −157468 −315418

SimCLR[6] 0.369±0.014 0.579±0.034 0.477±0.029 0.630±0.023 0.653±0.029 0.637±0.025 0.657±0.011 0.576±0.014 0.572±0.010 449 −161551 −323551
(+0.097) (+0.131) (+0.117) (+0.018) (+0.013) (+0.022) (-0.007) (+0.011) (+0.050) (-33) (-4083) (-8133)

BYOL[21] 0.353±0.022 0.554±0.033 0.471±0.018 0.662±0.029 0.682±0.028 0.672±0.032 0.672±0.032 0.583±0.015 0.581±0.010 418 −183182 −366782
(+0.081) (+0.106) (+0.111) (+0.050) (+0.042) (+0.057) (+0.008) (+0.018) (+0.059) (-64) (-25714) (-51364)

TAPUDD [13]

No SSL 0.310±0.039 0.393±0.025 0.364±0.044 0.862±0.021 0.831±0.023 0.837±0.018 0.810±0.028 0.645±0.017 0.631±0.004 320 −249880 −500080

SimCLR[6] 0.352±0.023 0.513±0.035 0.452±0.032 0.875±0.028 0.866±0.034 0.868±0.031 0.838±0.036 0.665±0.015 0.679±0.010 280 −275570 −551420
(+0.042) (+0.120) (+0.088) (+0.013) (+0.035) (+0.031) (+0.028) (+0.020) (+0.047) (-40) (-25690) (-51340)

BYOL[21] 0.348±0.013 0.493±0.021 0.452±0.020 0.879±0.013 0.871±0.021 0.870±0.015 0.846±0.013 0.664±0.017 0.678±0.002 292 −269258 −538808
(+0.038) (+0.100) (+0.088) (+0.017) (+0.040) (+0.033) (+0.036) (+0.019) (+0.047) (-28) (-19378) (-38728)

MC-Dropout [16]

No SSL 0.093±0.015 0.288±0.023 0.199±0.027 0.764±0.049 0.817±0.054 0.734±0.058 0.823±0.058 0.590±0.016 0.539±0.025 461 −165589 −331639

SimCLR[6] 0.231±0.028 0.473±0.033 0.362±0.041 0.842±0.015 0.866±0.023 0.836±0.016 0.786±0.039 0.623±0.006 0.628±0.005 325 −250775 −501875
(+0.138) (+0.185) (+0.163) (+0.078) (+0.049) (+0.102) (-0.037) (+0.033) (+0.089) (-136) (-85186) (-170236)

BYOL[21] 0.232±0.015 0.467±0.026 0.370±0.007 0.842±0.009 0.862±0.014 0.854±0.015 0.792±0.040 0.617±0.017 0.629±0.010 332 −244918 −490168
(+0.139) (+0.179) (+0.171) (+0.078) (+0.045) (+0.120) (-0.031) (+0.027) (+0.091) (-129) (-79329) (-158529)

OpenMax [3]

No SSL 0.087±0.014 0.263±0.024 0.204±0.017 0.953±0.003 0.953±0.002 0.954±0.005 0.964±0.004 0.718±0.009 0.637±0.003 312 −260238 −520788

SimCLR[6] 0.243±0.025 0.467±0.028 0.385±0.035 0.924±0.003 0.922±0.002 0.923±0.004 0.926±0.003 0.737±0.012 0.691±0.007 264 −282786 −565836
(+0.156) (+0.204) (+0.181) (-0.029) (-0.031) (-0.031) (-0.038) (+0.019) (+0.054) (-48) (-22548) (-45048)

BYOL[21] 0.244±0.017 0.448±0.019 0.392±0.008 0.923±0.002 0.921±0.002 0.923±0.002 0.925±0.001 0.731±0.015 0.688±0.005 276 −276474 −553224
(+0.157) (+0.185) (+0.188) (-0.030) (-0.032) (-0.031) (-0.039) (+0.013) (+0.051) (-36) (-16236) (-32436)

Deep Ensemble [32]

No SSL 0.109 0.276 0.209 0.767 0.814 0.775 0.825 0.581 0.545 396 −209754 −419904

SimCLR[6] 0.326 0.558 0.462 0.565 0.617 0.575 0.689 0.567 0.545 510 −115590 −231690
(+0.217) (+0.282) (+0.253) (-0.202) (-0.197) (-0.200) (-0.136) (-0.014) (+0.000) (+114) (+94164) (+188214)

BYOL[21] 0.313 0.536 0.463 0.582 0.639 0.605 0.687 0.567 0.549 508 −123692 −247892
(+0.204) (+0.260) (+0.254) (-0.185) (-0.175) (-0.170) (-0.138) (-0.014) (+0.005) (+112) (+86062) (+172012)
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