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Abstract

Principal component regression (PCR) is a popular technique for fixed-design
error-in-variables regression, a generalization of the linear regression setting in
which the observed covariates are corrupted with random noise. We provide the first
time-uniform finite sample guarantees for online (regularized) PCR whenever data
is collected adaptively. Since the proof techniques for analyzing PCR in the fixed
design setting do not readily extend to the online setting, our results rely on adapt-
ing tools from modern martingale concentration to the error-in-variables setting.
As an application of our bounds, we provide a framework for experiment design in
panel data settings when interventions are assigned adaptively. Our framework may
be thought of as a generalization of the synthetic control and synthetic interventions
frameworks, where data is collected via an adaptive intervention assignment policy.

1 Introduction

An omnipresent task in machine learning, statistics, and econometrics is that of making predictions
about outcomes of interest given an action and conditioned on observable covariates. An often
overlooked aspect of the prediction task is that in many settings the learner only has access to
imperfect observations of the covariates, due to e.g. measurement error or inherent randomness in the
problem domain. Such settings are sometimes formulated as error-in-variables regression: a learner
is given access to a collection of data (Zn, an, Yn)n≥1, where Zn ∈ Rd are the observed covariates,
an ∈ {1, . . . , A} is the action taken, and Yn ∈ R is the outcome for each observation n. Typically, the
outcomes are assumed to be generated by a linear model Yn := ⟨θ(an), Xn⟩+ξn and Zn := Xn+ϵn,
where Xn ∈ Rd are the true covariates, ϵn ∈ Rd is the covariate noise, θ(an) ∈ Rd is an unknown
slope vector associated with action an, and ξn ∈ R is the response noise. Note that the learner does not
get to see the true covariates Xn. Observe that when ϵn = 0 we recover the traditional linear regres-
sion setting. Such an error-in-variables model can encompass many forms of data corruption including
measurement error, missing values, discretization, and differential privacy—see [10, 5] for details.

Our point of departure from previous work is that we allow the sequence of data (Zn, an, Yn)n≥1 to
be chosen adaptively. In other words, we provide bounds for learning in the error-in-variables regres-
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sion setting when the data seen at the current round n is allowed to depend on the previously-seen
data (Zm, am, Ym)1≤m<n. Adaptive data collection occurs when the choices of future observations
can depend on the inference from previous data, which is common in learning paradigms such as
multi-armed bandits [58, 78], active learning [74], and time-series analysis [76, 36]. Similar to prior
work on adaptive data collection that shows that valid statistical inference can be done when the true
covariates are observed [34, 67, 43, 91, 92], our work provides the first time-uniform finite sample
guarantees for error-in-variables regression using adaptively collected data.

Concretely, we focus on analyzing principal component regression (PCR) [54], a method that has
been shown to be effective for learning from noisy covariates [10, 7] and a central tool for learning
from panel data [8, 5, 7]. At a high level, PCR “de-noises” the sequence of observed covariates
(Zn)n≥1 as (Ẑn)n≥1 by performing hard singular value thresholding, after which a linear model is
learned using the observed outcomes (Yn)n≥1 and the denoised covariates (Ẑn)n≥1. See Section 3.2
for further technical background on PCR.

1.1 Contributions

1. We derive novel time-uniform bounds for an online variant of regularized PCR when the
sequence of covariates is chosen adaptively. The techniques used to derive bounds for
PCR in the fixed-sample regime [7] do not extend to the setting in which data is collected
adaptively; thus, we require new tools and ideas to obtain our results. Specifically, our
results rely on applying recent advances in martingale concentration [50, 51], as well as
more classical results on self-normalized concentration [3, 32, 33] which are commonly
applied to online regression problems, to the error-in-variables setting. As an example of the
bounds we obtain, consider the task of estimating the underlying relationship θ(a) between
true (i.e. noiseless) covariates and observations, given access to n adaptively-chosen noisy
covariates and their corresponding actions and observations. The ℓ2 estimation error of the
adaptive PCR estimator θ̂n(a) can be bounded as

∥θ̂n(a)− θ(a)∥22 = Õ

(
1

snrn(a)2
κ(Xn(a))

2

)
with high probability, where snrn(a) is the signal-to-noise ratio associated with action a
at round n (Definition 3.5), a measure of how well the true covariates stand out from the
noise. κ(Xn(a)) is the condition number of the true covariates. Intuitively, if snrn(a) is
high the true covariates can be well-separated from the noise, and therefore PCR accurately
estimates θ(a) as long as the true covariates are well-conditioned.
Despite the harder setting we consider, our PCR bounds for adaptively-collected data
largely match the bounds currently known for the fixed-sample regime, and even improve
upon them in two important ways: (1) Our bounds are computable, i.e. they depend on
known constants and quantities available to the algorithm. (2) Unlike Agarwal et al. [7],
our bounds do not depend on the ℓ1-norm of θ(a), i.e., we do not require approximate
sparsity of θ(a) for the bounds to imply consistency. This is important because PCR is a
rotationally-invariant algorithm, and so its performance guarantees should not depend on
the orientation of the basis representation of the space to be learned. The price we pay for
adaptivity is that snrn(a) is defined with respect to a bound on the total amount of noise
seen by the algorithm so far, instead of just the noise associated with the rounds that a is
taken. As a result, our bound for θ̂n(a) may not be tight if a is seldomly selected.

2. We apply our PCR results to the problem of online experiment design with panel data.
In panel data settings, the learner observes repeated, noisy measurements of units (e.g.
medical patients, subpopulations, geographic locations) under different interventions (e.g.
medical treatments, discounts, socioeconomic policies) over time. This is an ubiquitous
method of data collection, and as a result, learning from panel data has been the subject
of significant interest in the econometrics and statistics communities (see Section 2). A
popular framework for learning from panel data is synthetic control (SC) [1, 2], which uses
historical panel data to estimate counterfactual unit measurements under control. Synthetic
interventions (SI) [8] is a recent generalization of the SC framework which allows for
counterfactual estimation under treatment, in addition to control. By leveraging online
PCR, we can perform counterfactual estimation of unit-specific treatment effects under both
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treatment and control, as in the SI framework. However, unlike the traditional SI framework,
we are the first to establish statistical rates for counterfactual unit outcome estimates
under different interventions while allowing for both units and interventions to be chosen
adaptively. Such adaptivity may naturally occur when treatments are prescribed to new units
based on the outcomes of previous units. For example, this is the case when the intervention
chosen for each unit is the one which appears to be best based on observations in the past.

2 Related work

Error-in-variables regression There is a rich literature on error-in-variables regression (e.g. [42,
57, 28, 44, 84, 47, 41]), with research focusing on topics such as high-dimensional [62, 56, 31, 72]
and Bayesian settings [70, 81, 40]. Principal component regression (PCR) [54, 22, 10, 7] is a popular
method for error-in-variables regression. The results of Agarwal et al. [7] are of particular relevance
to us, as they provide finite sample guarantees for the fixed design (i.e. non-adaptive) version of the
setting we consider.

Self-normalized concentration There has been a recent uptick in the application of self-normalized,
martingale concentration to online learning problems. In short, self-normalized concentration aims to
control the growth of processes that have been normalized by a random, or empirical, measure of
accumulated variance [32, 33, 50, 51, 88]. Self-normalized concentration has led to breakthroughs in
wide-ranging areas of machine learning such as differential privacy [85, 86], PAC-Bayesian learning
[30], convex divergence estimation [63], and online learning [87, 29, 3]. Of particular importance for
our work are the results of Abbasi-Yadkori et al. [3], which leverage self-normalized concentration
results for vector-valued processes [32, 33] to construct confidence ellipsoids for online regression
tasks. We take inspiration from these results when constructing our estimation error bounds for PCR
in the sequel.

Learning in panel data settings Our application to panel data builds off of the SI framework
[8, 9], which itself is a generalization of the canonical SC framework for learning from panel data
[1, 2, 52, 35, 17, 60, 89, 13, 14, 59, 16, 20, 23, 27, 39]. In both frameworks, a latent factor model
is often used to encode structure between units and time-steps [25, 61, 15, 18, 19, 68, 64, 65].
Specifically, it is assumed that unit outcomes are the product of unit- and time/intervention-specific
latent factors, which capture the heterogeneity across time-steps, units, and interventions, and allows
for the estimation of unit-specific counterfactuals under treatment and control. Other extensions
of the SI framework include applications in biology [79], network effects [11], combinatorially-many
interventions [4], and intervening under incentives [45, 66]. Finally, there is a growing line of work
at the intersection of online learning and panel data. Chen [26] views the problem of SC as an
instance of online linear regression, which allows them to apply the regret guarantees of the online
learning algorithm follow-the-leader [55] to show that the predictions of SC are comparable to those
of the best-in-hindsight weighted average of control unit outcomes. Farias et al. [38] build on the SC
framework to estimate treatment effects in adaptive experimental design, while minimizing the regret
associated with experimentation. The results of Farias et al. [38] are part of a growing line of work
on counterfactual estimation and experimental design using multi-armed bandits [69, 77, 90, 24].

3 Setting and background

Notation We use boldface symbols to represent matrices. For N ∈ N, we use the shorthand
[N ] := {1, . . . , N}. Unless specified otherwise, ∥v∥ denotes the ℓ2-norm of a vector v, and ∥A∥op
the operator norm of matrix A. We use diag(a1, . . . , ak) to represent a k × k diagonal matrix with
entries a1, . . . , ak. For two numbers a, b ∈ R, we use a ∧ b as shorthand for min{a, b}, and a ∨ b to
mean max{a, b}. Finally, Sd−1 denotes the d-dimensional unit sphere.

3.1 Problem setup

We now describe our error-in-variables setting. We consider a learner who interacts with an environ-
ment over a sequence of rounds. At the start of each round n ≥ 1, the environment generates covariates
Xn ∈W ∗ ⊂ Rd, where W ∗ is a low-dimensional linear subspace of dimension dim(W ∗) = r < d.
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We assume that r (but not W ∗) is known to the learner. Such “low rank” assumptions are reasonable
whenever, e.g. data is generated according to a latent factor model, a popular assumption in high-
dimensional statistical settings [53, 12, 48]. As we will see in Section 5, analogous assumptions are
often also made in panel data settings. The learner then observes noisy covariates Zn := Xn + ϵn,
where ϵn ∈ Rd is a random noise vector. Given Zn, the learner selects an action an ∈ [A] and
observes Yn := ⟨θ(an), Xn⟩+ ξn, where ξn is random noise and θ(a) for a ∈ [A] are unknown slope
vectors in W ∗ that parameterize action choices such that ∥θ(a)∥2 ≤ L for some L ∈ R. We require
that the covariate noise is “well-behaved” according to one of the two the following assumptions:
Assumption 3.1 (SubGaussian Covariate Noise). For any n ≥ 1, the noise variable ϵn satisfies (a)
ϵn is σ-subGaussian, (b) Eϵn = 0, and (c) ∥Eϵnϵ⊤n ∥op ≤ γ, for some constant γ > 0.
Assumption 3.2 (Bounded Covariate Noise). For any n ≥ 1, the noise variable ϵn satisfies (a)
∥ϵn∥ ≤

√
Cd, (b) Eϵn = 0, and (c) Eϵnϵ⊤n = Σ, for some positive-definite matrix Σ satisfying

∥Σ∥op ≤ γ, for some constant γ > 0.

