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Abstract

Differential privacy guarantees allow the results of a statistical analysis involving
sensitive data to be released without compromising the privacy of any individual
taking part. Achieving such guarantees generally requires the injection of noise,
either directly into parameter estimates or into the estimation process. Instead
of artificially introducing perturbations, sampling from Bayesian posterior dis-
tributions has been shown to be a special case of the exponential mechanism,
producing consistent, and efficient private estimates without altering the data gen-
erative process. The application of current approaches has, however, been limited
by their strong bounding assumptions which do not hold for basic models, such
as simple linear regressors. To ameliorate this, we propose βD-Bayes, a posterior
sampling scheme from a generalised posterior targeting the minimisation of the
β-divergence between the model and the data generating process. This provides
private estimation that is generally applicable without requiring changes to the
underlying model and consistently learns the data generating parameter. We show
that βD-Bayes produces more precise inference estimation for the same privacy
guarantees, and further facilitates differentially private estimation via posterior
sampling for complex classifiers and continuous regression models such as neural
networks for the first time.

1 Introduction
Statistical and machine learning analyses are increasingly being done with sensitive information, such
as personal user preferences [49], electronic health care records [72], or defence and national security
data [27]. It thus becomes more and more important to ensure that data-centric algorithms do not leak
information about their training data. Let D = {Di}ni=1 = {yi, Xi}ni=1 ∈ D denote a sensitive data
set with d dimensional features Xi ∈ X ⊂ Rd, and labels yi ⊂ Y ⊂ R. Here, we are considering
inference problems where a trusted data holder releases model parameters θ̃(D) ∈ Θ, that describe
the relationship between X and y, based on an arbitrary likelihood model f(·; θ). Differential privacy
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(DP) provides a popular framework to quantify the extent to which releasing θ̃(D) compromises the
privacy of any single observation Di = {yi, Xi} ∈ D.

Definition 1 (Differential Privacy, [26]). Let D and D′ be any two neighbouring data sets differing
in at most one feature label pair. A randomised parameter estimator θ̃(D) is (ϵ, δ)-differentially
private for ϵ > 0 and δ ∈ [0, 1] if for all A ⊆ Θ, P (θ̃(D) ∈ A) ≤ exp(ϵ)P (θ̃(D′) ∈ A) + δ.

The privacy guarantee is controlled by the privacy budget (ϵ, δ). While ϵ bounds the log-likelihood
ratio of the estimator θ̃(D) for any two neighbouring data sets D and D′, δ is the probability of
outputs violating this bound and is thus typically chosen smaller than 1/n to prevent data leakage.
DP estimation requires the parameter estimate to be random even after conditioning on the observed
data. Thus, noise must be introduced into the learning or release procedure of deterministic empirical
risk minimisers to provide DP guarantees.

The sensitivity method [26] is a popular privatisation technique in DP where the functional that
depends on the sensitive data (i.e. a sufficient statistic, loss objective or gradient) is perturbed with
noise that scales with the functional’s sensitivity. The sensitivity S(h) of a functional h : D → R is
the maximum difference between the values of the function on any pair of neighboring data sets D
and D′, S(h) = maxD,D′ ∥h(D)− h(D′)∥. As the bound of statistical functionals given arbitrary
data sets is typically unknown, their sensitivity is determined by assuming bounded input features [18]
or parameter spaces [81]. In practise, noise is added either directly to the estimate θ̂ or the empirical
loss function, skewing the interpretation of the released statistical estimates in ways that cannot be
explained by probabilistic modelling assumptions. In differentially private stochastic gradient descent
[DPSGD; 1], for example, the sensitivity of the mini-batch gradient in each update step is bounded
by clipping the gradients of single batch observations before averaging. The averaged mini-batch
gradient is then perturbed with noise that scales inversely with the gradients’ clipping norm. The
repercussions of so doing can be detrimental. The effects of statistical bias within DP estimation have
been subject to recent scrutiny, and bias mitigation approaches have been proposed [31].

An alternative to the sensitivity method, is one-posterior sampling [OPS; 81]. Instead of artificially
introducing noise that biases the learning procedure, OPS takes advantage of the inherent uncertainty
provided by sampling from Bayesian posterior distributions [81, 66, 30, 85, 21, 22, 86]. Given
prior π(θ) and likelihood f(D; θ), the random OPS estimate corresponds to a single sample from
the Bayesian posterior π(θ|D) ∝ f(D; θ)π(θ). If one accepts the Bayesian inference paradigm,
then a probabilistic interpretation of the data generative distribution can be leveraged to sample
interpretable DP parameter estimates. Additionally, Bayesian maximum-a-posteriori estimates are
generally associated with regularised maximum likelihood estimates, and OPS has been shown to
consistently learn the data generating parameter [81]. Therefore, OPS provides a compelling method
for DP estimation independently of the analyst’s perspective on the Bayesian paradigm. Current
approaches to OPS, however, only provide DP under unrealistic conditions where the log-likelihood
is bounded [81] or unbounded but Lipschitz and convex [66] limiting their implementation beyond
logistic regression models – see Table 1.

In this paper, we extend the applicability of OPS to more general prediction tasks, making it a useful
alternative to the sensitivity method. To do so, we combine the ability of OPS to produce consistent
estimates with a robustified general Bayesian posterior aimed at minimising the β-divergence [9]
between the model f(Di; θ) and the data generating process. We henceforth refer to this privacy
mechanism as βD-Bayes. While previous research has studied the benefits of the β-divergence for
learning model parameters that are robust to outliers and model misspecification [32, 34, 45, 48, 46],
we leverage its beneficial properties for DP parameter estimation: A feature of the βD-Bayes posterior
is that it naturally provides a pseudo-log likelihood with bounded sensitivity for popular classification
and regression models without having to modify the underlying model f(·; θ). Further, such a bound
is often independent of the predictive model, which allows, for instance, the privatisation of neural
networks without an analysis of their sensitivity or perturbation of gradients.

Contributions. Our contributions can thus be summarised as follows:
• By combining OPS with the intrinsically bounded β-divergence, we propose βD-Bayes, a DP

mechanism that applies to a general class of inference models.
• βD-Bayes bounds the sensitivity of a learning procedure without changing the model, getting rid

of the need to assume bounded feature spaces or clipping statistical functionals. If the model is
correctly specified, the data generating parameter can be learned consistently.
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• βD-Bayes improves the efficiency of OPS leading to improved precision for DP logistic regression.
• The general applicability of βD-Bayes facilitates OPS estimation for complex models such as

Bayesian neural network (BNN) classification and regression models.
• We provide extensive empirical evidence by reporting the performance of our model and four

relevant baselines on ten different data sets, for two different tasks; additionally analysing their
sensitivity in the number of samples and the available privacy budget.

2 Background and related work
Here, we focus on the OPS literature that analyses the inherent privacy of perfect sampling from a
Bayesian posterior [21, 81, 27, 66, 30]. Such a DP mechanism is theoretically appealing as it does not
violate generative modelling assumptions. Current approaches have, however, been limited in their
application due to strong likelihood restrictions. We start by outlining the weaknesses of traditional
DP methods and the state-of-the-art for OPS, before we introduce βD-Bayes OPS.

OPS is distinct from other work on DP Bayesian inference that can be categorised as either analysing
the DP release of posterior samples using variational inference [40, 44, 71], or Monte Carlo procedures
[81, 60, 37, 83, 29, 73, 85]. We show that these methods can be extended to approximately sample
from βD-Bayes in Section 4.

DP via the sensitivity method According to the exponential mechanism [63], sampling θ̃ with
probability proportional to exp(−ϵℓ(D, θ̃)/(2S(h)) for a loss function ℓ : D ×Θ → R is (ϵ, 0)-DP.
A particularly widely used instance is the sensitivity method [26] which adds Laplace noise with
scale calibrated by the sensitivity of the estimator. For example, consider empirical risk minimisation
for a p dimensional parameter θ ∈ Θ ⊆ Rp:

θ̂(D) := argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Di, f(·; θ)) + λR(θ) (1)

where ℓ(Di, f(·; θ)) is the loss function, R(θ) is a regulariser, and λ > 0 is the regularisation
weight. Chaudhuri et al. [18] show that θ̃ = θ̂(D) + z,Rp ∋ z = (z1, . . . , zp)

iid∼ L
(
0, 2

nλϵ

)
, where

L(µ, s) is a Laplace distribution with density f(z) = 1
2s exp{−|z − µ|/s}, is (ϵ, 0)-DP provided

R(·) is differentiable and 1-strongly convex, and ℓ(yi, ·) is convex and differentiable with gradient
|ℓ′(Di, ·)| < 1. The negative log-likelihood of logistic regression with a L2 regulariser satisfies these
conditions when the features are standardised between 0 and 1 – see Section A.4.1 for more details.
Relaxing the conditions of convexity, DPSGD [1], which adds calibrated noise to gradient evaluations
within stochastic gradient descent, has arisen as a general purpose tool for empirical risk minimisation
[62, 20]. To achieve bounded sensitivity, DPSGD clips each single gradient within the update step.
Instead of bounding the sensitivity artificially by assuming bounded feature spaces or clipping data
functions, Dwork and Lei [25] identified the promise of robust methods for DP-estimation. Robust
estimation procedures [e.g 41, 35] provide parameter estimates that are less sensitive to any one
observation and therefore the scale of the noise that needs to be added to privatise such an estimate is
reduced. While the connection between robust statistical estimators and DP has thus been subject to
extensive research [5, 6, 25, 77, 22, 55, 17, 57, 58], we are the first to consider it within Bayesian
sampling to produce a generally applicable method for consistent estimation of model parameters.

