
A Gradient computation for executing the main algorithm

A straightforward computation shows (recall that ✓ = [A k B] for SMF-H and ✓ = [A,B] for
SMF-W)

rvec(A)F � 2� vec(A) =

⇢Pn
s=1ra`(ys,as)⌦ In[:, s] for SMF-HPn
s=1ra`(ys,as)⌦ xs for SMF-W,

(18)

rBF = 2⇠(B�Xdata), rvec(�)F =

 
nX

s=1

ra`(ys,as)⌦ x
0
s

!
+ 2� vec(�), (19)

where ⌦ denotes the Kronecker product. Here, we have ra`(y,a) = (ḣ1, . . . , ḣ), where

ḣj :=
h0(aj)

1 +
P

c=1 h(ac)
� 1{y=j}

h0(aj)

h(aj)
. (20)

B Generalized multinomial logistic regression

In this section, we provide some background on a generalized multinomial logistic regression and
record some useful computations. (See [10] for backgrounds on multinomial logistic regression.)
Without loss of generality, we can assume that the + 1 classes are the integers in {0, 1, . . . ,}. Say
we have training examples (�(x1), y1), . . . , (�(xn), yn), where

• x1, . . . ,xn: Input data (e.g., collection of all medical records of each patient)
• �1 := �(x1), . . . ,�n := �(xn) 2 Rp : Features (e.g., some useful information for each

patient)
• y1, . . . , yn 2 {0, 1, . . . ,}: + 1 class labels (e.g., digits from 0 to 9).

The basic idea of multinomial logistic regression is to model the output y as a discrete random
variable Y with probability mass function p = [p0, p1, . . . , p] that depends on the observed feature
�(x), score function h : R ! R (strictly increasing, twice differentiable, and h(0) = 1), and a
matrix parameter W = [w1, . . . ,w] 2 Rp⇥ through the following relation:

p0 =
1

1 +
P

c=1 h(h�(x),wci)
, pj =

h(h�(x),wji)
1 +

P
c=1 h(h�(x),wci)

, for j = 1, . . . ,. (21)

That is, given the feature vector �(x), the probability pi of x having label i is proportional to h
evaluated at the ‘linear activation’ h�(x),wii with the base category of class 0. Note that using
h(x) = exp(x), the above multiclass classification model reduces to the classical multinomial logistic
regression. In this case, the corresponding predictive probability distribution p is called the softmax
distribution with activation a = [a1, . . . , a] with ai = h�(x),wii for i = 1, . . . ,. Notice that this
model has parameter vectors w1, . . . ,w 2 Rp, one for each of the  nonzero class labels.

Next, we derive the maximum log-likelihood formulation for finding optimal parameter W for
the given training set (�i, yi)i=1,...,n. For each 1  i  n, define the predictive probability mass
function pi = [pi0, pi1, . . . , pi] using (21) with �(x) replaced by �i. We introduce the following
matrix notations

Y :=

2

64
1(y1 = 1) · · · 1(y1 = )

...
...

1(yn = 1) · · · 1(yn = )

3

75

2 {0, 1}n⇥

,
P :=

2

64
p11 · · · p1

...
...

pn1 · · · pn

3

75

2 [0, 1]n⇥

(22)

� :=

" " "
�(x1) · · · �(xn)
# #

#

2 Rp⇥n

,
W :=

" " "
w1 · · · w

# #

#
.

2 Rp⇥

(23)
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Note that the sth row of Y is a zero vector if and only if ys = 0. Similarly, since ps0 = 1� (ps1 +
· · ·+ ps), the corresponding row of P determines its predictive probability distribution. Then the
joint likelihood function of observing labels (y1, . . . , yn) given input data (x1, . . . ,xn) under the
above probabilistic model is

L(y1, . . . , yn ; W) = P(Y1 = y1, . . . , Yn = yn ; W) =
nY

s=1

Y

j=0

(psj)
1(ys=j). (24)

Denote w0 = 0. Then since h(0) = 1 by definition, we can conveniently write

psj =
h(h�s,wji)P
c=0 h(h�s,wci)

for s = 1, . . . , n and j = 0, 1, . . . ,. (25)

Now we can derive the negative log-likelihood `(�,W) := �
Pn

s=1

P
j=0 1(ys = j) log psj in a

matrix form as follows:

`(�,W) =
nX

s=1

log

 
1 +

X

c=1

h(h�(xs),wci)
!
�

nX

s=1

X

j=0

1(ys = j) log h (h�(xs),wji) (26)

=

 
nX

s=1

log

 
1 +

X

c=1

h(h�(xs),wci)
!!
� tr

⇣
Y

Th(�T
W)

⌘
, (27)

where tr(·) denotes the trace operator. Then the maximum likelihood estimates Ŵ is defined as the
minimizer of the above loss function in W while fixing the feature matrix �.