Note that Assumption 3.2 is a special case of Assumption 3.1, which allows us to get stronger results
in some settings. We also impose the following constraint on the noise in the outcomes.
Assumption 3.3 (SubGaussian Outcome Noise). For any n ≥ 1, the noise variable ξn satisfies (a)
Eξn = 0, (b) ξn is η-subGaussian, and (c) Eξ2n ≤ α, for some constant α.

Under this setting, the goal of the learner is to estimate θ(a) for a ∈ [A] given an (possibly adaptively-
chosen) observed sequence (Zn, an, Yn)n≥1. For n ≥ 1, we define the matrix Zn ∈ Rn×d

to be the matrix of observed (i.e. noisy) covariates, with Z1, . . . , Zn as its rows. Similarly,
Xn = (X1, . . . , Xn)

T ∈ Rn×d is the matrix of noiseless covariates (which are unobserved), and
En = (ϵ1, . . . , ϵn)

T ∈ Rn×d,Yn = (Y1, . . . , Yn)
T ∈ Rn×1, and Ξn = (ξ1, . . . , ξn)

T ∈ Rn×1

are defined analogously. For any action a ∈ [A], let Nn(a) := {s ≤ n : as = n} be the set of
rounds up to and including round n on which action a was chosen. Likewise, let cn(a) := |Nn(a)|
denote the number of rounds by round n on which action a was chosen. For a ∈ [A], we enumerate
Nn(a) in increasing order as i1 ≤ · · · ≤ icn(a). Finally, we define Zn(a) ∈ Rcn(a)×d to be
Z(a) = (Zi1 , . . . , Zicn(a)

)T , and define Xn(a), En(a),Yn(a), and Ξn(a) analogously.

3.2 Principal component regression

Background on singular value decomposition Any matrix A ∈ Rn×d may be written in terms of
its singular value decomposition A = UΣVT , where U ∈ Rn×d∧n and V ∈ Rd×d∧n are matrices
with orthonormal columns, and Σ = diag(σ1(A), . . . , σd∧n(A)) ∈ R(d∧n)×(d∧n) is a diagonal
matrix containing the singular values of A, where we assume σ1(A) ≥ · · · ≥ σd∧n(A) ≥ 0.
Given a truncation level k, we define the truncation of A onto its top k principal components as
Ak := Ukdiag(σ1(A), . . . , σk∧d∧n(A))VT

k , where Uk ∈ Rn×k∧d∧n is the matrix with the first
k ∧ d ∧ n columns of U, and Vk ∈ Rn×k∧d∧n is defined analogously. Given such a singular value
decomposition, we can define the projection matrix onto the subspace spanned by the top k right
singular vectors as Pk ∈ Rd×d given by Pk := VkV

T
k .

For n ≥ 1, a ∈ [A], and Zn(a) as defined above, we write the k-truncated singular value
decomposition of Zn(a) as Zn,k(a) = Ûn,k(a)diag(σ1(Zn(a)), . . . , σk∧n∧d(Zn(a)))V̂

T
n,k(a), and

the corresponding projection onto the top k right singular vectors of Zn(a) as P̂n,k(a). When k = r,
we leverage the simplified notation P̂n(a) := P̂n,r(a). (Recall r = dim(W ∗).) By P, we denote
the projection matrix onto the true, underlying subspace W ∗. While P is never known, our results
leverage the fact that P̂n(a) converges to P nicely over time. We define the projected noisy covariate
matrix matrix to be Ẑn(a) := Zn(a)P̂n(a), and define X̂n(a), Ên(a) similarly. Any quantity with
a “ q· ” is defined equivalently to quantities with “ ·̂ ”, except with P in place of P̂n(a). We are
now ready to introduce our procedure for estimating θ(a) for a ∈ [A], called adaptive (or online)
principal component regression.
Definition 3.4 (Adaptive Principal Component Regression). Given regularization parameter
ρ ≥ 0 and truncation level k ∈ N, for a ∈ [A] and n ≥ 1 let Ẑn(a) := Zn(a)P̂n,k(a) and
V̂n(a) := Ẑn(a)

T Ẑn(a) + ρP̂n,k(a). Regularized principal component regression estimates θ(a) as

θ̂n(a) := V̂n(a)
−1Ẑn(a)Yn(a).
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Setting ρ = 0 recovers the version of PCR used in Agarwal et al. [7]. In words, (unregularized) PCR
“denoises” the observed covariates by projecting them onto the subspace given by their k-truncation,
before estimating θ(a) via linear regression using the projected covariates. We choose to regularize
since it is known that regularization increases the stability of regression-style algorithms. This added
stability from regularization allows us to exploit the online regression bounds of Abbasi-Yadkori
et al. [3] to measure the performance of our estimates. Throughout the sequel, we only consider
adaptive PCR with truncation level k = r.

3.3 Signal to noise ratio

We now introduce the concept of signal to noise ratio, which will be integral in stating and proving our
results. The signal to noise ratio provides a measure of how strongly the true covariates (this is the “sig-
nal” of the problem, measured through σr(Xn(a))) stand out sequentially with respect to the “noise”
induced by En (which we will measure through the relevant high probability bounds on ∥En∥op).

Definition 3.5 (Signal to Noise Ratio). We define the signal to noise ratio associated with an action
a ∈ [A] at round n as

snrn(a) :=
σr(Xn(a))

Un
,

where (Un)n≥1 is a noise-dependent sequence growing as Un = O
(√

n+
√
d+

√
log
(
1
δ log(n)

))
.

The price we pay for adaptivity is encoded directly into the definition of the signal to noise ratio,
snrn(a). While one may imagine defining snrn(a) as the ratio between σr(Xn(a)) and ∥En(a)∥op,
bounding ∥En(a)∥op is a nontrivial task as the rows of En(a) may be strongly correlated. To
circumvent this, we apply the trivial bound ∥En(a)∥op ≤ ∥En∥op. Thus, the price of adaptivity in
our setting is that the signal from covariates associated with an action a must stand out with respect
to the total covariate noise by time n. The growth condition on Un presented in Definition 3.5 is

motivated as follows: w.h.p E ∥En∥op ≈
√
d+

√
n, and the extra additive

√
log
(
1
δ log(n)

)
factor

is the price we pay for having high probability control of ∥En∥op uniformly over rounds. Below we
provide an exact definition for Un, as this choice leads to bounds with known constants and simple
conditions on snrn(a) for validity.

We consider the following two sequences (Un)n≥1 in defining signal to noise ratio, which both satisfy
∥En∥op ≤ Un,∀n ≥ 1 with probability at least 1− δ, per Lemma B.3.

U2
n :=

{
β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ nγ when Assumption 3.1 holds

3
2

√
nCdγℓδ(n) +

7
3Cdℓδ(n) + nγ when Assumption 3.2 holds.

In the above, δ ∈ (0, 1), ℓδ(n) := 2 log log(2n) + log
(

dπ2

12δ

)
, β = 32σ2e2, and N = 17d is an

upper bound on the 1/8-covering number of Sd−1. While the exact forms of the above sequences
(Un)n≥1 may appear complicated, it is helpful to realize that, under either Assumption 3.1 or 3.2,

we have Un = O
(√

n+
√
d+

√
log
(
1
δ log(n)

))
, i.e., the growth condition on Un presented in

Definition 3.5 is satisfied.

We can likewise define the empirical signal to noise ratio associated with action a as ŝnrn(a) :=
σr(Zn(a))

Un
. Note that unlike the (true) signal to noise ratio snrn(a), the empirical version ŝnrn(a)

is computable by the learner. Thus, it will be integral in stating our empirical-style bounds in the
section that follows.

We conclude this section by comparing our notion of signal to noise ratio to that of Agarwal et al.
[7], who define snrn(a) instead as σr(Xn(a))√

n+
√
d

, i.e. the ratio of the “signal” in the covariates to the
expected operator norm of covariate noise E∥En∥op. Since the goal of our work is high-probability
(not in-expectation) estimation guarantees for PCR, we believe using high probability bounds on
∥En∥op is more natural when defining snrn(a).
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4 Adaptive bounds for online (regularized) PCR

We now present the main results of this work—high-probability, time- and action-uniform bounds
measuring the convergence of the PCR estimates θ̂n(a) to the true slope vectors θ(a). Unlike existing
results [6–8], our bounds are valid when the covariates (Xn)n≥1 and actions (an)n≥1 are determined
in an online (potentially adversarial) manner.

We first point out why the analysis of Agarwal et al. [7, 8] breaks down in the setting of adaptive
(or online) PCR. First, many of the concentration inequalities leveraged in Agarwal et al. [7] do not
hold in the adaptive design setting. As a particular example, the authors leverage the Hanson-Wright
inequality [82, 73] for quadratic forms to study how the noisy covariate matrix Zn concentrates
around the true matrix Xn. This inequality fails to hold when the design points (Xn)n≥1 depend
on the previous observations. Second, the techniques leveraged by Agarwal et al. [8] to extend the
convergence guarantees of PCR to the multiple action setting fail to hold when the n-th action an
is selected based on previous observations. Lastly, the bounds presented in [7] are are inherently
fixed-time in nature—a simple way to convert existing fixed-time bounds to time-uniform ones would
be to perform a union bound over time steps, but that introduces looseness in the bounds.

We are able to construct our bounds by exploiting connections between online PCR and self-
normalized martingale concentration [50, 51, 32, 33]. In particular, we combine martingale-based
results for constructing confidence ellipsoids for online regression [3, 32, 33] with methods for
high-dimensional covariance estimation [83, 80] to prove our results. Exploiting this connection
is what allows us to extend the results of Agarwal et al. [7] to the adaptive design, time-uniform
setting. We begin with a bound which, up to constants and polylogarthmic factors, captures the
rate of convergence of online PCR in terms of (a) the underlying signal to noise ratio and (b) the
conditioning of the observed data.