DP via Gibbs one-posterior sampling Sampling from a Bayesian posterior constitutes a particular
case of the exponential mechanism [81, 21, 22, 86], leading to the proposal of OPS through Gibbs
posterior sampling. If the log-likelihood log f(D; θ) is such that supD,θ | log f(D; θ)| ≤ B, then
one sample from the Gibbs posterior

πw log f (θ|D) ∝ π(θ) exp

{
w

n∑
i=1

log f(Di; θ)

}
(2)

with w = ϵ
4B is (ϵ, 0)-DP [81]. Note w = 1 recovers the standard posterior and w ̸= 1 provides

flexibility to adapt the posterior to the level of privacy required. However, standard models for
inference do not usually have bounded log-likelihoods. Even discrete models with bounded support
such as logistic regression do not. To overcome this, Wang et al. [81] assume a bounded parameter
space and accordingly ‘scale-down’ the data. However, parameter spaces are typically unbounded, and
data scaling has to be done carefully to avoid information leakage or loss inefficiency. Nevertheless,
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Table 1: Requirements of different DP estimation techniques; sorted in decreasing strength of the
restrictions imposed on the likelihood.

Unbounded
Features

Likelihood
Restriction

Prior
Restriction

δ Unbiased+
Consistent

Foulds et al. [27] ✗ exponential family +
bounded sufficient statistics

conjugate 0 ✓

Bernstein and Shel-
don [12, 13]

✗ exponential family +
bounded sufficient statistics

conjugate 0 ✓

Minami et al. [66] ✗ convex + Lipschitz
log-density

strongly convex > 0 ✓

Wang et al. [81] ✗ bounded log-density proper 0 ✓
Chaudhuri et al. [18] ✗ convex log-density strongly convex 0 ✓
Abadi et al. [1] ✓ bounded gradients none > 0 ✗
βD-Bayes ✓ bounded density proper 0 ✓

their algorithm is shown to outperform the perturbation approach proposed by [18]. Some works
[21, 22, 86] overcome the assumption of a bounded log-likelihood by relaxing the definition of DP
allowing distant observations according to some metric to be distinguishable with greater probability.
Such a relaxation, however, no longer guarantees individual privacy. Geumlek et al. [30] consider
versions of the Gibbs posterior for exponential family models and generalised linear models but in the
context of Rényi-DP (RDP) [68], a relaxation of DP that bounds the Rényi divergence with parameter
α between the posterior when changing one observation. Minami et al. [66] generalise the result of
Wang et al. [81] to show that one sample from (2) with w = ϵ

2L

√
mπ/(1 + 2 log(1/δ)) for convex

L-Lipschitz log-likelihoods with mπ-strongly convex regulariser is (ϵ, δ)-DP. For logistic regression,
we have L = 2

√
d if the features are bounded between 0 and 1. This, however, requires a relaxation

to δ > 0.

Sufficient statistics perturbation Foulds et al. [27] identified that OPS mechanisms based on the
Gibbs posterior are data inefficient in terms of asymptotic relative efficiency. For exponential family
models, Foulds et al. [27] and Zheng [87] propose a Laplace mechanism that perturbs the data’s
sufficient statistics and considers conjugate posterior updating according to the perturbed sufficient
statistics. The privatisation of the statistics allows for the whole posterior to be released rather than
just one sample, and the perturbation of the statistics is independent of n allowing the amount of
noise to become smaller relative to the sufficient statistics as n → ∞ providing consistent inference.
They compare directly to [81] showing improved inference for exponential family models. However,
these results require bounded sufficient statistics. Extensions include [12, 13, 67, 40, 71, 51]. These
methods are further limited to exponential families which do not include popular machine learning
models e.g. logistic regression or neural networks. In this paper, we set out to generalise the
applicability of OPS and also address its efficiency issues by moving away from the Gibbs posterior,
making use of tools used within generalised Bayesian updating.

3 βD-Bayes one-posterior sampling
Generalised Bayesian Updating and the beta-Divergence OPS has struggled as a general purpose
tool for DP estimation as bounding the sensitivity of log f(x; θ) is difficult. Motivated by model
misspecification, Bissiri et al. [15] showed that the posterior update

πℓ(θ|D) ∝ π(θ) exp

{
−

n∑
i=1

ℓ(Di, f(·; θ))
}
, (3)

assigning high posterior density to parameters that achieved small loss on the data, provides a
coherent means to update prior beliefs about parameter θℓ0 := argminθ∈Θ

∫
ℓ(D, f(·; θ))g(D)dz

after observing data D ∼ g(·). The Gibbs posterior in (2) is recovered using the weighted neg-
ative log-likelihood ℓ(D, f(·; θ)) = −w log f(D; θ), and the standard posterior for w = 1. This
demonstrates that Bayesian inference learns about θlog f

0 := argminθ∈Θ

∫
log f(D; θ)g(D)dD =

argminθ∈Θ KLD(g||f(·; θ)) [11, 80].

The framework of [15] provides the flexibility to choose a loss function with bounded sensitivity.
An alternative, loss function that continues to depend on θ through the likelihood f(·; θ) is the
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β-divergence loss [9] for β > 1

ℓ(β)(D, f(·; θ)) = − 1

β − 1
f(D; θ)β−1 +

1

β

∫
f(D; θ)βdD, (4)

so called as argminθ ED∼g

[
ℓ(β)(D, f(·; θ))

]
= argminθ D

(β)
B (g||f(·; θ)) where D

(β)
B (g||f) is the

β-divergence defined in Section A. The first term in (4) contains the negative likelihood, therefore
parameters that make the data likely achieve low loss. However, it is raised to the power β − 1 >
1 prescribing relatively smaller loss to observations unlikely under that parameter than the log-
likelihood. A key feature of (4) is that while limf→0 − log f = ∞, limf→0 − fβ−1

β−1 = 0 for β > 1.
The second integral term only depends on the parameters and ensures the βD loss can learn the data
generating parameters. Setting β = 1 recovers the negative log-likelihood. We refer to updating
using (3) and loss (4) as βD-Bayes. Note that this update is general, and can be applied for any
choice of prior π(θ), and density/mass function f(y; θ). Using (4) for inference was first proposed
by Basu et al. [9] and extended by Ghosh and Basu [32] to the Bayesian paradigm. Because of its
favourable robustness properties, the β-divergence has since been deployed for a variety of examples
within modern statistical inference [e.g. 47, 34, 48, 33, 79] and deep learning [e.g. 3, 36, 2, 19, 48].

A particularly convenient feature of inference based on divergences is that they are uniquely minimised
to 0 when f = g. Therefore, if there exists θ0 such that g(·) = f(·; θ0), i.e. the model is correctly
specified for g, then argminθ∈Θ D

(β)
B (g(·)||f(·; θ)) = argminθ∈Θ KLD(g(·)||f(·; θ)) = θ0, and

the βD-Bayes posterior will learn about the same parameter as the Gibbs posterior (2). Further, the
general Bernstein-von-Mises theorem for generalised posteriors [Theorem 4; 65] can be applied to
the βD-Bayes posterior (see Theorem 3) to show that π(β)(θ|D) is asymptotically Gaussian and
concentrates around θℓ

(β)

0 := argminθ∈Θ D
(β)
B (g(·)||f(·; θ)) as n → ∞. This proves useful when

establishing consistency and asymptotic efficiency, see Section A.2. When the model is misspecified,
i.e. there exists no θ0 such that g(·) = f(·; θ0), then θℓ

(β)

0 ̸= argminθ∈Θ KLD(g(·)||f(·; θ)) and the
βD-Bayes posterior learns a different parameter to the standard posterior. However, several works
have argued that it provides more desirable inference [32, 34, 47, 48] and decision-making [45] under
model misspecification, and stability [46] to the specification of the model. We now show that we can
leverage the favourable robustness properties of βD-Bayes to obtain general-use DP OPS estimates.

DP one-posterior-sampling Rather than bounding log f(·; θ), we replace it in (3) with the βD loss
from (4) which is naturally bounded when the density is bounded.

Condition 1 (Boundedness of the model density/mass function). The model density or mass function
f(·; θ) is such that there exists 0 < M < ∞ such that f(·; θ) ≤ M,∀θ ∈ Θ.

