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Abstract

A Bayesian pseudocoreset is a compact synthetic dataset summarizing essential
information of a large-scale dataset and thus can be used as a proxy dataset for
scalable Bayesian inference. Typically, a Bayesian pseudocoreset is constructed
by minimizing a divergence measure between the posterior conditioning on the
pseudocoreset and the posterior conditioning on the full dataset. However, eval-
uating the divergence can be challenging, particularly for the models like deep
neural networks having high-dimensional parameters. In this paper, we propose
a novel Bayesian pseudocoreset construction method that operates on a function
space. Unlike previous methods, which construct and match the coreset and full
data posteriors in the space of model parameters (weights), our method constructs
variational approximations to the coreset posterior on a function space and matches
it to the full data posterior in the function space. By working directly on the
function space, our method could bypass several challenges that may arise when
working on a weight space, including limited scalability and multi-modality issue.
Through various experiments, we demonstrate that the Bayesian pseudocoresets
constructed from our method enjoys enhanced uncertainty quantification and better
robustness across various model architectures.

1 Introduction

Deep learning has achieved tremendous success, but its requirement for large amounts of data makes
it often inefficient or infeasible in terms of resources and computation. To enable continuous learning
like humans, it is necessary to learn from a large number of data points in a continuous manner,
which requires the ability to discern and retain important information. This motivates the learning of
a coreset, a small dataset that is informative enough to represent a large dataset.

On the other hand, the ability to incorporate uncertainties into predictions is essential for real-world
applications, as it contributes to the safety and reliability of a model. One approach to achieving this
is by adopting a Bayesian framework, where a prior distribution is established to represent our initial
belief about the models. This belief is then updated through inference of posterior distributions based
on the acquired knowledge. Although this approach shows promise, scalability becomes a concern
when working with large-scale datasets during Bayesian inference. To address this issue, a potential
solution is to employ a Bayesian coreset. A Bayesian coreset is a small subset of the original dataset
where the posterior conditioning on it closely approximates the original posterior conditioning on the
full dataset. Once the Bayesian coreset is trained, it can be utilized as a lightweight proxy dataset for
subsequent Bayesian inference or as a replay buffer for continual learning or transfer learning.

A Bayesian coreset is constructed by selecting a subset from a large dataset. However, recent research
suggests that this approach may not be effective, especially in high-dimensional settings [19]. Instead,
an alternative method of synthesizing a coreset, wherein the coreset is learned as trainable parameters,
has been found to significantly enhance the quality of the approximation. This synthesized coreset is
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referred to as a Bayesian pseudocoreset. The process of learning a Bayesian pseudocoreset involves
minimizing a divergence measure between the posterior of the full dataset and the posterior of the
pseudocoreset. However, learning Bayesian pseudocoresets is generally challenging due to the
intractability of constructing both the full dataset posterior and the pseudocoreset posterior, as well as
the computation of the divergence between them, which necessitates approximation. Consequently,
existing works on Bayesian pseudocoresets have primarily focused on small-scale problems [19, 8, 20,
21]. Recently, Kim et al. [15] introduced a scalable method for constructing Bayesian pseudocoresets
using variational Gaussian approximation for the posteriors and minimizing forward KL divergence.
Although their method shows promise, it still demands substantial computational resources for
high-dimensional models like deep neural networks.

In this paper, we present a novel approach to enhance the scalability of Bayesian pseudocoreset
construction, particularly for Bayesian neural networks (BNNs) with a large number of parameters.
Our proposed method operates in function space. When working with BNNs, it is common to define
a prior distribution on the weight space and infer the corresponding weight posterior distribution,
which also applies to Bayesian pseudocoreset construction. However, previous studies [31, 28] have
highlighted the challenge of interpreting weights in high-dimensional neural networks, making it
difficult to elicit meaningful prior distributions. Additionally, in high-dimensional networks, the loss
surfaces often exhibit a complex multimodal structure, which means that proximity in the weight
space does not necessarily imply proximity in the desired prediction variable [24, 30]. This same
argument can be applied to Bayesian pseudocoreset construction, as matching the full data and
pseudocoreset posteriors in the weight space may not result in an optimal pseudocoreset in terms of
representation power and computational scalability.

To be more specific, our method constructs a variational approximation to the pseudocoreset posteriors
in function space by linearization and variational approximation to the true posterior. Then we learn
Bayesian pseudocoreset by minimizing a divergence measure between the full data posterior and the
pseudocoreset posterior in the function space. Compared to the previous weight space approaches,
our method readily scales to the large models for which the weight space approaches were not able to
compute. Another benefit of function space matching is that it does not constrain the architectures of
the neural networks to be matched, provided that their inherited function space posteriors are likely
to be similar. So for instance, we can train with multiple neural network architectures simultaneously
with varying numbers of neurons or types of normalization layers, and we empirically observe that
this improves the architectural robustness of the learned pseudocoresets. Moreover, it has another
advantage that the posteriors learned from the Bayesian pseudocoreset in function space have better
out-of-distribution (OOD) robustness, similar to the previous reports showing the benefit of function
space approaches in OOD robustness [28].

In summary, this paper presents a novel approach to creating a scalable and effective Bayesian
pseudocoreset using function space variational inference. The resulting Bayesian pseudocoreset is
capable of being generated in high-dimensional image and deep neural network settings and has better
uncertainty quantification abilities compared to weight space variational inference. Additionally, it
has better architectural robustness. We demonstrate the efficiency of the function space Bayesian
pseudocoreset through the various experiments.