Both the maps W 7! `(�,W) and � 7! `(�,W) are convex and we can compute their gradients
as well as the Hessian explicitly as follows. For each y 2 {0, 1, . . .}, � 2 Rp, and W 2 Rp⇥,
define vector and matrix functions

ḣ(y,�,W) := (ḣ1, . . . , ḣ)
T 2 R⇥1, ḣj :=

h0(h�,wji)
1 +

P
c=1 h(h�,wci)

� 1(y = j)
h0(h�,wji)
h(h�,wji)

(28)

Ḧ(y,�,W) :=
⇣
Ḧij

⌘

i,j
2 R⇥, (29)

Ḧij =
h00(h�,wji)1(i=j)
1+

P
c=1 h(h�,wci) �

h0(h�,wii)h0(h�,wji)
(1+

P
c=1 h(h�,wci))2

� 1(y = i = j)

✓
h00(h�,wji)
h(h�,wji) �

(h0(h�,wji))2

(h(h�,wji))2

◆
.

(30)

For each W = [w1, . . . ,w] 2 Rp⇥, let Wvec := [wT
1 , . . . ,w

T
 ]

T 2 Rp denote its vectorization.
Then a straightforward computation shows

rvec(W)`(�,W) =
nX

s=1

ḣ(ys,�s,W)⌦ �s, (31)

H := rvec(W)rvec(W)T `(�,W) =
nX

s=1

Ḧ(ys,�s,W)⌦ �s�
T
s , (32)

where ⌦ above denotes the Kronecker product. Recall that the eigenvalues of A⌦B, where A and
B are two square matrices, are given by �iµj , where �i and µj run over all eigenvalues of A and B,
respectively. Also, for two square matrices A,B of the same size, write A � B if vTAv  vTBv
for all unit vectors v. Then denoting �+ := max1sn �max(Ḧ(ys,�s,W)),

H � �+
nX

s=1

I⌦ �s�
T
s = �+

I⌦��
T . (33)

Similarly, ��
I⌦��

T � H, where �� denotes the minimum over all �min(Ḧ(ys,�s,W)). Hence
we can deduce

���min

⇣
��

T
⌘
 �min(H)  �max(H)  �+�max

⇣
��

T
⌘
. (34)
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There are some particular cases worth noting. First, suppose binary classification case,  = 1. Then
the Hessian H above reduces to

H =
nX

s=1

Ḧ11(ys,�s,W)�s�
T
s . (35)

Second, let h(x) = exp(x) and consider the multinomial logistic regression case. Then h = h0 = h00

so the above yields the following concise matrix expression

rW `(�,W) = �(P�Y) 2 Rp⇥, r� `(�,W) = W(P�Y)T 2 Rp⇥n, (36)

H =
nX

s=1

2

664

ps1(1� ps1) �ps1ps2 . . . �ps1ps
�ps2ps1 ps2(1� ps2) . . . �ps2ps

...
...

. . .
...

�psps1 �psps2 . . . ps(1� ps)

3

775⌦ �s�
T
s . (37)

Note that H in this case does not depend on ys for s = 1, . . . , n. The bounds on the eigenvalues
depends on the range of linear activation h�i,wji may take. For instance, if we restrict the norms
of the input feature vector �i and parameter wj , then we can find a suitable positive uniform lower
bound on the eigenvalues of H.
Lemma B.1. Suppose h(·) = exp(·). Then

�min

⇣
Ḧ(�s,W)

⌘
� min

1i

exp(h�s,wii)
(1 +

P
c=1 exp(h�s,wci))

2 , (38)

�max

⇣
Ḧ(�s,W)

⌘
 max

1i

exp(h�s,wii)
(1 +

P
c=1 exp(h�s,wci))

2

 
1 + 2

X

c=2

exp(h�s,wci)
!
. (39)

Proof. For the lower bound on the minimum eigenvalue, we note that

�min

⇣
Ḧ(�s,W)

⌘
� min

1i

X

j=1

Ḧij = min
1i

psips0 = min
1i

exp(h�s,wii)
(1 +

P
c=1 exp(h�s,wci))

2 ,

(40)

where the first inequality was shown in [4] using the fact that Ḧ(�s,W) is a diagonally dominant
M -matrix (see [50]). The following equalities can be verified easily.