Theorem 4.1 (Rate of Convergence for Online PCR). Let δ ∈ (0, 1) be an arbitrary confidence
parameter. Let ρ > 0 be chosen to be sufficiently small, as detailed in Appendix F. Further, assume
that there is some n0 ≥ 1 such that rank(Xn0(a)) = r and snrn(a) ≥ 2 for all n ≥ n0. Then, with
probability at least 1 − O(Aδ), simultaneously for all actions a ∈ [A] and time steps n ≥ n0, we
have

∥θ̂n(a)− θ(a)∥22 = Õ

(
1

snrn(a)2
κ(Xn(a))

2

)
,

where κ(Xn(a)) :=
σ1(Xn(a))
σr(Xn(a))

is the condition number (ignoring zero singular values) of Xn(a).

Theorem 4.1 is proved in Appendix E. We begin by comparing our bounds to those of Agarwal et al.
[7, 8]. At any fixed time, our bounds take on roughly the same form as those of the aforementioned
authors, having an inverse quadratic dependence on the signal to noise ratio. To make their bounds
non-vacuous, the authors need to make the “soft sparsity” assumption of ∥θ(a)∥1 = O(

√
d). Our

bound, on the other hand, suffers no dependence on the ℓ1-norm of the θ(a)’s. This makes intuitive
sense, as the specific choice of a basis should not impact the rate of convergence of PCR. However,
our bounds pay a price for adaptivity—in particular, the signal to noise ratio associated with an
action is defined with respect to a bound on the total operator norm of the matrix En. If an action
is selected very infrequently, the above bound may become loose.

While the above bound is stated in terms of signal to noise ratio, if we make additional assumptions,
we can obtain bounds directly in terms of d, n, and r. In particular, the following “well-balancing”
assumptions suffice.

Assumption 4.2 (Well-balancing assumptions). For all n ≥ n0, the following hold: (a)

σi(Xn(a)) = Θ

(√
cn(a)d

r

)
for all i ∈ [r], (b) cn(a) = Θ(cn(a

′)) for all a, a′ ∈ [A], and (c)

A = O(r).

Corollary 4.3. Assume the same setup as Theorem 4.1, and further assume Assumption 4.2 holds.
Then with probability at least 1 − O(Aδ), simultaneously for all actions a ∈ [A] and time steps
n ≥ n0, we have

∥θ̂n(a)− θ(a)∥22 = Õ

(
r2

d ∧ n

)
.
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Corollary 4.3 shows that Theorem 4.1 obtains the same estimation rate as Theorem 4.1 of Agarwal
et al. [7] if assumption Assumption 4.2 holds. This “well-balancing” assumption says roughly that all
non-zero singular values of Xn are of the same order, each action is selected with the same frequency,
and that the number of actions is, at most, proportional to dimension of the true, unknown subspace.
As noted by Agarwal et al. [7], the assumption of a “well-balanced spectrum” (for Xn) is common
in many works in econometrics and robust statistics, and additionally holds with high probability
if the entries of Xn are i.i.d.[62, 21, 37]. Further, it is often the case that there only few available
actions (for instance, in the synthetic control literature there are only two actions [2, 1, 38]), justifying
the assumption that A = O(r). Lastly, ensuring that each action is played (very roughly) the same
number of times can be viewed as a price for adaptivity.

The proof of Theorem 4.1 is immediate as a corollary from the following, more complicated bound.
Theorem 4.4 below measures the convergence of θ̂n(a) to θ(a) in terms of empirical (i.e. observed)
quantities. We imagine this bound to be the most practically relevant of our results, as, unlike the
results of Agarwal et al. [7], it is directly computable by the learner, involves known constants, and
places minimal conditions on the signal to noise ratio.
Theorem 4.4 (Empirical Guarantees for Online PCR). Let δ ∈ (0, 1) be an arbitrary confidence
parameter. Let ρ > 0 be chosen to be sufficiently small, as detailed in Appendix F. Further, assume
that there is some n0 ≥ 1 such that rank(Xn0

(a)) = r and snrn(a) ≥ 2 for all n ≥ n0. Then, with
probability at least 1 − O(Aδ), simultaneously for all actions a ∈ [A] and time steps n ≥ n0, we
have ∥∥∥θ̂n(a)− θ(a)

∥∥∥2
2
≤ L2

ŝnrn(a)2
[
74 + 216κ(Zn(a))

2
]
+

2errn(a)

σr(Zn(a))2
,

where κ(Zn(a)) :=
σ1(Zn(a))
σr(Zn(a))

, ∥θ(a)∥2 ≤ L, and in the above we define the “error” term errn(a)

to be

errn(a) := 32ρL2 + 64η2
(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

))
+ 6η2

√
2cn(a)ℓδ(cn(a)) + 10η2ℓδ(cn(a)) + 6cn(a)α.

We see that the above bound, with the exception of the third term, more or less resembles the bound
presented in Theorem 4.1, just written in terms of the observed covariates Zn(a) instead of the true
covariates Xn(a). We view the third term as a slowly growing “error” term. In particular, all terms in
the quantity errn(a) are either constant, logarithmic in the singular values of Zn(a), or linear in cn(a),
the number of times by round n action a has been selected. This implies that errn(a) = Õ(n+ d),
ensuring errn(a) is dominated by other terms in the asymptotic analysis. We now provide the proof
of Theorem 4.4. The key application of self-normalized, martingale concentration comes into play in
bounding the quantities that appear in the upper bounds of terms T1 and T2 (to be defined below).

Proof. Observe the decomposition, for any n ≥ 1 and a ∈ [A]

θ̂n(a)− θ(a) = P̂n(a)(θ̂n(a)− θ(a)) + (P⊥ − P̂⊥
n (a))θ(a),

where P⊥ is the projection onto the subspace orthogonal to W ∗ and P̂⊥
n (a) is the projection onto the

subspace orthogonal to the learned subspace (i.e. that spanned by Zn,r(a)). Since P̂n(a)(θ̂n(a)−
θ(a)) and (P⊥ − P̂⊥

n (a))θ(a) are orthogonal vectors, we have∥∥∥θ̂n(a)− θ(a)
∥∥∥2
2
=
∥∥∥P̂n(a)(θ̂n(a)− θ(a))

∥∥∥2
2
+
∥∥∥(P̂⊥

n (a)−P⊥)θ(a)
∥∥∥2
2
.

We bound these two terms separately, beginning with the second term. Going forward, fix an action
a ∈ [A]. Observe that with probability at least 1− δ, simultaneously for all n ≥ n0(a),

∥∥∥(P̂⊥
n (a)−P⊥)θ(a)

∥∥∥2
2
≤
∥∥∥P̂⊥

n (a)−P⊥
∥∥∥2
op

∥θ(a)∥22

≤ L2
∥∥∥P̂⊥

n (a)−P⊥
∥∥∥2
op

= L2
∥∥∥P̂n(a)−P

∥∥∥2
op

≤ 4L2U2
n

σr(Xn(a))2
≤ 6L2U2

n

σr(Zn(a))2
,
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where the equality in the above comes from observing ∥P̂⊥
n (a) − P⊥∥op = ∥P̂n(a) − P∥op, the

second-to-last last inequality comes from applying Lemma B.4, and the last inequality follows from
the second part of Lemma B.6.

We now bound the first term. Observe that we can write∥∥∥P̂n(a)
(
θ̂n(a)− θ(a)

)∥∥∥2
2
≤ 1

σr(Zn(a))2

∥∥∥Ẑn(a)
(
θ̂n(a)− θ(a)

)∥∥∥2
2

≤ 2

σr(Zn(a))2

∥∥∥Ẑn(a)θ̂n(a)−Xn(a)θ(a)
∥∥∥2
2︸ ︷︷ ︸

T1

+
∥∥∥Xn(a)θ(a)− Ẑn(a)θ(a)

∥∥∥2
2︸ ︷︷ ︸

T2

 , (1)

where the first inequality follows from the fact that P̂n(a) ⪯ 1

σr(Ẑn(a))2
Ẑn(a)

⊤Ẑn(a) and

σr(Zn(a)) = σr(Ẑn(a)), and the second inequality comes from applying the parallelogram in-
equality. First we bound T1. We have, with probability at least 1 − O(δ), simultaneously for all
n ≥ n0(a)

T1 ≤ 8
∥∥∥qVn(a)

1/2
(

qθn(a)− θ(a)
)∥∥∥2

2
+ 6 ∥Ξn(a)∥22 + 8

∥∥∥Ẑn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

≤ 32ρL2 + 64η2
(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

))
+ 16L2U2

n

+ 6η2
√

2cn(a)ℓδ(cn(a)) + 10η2ℓδ(cn(a)) + 6cn(a)α+ 8T2,

(2)

where the first inequality follows from Lemma D.1, and the second inequality follows from applying
Lemmas C.1 and D.3. ℓδ(n) = 2 log log(2n) + log

(
dπ2

12δ

)
, as defined in Lemma A.2. We now

bound T2. With probability at least 1−O(δ) simultaneously for all n ≥ n0, we have

T2 ≤ 2L2σ1(Zn(a))
2
∥∥∥P− P̂n(a)

∥∥∥2
op

+ 2L2 ∥En∥2op

≤ 8L2σ1(Zn(a))
2U2

n

σr(Xn(a))2
+ 2L2U2

n

≤ 12L2σ1(Zn(a))
2U2

n

σr(Zn(a))2
+ 2L2U2

n.

(3)

The first inequality follows from Lemma D.2, the second inequality follows from applying
Lemmas B.4 and B.3, and the final inequality follows from Lemma B.6.

Piecing the above inequalities together yields the desired result, which can be checked via the
argument at the end of Appendix D. A union bound over actions then yields that the desired inequality
holds over all actions a ∈ [A] with probability at least 1−O(Aδ).

5 Application to causal inference with panel data

We now apply our bounds for adaptive PCR to online experiment design in the context of panel data.
In this setting, the learner is interested in estimating unit-specific counterfactuals under different
interventions, given a sequence of unit outcomes (or measurements) over time. Units can range
from medical patients, to subpopulations or geographic locations. Examples of interventions include
medical treatments, discounts, and socioeconomic policies. Synthetic control (SC) is a popular
framework used to estimate counterfactual unit outcomes in panel data settings, had they not been
treated (i.e. remained under control) [1, 2]. In SC, there is a notion of a pre-intervention time period
in which all units are under control, followed by a post-intervention time period, in which every
unit undergoes one of several interventions (including control). At a high level, SC fits a model of
a unit’s pre-treatment outcomes using pre-treatment data from units who remained under control
in the post-intervention time period. It then constructs a “synthetic control” by using the learned
model to predict the unit’s post-intervention outcomes, had they remained under control. Synthetic
interventions (SI) is a recent generalization of the SC framework, which allows for counterfactual
estimation of unit outcomes under different interventions, in addition to control [8]. Using our
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bounds from Section 4, we show how to generalize the SI framework of Agarwal et al. [8] to settings
where interventions are assigned via an adaptive intervention assignment policy.