2 Background

2.1 Bayesian pseudocoresets

In this paper, we focus on probabilistic models for supervised learning problem. Let θ ∈ Θ be a
parameter, and let p(y |x, θ) be a probabilistic model indexed by the parameter θ. Given a set of
observations x := (xi)

n
i=1 and the set of labels y := (yi)

n
i=1 with each xi ∈ X and yi ∈ Y , we are

interested in updating our prior belief π0(θ) about the parameter to the posterior,

πx(θ) :=
π0(θ)

Z(y |x)

n∏
i=1

p(yi |xi, θ), Z(y |x) :=
∫
Θ

n∏
i=1

p(yi |xi, θ)π0(dθ). (1)

However, when the size of the dataset n is large, the computation of the posterior distribution can
be computationally expensive and infeasible. To overcome this issue, Bayesian pseudocoresets are
constructed as a synthetic dataset u = (uj)

m
j=1 with m ≪ n with the set of labels ỹ := (ỹj)

m
j=1
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where the posterior conditioning on it approximates the original posterior πx(θ).

πu(θ) =
π0(θ)

Z(ỹ |u)

m∏
j=1

p(ỹj |uj , θ), Z(ỹ |u) :=
∫
Θ

m∏
j=1

p(ỹj |uj , θ)π0(dθ). (2)

This approximation is made possible by solving an optimization problem that minimizes a divergence
measure D between the two posterior distributions 1

u∗ = argmin
u

D(πx, πu). (3)

In a recent paper [15], three variants of Bayesian pseudocoresets were proposed using different
divergence measures, namely reverse Kullback-Leibler divergence, Wasserstein distance, and forward
Kullback-Leibler divergence. However, performing both the approximation and the optimization in
the parameter space can be computationally challenging, particularly for high-dimensional models
such as deep neural networks.

2.2 Bayesian pseudocoresets in weight-space

Kim et al. [15] advocates using forward KL divergence as the divergence measure when constructing
Bayesian pseudocoresets, with the aim of achieving a more even exploration of the posterior distribu-
tion of the full dataset when performing uncertainty quantification with the learned pseudocoreset.
The forward KL objective is computed as,

DKL[πx∥πu] = logZ(ỹ |u)− logZ(y |x)

+ Eπx

[ n∑
i=1

log p(yi |xi, θ)

]
− Eπx

[ m∑
j=1

log p(ỹj |uj , θ)

]
.

(4)

The derivative of the divergence with respect to the pseudocoreset u is computed as

∇uDKL[πx∥πu] = Eπu

[
∇u

m∑
j=1

log p(ỹj |uj , θ)

]
−∇uEπx

[ m∑
j=1

log p(ỹj |uj , θ))

]
(5)

For the gradient, we need the expected gradients of the log posteriors that require sampling from the
posteriors πx and πu. Most of the probabilistic models do not admit simple closed-form expressions
for these posteriors, and it is not easy to simulate those posteriors for high-dimensional models. To
address this, Kim et al. [15] proposes to use a Gaussian variational distributions qu(θ) and qx(θ) to
approximate πx and πu whose means are set to the parameters obtained from the SGD trajectories,

qu(θ) = N (θ;µu,Σu), qx(θ) = N (θ;µx,Σx), (6)

where µu and µx are the maximum a posteriori (MAP) solutions computed for the dataset u and
x, respectively. Σu and Σx are covariances. The gradient, with the stop gradient applied to µu, is
approximated as,

∇u

S

S∑
s=1

 m∑
j=1

log p
(
ỹj |uj , sg(µu) + Σ1/2

u ε(s)u

)
−

m∑
j=1

log p
(
ỹj |uj , µx +Σ1/2

x ε(s)x

) . (7)

Here, ε(s)u and ε
(s)
x are i.i.d. standard Gaussian noises and S is the number of Monte-Carlo samples.

Expert trajectories Approximating the full data and coreset posteriors with variational distributions
as specified above requires µu and µx as consequences of running optimization algorithms untill
convergence. While this may be feasible for small datasets, for large-scale setting of our interest,
obtaining µu and µx from scratch at each iteration for updating u can be time-consuming. To alleviate
this, in the dataset distillation literature, Cazenavette et al. [7] proposed to use the expert trajectories,
the set of pretrained optimization trajectories constructed in advance to the coreset learning. Kim
et al. [15] brought this idea to Bayesian pseudocoresets, where a pool of pretrained trajectories are
assume to be given before pseudocoreset learning. At each step of pseudocoreset update, a checkpoint
θ0 from an expert trajectory is randomly drawn from the pool, and then µu and µx are quickly
constructed by taking few optimization steps from θ0.

1In principle, we should learn the (pseudo)labels ỹ as well, but for classification problem, we can simply fix
it as a constant set containing equal proportion of all possible classes. We assume this throughout the paper.
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3 Function space Bayesian pseudocoreset

3.1 Function space Bayesian neural networks

We follow the framework presented in Rudner et al. [29, 28] to define a Function-space Bayesian
Neural Network (FBNN). Let π0(θ) be a prior distribution on the parameter and gθ : X → Rd

be a neural network index by θ. Let h : Θ → (X → Rd) be a deterministic mapping from a
parameter θ to a neural network gθ. Then a function-space prior is simply defined as a pushforward
ν0(f) = h∗π0(f) := π0(h

−1(f)). The corresponding posterior is also defined as a pushforward
νx(f) = h∗πx(f) and so is the pseudocoreset posterior νu(f) = h∗πu(f).

3.2 Learning function space Bayesian pseudocoresets

Given the function space priors and posteriors, a Function space Bayesian PseudoCoreset (FBPC) is
obtained by minimizing a divergence measure between the function space posteriors,

u∗ = argmin
u

D(νx, νu). (8)

We follow Kim et al. [15] suggesting to use the forward KL divergence, so our goal is to solve

u∗ = argmin
u

DKL[νx∥νu]. (9)

The following proposition provides an expression for the gradient to minimize the divergence, whose
proof is given Appendix A.