Lemma 1 (Bounded sensitivity of the βD-Bayes loss). Under Condition 1 the sensitivity of the
βD-Bayes-loss for any β > 1 is

∣∣ℓ(β)(D, f(·; θ))− ℓ(β)(D′, f(·; θ))
∣∣ ≤ Mβ−1

β−1 .

Bounding f rather than its logarithm is considerably more straightforward: discrete likelihoods are
always bounded by 1, while continuous likelihoods can be guaranteed to be bounded under mild
assumptions. We will see in Example 2 that such a bound can be provided in a Gaussian regression
model by truncating the support of the variance parameter σ2 from below. Under Condition 1,
Theorem 1 proves (ϵ, 0)-DP of βD-Bayes OPS. Theorem 2 establishes the consistency of βD-Bayes
OPS and Proposition 1 establishes its efficiency, based on the definitions given by [81, 27]. Condition
3, stated fully in Section A.2 requires that the βD-Bayes loss can be approximated by a quadratic
form and requires that as n grows the βD-Bayes loss is uniquely minimied.

Theorem 1 (Differential privacy of the βD-Bayes posterior). Under Condition 1, a draw θ̃ from the
βD-Bayes posterior πℓ(β)

(θ|D) in (3) is ( 2M
β−1

β−1 , 0)-differentially private.

Theorem 2 (Consistency of βD-Bayes sampling). Under Condition 3, stated in Section A.2,

1. a posterior sample θ̃ ∼ πℓ(β)

(θ|D) is a consistent estimator of θℓ
(β)

0 .

2. if data D1, . . . , Dn ∼ g(·) were generated such that there exists θ0 with g(D) = f(D; θ0), then
θ̃ ∼ πℓ(β)

(θ|D) for all 1 < β < ∞ is consistent for θ0.
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Figure 1: Left: Comparison of f̃(y = 1;X, θ) ∝ exp{ℓ(y = 1;X, θ)} for the Gibbs and βD-Bayes
posteriors achieving DP with ϵ = 6 with the standard logistic function for binary classification with
m(X, θ) = Xθ. The f̃ associated with the βD-Bayes posterior is closer to that of the Bayes posterior
for any m(X, θ) than that of the Gibbs posterior for the same privacy level. Right: Comparison
of ℓ(y;X, θ) for the Gibbs posterior and the βD-Bayes posterior for Gaussian regression with the
standard log-likelihood. The βD-Bayes posterior allows for DP estimation while the Gibbs posterior
does not as any choice for w > 0 fails to bound the loss sensitivity.

Proposition 1 (Asymptotic efficiency). Under Condition 3, stated in Section A.2, θ̃ ∼ πℓ(β)

(θ|D)

is asymptotically distributed as
√
n(θ̃ − θℓ

(β)

0 )
weakly−→ N (0, (Hℓ(β)

0 )−1Kℓ(β)

0 (H
(β)
0 )−1 + (Hℓ(β)

0 )−1),

where Kℓ(β)

0 and Hℓ(β)

0 are the gradient cross-product and Hessian matrices for the βD loss and are
defined in (5) and (6).

OPS for classification and regression Note, unlike other methods, this DP guarantee does not
require bounding features or response. We consider two explicit examples.

Example 1 (Binary classification). Consider a classifier for y ∈ {0, 1} taking the logistic value
of arbitrary function m : X ×Θ 7→ R, p(y = 1;X, θ) = 1/ (1 + exp (−m(X, θ))), depending on
predictors X ∈ X and parameters θ ∈ Θ. Clearly, 0 ≤ f(y = 1;X, θ) ≤ 1 independently of the
functional form of m(X, θ), which guarantees ( 2

(β−1) , 0)-DP of the βD-Bayes OPS.

Taking m(X, θ) = XT θ recovers logistic regression. Both the output perturbation of [18] and the
Gibbs posterior (2) taking the Gibbs weight of [66] can also provide DP estimation for logistic
regression. We show in Section 5 that βD-Bayes provides superior inference to these methods for the
same privacy budget. Figure 1 (left) compares the standard Bayesian posterior for logistic regression
with the Gibbs posterior (w = 0.09) and the βD-Bayes posterior (β = 1.33); both methods achieve
DP estimation with ϵ = 6. The y-axis is f̃(y = 1;X, θ) ∝ exp{ℓ(y = 1;X, θ)}, the term that
multiplies the prior in the updates (2) and (3). The figure shows that for the same privacy, the
βD-Bayes update more closely resembles the standard Bayesian update allowing βD-Bayes OPS to
produce more precise inference. Unlike [18] and [66], βD-Bayes also does not require bounding the
features to guarantee DP.

Modern machine learning, however, often requires non-linear models, and βD-Bayes allows DP
estimation for these as well. For example, we can choose m(X, θ) = NN(X, θ) where NN is a neural
network parameterised by θ. See [70] for more details on Bayesian inference for neural networks.
Unlike logistic regression, the log-likelihood of a neural network classifier is not convex and therefore
the methods of [18] and [66] cannot be applied. This necessitates the application of DPSGD [1]
which adds noise to minibatch gradient evaluations in SGD and clips the gradients at some value
to artificially bound their sensitivity–see [84] for a Bayesian extension. In contrast, βD-Bayes gets
rid of the need to bound the neural network’s sensitivity. It further allows for DP estimation beyond
classification.

Example 2 (Gaussian regression). Consider a Gaussian model f(y;X, θ, σ2) = N
(
y;m(X, θ), σ2

)
regressing univariate y ∈ R on predictors X ∈ X using any mean function m : X ×Θ → R and
parameter θ ∈ Θ where σ2 > 0 is the residual variance. Provided there exists a lower bound
0 < s2 < σ2, then 0 ≤ f(y;X, θ, σ2) ≤ 1/

(√
2πs
)

independent of m(X, θ). βD-Bayes OPS for
such a model is (ϵ, 0)-DP with ϵ = 2/((β − 1)(

√
2πs)(β−1)).

Ensuring Condition 1 for a Gaussian likelihood model requires that the support of the variance
parameter is bounded away from 0. Such a bound is not limiting. For example, the standard conjugate
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inverse-gamma prior puts vanishing prior density towards 0, and in situations where a natural lower
bound is not available, adding independent and identically distributed zero-mean Gaussian noise with
variance s2 to the observed responses y ensures this bound without changing the mean estimation.

One popular choice for the mean function is m(X, θ) = XT θ corresponding to standard linear
regression. This is an exponential family model with conjugate prior, and DP estimation can be
done using e.g. [13, 12]. They, however, require artificial bounds on the feature and response spaces.
Again, the βD-Bayes estimation also holds for more complex mean functions such as neural networks
– see [48] for βD-Bayes neural network regression. Figure 1 (right) illustrates how βD-Bayes bounds
the sensitivity for Gaussian regression models while the Gibbs posterior cannot. The log-likelihood
of the Gaussian distribution is unbounded and while multiplying this with w < 1 reduces the slope,
this does not change its bound. The βD-Bayes, on the other hand, provides a bounded loss function.

4 Extending the privacy beyond one-posterior sampling

While OPS has been shown to provide DP guarantees for perfect samples, the OPS posterior is
typically not available in closed form and as a result, some approximate sampling methods such as
Markov Chain Monte Carlo (MCMC) are required. Note that this is not only a limitation of OPS, but
sampling from the intractable exponential mechanism [63, 75] in general. Proposition 2 taken from
[66] investigates the DP properties of the approximation.

Proposition 2 (Proposition 12 of [66]). If sampling from π(θ|D) is (ϵ, δ)-DP and for all D there
exists approximate sampling procedure pD(θ) with

∫
|π(θ|D)− pD(θ)|dθ ≤ γ, then sampling from

pD(θ) is (ϵ, δ′)-DP with δ′ = δ + (1 + eϵ)γ.

Proposition 2 establishes that if the MCMC chain has converged to the target distribution i.e. γ ≈ 0,
then the DP of the exact posterior is shared by the approximate sampling. Proposition 3 of [81] is the
same result for δ = 0. For the sufficiently well-behaved Gibbs posteriors (i.e. with Lipschitz convex
loss function and strongly convex regulariser), Minami et al. [66] provide an analytic stepsize and
number of iterations, N , that guarantees an (unadjusted) Langevin Monte-Carlo Markov Chain is
within γ of the target. While the Gibbs posterior for logistic regression satisfies these conditions, the
Gibbs posterior for more general tasks and the βD-Bayes loss will in general not be convex.

Previous contributions [81, 66, 29] have assumed that the MCMC kernel has converged. Seeman et al.
[75] observed that if the MCMC algorithm is geometrically ergodic achieving a δ′ smaller than order
1/n and preventing data leakage requires the chain to be run for at least order N = log(n) iterations.
For our experiments we used the No-U-turn Sampler [NUTS; 38] version of Hamiltonian Monte
Carlo [HMC; 24] implemented in the stan probabilistic programming language [16]. The geometric
ergodicity of HMC was established in [59] and stan provides a series of warnings that indicate
when the chain does not demonstrate geometric ergodicity [14]. Running stan for sufficiently many
iterations to not receive any warnings provides reasonable confidence of a negligible δ′. As an
alternative to measuring convergence, we below review approximate DP sampling approaches where
βD-Bayes can be applied to guarantee bounded density. We hope that the emergence of βD-Bayes,
as a general purpose OPS method to provide consistent DP estimation, motivates further research into
private sampling methods for OPS.