For the upper bound on the maximum eigenvalue, we use the Gershgorin circle theorem (see, e.g.,
[19]) to bound

�max

⇣
Ḧ(�s,W)

⌘
 max

1i

0

@psi(1� psi) +
X

c 6=i

psipsc

1

A  max
1i

psi (2� ps0 � 2psi) . (41)

Then simplifying the last expression gives the assertion.

C Exponential convergence of low-rank PGD

In Section 2.1 of the main manuscript, we outlined our key idea for solving the SMF problem (4),
which involves ‘double lifting‘ the nonconvex problem to a low-rank matrix estimation problem. In
this section, we make this approach precise by considering an abstract form of optimization problems
that generalizes the SMF problem (4).

Fix a function f : Rd1⇥d2⇥Rd3⇥d4 ! R, which takes the input of a d1⇥d2 matrix and an augmented
variable in Rd3⇥d4 . Consider the following constrained and augmented low-rank estimation (CALE)
problem

min
Z=[X,�]2✓Rd1⇥d2⇥Rd3⇥d4

f(Z), subject to Z 2 ⇥ and rank(X)  r, (42)

where ⇥ is a convex subset of Rd1⇥d2 ⇥ Rd3⇥d4 . Here, we seek to find a global minimizer Z? =
[X?,�?] of the objective function f over the convex set ⇥, consisting of a low-rank component
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X
? 2 Rd1⇥d2 and an auxiliary variable �

? 2 Rd3⇥d4 . In a statistical inference setting, the loss
function f = fn may be based on n noisy observations according to a probabilistic model, and
the true parameter Z⇤ to be estimated may approximately minimize f over the constraint set ⇥,
with some statistical error "(n) depending on the sample size n. In this case, a global minimizer
Z
? 2 argmin

⇥
f serves as an estimate of the true parameter Z⇤. The matrix completion and low-

rank matrix estimation problem [34, 46] can be considered as special cases of (42) without constraint
⇥ and the auxiliary variable �. This problem setting has been one of the most important research
topics in the machine learning and statistics literature for the past few decades. More importantly
for our purpose, we have seen in (11) and (12) in the main manuscript that both the feature- and
filter-based SMF problems can be cast as the form of (42) after some lifting and change of variables.

One can reformulate (42) as the following nonconvex problem, where one parameterizes the low-rank
matrix variable X with product UV

T of two matrices, which we call the constrained and augmented
factored estimation (CAFE) problem:

min
U2Rd1⇥r,V2Rd2⇥r,�2Rd3⇥d4

f(UV
T ,�), subject to [UV

T ,�] 2 ⇥. (43)

Note that a solution to (43) gives a solution to (42). Conversely, when considering (42) without
any constraint on the first matrix component, the singular value decomposition of the first matrix
component easily demonstrates that a solution to (42) is also a solution to (43). Recently, there has
been a surge of progress in global guarantees of solving the factored problem (43) using various
nonconvex optimization methods [20, 21, 63, 64, 53, 42, 56, 40, 41]. While most of the work
considers (43) without the auxiliary variable and constraints, some studies consider specific types of
convex constraints such as matrix norm bound. We consider ⇥ to be a general convex constraint set.

It is common that the nonconvex factored problem (43) is introduced as a more efficient formulation of
the convex problem (42). Interestingly, in the present work, we reformulate the four-factor nonconvex
problem of SMF in (4) as a three-factor nonconvex CAFE problem in (43) and then realize it as a
single-factor convex CALE problem in (42). We illustrated this connection briefly in Section 2.1 of
the main manuscript.