Proposition 3.1. The gradient of the forward KL divergence with respect to the coreset u is

∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] + E[νu]u [∇u log p(ỹ | fu)], (10)

where [νx]u and [νu]u are finite-dimensional distributions of the stochastic processes νx and νu,
respectively, fu := (f(uj))

m
j=1, and p(ỹ | fu) =

∏m
j=1 p(ỹj | f(uj)).

To evaluate the gradient Eq. 10, we should identify the finite-dimensional functional posterior
distributions [νx]u and [νu]u. While this is generally intractable, as proposed in Rudner et al. [29, 28],
we can instead consider a linearized approximation of the neural network gθ,

g̃θ(·) = gµx(·) + Jµx(·)(θ − µx), (11)

where µx = Eπx [θ] and Jµx(·) is the Jacobian of gθ evaluated at µx. Then we approximate the
function space posterior νx with ν̃x := h̃∗πx where h̃(θ) = g̃θ, and as shown in Rudner et al. [29, 28],
the finite dimensional distribution [ν̃x]u is a multivariate Gaussian distribution,

[ν̃x]u(fu) = N
(
fu | gµx(u),Jµx(u)ΣxJµx(u)

⊤
)
, (12)

with Σx = Covπx(θ). Similarly, we obtain

[ν̃u]u(fu) = N
(
fu | gµu(u),Jµu(u)ΣuJµu(u)

⊤
)
, (13)

with µu := Eπu [θ] and Σu := Covπu(θ). Using these linearized finite-dimensional distribution, we
can approximate

∇uDKL[νx∥νu] = −∇uE[ν̃x]u [log p(ỹ | fu)] + E[ν̃u]u [∇u log p(ỹ | fu)], (14)

3.3 Tractable approximation to the gradient

Even with the linearization, evaluating Eq. 14 is still challenging because it requires obtaining µx

and Σx which are the statistics of the weight-space posterior πx. Rudner et al. [28] proposes to learn
a variational approximation qx(θ) in the weight-space, and use the linearized pushforward of the
variational distribution h̃∗qx as a proxy to the function space posterior. Still, this approach requires
computing the heavy Jacobian matrix JEqx [θ]

(u), so may not be feasible for our scenario where we
have to compute such variational approximations at each update of the pseudocoreset u.
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Figure 1: The conceptual overview of our proposed training procedure.

Instead, we choose to directly construct a variational approximations to the finite-dimensional
distributions of the function space posteriors, that is,

[ν̃x]u(fu) ≈ qx(fu) = N (fu | gµ̂x(u), Ψ̂x),

[ν̃u]u(fu) ≈ qu(fu) = N (fu | gµ̂u(u), Ψ̂u),
(15)

where (µ̂x, Ψ̂x) and (µ̂u, Ψ̂u) are variational parameters for the full data and coreset posteriors.
Inspired by Kim et al. [15], we construct the variational parameters using expert trajectories. Unlike
[15], we simply let the MAP solution computed for x, θx, by sampling a checkpoint from the later
part of the expert trajectories, and obtain the MAP solution of u, θu, by directly optimizing an initial
random parameter. Then we obtain µ̂x and µ̂u using u. For the covariance matricies Ψ̂x and Ψ̂u,
while Kim et al. [15] proposed to use spherical Gaussian noises, we instead set them as an empirical
covariance matrices of the samples collected from the optimization trajectory. Specifically, we take
additional K steps from each MAP solution to compute the empirical covariance.

θ(0)x = θx, θ(t)x = opt(θ(t−1)
x , (x,y)), µ̂x = gsg(θ(0)

x )
(u),

Ψ̂x := sg

(
diag

(
1

K

K∑
k=1

g2
θ
(k)
x

(u)−
(

1

K

K∑
k=1

g
θ
(k)
x

(u)

)2
))

,
(16)

where opt(θ,x) is a step of SGD optimization applied to θ with data x and the squares in the diag(·)
are applied in element-wise manner. Note also that we are applying the stop-gradient operations
for to block the gradient flow that might lead to complication in the backpropagation procedure.
The variational parameters (µ̂u, Ψ̂u) are constructed in a similar fashion, but using the psedocoreset
(u, ỹ) instead of the original data (x,y). It is noteworthy that our approach is similar to one of the
methods in Bayesian learning, SWAG [18]. However, while SWAG focuses on collecting statistics on
weight space trajectories, our method constructs statistics in function spaces. This distinction makes
our approach more suitable and scalable for pseudocoreset construction. The overview of proposed
method is provided in Fig. 1.

With the variational approximations constructed as described, we obtain a Monte-Carlo estimator of
Eq. 14,

∇uDKL[νx|νu] ≈ −∇uEqx(fu)[log p(ỹ | fu)] + Equ(fu)

[
∇u log p(ỹ | fu)

]
= −∇uEp(εx)[log p(ỹ | µ̂x + Ψ̂1/2

x εx)] + Ep(εu)

[
∇u log p(ỹ | µ̂u + Ψ̂1/2

u εu)
]

≈ 1

S

S∑
s=1

(
−∇u log p

(
ỹ | µ̂x + Ψ̂1/2

x ε(s)x

)
+∇u log p

(
ỹ | µ̂u + Ψ̂1/2

u ε(s)u

))
,

(17)

where p(εx) and p(εu) are standard Gaussians, (ε(s)x )Ss=1 and (ε
(s)
u )Ss=1 are i.i.d. samples from them.
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Algorithm 1 Multi-architecture Function space Bayesian Pseudocoreset

