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1 Supplementary Material

1.1 Proof of equivariance

As all the many-body interactions in the QuinNet are calculated based on inner product and cross
product, the proof for the equivariance of these modules is equivalent to prove the equivariance of
inner product and cross product. Let R be a 3×3 rotation matrix, i.e. detR = 1 and R−1 = RT ,
for all vectors u⃗, v⃗ ∈ R3,

(Ru⃗) · (Rv⃗) = (Ru⃗)i(Rv⃗)i
= RijujRikvk
= RijRikujvk

= (RT )jiRikujvk

= (RTR)jkujvk
= δjkujvk
= ujvj
= u⃗ · v⃗,

(1)
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Table S 1: Comparison of the MAEs on Chignolin dataset and the lowest values are marked in bold
(energies in kcal/mol and forces in kcal/(mol·Å)).

ViSNet-LSRM 3-body (ET) 4-body (ViSNet) 4-body (improper) 5-body@I 5-body@II 5-body (QuinNet) QuinNet (6 Layer)

Chignolin Energy 1.227 1.711± 0.012 1.296± 0.044 1.234± 0.036 1.317± 0.042 1.241± 0.072 1.079± 0.019 1.036
Force 0.2778 0.4014± 0.0015 0.2944± 0.0022 0.2944± 0.0039 0.2980± 0.0066 0.2922± 0.0073 0.2747± 0.0030 0.2665

where δjk is the Kronecker delta symbol and the Einstein summation convention is used. To prove
the equivariance of cross product, the Levi-Civita permutation symbol ϵ would be used,

[(Ru⃗)× (Rv⃗)]
k
= ϵimkRijRmnu

jvn

= ϵimlδklRijRmnu
jvn

= ϵimlRkrRlrRijRmnu
jvn

= ϵjnr detRRkru
jvn

= Rkrϵ
jnrujvn

= Rkr(u⃗× v⃗)r

= R · (u⃗× v⃗)k.

(2)

1.2 Proof of higher order cosine series

The Legendre polynomials could be expressed as

Pl(cos θ) = 2l
l∑

k=0

cosk θ
(
l
k

)( l+k−1
2
l

)
. (3)

Incorporating higher order cosine series into the QuinNet model is necessary in certain cases. These
series can be represented as cos(nθ) and can be expanded as a linear combination of cosk θ according
to two-fold duplication formula, i.e. cos 2θ = 2 cos2 θ − 1. Therefore, the vector addition theorem
of spherical harmonic functions can be used to incorporate these higher order cosine series into the
model.

1.3 Additional results on Chignolin

Table S 1 reports the MAEs of the benchmarked model, along with the results of the ablation study.
It should be noted that in the ablation study, the benchmarked models, which includes only 3-body
interactions, and incorporates 4-body interactions, are ET [1] and ViSNet [2] model respectively.
Furthermore, the results of the 6-layer QuinNet model are presented in the table.

1.4 Results on QM9 dataset

The QM9 dataset [3, 4] encompasses computed geometric, energetic, electronic, and thermodynamic
properties of 134k stable small organic molecules, which include carbon, hydrogen, oxygen, nitrogen,
and fluorine, ascertained at the B3LYP/6-31G (2df, p) level of quantum chemistry. This dataset offers
valuable quantum chemical insights into the chemical space of small organic molecules and is widely
acknowledged as a benchmark for calibrating, analyzing, and evaluating new methods in this area. As
a result, we trained QuinNet on 110k molecules and validated it on a further 10k molecules. Table 2
presents the mean absolute errors (MAEs) of QuinNet for 12 tasks in the QM9 dataset, compared to
four other models. Despite the QM9 dataset being a small molecular dataset where the influence of
five-body interactions is relatively weak, QuinNet’s MAEs are in line with these baselines. It is worth
noting that the gap is computed directly from the predicted HOMO and LUMO values.

1.5 Further Complexity Analysis

To further highlight the efficiency of the QuinNet model, Table S 3 presents a comparison of time
complexities for handling many-body interactions between QuinNet and the empirical force field. In
the table, N and Nb denote the number of atoms and the number of neighbors, respectively. Note
that the number of atoms N is ignored in the complexity analysis of QuinNet. Additionally, we
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Table S 2: Comparison of the MAEs on QM9 dataset and the lowest values are marked in bold.

unit Allegro [5] Equiformer [6] ViSNet [2] QuinNet

µ D - 0.014 0.010 0.771
α a30 - 0.056 0.041 0.047
HOMO meV - 17 17.3 20.4
LUMO meV - 16 14.8 17.6
gap meV - 33 31.7 28.2
R2 a20 - 0.227 0.030 0.194
ZPVE meV - 1.32 1.56 1.26
U0 meV 4.7 10 4.23 7.6
U meV 4.4 11 4.25 8.4
H meV 4.4 10 4.52 7.8
G meV 5.7 10 5.86 8.5
Cv

kcal
mol·K - 0.025 0.023 0.024
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Fig. S 1: The inference time of different models with a single 32GB V100 GPU card.

evaluate the inference time of different models with a single 32GB V100 GPU card (Fig. S1). As the
system size increases, the NequIP and Allgro models encounter out-of-memory issues. In general,
the inference time of QuinNet is lower compared to the other benchmarked models.

1.6 Overlap between many-body interactions

The QuinNet model is designed to effectively capture all possible five-body interactions, which have
some overlaps with other many-body interactions actually. Specifically, as shown in Fig. S2 (a), we
illustrate the topology of five-body@I interactions, which includes four neighboring nodes, namely
j1, j2, j3, and j4, with respect to the central node i. However, when j2 = j4 (Fig. S2 (b)), the
topology reduces to a four-body interaction similar to an improper torsion interaction. Through this
transformation, the five-body@I term characterizes the improper term associated with dihedral angles.
The QuinNet model captures all five-body interactions, making it a versatile and comprehensive tool
for modeling complex molecular systems.