In order to solve the CALE problem (42), consider the following low-rank projected gradient descent
(LPGD) algorithm: (see Remark C.7 for more discussion on the use of projections ⇧⇥ and ⇧r)

Zt  ⇧r (⇧⇥ (Zt�1 � ⌧rf(Zt�1))) , (44)

where ⌧ is a stepsize parameter, ⇧⇥ denotes projection onto the convex constraint set ⇥ ✓ Rd1⇥d2 ⇥
Rd3⇥d4 , and ⇧r denotes the projection of the first matrix component onto matrices of rank at most
r in Rd1⇥d2 . More precisely, let Z = [X,�]. Then ⇧r(Z) := [⇧r(X),�]. It is well-known that
the rank-r projection above can be explicitly computed by the singular value decomposition (SVD).
Namely, ⇧r(X) = U⌃V

T , where ⌃ is the r ⇥ r diagonal matrix of the top r singular values of
X and U 2 Rd1⇥r, V 2 Rd2⇥r are semi-orthonormal matrices (i.e., UT

U = V
T
V = Ir). Note

that algorithm (44) resembles the standard projected gradient descent (PGD) commonly used in the
optimization literature. The algorithm follows a three-step procedure where a gradient descent step
is performed, followed by projection onto the convex constraint set ⇥ and subsequently the rank-r
projection. It is also worth noting the similarity of (44) to the ‘lift-and-project’ algorithm in [12] for
structured low-rank approximation problem, which proceeds by alternatively applying the projections
⇧⇥ and ⇧r to a given matrix until convergence.

In Theorem C.2, we will show that the iterate Zt of the algorithm (44) converges exponentially to a
low-rank approximation of the global minimizer of the objective f over ⇥, given that the objective f
satisfies the following restricted strong convexity (RSC) and restricted smoothness (RSM) properties
in Definition C.1. These properties were first used in [3, 45, 36] for the class of matrix estimation
problems and have found a number of applications in optimization and machine learning literature
[56, 41, 51].
Definition C.1. (Restricted Strong Convexity and Smoothness) A function f : Rd1⇥d2⇥Rd3⇥d4 ! R
is r-restricted strongly convex and smooth with parameters µ,L > 0 if for all Z,Z0 2 Rd1⇥d2 ⇥
Rd3⇥d4 whose matrix coordinates are of rank  r,

µ

2
kvec(Z)� vec(Z0)k22

(RSC)
 f(Z0)� f(Z)� hrf(Z), Z0 � Zi

(RSM)
 L

2
kvec(Z)� vec(Z0)k22.

(45)
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Next, we discuss optimality measures for the CALE problem (42). Recall that we want to minimize
the objective f subject to two constraints: (1) convex constraint ⇥ and (2) low-rank constraint. We
first consider the following simpler problem without the low-rank constraint:

min
Z2⇥

f(Z). (46)

A first-order optimal point Z⇤ for the above problem is called a stationary point of f over ⇥, which
is defined as

hrf(Z⇤), Z� Z
⇤i � 0 for all Z 2 ⇥. (47)

An alternative definition of stationary points uses gradient mapping [39, 7], which is particularly
well-suited for projected gradient descent type algorithms. Define a map G : ⇥⇥ (0,1)! R by

G(Z, ⌧) :=
1

⌧
(Z�⇧⇥(Z� ⌧rf(Z))). (48)

We call G the gradient mapping associated with problem (46). In order to motivate the definition, fix
Z 2 ⇥ and decompose it as

Z = ⇧⇥(Z� ⌧rf(Z)) + (Z�⇧⇥(Z� ⌧rf(Z))) (49)
= ⇧⇥(Z� ⌧rf(Z)) + ⌧G(Z, ⌧). (50)

Namely, the first term above is a one-step update of a projected gradient descent at Z over ⇥ with
stepsize ⌧ , and the second term above is the error term. If Z is a stationary point of f over ⇥,
then �rf(Z) lies in the normal cone of ⇥ at Z, so Z is invariant under the projected gradient
descent and the error term above is zero. If Z is only approximately stationary, then the error above
is nonzero. In fact, G(Z, ⌧) = 0 if and only if Z is a stationary point of f over ⇥ (see Theorem
10.7 in [7]). Therefore, we may use the size of G(Z, ⌧) (measured using an appropriate norm) as
a measure of first-order optimality of Z for the problem (42). In the special cases when ⇥ is the
whole space or when Z is in the interior of ⇥, if ⌧ is sufficiently small (so that Z� ⌧rf(Z) 2 ⇥),
then kG(Z, ⌧)kF = krf(Z)kF , which is the standard measure of first-order optimality of Z for
minimizing the objective f . In general, it holds that kG(Z, ⌧)kF  krf(Z)kF (see Lemma F.1).