Require: Set of architectures A, expert trajectories {E(a) : a ∈ A}, prior distributions of parameters {π(a)
0 :

a ∈ A}, an optimizer opt.
Initialize u with random minibatch of coreset size m.
for i = 1, . . . , N do

Initialize the gradient of pseudocoreset, g← 0.
for a ∈ A do

Sample the MAP solution computed for x, θx ∈ E(a).
Sample an initial random parameter θ0 ∼ π

(a)
0 (θ).

repeat
θt ← opt(θt−1, (u, ỹ))

until converges to obtain the MAP solution computed for u, θu.
Obtain µ̂x, µ̂u, Ψ̂x, Ψ̂u by Eq. 16.
Compute the pseudocoreset gradient g(a) using Eq. 17.
g← g + g(a).

end for
Update the pseudocoreset u by using the gradient g.

end for

3.4 Multiple architectures FBPC training

One significant advantage of function space posterior matching is that the function is typically of
much lower dimension compared to the weight. This makes it more likely for function spaces to
exhibit similar posterior shapes in the vicinity of the MAP solutions. This characteristic of function
space encourages the exploration of function space pseudocoreset training in the context of multiple
architectures. Because, the task of training a coreset that matches the highly complex weight space
posterior across multiple architectures is indeed challenging, while the situation becomes relatively
easier when dealing with architectures that exhibit similar function posteriors.

Therefore we propose a novel multi-architecture FBPC algorithm in Algorithm 1. The training
procedure involves calculating the FBPC losses for each individual architecture separately and then
summing them together to update. This approach allows us to efficiently update the pseudocoreset by
considering the contributions of each architecture simultaneously. We will empirically demonstrate
that this methodology significantly enhances the architecture generalization ability of pseudocoresets
in Section 5.

3.5 Compare to weight space Bayesian pseudocoresets

By working directly on the function space, our method could bypass several challenges that may
arise when working on a weight space. Indeed, a legitimate concern arises regarding multi-modality,
as the posterior distributions of deep neural networks are highly complex. It makes the optimization
of pseudocoresets on weight space difficult. Moreover, minimization of weight space divergence
does not necessarily guarantee proximity in the function space. Consequently, although we try to
minimize the weight space divergence, there is a possibility that the obtained function posterior
may significantly deviate from the true posterior. However, if we directly minimize the divergence
between the function distributions, we can effectively address this issue.

On the other hand, there is an additional concern related to memory limitations. While it has been
demonstrated in Kim et al. [15] that the memory usage of Bayesian pseudocoresets employing
forward KL divergence is not excessively high, we can see that Eq. 7 requires Monte-Carlo samples
of weights, which requires O(Sp) where S and p represent the number of Monte-Carlo samples
and the dimensionality of the weights, respectively. This dependence on Monte-Carlo sampling
poses a limitation for large-scale networks when memory resources are constrained. In contrast, our
proposed method requires significantly less memory, O(Sd) where d represents the dimensionality
of the functions. Indeed, all the results presented in this paper were obtained using a single NVIDIA
RTX-3090 GPU with 24GB VRAM.
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4 Related work

Bayesian coresets Bayesian Coreset [3–5, 14] is a field of research aimed at addressing the
computational challenges of MCMC and VI on large datasets in terms of time and space complexity [9,
1, 26]. It aims to approximate the energy function of the entire dataset using a weighted sum of a small
subset. However for high-dimensional data, Manousakas et al. [19] demonstrates that considering
only subsets as Bayesian coreset is not sufficient, as the KL divergence between the approximated
coreset posterior and the true posterior increases with the data dimension, and they proposed Bayesian
pseudocoresets. There are recent works on constructing pseudocoreset variational posterior to be more
flexible [8] or how to effectively optimize the divergences between posteriors [15, 8, 20, 21]. However,
there is still a limitation in constructing high-dimensional Bayesian pseudocoresets specifically for
deep neural networks.

Dataset distillation Dataset distillation also aims to synthesize the compact datasets that capture
the essence of the original dataset. However, the dataset distillation places particulary on optimizing
the test performance of the distilled dataset. Consequently, the primary objective in dataset distillation
is to maximize the performance of models trained using the distilled dataset, and researchers provides
how to effectively solve this bi-level optimization [33, 23, 22, 40, 36, 39, 7]. In recent work, Kim
et al. [15] established a link between specific dataset distillation methods and optimizing certain
divergence measures associated with Bayesian pseudocoresets.

Function space variational inference Although Bayesian neural networks exhibit strong ca-
pabilities in performing variational inference, defining meaningful priors or efficiently infer-
ring the posterior on weight space is still challenging due to their over-parametrization. To
overcome this issue, researchers have increasingly focused on function space variational infer-
ence [6, 2, 16, 30, 25, 32, 27, 17]. For instance, Sun et al. [31] introduced a framework that
formulates the KL divergence between functions as the supremum of marginal KL divergences over
finite sets of inputs. Wang et al. [34] utilizes particle-based optimization directly in the function space.
Furthermore, Rudner et al. [28] recently proposed a scalable method for function space variational
inference on deep neural networks.

5 Experiments

5.1 Experimental Setup

In our study, we employed the CIFAR10, CIFAR100 and Tiny-ImageNet datasets to create Bayesian
pseudocoresets of coreset size m ∈ {1, 10, 50} images per class (ipc). These pseudocoresets were
then evalutated by conducting the Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [9]
algorithm on those pseudocoresets. We measured the top-1 accuracy and negative log-likelihood of
the SGHMC algorithm on the respective test datasets. Following the experimental setup of previous
works [15, 7, 39], we use the differentiable siamese augmentation [37]. For the network architectures,
we use 3-layer ConvNet for CIFAR10 and CIFAR100, and 4-layer ConvNet for Tiny-ImageNet.