1.7 Settings of experiments

The loss function for training QuinNet model is the weighted summation of mean square errors of
energy and forces,

L = αLE + βLF =
α

N

N∑
i

(Ei − Êi)
2 +

β

3Na

Na∑
i,

σ=x,y,z

(Fiσ − F̂iσ)
2, (4)

where N and Na are batch size and the number of atoms, respectively. AdamW optimizer [7] was
adopted. QuinNet model was trained on 32G Nvidia Tesla V100 GPUs for MD17, revised MD17
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Table S 3: Comparison of time complexities for handling many-body interactions between QuinNet
and the empirical force field.

N-body Empirical force field Pseudocode of QuinNet Time Complexity
Empirical force field QuinNet

3-body For each atom i, choose two
neighbor atoms j and k to cal-
culate angles.

1: mi = 0
2: for j ∈ Ni do
3: mi+ = r⃗ij
4: end for
5: hi = m2

i

NC2
Nb

∼ O(NN2
b ) O(Nb)

4-body (torsion) For each atom i, choose two
neighbor atoms j and k firstly,
then choose one neighbor
atom l of atom j to calculate
dihedral angles.

1: hij,1, hij,2 = 0, 0
2: for k1 ∈ Ni do
3: hij,1+ = r⃗ik1 × r⃗ij
4: end for
5: for k2 ∈ Nj do
6: hij,2+ = −r⃗jk2

× r⃗ij
7: end for
8: hij = hij,1 · hij,2

NC2
Nb

C1
Nb

∼ O(NN3
b ) O(Nb)

4-body (improper) For each atom i, choose three
neighbor atoms j, k, and l to
calculate angles.

1: mi, hi,1, hi,2 = 0, 0, 0
2: for j ∈ Ni do
3: mi+ = r⃗ij
4: hi,1+ = αj r⃗ij
5: hi,2+ = βj r⃗ij
6: end for
7: hi = mi · (hi,1 × hi,2)

NC3
Nb

∼ O(NN3
b ) O(Nb)

5-body@I For each atom i, choose four
neighbor atoms j, k, l, and m
to calculate dihedral angles.

1: hi,1, hi,2 = 0, 0
2: for j ∈ Ni do
3: hi,1+ = αj r⃗ij
4: hi,2+ = βj r⃗ij
5: end for
6: hi = (hi,1 × hi,2)

2

NC4
Nb

∼ O(NN4
b ) O(Nb)

5-body@II For each atom i, choose two
neighbor atoms j1 and j2, then
choose one neighbor atom k
for each atom j to calculate
dihedral angles.

1: hj,1, hj,2, hi = 0, 0, 0
2: for k ∈ Nj do
3: hj,1+ = αkr⃗kj
4: hj,2+ = βkr⃗ij
5: end for
6: for j ∈ Ni do
7: hi+ = hj,1 × hj,2

8: end for
9: hi = h2

i

NC2
Nb

C1
Nb

C1
Nb

∼ O(NN4
b ) O(Nb)

5-body@III For each atom i, choose three
neighbor atoms j1, j2, and
j3, then choose one neighbor
atom k for one of the thee
neighbor atoms of i to calcu-
late dihedral angles.

1: hj,1, hj,2 = 0, 0
2: for k ∈ Nj do
3: hj,1+ = αkr⃗kj
4: hj,2+ = βkr⃗kj
5: end for
6: hj = hj,1 × hj,2

7: for j ∈ Ni do
8: hij+ = hiḣj

9: end for

NC3
Nb

C1
Nb

∼ O(NN4
b ) O(Nb)

(a) (b)

Fig. S 2: A comparison between five-body and many-body interactions. (a) five-body interactions@I,
which involves four neighboring nodes, can overlap with (b) the improper term in four-body interac-
tions, resulting in a four-body interaction topology.
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Table S 4: Hyperparameters of QuinNet for different datasets.

MD17 revised MD17 MD22 Chignolin QM9

Energy/force weights 0.01, 0.99 0.01, 0.99 0.01, 0.99 0.01, 0.99 -
Energy/force ema 0.05, 1.0 0.05, 1.0 0.05, 1.0 0.05, 1.0 -
Cutoff (Å) 4.0, 5.0 4.0, 5.0 4.0, 5.0 5.0 5.0
# layers 5 5 5 5 5
# neurons 256 256 256 256 256
Batch size 4 2, 4 2, 4 8 16
Learning rate (LR) 2e-4, 4e-4 2e-4, 4e-4 2e-4, 4e-4 2e-4 2e-4, 3e-4, 4e-4, 5e-4
LR decay factors 0.8 0.8 0.8 0.8 0.8

and Chignolin dataset. For MD22 dataset, the model was trained on a single 80G Nvidia Tesla A100
GPU. Furthermore, detailed settings of hyperparameters are summarized in the Table S 4.

Moreover, to demonstrate QuinNet’s performance, we performed molecular dynamics (MD) simula-
tions of seven small molecules from the MD17 dataset. For each model and molecule, simulations
began with the initial frame configurations and were performed over 300 ps. We employed a 0.5 fs
time step and maintained the temperature at 500 K using a Nosé-Hoover thermostat. The distribution
of interatomic distances, h(r), was calculated as the ensemble average of distance statistics within the
trajectories. The code for the simulation was implemented using the ASE [8] Python package and
adapted from Ref. [9].
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