Now we turn our attention to (42). An optimal solution for (46) need not be an optimal solution for
(42), since it may or may not satify the low-rank constraint. Our theoretical convergence guarantee of
the LPGD algorithm (44) for CALE (42) covers these two cases.
Theorem C.2. (Exponential convergence of LPGD) Let f : Rd1⇥d2 ⇥ Rd3⇥d4 ! R be twice
differentiable and r-restricted strongly convex and smooth with parameters µ and L, respectively, with
L/µ < 3. Let (Zt)t�0 be the iterates generated by algorithm (44). Suppose ⇥ ✓ Rd1⇥d2 ⇥ Rd3⇥d4

is a convex subset and fix a stepsize ⌧ 2 ( 1
2µ ,

3
2L ). Then the ‘contraction constant’ ⇢ := 2max(|1�

⌧µ|, |1� ⌧L|) < 1 and the followings hold:

(i) (Correctly specified case) Suppose Z
? = [X?,�?] is a stationary point of f over ⇥ such that

rank(X?)  r. Then Z
? is the unique global minimizer of (42), limt!1 Zt = Z

?, and for
t � 1,

kZt � Z
?kF  ⇢t kZ0 � Z

?kF . (51)

(ii) (Possibly misspecified case) Let Z? = [X?,�?] be an arbitrary point in the interior of ⇥ with
rank(X?)  r. Then for t � 1,

kZt � Z
?kF  ⇢t kZ0 � Z

?kF +
⌧

1� ⇢

⇣p
3rkrXf(Z?)k2 + kr�f(Z

?)kF
⌘
. (52)

In general, if Z? is an arbitrary point of ⇥ with rank(X?)  r, then denoting the gradient
mapping [�X

?,��
?] := 1

⌧ (Z
? �⇧⇥(Z? � ⌧rf(Z?))) at Z?, then for t � 1,

kZt � Z
?kF  ⇢t kZ0 � Z

?kF +
2⌧

1� ⇢

⇣p
3rk�X

?k2 + k��
?kF

⌘
. (53)

Theorem C.2 (i) asserts that the LPGD algorithm (44) converges at a linear rate to the unique global
minimizer Z?, provided that there exists a stationary point Z? of f over the convex constraint set ⇥
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with the first matrix factor X having rank at most r. This assumption holds in the standard statistical
estimation setting, where one seeks to estimate a ‘ground-truth’ parameter Z? with a low-rank matrix
factor from noisy observations. In this case, the objective f represents the empirical error. Hence
in this case, it is reasonable to assume that the gradient rf(Z?) (in general, the gradient mapping
G(Z, ⌧)) is small or at least Z? is near-stationary. In fact, Wang et al. [56, Condition 5.7] makes such
an assumption.

In contrast, Theorem C.2 does not require such an assumption of near-optimality of the parameter
Z
? to be estimated. In practical situations, the rank of the ground-truth parameter is often unknown,

and one attempts to explain observed data by using a low-rank model, in which case the assumed
rank r could be much lower than the true rank. For such generic situations, let Z? be an admissible
parameter such that the second term in (53) is minimized. Then Theorem C.2 (ii) shows that the
LPGD algorithm (44) converges linearly to such Z

? up to a ‘model misspecification error’, the
minimum value of the second term in (53). In the proof of statistical estimation guarantees of SMF
stated in Theorems 3.5 and 4.1, we show that such a model misspecification error is small with high
probability.

The general framework of proof in Theorem C.2 shares similarities with the standard argument
used to demonstrate the exponential convergence of projected gradient descent with a fixed step
size for constrained strongly convex problems (as shown in Theorem 10.29 in [7]). However, a key
technical challenge arises due to the absence of non-expansiveness (i.e., 1-Lipschitzness) in our case.
This challenge stems from the fact that the constraint set of low-rank matrices is not convex when
minimizing a strongly convex objective with a rank-constrained matrix parameter. Consequently, we
cannot rely on the non-expansiveness of the convex projection operator, especially considering that
the rank-r projection ⇧r obtained via truncated SVD is not guaranteed to be non-expansive.