We employed three baseline methods to compare the effectiveness of function space Bayesian
pseudocoresets. The first baseline is the random coresets, which involves selecting a random mini-
batch of the coreset size. The others two baseline methods, BPC-rKL [15, 19] and BPC-fKL [15], are
Bayesian pseudocoresets on weight space. BPC-rKL and BPC-fKL employ reverse KL divergence
and forward KL divergence as the divergence measures for their training, respectively.

5.2 Main Results

Table 1 and Table 2 show the results of each baseline and our method for each dataset. For BPC-rKL
and BPC-fKL, we used the official code from [15] for training the pseudocoresets, and only difference
is that we used our own SGHMC hyperparameters during evaluation. For detailed experiment setting,
please refer to Appendix C.

As discussed earlier, we utilized the empirical covariance to variational posterior instead of using
naïve isotropic Gaussian for the function space variational posterior. To assess the effectiveness
of using sample covariance, we compare these two in Table 1, as we also presented the results for
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Table 1: Averaged test accuracy and negative log-likelihoods of models trained on each Bayesian
pseudocoreset from scratch using SGHMC on the CIFAR10 dataset. Bold is the best and underline is
the second best. These values are averaged over 5 random seeds.

ipc SGHMC Random BPC-rKL [15, 19] BPC-fKL [15] FBPC-isotropic (Ours) FBPC (Ours)

1 Acc (↑) 16.30±0.74 20.44±1.06 34.50±1.62 32.00±0.75 35.45±0.31

NLL (↓) 4.66±0.03 4.51±0.10 3.86±0.13 3.40±0.27 3.79±0.04

10 Acc (↑) 32.48±0.34 37.92±0.66 56.19±0.61 61.43±0.35 62.33±0.34

NLL (↓) 2.98±0.03 2.47±0.04 1.48±0.02 1.35±0.02 1.31±0.02

50 Acc (↑) 49.68±0.46 51.86±0.38 64.74±0.32 71.33±0.19 71.23±0.17

NLL (↓) 2.06±0.02 1.95±0.02 1.26±0.01 1.03±0.01 1.03±0.05

Table 2: Averaged test accuracy and negative log-likelihoods of models trained on each Bayesian
pseudocoreset from scratch using SGHMC on the CIFAR100 and Tiny-ImageNet datasets. These
values are averaged over 3 random seeds.

CIFAR100 Tiny-ImageNet
ipc 1 10 50 1 10 50

Random Acc (↑) 4.82±0.47 18.0±0.31 35.1±0.23 1.90±0.08 7.21±0.04 19.15±0.12

NLL (↓) 5.55±0.07 4.57±0.01 3.35±0.01 6.18±0.04 5.77±0.02 4.88±0.01

BPC-fKL Acc (↑) 14.7±0.16 28.1±0.60 37.1±0.33 3.98±0.13 11.4±0.45 22.18±0.32

NLL (↓) 4.17±0.05 3.53±0.05 3.28±0.24 5.63±0.03 5.08±0.05 4.65±0.02

FBPC (Ours) Acc (↑) 21.0±0.76 39.7±0.31 44.47±0.35 10.14±0.68 19.42±0.51 26.43±0.31

NLL (↓) 3.76±0.11 2.67±0.02 2.63±0.01 4.69±0.05 4.14±0.02 4.30±0.05

FBPC-isotropic, which represents the FBPC trained with a unit covariance Gaussian posteriors. The
results clearly demonstrate that using sample covariance captures valuable information from the
posterior distribution, resulting in improved performance. Overall, the results presented in Table 1
and Table 2 demonstrate that our method also outperforms the baseline approaches, including random
coresets, BPC-rKL and BPC-fKL, in terms of both accuracy and negative log-likelihood, especially
on the large-scale datasets in Table 2.

Furthermore, the Bayesian pseudocoreset can be leveraged to enhance robustness against distributional
shifts when combined with Bayesian model averaging. To assess the robustness of our function space
Bayesian pseudocoresets on out-of-distribution inputs, we also conducted experiments using the
CIFAR10-C dataset [11]. This dataset involves the insertion of image corruptions into the CIFAR10
images. By evaluating the performance of the pseudocoresets on CIFAR10-C, we can see the model’s
ability to handle input data that deviates from the original distribution. In Table 3, we provide the
results for top-1 accuracy and degradation scores, which indicate the extent to which accuracy is
reduced compared to the in-distribution’s test accuracy. The result demonstrates that our FBPC
consistently outperforms the weight space Bayesian pseudocoreset, BPC-fKL.

5.3 Architecture generalization

In this section, we aim to demonstrate the architecture generalizability of FBPC and emphasize
the utility of multi-architecture training as we discussed in the previous section. We specifically
focus on investigating the impact of varying normalization layers on the generalizability of the
pseudocoreset, since it is widely recognized that a pseudocoreset trained using one architecture may
struggle to generalize effectively to a model that employs different normalization layers. We have
also included the results of cross-architecture experiments that involve changing the architecture itself
in Appendix D.1.

To assess this, we compare a single architecture trained pseudocoreset and a multiple architecture
trained pseudocoreset. For single architecture training, we initially train a pseudocoreset using one
architecture with a specific normalization layer, for instance we use instance normalization. Subse-
quently, we evaluate the performance of this pseudocoreset on four different types of normalization
layers: instance normalization, group normalization, layer normalization, and batch normalization.
For multiple architecture training, we aggregate four losses for single architecture training of each
architecture, and train the pseudocoreset with the sum of all losses, as mentioned in previous section.
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(a) Performance evaluation with different normaliza-
tion layers. Color represents the test architectures.
The multiple architecture FBPC training enhances
the generalization ability to other architectures.