DP MCMC methods Alternatively to attempting to release one sample from the exact posterior,
much work has focused on extending OPS to release a Markov chain that approximates the Gibbs
posterior, incurring per iteration privacy costs. Examples include the privatisation of Stochastic
Gradient Langevin Dynamics [SGLD; 82, 81], the penalty algorithm [83], Hamiltonian Monte Carlo
[DP-HMC 73], Baker’s acceptance test [37, 8, 76], and rejection sampling [7]. Similar to DPSGD,
these algorithms all rely on either subsampled estimates of the model’s log-likelihood or its gradient
to introduce the required noise and run the chain until the privacy budget has been used up. Just like
the Gibbs posterior (2), the βD-Bayes posterior–using (4) and (3)–also contains a sum of loss terms
that can be estimated via subsampling, making the βD-Bayes similarly amenable. What is more,
many of these algorithms previously listed [85, 83, 37, 73, 81, 56, 84] require the boundedness of the
sensitivity of the log-likelihood, or its derivative. Proposition 3 shows that under Condition 1 which
ensures that βD-Bayes OPS is DP, or for gradient based samplers Condition 2, many of these DP
samplers can be used to sample from the βD-Bayes posterior without compromising DP.
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Condition 2 (Boundedness of the model density/mass function gradient). The model density or mass
function f(·; θ) is such that there exists 0 < G(β) < ∞ such that

∣∣∣∣∇θf(D; θ)× f(D; θ)β−2
∣∣∣∣
∞ ≤

G(β),∀θ ∈ Θ.

Proposition 3 (DP-MCMC methods for the βD-Bayes-Posterior). Under Condition 1, the penalty
algorithm [Algorithm 1; 83], DP-HMC [Algorithm 1; 73] and DP-Fast MH [Algorithm 2; 85] and
under Condition 2 DP-SGLD [Algorithm 1; 56] can produce (ϵ, δ)-DP estimation from the βD-Bayes
posterior with δ > 0 without requiring clipping.

Perfect sampling An alternative approach is to seek to modify MCMC chains to allow for exact
samples from the posterior. Seeman et al. [75] privatise the perfect sampling algorithm of [54], which
introduces an ‘artificial atom’ a into the support of the target and uses an augmented MCMC kernel
to move between the atom and the rest of the support. While we believe these approaches to be very
promising and in principle trivially applicable to βD-Bayes OPS, Lee et al. [54] find considerable
instability to choices for the underlying MCMC chain, and therefore more investigation is required.

Attacking one-posterior samples In order to quantify the data leakage from approximate sampling
schemes, we run the strongest privacy attacks for DP auditing, namely membership inference attacks
(MIA). In MIA, an adversary tries to predict whether an observation was part of the training data set
or not. This attack corresponds directly to the DP guarantee presented in Definition 1: Given any
two neighbouring data sets, D and D′, an attacker should not be able to confidently predict which
data set was used in training if they observe the final statistical estimate θ̃. Indeed, Jagielski et al.
[43] have shown that the false positive and false negative rates of MIA attacks can be used to audit
the DP of an algorithm directly. In the pursuit of tight auditing of DP algorithms, Nasr et al. [69]
have proposed worst-case attacks where |D|+ |D′| = 1 are chosen to maximise attack performance.
These attacks are beneficial to uncover whether an algorithm violates its promised DP guarantees as
published works have repeatedly been shown to suffer from faulty implementations or mistakes in
proving DP [69, 78]. We are the first to consider such attacks for OPS.

For a number of rounds, we 1) generate two neighbouring data sets, D and D′, 2) sample m ∼
Bernoulli(0.5), 3) if m = 1 return θ̃(D′) or if m = 0 return θ̃(D), and then 4) predict given Remark 1
which data set θ̃ was trained on. Without loss of generality, we assume m = 1. We follow [74] in
defining the objective of the MIA attack as M(θ̃, D,D′) := p(m = 1; θ̃, D,D′), i.e. the probability
that θ̃ was trained on D′ after observing θ̃, D, and D′.

Remark 1. Let p(θ̃|D) be the density of the privacy mechanism—i.e the Laplace density for [18]
or the posterior (i.e. (2) or (3)) for OPS. An attacker estimating M(θ̃, D,D′) = p(θ̃|D′)

(p(θ̃|D)+p(θ̃|D′))

is Bayes optimal. For OPS, M(θ̃, D,D′) = exp{ℓ(D′
l; f(·; θ̃))− ℓ(Dl; θ̃)}

∫
exp{ℓ(Dl; f(·; θ))−

ℓ(D′
l; f(·; θ))}π(θ|D)dθ where D,D′ s.t. D \D′ = {Dl} and D′ \D = {D′

l} (see Appendix A.5).

5 Experimental results
Appendix B contains additional experimental details and results. Our code can be found at https:
//github.com/sghalebikesabi/beta-bayes-ops.

Data sets The evaluations are conducted on simulated and UCI [23] data sets. For the former, we
generate d-dimensional features from a multivariate normal distribution with the identity matrix as
covariance matrix, sample the model parameters from a normal distribution with mean 0 and standard
deviation 3 (i.e. a d dimensional vector for the logistic regression), and simulate the label according
to the assumed likelihood model. For the latter, we have included the two classification data sets that
were previously analysed in other applications of OPS (adult and abalone) [66, 81], in addition
to other popular UCI data sets. We report the test performance on random test splits that constitute
10% of the original data. We further scale the features in all data sets to lie within 0 and 1. This
is a requirement for the methods proposed by [81, 66, 18], whereas βD-Bayes guarantees DP for
unbounded data.

Logistic regression Figure 2 compares βD-Bayes, Chaudhuri et al. [18] and Minami et al. [66]
(with δ = 10−5). Note that [18] still presents a widely-used implementation of DP logistic regression
[39]. We consider two implementations of [18]: one where λ = 1/(9n) in (1) decreases in the
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Figure 2: Parameter log RMSE and test-set ROC-AUC of DP estimation for logistic regression as the
number of observations n increases. We have upper bounded the axis of the log RMSE (θ̂), as [18]
performs poorly when the regularisation term decreases in n.
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Figure 3: Test set predictive log RMSE of DP estimation for neural network regression as the number
of observations n increases on simulated and UCI data. See Appendix Figure 6 for a comparison of
each method with its private counterpart.

number of samples, consistent with the Bayesian paradigm the effect of the regulariser diminishes
as n → ∞ and corresponds to a Gaussian prior with variance of 3, and another where λ = 1/9 is
fixed - see A.4.1 for further discussion. The first leads to unbiased but inconsistent DP-inference
while the second is consistent at the cost of also being biased. We report the RMSE between the
estimated parameter θ̃(D) and the true data generating parameter on the simulated data sets, and the
ROC-AUC on UCI data. For a compairson of each method with its non-private equivalent, please
see Figure 6 in the appendix. We also introduce a new metric, termed correct sign accuracy that
computes the proportion of coefficients that are ‘correctly’ estimated. Please refer to Figures 7 and 8
in the appendix.

In simulations, we observe that as n increases, βD-Bayes achieves the smallest RMSE, illustrating the
increased efficiency we argued for in Section 3. The extent to which βD-Bayes dominates is greater
for large ϵ. The ROC-AUC curves show that this better estimation of parameters generally corresponds
to greater ROC-AUC. For the UCI data we see that for increasing n βD-Bayes outperforms the other
methods and Figure 6 shows it achieves performance that is very close to the unprivatised analogue.
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Neural network regression Figure 3 compares βD-Bayes and DPSGD [1] (with δ = 10−5) for
training a one-layer neural network with 10 hidden units. The learning rate, number of iterations, and
clipping norm for DPSGD were chosen using validation splits to maximise its performance. For small
n the DPSGD is preferable in both simulations and the UCI data, but as the number of observations
increases, the test set predictive RMSE of βD-Bayes outperforms that of DPSGD. Note that DPSGD
is currently the best-performing optimiser for DP neural network training [20]. It privatises each
gradient step, guaranteeing privacy for each parameter update, while βD-Bayes only guarantees DP
for a perfect sample from the Bayesian posterior. DPSGD thus provides stronger privacy guarantees,
and is more computationally efficient as MCMC scales poorly to high-dimensional feature spaces. We
hyperparameter-tune the number of epochs, learning rate, and batch size of DP-SGD on a validation
data set and use the same parameters on SGD for a fair comparison. Thus, the performance of SGD
could be improved by a different choice of hyperparameters.
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Figure 4: MIA attack success rates
against log RMSE. Points corre-
spond to values of ϵ.