To address this issue, we employ a strategy that involves comparing the iterates Zt obtained from
(44) with auxiliary iterates Ẑt. These auxiliary iterates are derived using a carefully designed linear
projection (see Lemma C.3) that incorporates non-expansiveness. Then we can establish that the
original rank-r projection is essentially 2-Lipschitz. So if the distance between the auxiliary iterate
Ẑt and the global minimizer contracts with a ratio < 1/2, then the distance between the actual iterate
Zt and the global minimizer contracts with a ratio < 1. This contraction property ensures exponential
convergence of the distance between Zt and the global minimizer in Theorem C.2.

Proof of Theorem C.2. We first derive (i) assuming (ii). Suppose Z
? = [X?,�?] is a stationary

point of f over ⇥ such that rank(X?)  r. Let Z = [X,�] be arbitrary in ⇥ with rank(X)  r. By
stationarity of Z?, we have hrf(Z?), Z� Z

?i � 0, so by RSC (45),

µ

2
kvec(Z)� vec(Z?)k2  f(Z)� f(Z?). (54)

Hence f(Z) � f(Z?). Thus Z? is the unique global minimizer of (42). Also, since Z? is a stationary
point of f over ⇥, the gradient mapping 1

⌧ (Z
? �⇧⇥(Z? � ⌧rf(Z?))) is zero. Thus the rest of (i)

follows from (ii).
Next, we prove (ii). Let Z? = [X?,�?] 2 ⇥ be arbitrary with rank(X?)  r. Fix an iteration counter
t � 1. Our proof consists of several steps.

Step 1: Constructing a suitable linear projection
Let X? = U

?
⌃
?(V?)T denote the SVD of X?. For each iteration t, denote Zt = [Xt,�t] and let

Xt = Ut⌃tV
T
t denote the SVD of Xt. Since Xt and X

? have rank at most r, all of both U
?, Ut,

V
?, and Vt have at most r columns. Define a matrix U3r so that its columns form an orthonormal

basis for the subspace spanned by the columns of [U?,Ut�1,Ut]. Then U3r has at most 3r columns.
Similarly, let V3r be a matrix so that its columns form an orthonormal basis for the subspace spanned
by the columns of [V?,Vt�1,Vt]. Then V3r has at most 3r columns. Now, define the subspace

A :=
�
� 2 Rd1⇥d2 | span(�T ) ✓ span(V3r), span(�) ✓ span(U3r)

 
. (55)

Note that A is a convex subset of Rd1⇥d2 . Also note that, by definition, X?,Xt,Xt�1 2 A. Let ⇧A
denote the linear projection operator of Rd1⇥d2 onto A.

Step 2: Constructing auxiliary iterates Ẑt
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Let A denote the linear subspace of Rd1⇥d2 in (55). Let

⇧0 := ⇧A⇥Rd3⇥d4 (56)

denote the projection operator of Rd1⇥d2 ⇥Rd3⇥d4 onto A⇥Rd3⇥d4 . Define the following auxiliary
iterates

Ẑt = [X̂t,�t] := ⇧0 (⇧⇥ (Zt�1 � ⌧rf(Zt�1))) . (57)

By Lemma C.3 and the choice of A, we have

Xt = ⇧r(X̂t) 2 argmin
X,rank(X)r

kX̂t �XkF and Zt,Zt�1,Z
? 2 A⇥ Rd3⇥d4 . (58)

It follows that

kZt � Z
?kF  kZt � ẐtkF + kẐt � Z

?kF (59)

= kXt � X̂tkF + kẐt � Z
?kF (60)

 kX? � X̂tkF + kẐt � Z
?kF  2kẐt � Z

?kF . (61)

Hence if we can show kẐt � Z
?kF is small, then kZt � Z

?kF is also small.

Step 3. Showing kẐt � Z
?kF is small

Denote the gradient mapping �Z
? := 1

⌧ (Z
? �⇧⇥(Z? � ⌧rf(Z?))) (Recall that this equals zero if

Z
? is a stationary point of f over ⇥, but we do not make such an assumption in this proof). We claim

that

kẐt � Z
?kF  ⌘ kZt�1 � Z

?kF + k⇧0 (⌧�Z
?)kF , (62)

where ⌘ := max(|1� ⌧L|, |1� ⌧µ|).