(b) A sample image and its corresponding function
values. Despite variations in the normalization
layers of different architectures, the function val-
ues exhibit similarity across the architectures.

Figure 2: Results for multiple architecture FBPC training.

Table 3: Test accuracy and degradation scores of models trained on each Bayesian pseudocoreset
from scratch using SGHMC on the CIFAR10-C. Degradation refers to the extent by which a model’s
accuracy decreases when evaluated on the CIFAR10-C dataset compared to the CIFAR10 test dataset.

corruption BN DB ET FT GB JPEG MB PIX SN SP Avg.

BPC-fKL Acc (↑) 33.5 34 35.9 25.1 33.7 39.1 32.7 38.3 28.9 41.2 34.3
Degradation (↓) 40.3 39.4 36 55.2 39.9 30.3 41.6 31.6 48.4 26.5 38.9

FBPC Acc (↑) 48.9 46.4 47.6 41.7 44.0 52.0 44.3 51.0 47.1 52.3 47.5
Degradation (↓) 21.5 25.7 23.7 33.0 29.3 16.4 28.8 18.1 24.4 16.1 23.7

As depicted in Fig. 2a, we observe that both WBPC (Weight space Bayesian pseudocoresets) and
FBPC-single (Function space Bayesian pseudocoresets trained on a single architecture) exhibit a
notable trend, that they tend to not perform well when evaluated on the architecture that incorporates
different normalizations, regardless of whether it is trained on weight space or function space. On the
other hand, when trained with multiple architectures, both WBPC-multi and FBPC-multi perform
well across the all architectures, while notably FBPC-multi significantly outperforms WBPC-multi.

As mentioned in the previous section, we hypothesize that the superior performance of FBPC
compared to WBPC can be attributed to the likelihood of having similar function space posterior
across architectures. To validate this, we conduct an examination of the logit values for each sample
across different architectures. As an illustration, we provide an example pseudocoreset image
belonging to the class label "dog" along with its corresponding logits for all four architectures. As
Fig. 2b shows, it can be observed that the logits display a high degree of similarity, indicating a
strong likelihood of matching function posterior distributions. Our analysis confirms that, despite
architectural disparities, the function spaces generated by these architectures exhibit significant
similarity and it contributes to superiority of FBPC in terms of architecture generalizability.

6 Conclusion

In this paper, we explored the function space Bayesian pseudocoreset. We constructed it by minimiz-
ing forward KL divergence between the function posteriors of pseudocoreset and the entire dataset.
To optimize the divergence, we proposed a novel method to effectively approximate the function
posteriors with an efficient training procedure. Finally, we empirically demonstrated the superiority
of our function space Bayesian pseudocoresets compared to weight space Bayesian pseudocoresets,
in terms of test performance, uncertainty quatification, OOD robustness, and architectural robustness.

Limitation Despite showing promising results on function space Bayesian pseudocoresets, there
still exist a few limitations in the training procedure. Our posterior approximation strategy requires
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the MAP solutions, which necessitates training them prior to each update step or preparing ex-
pert trajectories. This can be time-consuming and requires additional memory to store the expert
trajectories.

Societal Impacts Our work is hardly likely to bring any negative societal impacts.
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A Proofs

Proposition A.1. The gradient of the forward KL divergence with respect to the coreset u is
∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] + E[νu]u [∇u log p(ỹ | fu)], (10)

where [νx]u and [νu]u are finite-dimensional distributions of the stochastic processes νx and νu,
respectively, fu := (f(uj))

m
j=1, and p(ỹ | fu) =

∏m
j=1 p(ỹj | f(uj)).

Proof. We follow the arguments in de G. Matthews et al. [10], Rudner et al. [29]. The forward KL
divergence is defined as,

DKL[νx∥νu] =
∫

log
dνx
dνu

(f)dνx(f). (18)

By the chain rule for the Radon-Nikodym derivative, we have

DKL[νx∥νu] =
∫

log
dνx
dν0

(f)dνx(f)−
∫

log
dνu
dν0

(f)dνx(f). (19)

The first term does not depend on u, so we investigate the second term. By the measure theoretic
Bayes’ rule,

dνu
dν0

(f) =
p(ỹ | f,u)
p(ỹ |u)

, (20)

where p(ỹ | f,u) :=
∏m

j=1 p(ỹj |uj , f) and,

p(ỹ|u) =
∫

p(ỹ|f,u)dν0(f). (21)

Now let ρA : (X → Rd) → (A → Rd) be a projection function that takes a function f and returns
its restriction on a set A ⊆ X . Assuming that the likelihood depends only on the finite index set u,
we can write

dνu
dν0

(f) =
d[νu]u
d[ν0]u

(ρu(f)) =
p(ỹ | fu)
p(ỹ |u)

, (22)

where [·]u denotes the finite-dimensional distribution of stochastic process evalauted at u and
ρu(f) := fu := (f(uj))

m
j=1 are corresponding function values at u. Putting this back into the above

equation, ∫
log

dνu
dν0

(f)dνx(f) =

∫
log

d[νu]u
d[ν0]u

(fu)d[νx]u(fu)

=

∫
log

p(ỹ | fu)
p(ỹ |u)

d[νx]u(fu)

= E[νx]u [log p(ỹ | fu)]− log p(ỹ |u).