Membership inference attacks We implement the Bayes
optimal attacker for the case of logistic regression. As the
solution of the logistic regression is not defined when only
observations from a single class are present, we choose D =
{(1, 1), (0, 0)} and D′ = {(−1, 1), (0, 0)} to achieve optimal
attack results. Figure 4 compares the attack success rate with
the log RMSE achieved on simulated data (n = 1000, d = 2).
As ϵ increases, the attack success rate of all methods increases
and their RMSE decreases, except [18] with λ = 1/9 whose
RMSE does not decrease because of bias. Fixing the attack
success rates, βD-Bayes generally achieves the lowest RMSE.
Importantly, βD-Bayes is more efficient than [18] for the same
attack success rate, where [18] has exact DP guarantees.

6 Discussion
We showed that βD-Bayes OPS produces consistent parameter estimates that are (ϵ, 0)-DP provided
that the model’s density or mass function f(·; θ) was bounded from above. βD-Bayes OPS improved
the precision of DP inference for logistic regression and extends to more complex models, such
as neural network classification and regression. Such extensions facilitate DP estimation for semi-
parametric models where consistent inference for a linear predictor is required, but a complex model
is used to capture the remaining variation [50]. Extensions of this work could consider dividing the
privacy budget to release more than one sample paving the way for parameter inference as well as
estimation. Bayesian inference with different divergences or discrepancies is becoming increasingly
popular [28, 42, 4, 61], and their suitability for DP estimation could be investigated following our
example and results. Further, the βD-loss is applicable beyond Bayesian methods, it could also be
used in place of clipping gradients in algorithms such as DP-SGD [1].

The main limitation of OPS methods is that they prove DP for a sample from the exact posterior
which is never tractable. Instead, MCMC samples approximate samples from the exact posterior and
convergence of the MCMC sampler must be ensured to avoid leaking further privacy. Future work
should investigate whether convergence guarantees are possible for βD-Bayes, taking advantage
of its natural boundedness, and consider which of the DP-MCMC methods introduced in Section
4 makes best use of the privacy budget to sample a chain from βD-Bayes. A further limitation of
OPS is the computational burden required to produce posterior samples, particularly in larger neural
networks with many parameters. Such a cost and is mitigated by the fact that inference can only
be run once to avoid leaking privacy and that only one posterior sample is required. But further
research is required to tackle these computational challenges, including scaling MCMC to large
neural networks or developing DP variational inference approaches [40, 44, 71] for the βD-Bayes
posterior. We hope that the existence of a general-purpose method for DP estimates through Bayesian
sampling with improved performance can stimulate further research in these directions.
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Appendix A Definitions, proofs, and related work
Here, we provide missing definitions of the Kullback-Leibler divergence (KLD) and the β-divergence
(βD).

Definition 2 (Kullback-Leibler divergence [52]). The KLD between probability densities g(·) and
f(·) is given by

KLD(g||f) =
∫

g(x) log
g(x)

f(x)
dx.

Definition 3 (β-divergence [9, 64]). The βD is defined as

D
(β)
B (g||f) = 1

β(β − 1)

∫
g(x)βdx+

1

β

∫
f(x)βdx− 1

β − 1

∫
g(x)f(x)β−1dx,

where β ∈ R \ {0, 1}. When β → 1, D(β)
B (g(x)||f(x)) → KLD(g(x)||f(x)).

The β-divergence has often been referred to as the density-power divergence in the statistics literature
[9] where it is also parameterised with βDPD = β − 1.

Intuition for how βD-Bayes provides DP estimation is provided in Figure 5 which shows the influence
of adding an observation y at distance |y − µ| from the posterior mean µ when updating using a
Gaussian distribution under KLD-Bayes and βD-Bayes. Here, influence is defined by [53] as the
Fisher–Rao divergence between the posterior with or without that observation and can be easily
estimated using an MCMC sample from the posterior without the observation. The influence of
observations under KLD-Bayes is steadily increasing, making the posterior sensitive to extreme
observations and therefore leaking their information. Under βD-Bayes, the influence initially
increases before being maximised at a point depending on the value of β, before decreasing to 0.
Therefore, each observation has bounded influence on the posterior, allowing for DP estimation.
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Figure 5: The influence of adding an observation y at distance |y − µ| from the posterior mean µ on
the posterior conditioned on a sample of 1000 points from a N (0, 1) when fitting a N (µ, σ2).

A.1 Notation
Before proving the paper’s results, we first define all notation used.

For likelihood f(·; θ), prior π(θ) and data D = {Di}ni=1 from data generating process g, the posterior,
Gibbs posterior parameters by w > 0 and βD-Bayes posterior for β > 1 are given by

π(θ|D) ∝ π(θ)

n∏
i=1

f(Di; θ)

πw log f (θ|D) ∝ π(θ) exp

{
w

n∑
i=1

f(Di; θ)

}

πℓ(β)

(θ|D) ∝ π(θ) exp

{
−

n∑
i=1

ℓ(β)(Di, f(·; θ)
}
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where
ℓ(β)(D, f(·; θ)) = − 1

β − 1
f(D; θ)β−1 +

1

β

∫
f(D; θ)βdD.

The population loss minimising parameters are

θlog f
0 : = argmin

θ∈Θ

∫
log f(D; θ)g(D)dD = argmin

θ∈Θ
KLD(g||f(·; θ))

θℓ
(β)

0 : = argmin
θ∈Θ

∫
ℓ(β)(D, f(·; θ))g(D)dD = argmin

θ∈Θ
D

(β)
B (g||f(·; θ))

and their sample estimates

θ̂log f
n : = argmin

θ∈Θ

n∑
i=1

log f(Di; θ)

θ̂ℓ
(β)

n : = argmin
θ∈Θ

n∑
i=1

ℓ(β)(Di, f(·; θ))

If the model is well specified for the data generating process g then we write g(·) = f(·; θ0) and
θ0 = argminθ∈Θ KLD(g||f(·; θ)) = argminθ∈Θ D

(β)
B (g||f(·; θ)).

Lastly, our asymptotic results require the definitions of the Hessian and gradient cross-product
matrices

Ĥℓ(β)

n :=

(
∂

∂θi∂θj

1

n

n∑
i=1

ℓ(β)(Di, f(·; θℓ
(β)

0 ))

)
i,j

Hℓ(β)

0 :=

(
∂

∂θi∂θj
ED

[
ℓ(β)(D, f(·; θℓ(β)

0 ))
])

i,j

(5)

Kℓ(β)

0 : =

(
∂

∂θi
ED

[
ℓ(β)(D; f(·; θℓ(β)

0 ))
] ∂

∂θj
ED

[
ℓ(β)(D; f(·; θℓ(β)

0 ))
])

i,j

. (6)

A.2 Bernstein-von Mises theorem for βD-Bayes
The general Bernstein-von Mises theorem for generalised posteriors [Theorem 4; 65] can be applied
to the βD-Bayes posterior. We first state the required Condition 3 before stating the result.

Condition 3 (Assumptions of Theorem 4 of [65] for the βD-Bayes). Fix θℓ
(β)

0 ∈ Rp and let prior π(θ)
is continuous at θℓ

(β)

0 with π(θℓ
(β)

0 ) > 0. Let f (β)
n : Rp → R with f

(β)
n (θ) = 1

n

∑n
i=1 ℓ

(β)(Di, f(·; θ)
for n ∈ N and assume:

(1) f
(β)
n can be represented as

f (β)
n (θ) = f (β)

n (θ̂ℓ
(β)

n ) +
1

2
(θ − θ̂ℓ

(β)

n )T Ĥℓ(β)

n (θ − θ̂ℓ
(β)

n ) + r(β)n (θ − θ̂ℓ
(β)

n )

where θ̂ℓ
(β)

n ∈ Rp and θ̂ℓ
(β)

n → θℓ
(β)

0 , with Ĥℓ(β)

n → Hℓ(β)

0 for positive definite Hℓ(β)

0 , and
r
(β)
n : Rp → R has the following property: there exist ϵ0, c0 > 0 such that for all n

sufficiently large, for all x ∈ Bϵ0(0), we have |r(β)n (x)| ≤ c0|x|3.

(2) For any ϵ > 0, lim infn infθ∈Bϵ(θ̂ℓ(β)
n )c

(f
(β)
n (θ)− f

(β)
n (θ̂ℓ

(β)

n )) > 0, where Br(x0) = {x ∈
RD : |x− x0| < r}

Condition 3 (1) requires that the βD-Bayes loss can be approximated by a quadratic form and (2)
requires that as n grows the βD-Bayes loss is uniquely minimied at θ̂ℓ

(β)

n .