As a motivating example, consider an online e-commerce platform (learner) which assigns discounts
(interventions) to users (units) with the goal of maximizing total user engagement on the platform.
For concreteness, suppose that the e-commerce platform assigns discounts greedily with respect to
the discount level which appears to be best at the current round (i.e. maximizes total engagement
for the current user), given the sequence of previously observed (user, discount level, engagement
level) tuples. Under such a setting, the intervention assigned at the current round n will be correlated
with the observed engagement levels at previous rounds, thus breaking the requirement of the SI
framework [8] that the intervention assignment is not adaptive to previously observed outcomes.

Formally, we consider a panel data setting in which the principal observes units over a sequence of
rounds. In each round n, the learner observes a unit n under control for T0 ∈ N time steps, followed
by one of A interventions (including control, which we denote by 0) for the remaining T − T0 time
steps, where T ∈ N. Overloading notation to be consistent with the literature on panel data, we
denote the potential outcome of unit n at time t under intervention a by Y (a)

n,t ∈ R, the set of unit

n’s pre-treatment outcomes (under control) by Yn,pre := [Y
(0)
n,1 , . . . , Y

(0)
n,T0

]T ∈ RT0 , and their post-

intervention potential outcomes under intervention a by Y (a)
n,post := [Y

(a)
n,T0+1, . . . , Y

(a)
n,T ]

T ∈ RT−T0 .
We use a to refer to an arbitrary intervention in {0, . . . , A − 1} and an to denote the realized
intervention unit n actually receives in the post-intervention time period. We posit that potential
outcomes are generated by the following latent factor model over units, time steps, and interventions.
Assumption 5.1 (Latent Factor Model). Suppose the outcome for unit n at time step t under
treatment a ∈ {0, . . . , A− 1} takes the form

Y
(a)
n,t = ⟨U (a)

t , Vn⟩+ ϵ
(a)
n,t,

where U (a)
t ∈ Rr is a latent factor which depends only on the time step t and intervention a, Vn ∈ Rr

is a latent factor which only depends on unit n, and ϵ(a)n,t is zero-mean SubGaussian random noise

with variance at most σ2. We assume, without loss of generality, that |⟨U (a)
t , Vn⟩| ≤ 1 for all n ≥ 1,

t ∈ [T ], a ∈ {0, . . . , A− 1}.

Note that the learner observes Y (a)
n,t for only the intervention an that unit n is under at time step t, and

never observes U (a)
t , Vn, or ϵ(a)n,t. Such “low rank” assumptions are ubiquitous within the panel data

literature (see references in Section 2). We assume that r is known to the learner, although principled
heuristics exist for estimating r in practice from data (see, e.g. Section 3.2 of Agarwal et al. [8]).
Additionally, we make the following “causal transportability” assumption on the latent factors.
Assumption 5.2 (Linear span inclusion). For any post-intervention time step t ∈ [T0 + 1, T ] and
intervention a ∈ {0, . . . , A− 1}, we assume that U (a)

t ∈ span({U (0)
t : t ∈ [T0]}).

Intuitively, Assumption 5.2 allows for information to be inferred about the potential outcomes in
the post-intervention time period using pre-treatment observations. The goal of the learner is to
estimate unit-specific counterfactual outcomes under different interventions when the sequence of
units and interventions is chosen adaptively. In line with previous work in SI and SC, our target
causal parameter is the (counterfactual) average expected post-intervention outcome.
Definition 5.3. The average expected post-intervention outcome of unit n under intervention a is

EȲ (a)
n,post :=

1

T − T0

T∑
t=T0+1

EY (a)
n,t ,

where the expectation is taken with respect to (ϵ
(a)
n,t)T0<t≤T .

While we consider the average post-intervention outcome, our results may be readily extended
to settings in which the target causal parameter is any linear combination of post-intervention
outcomes. Next we show that under Assumption 5.1 and Assumption 5.2, EȲ (a)

n,post may be written
as a linear combination of unit n’s pre-intervention outcomes. We note that similar observations have
previously been made in the panel data literature (e.g. [46]), but we include the following lemma
for completeness’ sake.
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Lemma 5.4 (Reformulation of average expected post-intervention outcome). Under Assump-
tion 5.1 and Assumption 5.2, there exists slope vector θ(a) ∈ RT0 , such that the average expected
post-intervention outcome of unit n under intervention a is expressible as

EȲ (a)
n,post =

1

T − T0
⟨θ(a),EYn,pre⟩.

θ(a) may be interpreted as a unit-independent measure of the causal relationship between pre- and
post-intervention outcomes. Using this reformulation, adaptive guarantees for the estimation of causal
effects over time may now be obtained by applying our online PCR results of Section 4. Overloading
the notation of Section 3, we let Xn = (EY1,pre, . . . ,EYn,pre)T , Zn = (Y1,pre, . . . , Yn,pre)

T ,
ϵn,pre = (ϵ

(0)
n,1, . . . , ϵ

(0)
n,T0

)T , En = (ϵ1,pre, . . . , ϵn,pre)
T ξn =

∑T
t=T0+1 ϵ

(an)
n,t , Ξn = (ξ1, . . . , ξn)

T ,
and

Yn =

(
1

T − T0

T0∑
t=1

Y
(a1)
1,t , . . . ,

1

T − T0

T0∑
t=1

Y
(an)
n,t

)T

.

Finally, we define quantities such as Zn(a), Xn(a), Yn(a) analogously to Section 3. We now turn
to bounding our primary quantity of interest in the panel data setting: prediction error for the average
expected post-intervention outcome.
Theorem 5.5 (Prediction error of average expected post-intervention outcome). Let δ ∈ (0, 1)
be an arbitrary confidence parameter and ρ > 0 be chosen to be sufficiently small, as detailed
in Appendix F. Further, assume that Assumptions 5.1 and 5.2 are satisfied, there is some n0 ≥ 1
such that rank(Xn0

(a)) = r, and snrn(a) ≥ 2 for all n ≥ n0. If T0 ≤ 1
2T and r ≤

√
T0 ∧ n,

then under Assumption 4.2 with probability at least 1−O(Aδ), simultaneously for all interventions
a ∈ {0, . . . , A− 1}

|ÊȲ (a)
n,post − EȲ (a)

n,post| = Õ

(
L√

T − T0
+

r√
T0 ∧ n

+
r(L ∨ 1)√

(T − T0)(T0 ∧ n)

)
where ÊȲ (a)

n,post :=
1

T−T0
· ⟨θ̂n(a), Yn,pre⟩ is the estimated average post-intervention outcome for

unit n under intervention a.

A more complicated expression which does not require Assumption 4.2 or T0 ≤ 1
2T may be found

in Appendix G. Observe that |ÊȲ (a)
n,post − EȲ (a)

n,post| → 0 with high probability as T, T0, n→ ∞.

We conclude this section by comparing our results with those of the (non-adaptive) synthetic in-
terventions framework of Agarwal et al. [8]. Since we are regressing over time, our method for
estimating ÊȲ (a)

n,post is known as a horizontal regression method in the panel data literature. This is
in contrast to vertical regression methods, which regress over units. See Shen et al. [75] for more
details on the similarities and differences between horizontal and vertical regression methods in panel
data settings. While we do not exactly match the bound of Agarwal et al. [8] since their synthetic
interventions framework of uses a vertical regression method, the two bounds are similar, with the
notable differences being as follows: (1) The bound of [8] contains a “slow” Õ(r1/2T

−1/4
0 ) term

which does not appear in our analysis. (2) The non-adaptive SI bound also contains a term which
scales as Õ(

√
n√

T−T0
) in the worst case, while our bound has no such dependence. However, this

comes at the price of slow rate whenever L is large compared to
√
T − T0.

6 Conclusion
We obtain the first adaptive bounds for principal component regression and apply them to the problem
of online experiment design in the context of panel data, where we allow for interventions to be as-
signed according to an adaptive policy. Exciting directions for future work include applications of our
results to domains such as differential privacy, and using our bounds to obtain contextual bandit algo-
rithms (e.g. based on LinUCB [3]) capable of regret minimization when given access to noisy contexts.
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A Results on martingale concentration

In this section, we discuss the basics of martingale concentration that will be used ubiquitously
throughout this work. Recall that a process (Mn)n≥0 is a martingale with respect to some filtration
(Fn)n≥0 if (a) (Mn)n≥0 is adapted to (Fn)n≥0, (b) E|Mn| < ∞ for all n ≥ 0, and (c) E(Mn+1 |
Fn) = Mn for all n ≥ 0. We denote the “increments” of a martingale as ∆Mn := Mn −Mn−1.
Results on martingale concentration yield a means of providing tight, time-uniform concentration for
statistical tasks in which data is adaptively collected. Recent advances in martingale concentration
have allowed for advances in disparate fields of statistical theory such as PAC-Bayesian learning [30],
composition in differential privacy [86, 85], and the estimation of convex statistical divergences [63].

Martingale concentration emerges naturally in our work in two ways. First, martingale concentration
plays an integral role in bounding the deviations between qθt(a), the ridge estimate in the true
low-dimensional subspace, and θ(a). In bounding these deviations, we leverage results on the
concentration of self-normalized martingale processes, particularly those of de la Peña et al. [32, 33].
These results have long proven useful for calibrating confidence in online linear regression tasks [3,
29], but to the best of our knowledge, we are the first to couple these results with the low-dimensional
estimation innate to PCR.

Second, we leverage martingale methods to control the rate at which PCR’s estimate of the projection
operator onto the unknown subspace converges. To accomplish this, we couple recent breakthroughs
on time-uniform, self-normalized concentration for scalar-valued processes [50, 51] with the covering
and matrix-CGF approaches for bounding the error in estimates of covariance matrices [83, 71, 80].
While this aspect of our analysis is, more or less, a straightforward merging of two techniques for
concentration of measure, it nonetheless requires care due to the technical nature of the machinery
being used.

We start by recounting the time-uniform concentration inequality we leverage for controlling the
error in the ridge estimate in the true, low-dimensional subspace. The following result is from
Abbasi-Yadkori et al. [3], but is a special case of more general, self-normalized concentration results
from de la Peña et al. [32, 33].

Lemma A.1 (Method of Mixtures). Let (Ft)t≥0 be a filtration. Let St =
∑t

s=1 ϵsXs where (ϵt)t≥1

is an (Ft)t≥0-adapted R-valued process of σ-subGaussian random variables and (Xt)t≥1 is an
(Ft)t≥1-predictable Rd-valued process. Let ρ > 0 be arbitrary, and let

Vt :=

t∑
s=1

XsX
T
s + ρId.

Let δ ∈ (0, 1) be any confidence parameter. Then we have with probability at least 1− δ, simultane-
ously for all t ≥ 1, ∥∥∥V−1/2

t St

∥∥∥
2
≤ σ

√
2 log

(
1

δ

√
det(ρ−1Vt)

)
.