Below we show (62). Using Z
? 2 A⇥ Rd3⇥d4 and linearity of the linear projection ⇧0, write

Z
? = ⇧0(Z?) (63)
= ⇧0 (⇧⇥(Z? � ⌧rf(Z?))) +⇧0 (Z? �⇧⇥(Z? � ⌧rf(Z?))) (64)
= ⇧0 (⇧⇥(Z? � ⌧rf(Z?))) +⇧0 (⌧�Z

?) . (65)

Using the non-expansiveness of ⇧0 and ⇧⇥ and linearity ⇧0,

kẐt � Z
?kF (66)

= k⇧0 (⇧⇥ (Zt�1 � ⌧rf(Zt�1)))�⇧0 (⇧⇥ (Z? � ⌧rf(Z?)))�⇧0 (⌧�Z
?)kF (67)

 kZt�1 � ⌧rf(Zt�1)� Z
? + ⌧rf(Z?)kF + k⇧0 (⌧�Z

?)kF . (68)

Hence in order to derive (62), it is enough to show that

kZt�1 � ⌧rf(Zt�1)� Z
? + ⌧rf(Z?)kF  ⌘kZt�1 � Z

?kF . (69)

The above follows from the fact that Zt�1 and Z
? have rank  r and the restricted strong convexity

and smoothness properties (Definition C.1). Indeed, sincer2f is continuous,

Zt�1 � ⌧rf(Zt�1)� Z
? + ⌧rf(Z?) (70)

= (Zt�1 � Z
?)� ⌧(rf(Zt�1)�rf(Z?)) (71)

=

Z 1

0

�
I� ⌧r2f(Z? + s(Zt�1 � Z

?))
�
(Zt�1 � Z

?) ds. (72)

From the above with the inequality kABkF  kAk2kBkF ,

kZt�1 � ⌧rf(Zt�1)� Z
? + ⌧rf(Z?)kF (73)

 sup
Z̃=[Z1,Z2]: rank(Z1)r

kI� ⌧r2f(Z̃)k2 kZt�1 � Z
?kF . (74)

Since the eigenvalues of r2f(Zt�1) are contained in [µ,L], the eigenvalues of I� ⌧r2f(Zt�1) are
between 1� ⌧L and 1� ⌧µ. Hence the right hand side above is at most

⌘ kZt�1 � Z
?kF , (75)
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verifying (69). This shows (62).

Step 4: Bounding the error term
From (61) and (62), we deduce

kZt � Z
?kF  2⌘ kZt�1 � Z

?kF + 2k⇧0 (⌧�Z
?)kF . (76)

Note that ⇧0(�X
?,��?) = [⇧A(�X

?),��?] and rank(A)  3r. Thus by triangle inequality,
k⇧0 (�X

?,��?)kF  k⇧0(�X
?)kF + k��?kF (77)


p
3rk�X

?k2 + k��?kF . (78)

Also note that 0  ⌘ < 1/2 if and only if ⌧ 2 ( 1
2µ ,

3
2L ), and this interval is non-empty if and only

if L/µ < 3. Hence for such choice of ⌧ , 0 < 2⌘ < 1, so by a recursive application of the above
inequality, we obtain

kZt � Z
?kF  (2⌘)t kZ0 � Z

?kF +
2⌧

1� 2⌘

⇣p
3rk�X

?k2 + k��?kF
⌘
. (79)

This completes the proof of (ii).

The following lemma is inspired by the proof of Thm. 5.9 in [56].
Lemma C.3. (Linear projection factoring through rank-r projection) Fix Y 2 Rd1⇥d2 , R � r 2
N, and denote X = ⇧r(Y) and X̂ = ⇧A(Y), where A ✓ Rd1⇥d2 is a linear subspace. Let
X = U⌃V

T denote the SVD of X. Suppose there exists orthonormal matrices U 2 Rd1⇥R and
V 2 Rd2⇥R such that

A =
�
A 2 Rd1⇥d2

�� col(AT ) ✓ col(V), col(A) ✓ col(U)
 
, (80)

col(U) ✓ col(U), col(V) ✓ col(V). (81)

Then X = ⇧r(X̂).