Theorem 3 (Theorem 4 of [65] for the βD-Bayes). Assume Condition 3. Define πℓ(β)

n :=

πℓ(β)

(θ|D = {D1, . . . , Dn}). Then
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(i) The βD-Bayes posterior concentrates on θ
(β)
0∫

Bε(θ
(β)
0 )

πℓ(β)

n (θ)dθ −→
n→∞

1 (7)

where Br(x0) = {x ∈ Rp : |x− x0| < r}
(ii) The βD-Bayes posterior is asymptotically Gaussian∫ ∣∣∣π̃ℓ(β)

n (ϕ)−Np

(
ϕ; 0, (Hℓ(β)

0 )−1
)∣∣∣ dϕ −→

n→∞
0 (8)

where π̃ℓ(β)

n denotes the density of
√
n(θ̃ − θ̂ℓ

(β)

n ) when θ̃ ∼ πℓ(β)

n , Np(x;µ,Σ) denotes the
p-dimensional multivariate Gaussian distribution with mean vector µ and covariance matri
Σ

Proof. The result is proved as a direct application of Theorem 4 of [65] with fn(θ) =
1
n

∑n
i=1 ℓ

(β)(Di, f(·; θ) being the βD-Bayes loss function.

Theorem 3 shows that the βD-Bayes posterior concentrates on θ
(β)
0 and converges to a Gaussian

distribution centred around the βD minimising parameter θℓ
(β)

0 in total variation distance.

A.3 Proofs
A.3.1 Proof of Lemma 1

Lemma 1 (Bounded sensitivity of the βD-Bayes loss). Under Condition 1 the sensitivity of the
βD-Bayes-loss for any β > 1 is

∣∣ℓ(β)(D, f(·; θ))− ℓ(β)(D′, f(·; θ))
∣∣ ≤ Mβ−1

β−1 .

Proof. By (4), for β > 1∣∣∣ℓ(β)(D, f(·; θ))− ℓ(β)(D′, f(·; θ))
∣∣∣ = 1

β − 1

(
f(D′; θ)β−1 − f(D; θ)β−1

)
≤ max

D

1

β − 1
f(D; θ)β−1

≤ Mβ−1

β − 1

A.3.2 Proof of Theorem 1

Theorem 1 (Differential privacy of the βD-Bayes posterior). Under Condition 1, a draw θ̃ from the
βD-Bayes posterior π(β)(θ|D) in (3) is ( 2M

β−1

β−1 , 0)-differentially private.

Proof. Define D = {D1, . . . , Dn}, D′ = {D′
1, . . . , D

′
n} and let j be the index such that Dj ̸= D′

j

with Di = D′
i for all i ̸= j. Firstly, the normalising constant of the βD-Bayes posterior combining

(3) with (4) is

P (β)(D) :=

∫
π(θ) exp

{
−

n∑
i=1

ℓ(β)(θ,Di)

}
dθ (9)

Then,

log
π(β)(θ|D)

π(β)(θ|D′)
=

n∑
i=1

ℓ(β)(D′
i, f(·; θ))−

n∑
i=1

ℓ(β)(Di, f(·; θ)) + log
P (β)(D′)

P (β)(D)

= ℓ(β)(D′
j ; f(·; θ))− ℓ(β)(Dj ; f(·; θ)) + log

P (β)(D′)

P (β)(D)
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Now, by Condition 1 and Lemma 1,

ℓ(β)(D′
j ; f(·; θ))− ℓ(β)(Dj ; f(·; θ)) ≤

Mβ−1

β − 1
,

and

P (β)(D′) =

∫
exp

{
−

n∑
i=1

ℓ(β)(D′
i, f(·; θ))

}
π(θ)dθ

=

∫
exp

{
ℓ(β)(Dj , f(·; θ))− ℓ(β)(D′

j , f(·; θ))−
n∑

i=1

ℓ(β)(Di, f(·; θ))
}
π(θ)dθ

≤ exp

{
Mβ−1

β − 1

}∫
exp

{
−

n∑
i=1

ℓ(β)(Di, f(·; θ))
}
π(θ)dθ,

which combined provides that

log
π(θ|D)

π(θ|D′)
≤ 2

Mβ−1

β − 1
.

A.3.3 Proof of Theorem 2

Theorem 2 (Consistency of βD-Bayes sampling). Under Conditions 3,
1. a posterior sample θ̃ ∼ πℓ(β)

(θ|D) is a consistent estimator of θℓ
(β)

0 .

2. if data D1, . . . , Dn ∼ g(·) were generated such that there exists θ0 with g(D) = f(D; θ0), then
θ̃ ∼ πℓ(β)

(θ|D) for all 1 < β < ∞ is consistent for θ0.

Proof. For Part 1), define Br(x0) = {x ∈ Rp : |x− x0| < r}. Theorem 3 Part (i) proves that∫
Bε(θ

(β)
0 )

πℓ(β)

n (θ)dθ −→
n→∞

1 (10)

for all ε > 0 and πℓ(β)

n := πℓ(β)

(θ|D = {D1, . . . , Dn}). This is enough to show that for θ̃ ∼
πℓ(β)

(θ|D) → θℓ
(β)

0 in probability.

For Part 2), note that if g(D) = f(D; θ0), then for all 1 < β < ∞
θℓ

(β)

0 : = argmin
θ∈Θ

Eg

[
ℓ(β)(D; f(·; θ))

]
= argmin

θ∈Θ
D

(β)
B (g||f(·; θ)) = θ0.

A.3.4 Proof of Proposition 1

Proposition 1 (Asymptotic efficiency). Under Conditions 3, θ̃ ∼ πℓ(β)

(θ|D) is asymptotically

distributed as
√
n(θ̃ − θℓ

(β)

0 )
weakly−→ N (0, (Hℓ(β)

0 )−1Kℓ(β)

0 (Hℓ(β)

0 )−1 + (Hℓ(β)

0 )−1), where Kℓ(β)

0 and
Hℓ(β)

0 are the gradient cross-product and Hessian matrices for the βD loss and are defined in (5) and
(6).

Proof. Let θ̃ ∼ πℓ(β)

(θ|D). By Theorm 3 Part (ii),
√
n(θ̃ − θ̂ℓ

(β)

n ) → N (0, (Hℓ(β)

0 )−1).

By the asymptotic normality of θ̂ℓ
(β)

n [10], we have that
√
n(θ̂ℓ

(β)

n − θℓ
(β)

0 ) →D N (0, (Hℓ(β)

0 )−1Kℓ(β)

0 (Hℓ(β)

0 )−1)

for

Kℓ(β)

0 :=

(
∂

∂θi
ED

[
ℓ(β)(D; f(·; θℓ(β)

0 ))
] ∂

∂θj
ED

[
ℓ(β)(D; f(·; θℓ(β)

0 ))
])

i,j

.

The result then comes from the asymptotic independence of θ̃ − θ̂ℓ
(β)

n and θ̂ℓ
(β)

n [see e.g. 81].

19



A.3.5 Proof of Proposition 3
Lemma 1 considers the sensitivity of the βD-Bayes loss to the change in one observation. DP-MCMC
methods require the sensitivity to the change in the parameter which is provided by Lemma 2.

Lemma 2 (Bounded parameter sensitivity of the βD-Bayes loss). Under Condition 1 the param-
eter sensitivity of the βD-Bayes-loss for any β > 1 is

∣∣ℓ(β)(D, f(·; θ))− ℓ(β)(D, f(·; θ′))
∣∣ ≤

2β−1
β(β−1)M

β−1.

Proof. By (4), for β > 1∣∣∣ℓ(β)(D, f(·; θ))− ℓ(β)(D, f(·; θ′))
∣∣∣

=

∣∣∣∣− 1

β − 1
f(D; θ)β−1 +

1

β

∫
f(D; θ)βdD +

1

β − 1
f(D; θ′)β−1 − 1

β

∫
f(D; θ′)βdD

∣∣∣∣
≤max

θ,θ′

{
1

β

∫
f(D; θ)βdD +

1

β − 1
f(D; θ′)β−1

}
≤max

θ,θ′

{
1

β
Ef(D;θ)[f(D; θ)β−1] +

1

β − 1
Mβ−1

}
≤ 1

β
Mβ−1 +

1

β − 1
Mβ−1

=
2β − 1

β(β − 1)
Mβ−1

Proposition 3 (DP-MCMC methods for the βD-Bayes-Posterior). Under Condition 1, the penalty
algorithm [Algorithm 1; 83], DP-HMC [Algorithm 1; 73] and DP-Fast MH [Algorithm 2; 85] and
under Condition 2 DP-SGLD [Algorithm 1; 56] can produce (ϵ, δ)-DP estimation from the βD-Bayes
posterior with δ > 0 without requiring clipping.

Proof. Algorithm 1 of [83] (Assumption A1), Algorithm 1 of [73] and Algorithm 2 of [85] (As-
sumptions 1 and 2) require a posterior whose log-likelihood has bounded parameter sensitivity. For
βD-Bayes posterior, this requires the βD-Bayes-loss to have bounded parameter sensitivity which is
provided by Condition 1 and Lemma 2.