We make several brief comments about the above lemma. First, note that while the word “martingale”
doesn’t directly appear, the process (Sn)n≥0 is, in fact, a martingale with respect to the filtration
(Fn)n≥0. The concentration inequality follows from “mixing” a family of martingales based on
(Sn)n≥0 with respect to some suitable probability measure. Second, how we leverage Lemma A.1
in conjunction with the low-dimensional structure of the problem comes through the presence of
det(ρ−1Vn) in the bound. In particular, if the sequence (Xn)n≥0 lies in some low-dimensional
subspace W , with dim(W ) = r, then ρ−1Vn will have at most r non-unit eigenvalues, and hence
log det(ρ−1Vn) ≈ r log(∥ρ−1Vn∥op). We exploit this idea further in the sequel.

Now, we discuss the scalar-valued martingale concentration results from Howard et al. [50, 51] that
will be used in our work. Before this, recall that a random variable X is said to be σ-subGaussian if
logEeλX ≤ λ2σ2

2 for all λ ∈ R. Likewise, we say X is (σ, c)-subExponential if logEeλX ≤ λ2σ2

2

for all |λ| < 1
c , and we say X is (σ, c)-subGamma if logEeλX ≤ σ2ψG,c(λ) for all |λ| < 1

c , where
ψG,c(λ) :=

λ2

2(1−cλ) . A particularly useful fact in the sequel is that if X is (σ, c)-subExponential, it
is also (σ, c)-subGamma [50].
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Lemma A.2. Suppose (Xn)n≥1 is a sequence of independent, (σ, c)-subGamma random variables.
Let (Sn)n≥0 be given by Sn :=

∑n
m=1Xn, and let δ ∈ (0, 1) be arbitrary. Then, with probability at

least 1− δ, simultaneously for all n ≥ 0, we have

Sn ≤ 3

2
σ
√
nℓδ(n) +

5

2
cℓδ(n),

where ℓδ(n) := 2 log log(2n) + log
(

dπ2

12δ

)
.

Note that we have simplified above bound from Howard et al. [51] in several ways. First, the bound
as presented in Howard et al. [51] applies to general classes of processes with potentially correlated
increments. We have simplified the bound to the setting of independent, subGamma increments to
suit our setting. Further, the original bound has many parameters, each of which can be fine-tuned to
fit an application. We have pre-selected parameters so that (a) the bound is legible and (b) constants
remain relatively small.

We can couple the above bound with a standard argument for bounding error in covariance estimation
[83] to obtain high-probability, time-uniform results. The following result will prove useful in
measuring the rapidity at which PCA can learn the true, low-dimensional subspace in which the
noiseless contexts and slope vectors lie.
Lemma A.3. Let (ϵn)n≥1 be a sequence of independent, σ-subGaussian random vectors in Rd. Then,
for any δ ∈ (0, 1), with probability at least 1− δ, simultaneously for all n ≥ 1, we have∥∥∥∥∥

n∑
m=1

ϵmϵ
⊤
m − Eϵmϵ⊤m

∥∥∥∥∥
op

≤ β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
,

where ℓδ is as defined in Lemma A.2, β = 32σ2e2, and N = 17d is an upper bound on the
1/8-covering number of Sd−1.

Proof. Define the process (Mn)n≥0 by Mn :=
∑n

m=1 ϵmϵ
⊤
m − Eϵmϵ⊤m. Using a standard covering

argument (more or less verbatim from Wainwright [83]), we have that, if K ⊂ Sd−1 is a minimal
1/8-covering of Sd−1, then

∥Mn∥op ≤ 2max
ν∈K

⟨ν,Mnν⟩ (4)

It is clear that (Mn)n≥0 is a Hermitian matrix-valued martingale with respect to the natural filtration
(Fn)n≥0 given by Fn := σ(ϵm : m ≤ n). It is thus straightforward to see that, for any ν ∈ Sd−1,
the process (Mν

n)n≥0 given by Mν
n := νTMnν is a real-valued martingale with respect to this same

filtration.

Moreover, a standard argument (see the proof of Theorem 6.5 in Wainwright [83]) yields that

log
[
Eeλ⟨ν,∆Mnν⟩

]
≤ λ2β2

2
for all |λ| < 1

β
, (5)

where β := 32e2σ2. In other words, for any ν ∈ Sd−1, the random variable ⟨ν,∆Mnν⟩ is (β, β)-
sub-Exponential, as outlined above. In particular, per the results of Howard et al. [50, 51], this implies
that the random variable ⟨ν,∆Mnν⟩ is (β, β)-subGamma. Applying Lemma A.2, we have, with
probability at least 1− δ, simultaneously for all n ≥ 1 and ν ∈ K, that

|⟨ν,Mnν⟩| ≤
3

2
β
√
nℓδ/2N (n) + β

5

2
ℓδ/2N (n).

Plugging this into Inequality 4, we have that, with probability at least 1− δ, simultaneously for all
n ≥ 1,

∥Mn∥op ≤ β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
.

In the case that the sequence of independent noise variables (ϵn)n≥1 satisfies Eϵnϵ⊤n = Σ and
∥ϵn∥2 ≤

√
B uniformly in n, we can obtain signifcantly tighter bounds (in terms of constants). Of

particular import is the following bound from Howard et al. [51], which combines their “stitching
approach” to time-uniform concentration with matrix chernoff techniques [50, 80, 83] to obtain
time-uniform bounds on covariance estimation.
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Lemma A.4. Let (ϵn)n≥1 be a sequence of mean zero, independent random vectors in Rd such that,
for all n ≥ 1, we have Eϵnϵ⊤n = Σ and ∥ϵn∥2 ≤

√
Cd almost surely. Further assume ∥Σ∥op ≤ γ.

Then, for any δ ∈ (0, 1), we have, with probability at least 1− δ, simultaneously for all n ≥ 1∥∥∥∥∥
n∑

m=1

{
ϵmϵ

⊤
m − Σ

}∥∥∥∥∥
op

≤ 3

2

√
nCdγℓδ(n) +

7

3
Cdℓδ(t)

where ℓδ(n) := 2 log log(2n) + log
(

dπ2

12δ

)
.

B Convergence results for PCA and singular values

In this appendix, we discuss time-uniform convergence results for adaptive principal component
analysis — one half of the principal component regression (PCR) algorithm. In addition, we analyze
how singular values of Zn, the noisy covariate matrix, cluster around those of Xn, the true covariate
matrix. We, in the style of Agarwal et al. [7], reduce our study of these quantities to the study of
the operator norm of En, which we control using the martingale concentration results outlined in
Appendix A.

Before continuing, we enumerate several linear algebraic facts that are useful in bounding deviations
in singular values.

Lemma B.1 (Weyl’s Inequality). Let A,B ∈ Rt×n. Then, for any i ∈ [t ∧ n], we have

|σi(A)− σi(B)| ≤ ∥A−B∥op .

Lemma B.2 (Wedin’s Lemma). Let A,B ∈ Rt×n, and suppose A and B have spectral decomposi-
tions

A = UΣVT and B = ÛΣ̂V̂T .

Then, for any r ≤ n ∧ d, we have

max

{∥∥∥UrU
T
r − ÛrÛ

T
r

∥∥∥
op
,
∥∥∥VrV

T
r − V̂rV̂

T
r

∥∥∥
op

}
≤

2 ∥A−B∥op
σr − σr+1

,

where σr (resp. σr+1) is the r-th (resp. r + 1-st) largest singular value of A.

We now prove a time-uniform, high probability bound on the operator norm of En. (Recall En =
(ϵ1, . . . , ϵn)

T .) In particular, we prove a bound for two settings — a looser bound (in terms of
constants) which holds when the noise variables ϵn are assumed to be subGaussian, and a tighter,
more practically relevant bound that holds when ϵn are assumed to be bounded.

Lemma B.3 (Covariance Noise Bound). Let (ϵn)n≥1 be a sequence of independent, mean zero
random vectors in Rd such that ∥Eϵnϵ⊤n ∥op ≤ γ for all n ≥ 1. Let δ ∈ (0, 1) be an arbitrary
confidence parameter. Then, with probability at least 1− δ, simultaneously for all n ≥ 1 we have

∥En∥2op ≤
{
β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ nγ when Assumption 3.1 holds

3
2

√
nCdγℓδ(n) +

7
3Cdℓδ(n) + nγ when Assumption 3.2 holds.

where ℓδ is as defined in Lemma A.2, β = 32σ2e2, and N = 17d is an upper bound on the
1/8-covering number of Sd−1.

Proof. Observe the following basic chain of reasoning.

∥En∥2op = ∥E⊤
n En∥op ≤ ∥E⊤

n En − EE⊤
n En∥op + ∥EE⊤

n En∥op.

Now, both Assumption 3.1 and 3.2 imply that ∥E[ϵnϵ⊤n ]∥op ≤ γ for all n ≥ 1. Consequently, noting
that E⊤

n En =
∑n

m=1 ϵmϵ
⊤
m, we have that

∥EE⊤
n En∥op ≤

n∑
m=1

∥Eϵmϵ⊤m∥op ≤ nγ.
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Likewise, we have, applying Lemma A.3 in the case the ϵn satisfy the subGaussian assumption and
Lemma A.4 in the case the noise satisfies the bounded assumption, that, with probability at least
1− δ, simultaneously for all n ≥ 1,

∥E⊤
n En − EE⊤

n En∥op ≤
{
β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
when Assumption 3.1 holds

3
2

√
nCdγℓδ(n) +

7
3Cdℓδ(n) when Assumption 3.2 holds.

Adding these two lines of reasoning together yields the desired conclusion.

We can now apply Lemma B.3 to bound the rate at which P̂n, the projection operator onto the learned
subspace at time n, converges to the projection operator P onto the true, low-dimensional subspace.

Lemma B.4 (Projection Convergence). Let P̂n denote the projection operator onto the learned
subspace. Further, let P denote the projection operator onto the true unknown subspace W ∗. Assume
rank(Xn0

) = r for some n0 ≥ 1. Then, for any δ ∈ (0, 1), we have with probability at least 1− δ,
simultaneously for all n ≥ n0,

∥P̂n −P∥2op ≤


4β(3

√
nℓδ/2N (n)+5ℓδ/2N (n))+4nγ

σr(Xn)2
when Assumption 3.1 holds

6
√

nCdγℓδ(n)+
14
3 Cdℓδ(n)+4nγ

σr(Xn)2
when Assumption 3.2 holds.

Proof. We write the singular value decompositions of Zn and Xn respectively as

Zn = ÛnΣ̂nV̂
⊤
n and Xn = qUn

qΣn
qV⊤

n .

Since we have assumed rank(Xn0) = r for some n0 ≥ 1, we have, for all n ≥ n0,

P̂n = V̂n,rV̂
T
n,r and P = qVn,r

qVT
n,r.