(23)

Now taking the gradient w.r.t. u, we get
∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] +∇u log p(ỹ |u). (24)

Note also that

∇u log p(ỹ |u) = ∇u log

∫
p(ỹ | f,u)dν0(f)

=

∫
∇up(ỹ | f,u)

p(ỹ |u)
dν0(f)

=

∫
∇u log p(ỹ | f,u)p(ỹ | f,u)

p(ỹ |u)
dν0(f)

=

∫
∇u log p(ỹ | f,u)dνu

dν0
(f)dν0(f)

=

∫
∇u log p(ỹ | f,u)dνu(f)

=

∫
∇u log p(ỹ | fu)d[νu]u(f) = E[νu]u [∇u log p(ỹ | fu)].

(25)

As a result, we conclude that
∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] + E[νu]u [∇u log p(ỹ | fu)]. (26)
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B Inducing points in Stochastic Variational Gaussian Processes

Stochastic Variational Gaussian Processes [SVGP; 12, 13] were introduced as a solution to address
the significant computational complexity, characterized by a cubic computational complexity of
O(n3) and memory cost of O(n2), associated with performing inference using Gaussian Processes.
In this context, n represents the total number of training data points. SVGP effectively leverages a
concept called inducing points, which serves to reduce the computational complexity to O(m3) and
memory requirements to O(m2) during inference, while still providing a reliable approximation of
the posterior distribution of the entire training dataset. Notably, m denotes the number of inducing
points, which is typically much smaller than the total number of training data points i.e. m ≪ n. The
above description clearly shows that the inducing points have a similar purpose to FBPC. However,
there are some differences in their learning objectives. In the context of SVGP, the process of
optimizing the inducing points denoted as Z = {z1, . . . , zm} involves maximizing the ELBO in
order to make a variational Gaussian distribution q(ftr, fz) well approximate the posterior distribution
p(ftr, fz|ytr). This variational distribution is composed of two parts: 1) p(ftr|fz), which represents the
Gaussian posterior distribution, and 2) q(fz), which is the Gaussian variational distribution. During
this optimization, we focus on training the inducing points Z as well as the mean and variance of the
variational distribution q(fz). The goal of this optimization is to create a good approximation of the
posterior distribution p(yte|xte, Dtr) during the inference process, all while keeping the computational
cost low. On the other hand, as outlined in Section 3.2, the formulation of FBPC involves directly
minimizing the divergence between function space posterior, specifically DKL[νx∥νu]. To sum up,
while they do share some similarities in that they introduce a set of learnable pseudo data points, they
are fundamentally different in their learning objectives. SVGP is interested in approximating the full
data posterior through the inducing points, while ours aims to make the pseudocoreset posterior as
close as possible to the full data posterior.

C Experimetal Details

The code for our experiments will be available soon.

C.1 Expert trajectory

For expert trajectory, we trained the network with the entire dataset and saved their snapshot parame-
ters at every epoch, following the setup described in [7]. For training, we used an SGD optimizer
with a learning rate of 0.01. We saved 100 training trajectories, with each trajectory consisting of 50
epochs.

C.2 Hyperparmeter setting

Training In our training procedure, we have some hyperparameters. Firstly, we sampled the MAP
solution of x, denoted as θx, from the later part of the expert trajectories. The decision of how many
samples from the later part to utilize was treated as a hyperparameter for each experimental setting.
We chose to use samples from T epoch onwards as the MAP solution samples. When obtaining the
MAP solution θu, there are also several hyperparameters involved, the optimizer and convergence
criteria for training the MAP solution from random parameters. We used an Adam optimizer with a
learning rate of 0.001 to train the model until the training loss reached a threshold of γ or below.

Next, to approximate our Gaussian variational function posterior, we employed the empirical co-
variance of the function samples. During the process of drawing function samples, we performed
an additional training steps. This step involved specifying the optimizer and the number of steps
used. We used an SGD optimizer with learning rates of λx and λu for a total of 30 steps during the
additional training step for drawing function samples for x and u, respectively.

Lastly, we used the training iteration N , a learning rate of α for pseudocoresets, and set the batch
size for pseudocoresets to B. The hyperparameters used in our paper are summarized in Table 4.
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Evaluation To implement the SGHMC algorithm, as discussed in [9] and following the recommen-
dations of [9], we employed the SGD with momentum along with an auxiliary noise term.{

∆θ = v

∆v = −η∇Ũ(x)− αv +N (0, 2d).
(27)

we set η = 0.03, α = 0.1, and d = 0.01/m, where m represents the coreset size. We perform 1000
epochs of SGHMC and collect samples every 100 epochs.

D Additional Experiments

D.1 Cross-architecture generalization

In order to assess the cross-architecture generalization performance of FBPC, we trained pseudo-
corests of sizes {1, 10, 50} using the ConvNet architecture and tested them on various architectures
trained from scratch. In addition to the ConvNet architecture used during training, we also evaluated
the performance on sophisticated architectures such as ResNet18, ResNet34, VGG, and AlexNet.
The results are presented in Table 5. As evident from Table 5, FBPC demonstrates considerable
performance even on architectures different from those used during training, highlighting its strong
cross-architecture generalization capabilities.

D.2 Training FBPC on larger neural networks

To evaluate the scalability of our method to large networks, we trained FBPC with the ResNet18
architecture. Training coreset with larger networks, such as ResNet18, has proven to be challenging
and has been explored in only a few previous works [38]. This is primarily due to the lack of scalable
training methods and the tendency for overfitting when training large networks. As a result, even
when evaluating ResNet after training on a smaller network like ConvNet, the performance tends to
suffer. Furthermore, it has been reported that coreset training directly on ResNet initially yields lower
performance compared to training on ConvNet [40, 35].