Algorithm 1 of [56] requires a posterior whose log-likelihood has bounded gradient. For βD-Bayes
posterior, this requires βD-Bayes-loss to have bounded gradient. Assuming we can interchange
integration and differentiation, this requires∣∣∣∣∣∣∇θℓ

(β)(D; θ)
∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣∇θf(D; θ)× f(D; θ)β−2 −
∫

∇θf(D; θ)× f(D; θ)β−1dD

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣∇θf(D; θ)× f(D; θ)β−2 −
∫

∇θf(D; θ)× f(D; θ)β−2 × f(D; θ)dD

∣∣∣∣∣∣∣∣
∞

≤ max{G(β), G(β)M},
as
∣∣∣∣∇θf(D; θ)× f(D; θ)β−2

∣∣∣∣
∞ ≤ G(β) by Condition 2.

We show that Condition 2 is satisfied for logistic regression.

Example 3 (Satisfying Condition 2 for logistic regression). For Logistic regression introduced in
Example 1

f(y; θ,X) =
1

(1 + exp(−(2y − 1)Xθ))

∇θf(y; θ,X) =
(2y − 1)X

(1 + exp(−Xθ))2

f(y; θ,X)β−2 = (1 + exp(−(2y − 1)Xθ))2−β
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and therefore,∣∣∣∣∇θf(y; θ,X)× f(y; θ,X)β−2
∣∣∣∣
∞ =

∣∣∣∣∣∣∣∣ (2y − 1)X(1 + exp(−(2y − 1)Xθ))2−β

(1 + exp(−(2y − 1)Xθ))2

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣ (2y − 1)X

(1 + exp(−(2y − 1)Xθ))β

∣∣∣∣∣∣∣∣
∞

≤ ||X||∞.

Satisfying Condition 2 for logistic regression requires bounding of the features, a similar requirement
to the DP methods of [81, 66, 18].

A.4 Related work
Here, we would like to extend our discussion of two important areas within the related work.

A.4.1 Differentially private logistic regression
Extensions to L1-sensitivity Our presentation of the object perturbation of Chaudhuri et al.
[18] in Section 2 differs slightly from its original presentation. Corollary 8 [18] assumes that
||∇θℓ(Di, f(·; θ)|| < 1 which allows the bounding of the L2-sensitivity of the empirical risk min-
imiser (1). Then adding multivariate Laplace noise z′ ∼ ν(z) ∝ exp(−nλϵ

2 ||z′||2) provides DP
estimation. For logistic regression, ||∇θℓ(Di, f(·; θ)|| < 1 requires that the features X are such that
||X||2 < 1.

In order to provide a fairer comparison with [66], who require that |∇θj ℓ(Di, f(·; θ)| < 1, j =
1, . . . , p, which for logistic regression requires |Xj | < 1 for j = 1, . . . , p, we add univariate Laplace
noise to each parameter estimate requiring us to bound the L1 sensitivity of the empirical risk
minimiser (1). This is a natural extension of the result of Chaudhuri et al. [18], but for completeness,
we provide a proof that the approach presented in Section 2 is (ϵ, 0)-DP.

Theorem 4 (Modification of Output-Perturbation Chaudhuri et al. [18]). Consider empirical risk
minimisation for a p dimensional parameter θ ∈ Θ ⊆ Rp:

θ̂(D) := argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Di, f(·; θ)) + λR(θ)

where ℓ(Di, f(·; θ)) is convex and differentiable loss function with |∇θj ℓ(Di, f(·; θ)| < 1, j =
1, . . . , p, R(θ) is a differentiable and 1-strongly convex regulariser, and λ > 0 is the regularisation
weight. Then releasing

θ̃ = θ̂(D) + z,Rp ∈ z = (z1, . . . , zp)
iid∼ L

(
0,

2

nλϵ

)
,

where L(µ, s) is a Laplace distribution with density f(z) = 1
2s exp{−|z − µ|/s}, is (ϵ, 0)-DP.

Proof. Fix datasets D1 and D2 = {D1 \Dk} ∪Dl. Then define

θk : = θ̂(Dk) = argmin
θ∈Θ

Gk(θ)

Gk(θ) : =
1

n

∑
D∈Dk

ℓ(D, f(·; θ) + λR(θ)

g(θ) := G1(θ)−G2(θ)

=
1

n
ℓ(Dk, f(·; θ)−

1

n
ℓ(Dl, f(·; θ)

Lemma 7 of Chaudhuri et al. [18] then proves that

||θ1 − θ2||2 ≤ 1

λ
max
θ∈Θ

||∇θg(θ)||2
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Now, as |∇θj ℓ(Di, f(·; θ)| < 1, j = 1, . . . , p

||∇θg(θ)||2 =
1

n
||∇θℓ(Dk, f(·; θ)−∇θℓ(Dl, f(·; θ)||2

≤ 2

n
max
D

||∇θℓ(D, f(·; θ)||2

=
2

n
max
D

√√√√ p∑
j=1

∇θj ℓ(D, f(·; θ)

≤ 2
√
p

n
The original result of Chaudhuri et al. [18] assumed that ||∇θℓ(Di, f(·; θ)||2 < 1 and they obtained
||∇θg(θ)||2 < 2

n . Instead, we require a weaker element wise bound that |∇θj ℓ(Di, f(·; θ)| < 1 and
note that

||θ1 − θ2||2 ≤ 2
√
p

λ
⇒ ||θ1 − θ2||1 ≤ 2

nλ
.

Therefore by Proposition 1 of [26] we have that θ̃ = θ̂(D) + (z1, . . . , zp) with zj ∼ L
(
0, 2

nϵλ

)
is

(ϵ, 0)-DP.

Note, 1-strong convexity of an L2 type regulariser requires that R(θ) = 1
2 ||θ||22 = 1

2

∑p
j=1 θ

2
j . This

parametrisation is the default implementation in sklearn.

Consistency Chaudhuri et al. [18] propose a regularised DP logistic regression, solving (1). The
optimisation problem in (1) adds the regulariser to the average loss and as a result, the impact of
the regulariser does not diminish as n → ∞. Even though the scale of the Laplace noise decreases
as n grows, Chaudhuri et al. [18] consistently estimate a parameter that is not the data generating
parameter. Alternatively, one could choose a regulariser λ′ := λ

n whose influence decreases as
n grows. This would allow for unbiased inference as n → ∞ (assuming a Bayesian model with
corresponding prior distribution), but the n cancels in the scale of the Laplace noise and therefore
the perturbation scale does not decrease in n, and the estimator is inconsistent. Choosing instead
λ′ := λ

nr with 0 < r < 1, would help in constructing unbiased and consistent estimators. In our
experiments, we did not find this choice to help.

A.4.2 Differentially private Monte Carlo methods
Wang et al. [81] propose using Stochastic Gradient Langevin Dynamics [SGLD; 82] with a modified
burn-in period and bounded step-size to provide DP sampling when the log-likelihood has bounded
gradient. Li et al. [56] improve upon [81], taking advantage of the moments accountant [1] to allow
for a larger step-size and faster mixing for non-convex target posteriors. Foulds et al. [27] extend
their privatisation of sufficient statistics to a Gibbs sampling setting where the conditional posterior
distribution for a Gibbs update is from the exponential family. Yıldırım and Ermiş [83] use the
penalty algorithm which adds noise to the log of the Metropolis-Hastings acceptance probability.
Heikkilä et al. [37] use Barker’s acceptance test [8, 76] and provide RDP guarantees. Räisä et al. [73]
derive DP-HMC also using the penalty algorithm. Zhang and Zhang [85] propose a random batch
size implementation of Metropolis-Hastings for a general proposal distribution that takes advantage
of the inherent randomness of Metropolis-Hastings and is asymptotically exact. Lastly, Awan and
Rao [7] consider DP rejection sampling.

A.5 Attack optimality
Remark 1. Let p(θ̃|D) be the density of the privacy mechanism—i.e the Laplace density for [18]
or the posterior (i.e. (2) or (3)) for OPS. An attacker estimating M(θ̃, D,D′) = p(θ̃|D′)

(p(θ̃|D)+p(θ̃|D′))

is Bayes optimal. For OPS, M(θ̃, D,D′) = exp{ℓ(D′
l; f(·; θ̃))− ℓ(Dl; θ̃)}

∫
exp{ℓ(Dl; f(·; θ))−

ℓ(D′
l; f(·; θ))}π(θ|D)dθ where D,D′ s.t. D \D′ = {Dl} and D′ \D = {D′

l} (see Appendix A.5).

The privacy attacks outlined in Section 4 require the calculation of

M(θ̃, D,D′) := p(m = 1; θ̃, D,D′) = p(θ̃|D′)/(p(θ̃|D)) + p(θ̃|D′))

= 1/(p(θ̃|D)/p(θ̃|D′) + 1)
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by Bayes Theorem. For [18],

p(θ̃|D) = L
(
θ̂(D),

2

nλϵ

)
,

where θ̂(D) was defined in (1).