Now, applying Lemma B.2 and Lemma B.3 we have that, with probability at least 1−δ, simultaneously
for all n ≥ n0,∥∥∥P̂n −P

∥∥∥2
op

=
∥∥∥V̂n,rV̂

T
n,r − qVn,r

qVT
n,r

∥∥∥2
op

≤
4 ∥Xn − Zn∥2op

σr(Xn)2

=
4∥En∥2op
σr(Xn)2

≤


4β(3

√
nℓδ/2N (n)+5ℓδ/2N (n))+4nγ

σr(Xn)2
when Assumption 3.1 holds

6
√

nCdγℓδ(n)+
14
3 Cdℓδ(n)+4nγ

σr(Xn)2
when Assumption 3.2 holds.

This proves the desired result.

We can obtain the following empirical version of Lemma B.4. The proof of the following is identical—
the only difference is that, in the application of Wedin’s theorem (Lemma B.2), we put the singular
values of Zn is the denominator instead of Xn. This inequality is, in practice, more useful in
computing confidence bounds, as the singular values of Zn are computable, whereas the singular
values of Xn are not.

Lemma B.5 (Projection Convergence). Let P̂n denote the projection operator onto the learned
subspace. Further, let P denote the projection operator onto the true unknown subspace W ∗. Assume
rank(Xn0

) = r for some n0 ≥ 1. Then, for any δ ∈ (0, 1), we have with probability at least 1− δ,
simultaneously for all n ≥ n0,

∥P̂n −P∥op ≤


4β(3

√
nℓδ/2N (n)+5ℓδ/2N (n))+4nγ

(σr(Zn)−σr+1(Zn))2
when Assumption 3.1 holds

6
√

nCdγℓδ(n)+
14
3 Cdℓδ(n)+2nγ

(σr(Zn)−σr+1(Zn))2
when Assumption 3.2 holds.
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What remains is to provide a concentration inequality bounding the deviations between the singular
values of the noisy covariate matrix Zn and the true, low rank covariate matrix Xn. We have the
following inequality.

Lemma B.6. Let δ ∈ (0, 1) be arbitrary. Then with probability at least 1−δ we have, simultaneously
for all i ∈ [r] and n ≥ 1,

|σi(Zn)− σi(Xn)|2 ≤
{
β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ nγ when Assumption 3.1 holds

3
2

√
nCdγℓδ(n) +

7
3Cdℓδ(n) + nγ when Assumption 3.2 holds.

In addition, on the same probability at least 1− δ event, for all n ≥ 1 such that snrn ≥ 2, we have

σr(Xn)

2
≤ σr(Zn) ≤

3σr(Xn)

2
.

Note that the same holds if snrn is replaced with the action-specific signal to noise ratio snrn(a).

Proof. By Lemma B.1, we know that for any i ∈ [r],

|σi(Zn)− σi(Xn)| ≤ ∥Zn −Xn∥op = ∥En∥op .

Thus, applying Lemma B.3 yields the first part of the theorem.

Now, suppose snrn ≥ 2. Let U2
n denote either the first or second line of the already-shown inequality

(depending on whether Assumption 3.1 or Assumption 3.2 holds). Then with probability at least
1− δ,

σi(Zn) ≥ σi(Xn)− Un

= σi(Xn)− σi(Xn)
Un

σi(Xn)

≥ σi(Xn)− σi(Xn)
Un

σr(Xn)

= σi(Xn)− σi(Xn)
1

snrn

≥ σi(Xn)

2
.

C Convergence results for regression in the true subspace

In this section, we construct confidence ellipsoids bounding the error between qθn(a) and θ(a), where

qθn(a) := qVn(a)
−1

qZn(a)
⊤Yn(a),

i.e. qθn(a) is the estimate of θ(a) given access to the true, underlying subspace W ∗. While the learner
never has direct access to W ∗, the quantity qθn(a) proves useful in bounding ∥θ̂n(a)− θ(a)∥22, the ℓ2
error between the PCR estimate of θ(a) and θ(a) itself. In other words, the bounds proved in this
section provide a theoretical tool for understanding the convergence of PCR in adaptive settings. The
main lemma in this appendix is the following.

Lemma C.1 (Error bound in true subspace). Let δ ∈ (0, 1) be an arbitrary confidence parameter.
Then, with probability at least 1− 2δ, simultaneously for all a ∈ [A] and n ≥ 1, we have∥∥∥qVn(a)

1/2
(

qθn(a)− θ(a)
)∥∥∥2

2
≤ 4ρL2 + 8η2

[
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

)]
+ 2L2

{
β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ nγ when Assumption 3.1 holds

3
2

√
nCdγℓδ(n) +

7
3Cdℓδ(n) + nγ when Assumption 3.2 holds.

where β, ℓδ , and N are as defined in Lemma A.3 and A.4.
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To make the proof of the above lemma more modular, we introduce several lemmas. The first of these
lemmas simply provides an alternative, easier-to-bound representation of the difference (or error)
vector qθn(a)− θ(a)

Lemma C.2. For any n ∈ [N ] and a ∈ [A], we have

qθn(a)− θ(a) = qVn(a)
−1

qZn(a)
⊤Ξn(a) + qVn(a)

−1
qZn(a)

⊤
qEn(a)θ(a)− ρqVn(a)

−1θ(a).

Proof. A straightforward computation yields

qθn(a)− θ(a) = qVn(a)
−1

qZn(a)
⊤Yn(a)− θ(a)

= qVn(a)
−1

qZn(a)(Xn(a)θ(a) + Ξn(a))− θ(a)

= qVn(a)
−1

qZn(a)Xn(a)θ(a) + qVn(a)
−1

qZn(a)
⊤Ξn(a)− θ(a)

± qVn(a)
−1

qZn(a)qEn(a)θ(a)± ρqVn(a)
−1θ(a)

= qVn(a)
−1
[

qZn(a)
⊤(Xn(a) + qEn(a)) + ρId

]
θ(a) + qVn(a)

−1
qZn(a)

⊤Ξn(a)− θ(a)

− qVn(a)
−1

qZn(a)qEn(a)θ(a)− ρqVn(a)
−1θ(a)

= qVn(a)
−1
[

qZn(a)
⊤

qZn(a) + ρId

]
θ(a) + qVn(a)

−1
qZn(a)

⊤Ξn(a)− θ(a)

− qVn(a)
−1

qZn(a)qEn(a)θ(a)− ρqVn(a)
−1θ(a)

= qVn(a)
−1

qZn(a)
⊤Ξn(a)− qVn(a)

−1
qZn(a)

⊤
qEn(a)θ(a)− ρqVn(a)

−1θ(a),

which proves the desired result.

We leverage the following technical lemma in bounding the determinant of qVn(a), the projection of
the covariance matrix Vn(a) onto the true, unknown subspace W ∗.

Lemma C.3 (Determinant-Trace Inequality). Let A ∈ Rd×d be a positive-semidefinite matrix of
rank r. Then, for any ρ > 0, we have

log det(Id + ρ−1A) ≤ r log

(
1 +

σ1(A)

ρ

)
.

Proof. We have

log det(Id + ρ−1A) = r log
[
det(Id + ρ−1A)1/r

]
= r log

r∏
i=1

(
1 + ρ−1σi(A)

)1/r
≤ r log

(
r∑

i=1

1 + ρ−1σi(A)

r

)

≤ r log

(
1 +

σ1(A)

ρ

)
.

Lemma C.4. Let A ∈ Rt×d be a matrix, and let ρ > 0 be arbitrary. Suppose A has 1 ≤ k ≤ t ∧ d
non-zero singular values. Then,∥∥∥(ATA+ ρId)

−1/2AT
∥∥∥
op

≤ σk(A)√
σk(A)2 + ρ

≤ 1

Proof. Let us write the singular value decomposition of A as

A = UΣVT = UkΣkV
T
k ,
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where the second equality follows from the fact that A has exactly k non-zero singular values. We
have the equality

ATA+ ρId = V(Σ2
k + ρIk)V

T .

Thus, we see ∥∥∥(ATA+ ρId)
−1/2AT

∥∥∥
op

=
∥∥∥Vk(Σ

2
k + ρIk)

−1/2VT
k VkΣkU

T
k

∥∥∥
op

=
∥∥∥(Σ2

k + ρIk)
−1/2Σk

∥∥∥
op

=
k

max
i=1

σi(A)√
ρ+ σi(A)2

≤ σk(A)√
ρ+ σk(A)2

.

With the aforementioned technical lemmas, alongside the time-uniform martingale bounds presented
in Appendix A and the singular value concentration results proved in Appendix B, we can now prove
Lemma C.1.

Proof of Lemma C.1. First, by Lemma C.2, we see that we have, for any a ∈ [A] and n ≥ 1,
qθn(a)− θ(a) = qVn(a)

−1
qZn(a)

⊤Ξn(a) + qVn(a)
−1

qZn(a)
⊤

qEn(a)θ(a)− ρqVn(a)
−1θ(a).

With this decomposition in hand, we can apply the parallelogram inequality (∥x− y∥22 + ∥x+ y∥22 ≤
2∥x∥22 + 2∥y∥22) twice to see that∥∥∥qVn(a)

1/2
(

qθn(a)− θ(a)
)∥∥∥2

2

≤ 4
∥∥∥qVt(a)

−1/2
qZn(a)

⊤Ξn(a)
∥∥∥2
2
+ 4ρ2

∥∥∥qVn(a)
−1/2θ(a)

∥∥∥2
2
+ 2

∥∥∥qVn(a)
−1/2

qZn(a)
⊤

qEn(a)θ(a)
∥∥∥2
2

≤ 4
∥∥∥qVn(a)

−1/2
qZn(a)

⊤Ξn(a)
∥∥∥2
2
+ 4ρL2 + 2

∥∥∥qVn(a)
−1/2

qZn(a)
⊤

qEn(a)θ(a)
∥∥∥2
2
.

We bound the first and last terms separately. Applying Lemma A.1 for each a ∈ [A] and taking a
union bound over actions yields that, with probability at least 1− δ, simultaneously for all n ≥ 1 and
a ∈ [A], ∥∥∥qVn(a)

−1/2
qZn(a)

⊤Ξn(a)
∥∥∥
2
≤ η

√√√√2 log

(
A

δ

√
det
(
ρ−1

qVn(a)
))

≤ η

√√√√2

[
log

(
A

δ

)
+ r log

(
1 +

σ1(qZn(a))2

ρ

)]

≤ η

√√√√2

[
log

(
A

δ

)
+ r log

(
1 +

σ1(Ẑn(a))2

ρ

)]
,

where the second inequality comes from applying Lemma C.3 and the third inequality comes from
the fact that σi(Ẑn(a)) ≥ σi(qZn(a)) for all i ∈ [r].