Our experiments also revealed a similar trend in our findings as shown in the first column of Table 6.
Although FBPC exhibits excellent scalability, making it easy to train on ResNet18 and larger networks,
its performance was observed to be lower compared to ConvNet. On the other hand, the second
column, ResNet18 + ConvNet, refers to training both ResNet18 and ConvNet simultaneously using the
FBPC-multi training approach. In this case, surprisingly, the test performance of ResNet18 actually
improved when trained in conjunction with ConvNet using the FBPC-multi training approach. In
this case, the ConvNet accuracy was recorded at 60.03, which did not significantly compromise the
ConvNet’s performance while enhancing the performance of ResNet18. This suggests that training
ConvNet acted as a regularizer, preventing overfitting in ResNet18 and enabling it to achieve better
performance.

Table 4: Hyperparameter for each experiment setting.
ipc T γ λx λu N α B

CIFAR10
1 1 0.01 0.05 0.01 1000 100 10
10 2 0.1 0.05 0.01 1000 1000 100
50 10 0.2 0.05 0.01 1000 1000 500

CIFAR100
1 2 0.1 0.1 0.1 5000 1000 100
10 40 0.1 0.1 0.1 5000 1000 1000
50 20 0.2 0.01 0.01 300 1000 5000

Tiny-ImageNet
1 2 0.1 0.1 3 5000 1000 100
10 40 1 0.1 3 500 1000 100
50 40 1 0.1 3 500 1000 100
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Table 5: Averaged test accuracy and negative log-likelihoods for each architecture of the pseudocore-
set trained using the ConvNet architecture with CIFAR10 dataset.

ConvNet ResNet18 ResNet34 VGG AlexNet

1 Acc (↑) 35.71±0.90 27.7±0.96 22.46±0.12 26.33±0.88 21.05±0.43

NLL (↓) 3.44±0.07 2.87±0.13 3.06±0.02 5.38±0.74 3.13±0.60

10 Acc (↑) 62.53±0.34 47.51±1.73 35.48±1.22 47.87±1.18 32.27±0.78

NLL (↓) 1.31±0.01 1.82±0.02 2.41±0.01 3.72±0.09 2.96±0.04

50 Acc (↑) 71.20±0.36 62.02±1.55 47.97±3.37 58.24±1.63 52.42±1.30

NLL (↓) 1.03±0.00 1.41±0.05 2.10±0.10 3.03±0.26 2.08±0.07

Table 6: Test performance of FBPC (CIFAR10, ipc 10) on ResNet18. FBPC is trained with ResNet18
and ResNet18 + ConvNet (multiple architecture training).

ResNet18 ResNet18 + ConvNet

Acc (↑) 50.00 54.90
NLL (↓) 1.75 1.56

D.3 Computational cost

To compare how scalable our approach is compared to posterior matching in the weight space, we
measured GPU memory usage corresponding to the number of parameters. As shown in Table 7 and
Table 8, the memory usage for weight space BPC significantly increases as the number of parameters
grows, while FBPC operates very efficiently. Additionally, the coreset ipc increases memory usage
proportionally to its size. In terms of memory considerations, FBPC excels. However, as shown
in Table 9, in terms of time, our method requires slightly more time because more SGD steps are
needed to acquire the empirical covariance. However, when using FBPC-isotropic, these steps can be
reduced, trading off a slight decrease in performance for time savings.

D.4 Differentiable siamese augmentation

Table 10 shows the result for BPC-fKL and FBPC without using DSA [37] and without any augmen-
tation during training. Interestingly, for the ipc 1 case in BPC-fKL, performance improved when
DSA was not applied. However, in all other cases, it is evident that not using DSA leads to an average
performance drop of approximately 4.7%. Moreover, even when training BPC without augmentation,
we observe that function space BPC outperforms weight space BPC.

D.5 Visualization

In this section, we provide visualizations of the pseudocoreset examples for each dataset.

Figure 3: Example images of FBPC for CIFAR10 with ipc 1.
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Table 7: GPU memory usage (GB) for training CIFAR10 FBPC with ipc 10.
LeNet ConvNet ResNet18

# parameters 6.2× 104 3.2× 105 1.1× 107

FBPC 0.02 0.32 2.56
BPC-fKL 0.11 3.17 12.18

Table 8: GPU memory usage (GB) for training CIFAR10 FBPC according to the ipc.
1 10 50

FBPC 0.04 0.32 1.59
BPC-fKL 0.41 3.17 15.59

Table 9: Wall-clock time (sec) for 1 step update for training CIFAR10 pseudocoreset according to
the ipc.

1 10 50

BPC-fKL 1.04±0.10 1.37±0.13 2.59±0.86

FBPC 1.5±0.15 3.29±0.51 8.38±0.48

Table 10: BPC Performances with and without DSA.
1 10 50

BPC-fKL (no DSA) 37.26±1.65 50.48±1.39 60.75±0.26

FBPC (no DSA) 33.69±2.73 55.07±1.30 66.03±0.21

FBPC (DSA) 35.45±0.31 62.33±0.34 71.23±0.17

(a) Examples images of FBPC for CIFAR10 with ipc
10. 1 image per class.

(b) Examples images of FBPC for CIFAR10 with ipc
50. 10 images per class.

Figure 4: Examples images of FBPCs for CIFAR10 dataset.
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(a) Examples images of FBPC for CIFAR100 with
ipc 1. 1 image per class.

(b) Examples images of FBPC for CIFAR100 with
ipc 10. 1 image per class.

Figure 5: Examples images of FBPCs for CIFAR100 dataset.

Figure 6: Example images of FBPC for Tiny-ImageNet with ipc 1. 1 image per class.

Figure 7: Example images of FBPC for Tiny-ImageNet with ipc 10. 1 image per class.
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