For the OPS methods, Minami et al. [66] and βD-Bayes, p(θ̃|D) is the posterior

p(θ̃|D) = πℓ(θ̃|D) ∝ π(θ) exp

{
−

n∑
i=1

ℓ(Di; θ)

}
where for [66] ℓ(Di; f(·; θ)) = −w log f(Di; θ), and for βD-Bayes ℓ(Di; f(·; θ)) =
ℓ(β)(Di; f(·; θ)) given in (4). Without loss of generality, index observations within D and D′

such that D \D′ = {Dl} and D′ \D = {D′
l}. Then,

πℓ(θ̃|D)

πℓ(θ̃|D′)
=

π(θ̃) exp{−∑n
i=1 ℓ(Di; f(·; θ̃))}∫

π(θ) exp{−∑n
i=1 ℓ(Di; f(·; θ))}dθ

/
π(θ̃) exp{−∑n

i=1 ℓ(D
′
i; f(·; θ̃))}∫

π(θ) exp{−∑n
i=1 ℓ(D

′
i; f(·; θ))}dθ

= exp{ℓ(D′
l; f(·; θ̃))− ℓ(Dl; f(·; θ̃))}

∫
π(θ) exp{−∑n

i=1 ℓ(D
′
i; f(·; θ))}∫

π(θ) exp{−∑n
i=1 ℓ(Di; f(·; θ))}dθ

dθ

= exp{ℓ(D′
l; f(·; θ̃))− ℓ(Dl; θ̃)}∫

exp{ℓ(Dl; θ)− ℓ(D′
l; f(·; θ))}

π(θ) exp{−∑n
i=1 ℓ(Di; f(·; θ))}∫

π(θ) exp{−∑n
i=1 ℓ(Di; f(·; θ))}dθ

dθ

= exp{ℓ(D′
l; f(·; θ̃))− ℓ(Dl; f(·; θ̃))}

∫
exp{ℓ(Dl; f(·; θ))− ℓ(D′

l; f(·; θ))}π(θ|D)dθ

≈ exp{ℓ(D′
l; f(·; θ̃))− ℓ(Dl; f(·; θ̃))}

1

N

N∑
j

exp{ℓ(Dl; f(·; θj))− ℓ(D′
l; f(·; θj))},

where {θj}Nj=1 ∼ π(θ|D). The adversary only needs to sample from the posterior based on dataset
D to be able to estimate M(θ̃, D,D′) for all D′ differing from D in only one index l.

Appendix B Additional experimental details and results
Datasets Please see the following list for the name of the targets in the prediction tasks of the UCI
data:

• abalone - ring class (threshold 10)

• adult - income class

• bank - authenticity

• boston - housing prices

• kin8mm - distance of the end-effector from a target

• naval - GT Turbine decay state coefficient

• wine - quality

• vertebral - disease (normal/abnormal)

We used all remaining features in the data sets as predictors.

Bayesian models In the case of logistic regression, we assume a normal prior with mean 0 and
variance 9 on the regression coefficient. In the case of linear regression, we again assume a normal
prior with mean 0 and variance 9 · σ2 on the regression coefficient. Further, we assume σ2 follows an
inverse gamma distribution a-priori with shape and scale of 1, with a lower bound of 0.01. In the
case of neural network classification, we assume normal priors with mean 0 and variance 1 on the
weight and bias parameters of a one-hidden-layer neural network with 10 hidden nodes. In the case
of neural network regression, the same assumptions hold and we additionally assume σ2 follows an
inverse gamma distribution a-priori with shape and scale of 1, with a lower bound of 0.01.
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MCMC sampling Unless otherwise specified, we choose d = 2 in the simulated experiments. The
MCMC methods are run for 1000 warm-up steps, and 100 iterations. The DP sample is sampled
uniformly at random from the last 100 iterations.

Neural network training DPSGD is run for 14+ ⌊ϵ⌋ epochs, with clipping norm 1, batch size 100,
and learning rate of 10−2. All other implementation details can be found at https://github.com/
sghalebikesabi/beta-bayes-ops. We tuned the learning rate and the batch size on validation
data sets when training with DPSGD. We use the same parameters for training with SGD to show how
much performance is lost through the privatisation of the training procedure. The rule for the number
of epochs was found by tuning the number of epochs for ϵ = 1 within {5, 10, 15, 20} and trying
different parameters for the slope of the linear increase in ϵ ({0.5, 1, 2}) following observations from
[20]. The batch size was tuned within {50, 100, 200}, the learning rate within {10−3, 10−2, 10−1, 1},
and the clipping norm within {0.8, 1, 1.2}.

Additional plots for logistic regression Figure 6 compares the DP method for logistic regression
individually with their non-private counterparts. For the βD-Bayes the non-private estimate was the
posterior mean (PM) while for [18] it was the regularised empirical risk minimiser θ̂(D) without the
added noise. As the number of observations n increases the DP-estimates from βD-Bayes and [18]
with λ = 1/9 approach the unprivatised estimates. This is not the case for [18] with λ = 1/9n.

Figure 7 and 8 consider the correct sign accuracy (CSA) of the DP methods for logistic regression.
The CSA is the proportion of the time the DP-parameter estimates from the different methods agree
with those of a non-private baselines. The plot demonstrates that the estimates from βD-Bayes OPS
agree with the sign of the non-private method more of the time than the other methods.

Neural network classification Similarly to neural network regression, we can also use βD-Bayes
for DP neural network classification. For simulated data, Figure 9 shows the for ϵ > 0.2 the βD-
Bayes generally achieves higher test set ROC-AUC than DPSGD across all sample sizes. In the real
data we see that for ϵ = 0.5 βD-Bayes and DPSGD perform similarly, on abalone the DPSGD
generally achieves higher ROC-AUC whereas on bank the βD-Bayes generally performs slightly
better. However, for ϵ = 5, we see that while the DPSGD sometimes achieves higher ROC-AUC
when n is small, as n increases the βD-Bayes achieves the highest ROC-AUC for all datasets, once
again illustrating the consistency of our method.

Sensitivity in number of features Figure 10 investigates the quality of the DP estimation methods
considered in this paper as the number of features grows. The top panel considers parameter RMSE
of the data generating parameter θ (divided by the number of dimensions of θ) in logistic regression.
Here even the non-DP methods increase as the dimension of the parameter space increases as more
parameters are estimated from the same number of observations. While the βD-Bayes performs the
best, it appears to scale similarly with dimension as [18] and [66]. The middle panel considers test set
predictive RMSE in neural network regression. More features provide a more complex model which
should decrease RMSE. We see that the βD-Bayes achieves lower RMSE than DPSGD and βD-Bayes
appears to scale better with dimension as the improvement made by βD-Bayes improves as the
dimension of the feature space increases. The bottom panel considered test set ROC-AUC for neural
network classification. Again, more features provide a more complex classifier improving test set
ROC-AUC. For ϵ > 0.2 βD-Bayes achieves a higher ROC-AUC than DPSGD and the improvement
increases with the number of features.

Membership inference attacks For ϵ ∈ {0.2, 1, 2, 7, 10, 20}, we run 10,000 rounds of the attack
presented in Section 4. Figure 11 presents an estimated lower bound on ϵ, given the false positive and
negative rates of the attacks [43], for each method with its RMSE for the data generating θ. Note that
these lower bounds are unrealistic for ϵ < 1. We see that, for any RMSE value, βD-Bayes achieves a
lower practical bound on ϵ than [18], which gives exact privacy guarantees. For fixed lower bound,
we see that βD-Bayes achieves the smallest RMSE.

Compute While the final experimental results can be run within approximately two hours on a
single Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz core, the complete compute needed for the final
results, debugging runs, and sweeps amounts to around 11 days.

Licenses The UCI data sets are licensed under Creative Commons Attribution 4.0 International
license (CC BY 4.0).
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Figure 6: Parameter log RMSE and test-set ROC-AUC of DP estimation for logistic regression as the
number of observations n increases on simulated (first row of each method) and UCI data (second
and third row of each method). PM stands for posterior mean which was estimated over 20 samples.
This is a non-private baseline, i.e. the point estimate you would release if privacy were not an issue.
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Figure 7: Correct sign accuracy (CSA) for simulated experiments (first row) and UCI data sets
(second and third rows). For CSA, we estimate the number of coefficients in the logistic regression
that have the same sign as the true coefficient on the simulated experiment or the non-DP coefficient
estimated on the UCI data set with L2-regularised logistic regression as implemented with default
parameters in |sklearn|.
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Figure 8: CSA for simulated experiments (first row of each method) and UCI data sets (second row
of each method). PM stands for posterior mean which was estimated over 20 samples. This is a
non-private baseline, i.e. the point estimate you would release if privacy were not an issue.
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Figure 9: Test set predictive ROC-AUC of DP estimation for neural network classification as the
number of observations n increases on simulated and UCI data.
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Figure 10: Parameter log RMSE of DP logistic regression (first row), test set predictive log RMSE
of DP neural network classification (second row), and test set ROC-AUC of DP neural network
regression (third row) as the number of features d increases on simulated data with n = 1000.
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