Next, we bound the final term in the above expansion. Observe that∥∥∥qVn(a)
−1/2

qZn(a)
⊤

qEn(a)θ(a)
∥∥∥
2
≤
∥∥∥qVn(a)

−1/2
qZn(a)

⊤
∥∥∥
op

∥∥∥qEn(a)
∥∥∥
op

∥θ(a)∥2 .

First, note that ∥θ(a)∥2 ≤ L by assumption. Next, Lemma C.4 yields∥∥∥qVn(a)
−1/2

qZn(a)
⊤
∥∥∥
op

≤ 1.

Lastly, note that by Lemma B.3, we have that, with probability at least 1− δ, simultaneously for all
n ≥ 1

∥qEn(a)∥2op ≤ ∥En∥2 ≤
{
β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ nγ when Assumption 3.1 holds

3
2

√
nCdγℓδ(n) +

7
3Cdℓδ(n) + nγ when Assumption 3.2 holds.

This proves the desired inequality.
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D Technical lemmas for Theorem 4.4

In this appendix, we present several additional technical lemmas that are needed for bounding terms
in the main theorem.
Lemma D.1. Assuming the setup of Theorem 4.4, we have, for all n ≥ 1,∥∥∥Ẑn(a)θ̂n(a)−Xn(a)θ(a)

∥∥∥2
2
≤ 8

∥∥∥qVn(a)
1/2
(

qθn(a)− θ(a)
)∥∥∥2

2
+6 ∥Ξn(a)∥22+8

∥∥∥Ẑn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

Proof. A relatively straightforward computation yields∥∥∥Ẑn(a)θ̂n(a)−Xt(a)θ(a)
∥∥∥2
2
=
∥∥∥Ẑn(a)θ̂n(a)−Xn(a)θ(a) + Ξn(a)− Ξn(a)

∥∥∥2
2

≤ 2
∥∥∥Ẑn(a)θ̂n(a)−Yn(a)

∥∥∥2
2
+ 2 ∥Ξn(a)∥22

≤ 2
∥∥∥Ẑn(a)qθn(a)−Yn(a)

∥∥∥2
2
+ 2 ∥Ξn(a)∥22

≤ 4
∥∥∥Ẑn(a)qθn(a)−Xn(a)θ(a)

∥∥∥2
2
+ 6 ∥Ξn(a)∥22

≤ 8
∥∥∥Ẑn(a)

(
qθn(a)− θ(a)

)∥∥∥2
2
+ 6 ∥Ξn(a)∥22 + 8

∥∥∥Ẑn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

= 8
∥∥∥Ẑn(a)P

(
qθn(a)− θ(a)

)∥∥∥2
2
+ 6 ∥Ξn(a)∥22 + 8

∥∥∥Ẑn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

≤ 8
∥∥∥qZn(a)

(
qθn(a)− θ(a)

)∥∥∥2
2
+ 6 ∥Ξn(a)∥22 + 8

∥∥∥Ẑn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

≤ 8
∥∥∥qVn(a)

1/2
(

qθn(a)− θ(a)
)∥∥∥2

2
+ 6 ∥Ξn(a)∥22 + 8

∥∥∥Ẑn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

where we apply the the parallelogram inequality to obtain the first and third inequalities. The second
inequality follows from the characterization of ridge regression in Fact F.2 and the fact ρ is chosen
sufficiently small.

Lemma D.2. Assuming the setup of Theorem 4.4, we have, for all n ≥ 1,∥∥∥Xn(a)θ(a)− Ẑn(a)θ(a)
∥∥∥2
2
≤ 2L2σ1(Zn(a))

2
∥∥∥P− P̂n(a)

∥∥∥2
op

+ 2L2 ∥En∥2op

Proof. A relatively simple computation yields∥∥∥Xn(a)θ(a)− Ẑn(a)θ(a)
∥∥∥2
2
=
∥∥∥Xn(a)θ(a)− qZn(a)θ(a) + qZn(a)θ(a)− Ẑn(a)θ(a)

∥∥∥2
2

≤ 2
∥∥∥qZn(a)θ(a)− Ẑn(a)θ(a)

∥∥∥2
2
+ 2

∥∥∥qZn(a)θ(a)−Xn(a)θ(a)
∥∥∥2
2

= 2
∥∥∥qZn(a)θ(a)− Ẑn(a)θ(a)

∥∥∥2
2
+ 2

∥∥∥qEn(a)θ(a)
∥∥∥2
2

= 2
∥∥∥Zn(a)(P− P̂n(a))θ(a)

∥∥∥2
2
+ 2

∥∥∥qEn(a)θ(a)
∥∥∥2
2

≤ 2L2σ1(Zn(a))
2
∥∥∥P− P̂n(a)

∥∥∥2
op

+ 2L2
∥∥∥qEn

∥∥∥2
op
,

where we have applied the parallelogram inequality to obtain the first inequality.

Lemma D.3. Suppose (ξn)n≥1 is a sequence of independent, η-subGaussian random variables.
Then, for any δ ∈ (0, 1), we have simultaneously for all n ≥ 1

∥Ξn∥22 ≤ 6η2
√

2nℓδ(n) + 10η2ℓδ(n) + nα,

where we recall Ξn := (ξ1, . . . , ξn)
⊤.
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Proof. First, observe that by the appendix of Honorio and Jaakkola [49], since ξn is η-subGaussian,
ξ2n − Eξ2n is (4

√
2η2, 4η2)-subExponential, and thus by our discussion in Appendix A ξ2n − Eξ2n is

also (4
√
2η2, 4η2)-subGamma. Further, by Assumption 3.3, we have

∑n
m=1 Eξ2m ≤ nα. Recall that

Lemma A.2 yields that, with probability at least 1− δ,
n∑

m=1

ξ2m − Eξ2m ≤ 6η2
√

2nℓδ(n) + 10η2ℓδ(n).

Piecing everything together, we have that

∥Ξn∥22 =

n∑
m=1

ξ2m

=
∑
m=1

ξ2m − Eξ2m +

n∑
m=1

Eξ2m

≤ 6η2
√

2nℓδ(n) + 10η2ℓδ(n) + nα.

We now mention the finishing steps in proving Theorem 4.4, carrying over from where the proof in
the paper ended. We see, with the previously addressed inequalities that, with probability at least
1−O(Aδ), simultaneously for all n ≥ n0 and a ∈ [A],∥∥∥θ̂n(a)− θ(a)

∥∥∥2
2
≤ 6L2U2

n

σr(Zn(a))2
+

2

σr(Zn(a))2
(T1 + T2)

=
6L2U2

n

σr(Zn(a))2
+

2

σr(Zn(a))2

[
32ρL2 + 64η2

(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn)
2

ρ

))

+ 16L2U2
n + 6η2

√
2cn(a)ℓδ(cn(a)) + 10η2ℓδ(cn(a)) + 6cn(a)α++

108L2σ1(Zn(a))
2U2

n

σr(Zn(a))2
+ 18L2U2

n

]

=
6L2

ŝnrn(a)2
+

L2

ŝnrn(a)2

[
68 +

216σ1(Zn(a))
2

σr(Zn(a))2

]
+

2

σr(Zn(a))2

[
32ρL2

+ 64η2
(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

))
+ 6η2

√
2cn(a)ℓδ(cn(a)) + 10η2ℓδ(cn(a)) + 6cn(a)α

]

E Proof of Theorem 4.1

In this section, we prove Theorem 4.1. All that is required in proving this bound is simplifying the
results of Theorem 4.4, given we allow ourselves slack to control the bound up to universal constants
and poly-logarithmic factors.

Proof of Theorem 4.1. Recall that by Theorem 4.4, we have with probability at least 1 − O(Aδ),
simultaneously for all n ≥ n0∥∥∥θ̂n(a)− θ(a)

∥∥∥2
2
≤ L2

ŝnrn(a)2
[
74 + 216κ(Zn(a))

2
]
+

2errn(a)

σr(Zn(a))2
.

where in the above we define the “error” term errn(a) to be

errn(a) := 24ρL2 + 64η2
(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

))
︸ ︷︷ ︸

T1

+ 6η2
√
2cn(a)ℓδ(cn(a)) + 10η2ℓδ(cn(a)) + 6cn(a)α︸ ︷︷ ︸

T2

.
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First, by the second part of Lemma B.6 coupled with the assumption that snrn(a) ≥ 2 for all
n ≥ n0 and a ∈ [A], we have that snrn(a) = Θ(ŝnrn(a)). Further, by this same result, we
have that κ(Zn(a)) = Θ(κ(Xn(a))). From this, it is clear that L2

ŝnrn(a)2

[
74 + 216κ(Zn(a))

2
]
=

O
(

1
snrn(a)2

κ(Xn(a))
2
)

. What remains is to show that 2errn(a)

σr(Ẑn(a))2
= Õ

(
1

snrn(a)2

)
. To this end,

it suffices to show that errn(a) = Õ(n + d). But this is trivial, as it is clear that T1 = Õ(1) and
T2 = Õ(cn(a)) = Õ(n+ d). Thus, we have proved the desired result.

F Equivalent formulations of ridge regression

We begin by discussing properties and equivalent formulations of ridge regression, as the estimate
produced by (regularized) PCR, θ̂n(a), is precisely the ridge estimate of the unknown parameter θ(a)
when restricted the subspace associated with the projection matrix P̂n.

Fact F.1 (Ridge regression formulation). Let Ŵn be the subspace associated with the projection
matrix P̂n. Then, θ̂n(a) satisfies

θ̂n(a) = arg min
θ∈Ŵn

{
∥Zn(a)θ −Yn(a)∥22 +

ρ

2
∥θ∥22

}
.

That is, θ̂n(a) is the solution to ρ-regularized ridge regression when estimates are restricted to Ŵn.

Ridge regression may also be represented in the following, constrained optimization format.

Fact F.2 (Constrained formulation of ridge regression). Let Ŵn be the subspace associated with
the projection matrix P̂n. Then, θ̂n(a) satisfies

θ̂n(a) = arg min
θ∈Ŵn:∥θ∥2≤Rρ

∥Zn(a)θ −Yn(a)∥22 ,

where Rρ is some constant only depending on ρ.

The larger ρ is, the smallerRρ must become. Since we know ∥θ(a)∥2 ≤ L, for all a ∈ [A], throughout
the main body and appendix of this paper, we assume that ρ is chosen to be sufficiently small such
that our estimates θ̂n(a) satisfy ∥θ̂n(a)∥2 ≤ L, i.e. we select ρ > 0 satisfying Rρ ≤ L.

G Proofs for application to panel data

Lemma G.1 (Reformulation of average expected post-intervention outcome). Under Assump-
tion 5.1 and Assumption 5.2, the average expected post-intervention outcome of unit n under
intervention a may be written as

E[Ȳ (a)
n,post] =

1

T − T0
· ⟨θ(a),E[Yn,pre]⟩,

for some slope vector θ(a) ∈ RT0 .

Proof. Similar observations have been made in [45, 75]. For completeness, we include the proof
here as well. From Assumption 5.1 and Definition 5.3,

E[Ȳ (a)
n,post] =

1

T − T0
·

〈
T∑

t=T0+1

U
(a)
t , Vn

〉
.

Applying Assumption 5.2, we see that

E[Ȳ (a)
n,post] =

1

T − T0
·

〈
T0∑
t=1

θ(a)t · U (0)
t , Vn

〉
for some θ(a) = [θ1(a), . . . , θT0

(a)]T ∈ RT0 .
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The following lemma follows straightforwardly from translating the notation of Theorem 4.4 to the
panel data setting. Note that in the panel data setting, d = T0, η = σ

√
T − T0, and α = σ2(T − T0).

Additionally, Assumption 3.1 is satisfied with γ = σ2.

Lemma G.2. Let δ ∈ (0, 1) be an arbitrary confidence parameter. Let ρ > 0 be chosen to be
sufficiently small, as detailed in Appendix F. Further, assume that there is some n0 ≥ 1 such
that rank(Xn0

) = r and snrn ≥ 2 for all n ≥ n0. Then, with probability at least 1 − O(Aδ),
simultaneously for all actions a ∈ [A] and time steps n ≥ n0, we have∥∥∥θ̂n(a)− θ(a)

∥∥∥2
2
≤ L2

ŝnrn(a)2
[
74 + 216κ(Zn(a))

2
]
+

2(T − T0)errn(a)

σr(Zn(a))2
,

where κ(Zn(a)) :=
σ1(Zn(a))
σr(Zn(a))

, ∥θ(a)∥2 ≤ L, and in the above we define the “error” term errn(a)

to be

errn(a) :=
32ρL2

T − T0
+ 64σ2

(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

))
+ 6σ2

√
2cn(a)ℓδ(cn(a)) + 10σ2ℓδ(cn(a)) + 6σ2cn(a).

Theorem G.3 (Prediction error of average expected post-intervention outcome). Let δ ∈ (0, 1)
be an arbitrary confidence parameter and ρ > 0 be chosen to be sufficiently small, as detailed in
Appendix F. Further, assume that Assumptions 5.1 and 5.2 are satisfied, there is some n0 ≥ 1 such
that rank(Xn0) = r, and snrn(a) ≥ 2 for all n ≥ n0. Then with probability at least 1 − O(Aδ),
simultaneously for all interventions a ∈ {0, . . . , A− 1}

|ÊȲ (a)
n,post − EȲ (a)

n,post| ≤
3
√
T0

ŝnrn(a)

(
L(

√
74 + 12

√
6κ(Zn(a)))

(T − T0) · ŝnrn(a)
+

√
2errn(a)√

T − T0 · σr(Zn(a))

)

+
2L

√
24T0

(T − T0) · ŝnrn(a)
+

12Lκ(Zn(a))
√
3T0

(T − T0) · ŝnrn(a)
+

2
√
errn(a)√

T − T0 · σr(Zn(a))

+
Lσ
√
log(A/δ)√
T − T0

+
Lσ
√

74 log(A/δ)

ŝnrn(a)
√
T − T0

+
12σκ(Zn(a))

√
6 log(A/δ)

ŝnrn(a)
√
T − T0

+
σ
√
2errn(a) log(A/δ)

σr(Zn(a))
,

where ÊȲ (a)
n,post :=

1
T−T0

· ⟨θ̂n(a), Yn,pre⟩ is the estimated average post-intervention outcome for
unit n under intervention a.

Proof.

ÊȲ (a)
n,post − EȲ (a)

n,post :=
1

T − T0
(⟨θ̂n(a), Yn,pre⟩ − ⟨θ(a), Yn,pre⟩)

=
1

T − T0
(⟨θ̂n(a)− θ(a),EYn,pre⟩︸ ︷︷ ︸

T1

+ ⟨θ(a), ϵn,pre⟩︸ ︷︷ ︸
T2

+ ⟨θ̂n(a)− θ(a), ϵn,pre⟩︸ ︷︷ ︸
T3

)

We begin by bounding T1. By assumption we have that EYn,pre ∈ span(EY1,pre, . . . ,EYn−1,pre)
for all n ≥ n0. Therefore,

⟨θ̂n(a)− θ(a),EYn,pre⟩ = ⟨θ̂n(a)− θ(a),EYn,preP⟩

= ⟨Pθ̂n(a)− θ(a),EYn,pre⟩

≤ ∥EYn,pre∥2∥(P− P̂n(a) + P̂n(a))(θ̂n(a)− θ(a))∥2
≤
√
T0 · ∥(P− P̂n(a))(θ̂n(a)− θ(a))∥2︸ ︷︷ ︸

T1.1

+
√
T0 · ∥P̂n(a)(θ̂n(a)− θ(a))∥2︸ ︷︷ ︸

T1.2
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By Lemma B.4 and the second part of Lemma B.6, term T1.1 may be upper-bounded as

T1.1 ≤
√
T0 · ∥P− P̂n(a)∥op · ∥θ̂n(a)− θ(a)∥2

≤
√
T0 ·

√
4β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ 4nγ

σr(Xn(a))
· ∥θ̂n(a)− θ(a)∥2

≤
√
T0 ·

√
4β
(
3
√
nℓδ/2N (n) + 5ℓδ/2N (n)

)
+ 4nγ

2
3σr(Zn(a))

· ∥θ̂n(a)− θ(a)∥2

=
3
√
T0

ŝnrn(a)
· ∥θ̂n(a)− θ(a)∥2

Applying Lemma G.2, we see that

1

T − T0
T1.1 ≤ 3

√
T0

(T − T0) · ŝnrn(a)

(
L2

ŝnrn(a)2
[
74 + 216κ(Zn(a))

2
]
+

2(T − T0)errn(a)

σr(Zn(a))2

)1/2

≤ 3
√
T0

(T − T0) · ŝnrn(a)

(
L

ŝnrn(a)

√
74 + 216κ(Zn(a))2 +

√
2(T − T0)errn(a)

σr(Zn(a))

)

=
3
√
T0

ŝnrn(a)

(
L(

√
74 + 12

√
6κ(Zn(a)))

(T − T0) · ŝnrn(a)
+

√
2errn(a)√

T − T0 · σr(Zn(a))

)
.

Turning our attention to T1.2 and using a line of reasoning nearly identical to equations (1), (2), (3) in
the proof of Theorem 4.4, we get that with probability at least 1−O(Aδ),

1

T − T0
T1,2 ≤ 2

√
T0

(T − T0) · σr(Zn(a))

(∥∥∥Ẑn(a)θ̂n(a)−Xn(a)θ(a)
∥∥∥2
2
+
∥∥∥Xn(a)θ(a)− Ẑn(a)θ(a)

∥∥∥2
2

)1/2

≤ 2
√
T0

(T − T0) · σr(Zn(a))

(
32ρL2 + 64σ2(T − T0)

(
log

(
A

δ

)
+ r log

(
1 +

σ1(Zn(a))
2

ρ

))
+ 16L2U2

n + 6σ2(T − T0)
√
2cn(a)ℓδ(cn(a)) + 10σ2(T − T0)ℓδ(cn(a))

+ 6σ2(T − T0)cn(a) +
108L2σ1(Zn(a))

2U2
n

σr(Zn(a))2
+ 18L2U2

n

)1/2

=
2
√
T0

(T − T0) · σr(Zn(a))

(
34L2U2

n +
108L2σ1(Zn(a))

2U2
n

σr(Zn(a))2
+ (T − T0)errn(a)

)1/2

≤ 2LUn

√
24T0

(T − T0) · σr(Zn(a))
+

12Lκ(Zn(a))Un

√
3T0

(T − T0) · σr(Zn(a))
+

2
√

errn(a)√
T − T0 · σr(Zn(a))

=
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√
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(T − T0) · ŝnrn(a)
+

12Lκ(Zn(a))
√
3T0

(T − T0) · ŝnrn(a)
+

2
√
errn(a)√

T − T0 · σr(Zn(a))

Putting our bounds for T1.1 and T1.2 together, we get that

⟨θ̂n(a)− θ(a),EYn,pre⟩
T − T0

≤ 3
√
T0

ŝnrn(a)

(
L(

√
74 + 12

√
6κ(Zn(a)))

(T − T0) · ŝnrn(a)
+

√
2errn(a)√

T − T0 · σr(Zn(a))

)

+
2L

√
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(T − T0) · ŝnrn(a)
+

12Lκ(Zn(a))
√
3T0

(T − T0) · ŝnrn(a)
+

2
√
errn(a)√

T − T0 · σr(Zn(a))

Next we bound T2. Note that ⟨θ(a), ϵn,pre⟩ is a ∥θ(a)∥2
√
T − T0σ-subGaussian random variable.

Therefore via a Hoeffding bound, simultaneously for all actions a ∈ [A], with probability at least
1−O(Aδ),

⟨θ(a), ϵn,pre⟩
T − T0

≤ Lσ

√
log(A/δ)

T − T0
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Similarly for T3, ⟨θ̂n(a)−θ(a), ϵn,pre⟩ is a ∥θ̂n(a)−θ(a)∥2
√
T − T0σ-subGaussian random variable

which, after applying a Hoeffding bound and our bound on ∥θ̂n(a)− θ(a)∥2, becomes

⟨θ̂n(a)− θ(a), ϵn,pre⟩
T − T0

≤ σ

√
log(A/δ)
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(
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[
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2
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=
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6 log(A/δ)
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√
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+
σ
√
2errn(a) log(A/δ)
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Putting everything together, we see that with probability at least 1−O(Aδ),

|ÊȲ (a)
n,post − EȲ (a)

n,post| ≤
3
√
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ŝnrn(a)

(
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√
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√
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(T − T0) · ŝnrn(a)
+

√
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)

+
2L

√
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+
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√
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+

2
√
errn(a)√
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√
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√
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Applying Assumption 4.2, the expression simplifies to

|ÊȲ (a)
n,post − EȲ (a)

n,post| = Õ

(
r
√
T0√

T0 ∧ n

(
Lr

(T − T0)
√
T0 ∧ n

+
r√

(T − T0)(T0 ∧ n)

)

+
Lr

√
T0

(T − T0)
√
T0 ∧ n

+
Lr

√
T0

(T − T0)
√
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+
r√
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+
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+

Lr√
(T − T0)(T0 ∧ n)

+
r√

(T − T0)(T0 ∧ n)
+

r√
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)
.

Under the assumptions that T0 ≤ 1
2T and r ≤

√
T0 ∧ n, we get that

|ÊȲ (a)
n,post − EȲ (a)

n,post| = Õ

(
L√

T − T0
+

r√
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+
r(L ∨ 1)√
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)
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