Proof. Write Y �X = U̇⌃̇V̇
T for its SVD. Let d := rank(Y) and let �1 � · · · � �d > 0 denote

the nonzero singular values of Y. Since X = ⇧r(Y) = U⌃V
T and Y = U⌃V

T + U̇⌃̇V̇
T , we

must have that ⌃ consists of the top r singular values of Y and the rest of d� r singular values are
contained in ⌃̇. Furthermore, col(U) ? col(U̇).

Now, since X 2 A and ⇧A is linear, we get

X̂ = ⇧A(X+ (Y �X)) = U⌃V
T +⇧A(U̇⌃̇V̇

T ). (82)

Let Z := ⇧A(U̇⌃̇V̇
T ) and write its SVD as Z = eUe⌃eVT . Then note that (UT

UU
T
)T =

UU
T
U = U since UU

T
: Rd1 ! Rd1 is the orthogonal projection onto col(U) ◆ col(U). Hence

U
T
UU

T
= U

T . Also note that, by the definition of A, for each B 2 Rd1⇥d2 ,

⇧A(B) = UU
T
BV

T
V. (83)

Hence, noting that col(U) ? col(U̇), we get

U
T
Z = U

T
⇣
UU

T
U̇⌃̇V̇

T
V

T
V

⌘
(84)

=
⇣
U

T
UU

T
⌘
U̇⌃̇V̇

T
V

T
V (85)

=
⇣
U

T
U̇

⌘
⌃̇V̇

T
V

T
V = O. (86)

It follows that UT eU = O, since U
T eU = (UT

Z)eV(e⌃)�1 = O. Therefore, rewriting (82) gives the
SVD of X̂ as

X̂ =
⇥
U eU

⇤ ⌃ O
O e⌃

� 
V

eV

�
. (87)

Furthermore, k⇧A(U̇⌃̇V̇
T )k2  k⌃̇k2 = �r+1, so ⌃ consists of the top r singular values of X̂. It

follows that X = U⌃V
T is the best rank-r approximation of X̂, as desired.
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Remark C.4. Note that in (77), we could have used the following crude bound

k⇧0 (�X
?,��?)kF  k[�X

?,��?]kF  k�X
?kF + k��?kF (88)


p

rank(�X?)k�X
?k2 + k��?kF , (89)

which is also the bound we would have obtained if we chose the trivial linear subspace A = Rd1⇥d2

in the proof of Theorem C.2 above. While we know rank(X?)  r, we do not have an a priori bound
on rank(�X

?), which could be much larger than
p
3r. A smarter choice of the subspace A as we

used in the proof of Theorem C.2 ensures that we only need the factor
p
3r in place of the unknown

factor
p

rank(�X?) as in (77).
Remark C.5. Suppose f is not only rank-restricted smooth, but also L0-smooth on ⇥ for some
L0 > 0. Then we have

f (Zt)� f(Z?) 
�
krf(Z?)k+ L⇢t

�
⇢tkZ0 � Z

?kF (90)

for t � 1. Indeed, note that

|f(Zn)� f(Z?)| =
����
Z 1

0
hrf (Z? + s(Zn � Z

?)) , Zn � Z
?i ds

���� (91)


Z 1

0
krf (Z? + s(Zn � Z

?))k kZn � Z
?k ds (92)


Z 1

0
(krf(Z?)k+ sL0kZn � Z

?k) kZn � Z
?k ds (93)

 (krf(Z?)k+ L0kZn � Z
?k) kZn � Z

?k. (94)

Then (90) follows from Theorem C.2 (ii).
Remark C.6. A similar approach as in our proof of Theorem C.2 was used in [56] for analyzing a
similar problem without auxiliary features and under a stronger assumption that the gradient rf(Z?)
is small. Our analysis is for a more general setting but is a bit simpler and gives a weaker requirement
L/µ < 3 for the well-conditioning of the objective f instead of L/µ < 4/3 in [56].
Remark C.7. We give some salient remarks on the use of projections ⇧⇥ and ⇧r in our LPGD
algorithm (44). First, in principle, one could alternate between the two projections ⇧r and ⇧⇥ at
every iteration after a gradient descent step until convergence, similarly to the alternating projection
in [12]. However, this would make each iteration of the algorithm prohibitively expensive as this
requries to perform rank-r SVD until convergence at every iteration. The problem in [12] is much
simpler than ours as the objective function is simply the Frobenius norm between the target and the
estimated low-rank constrained matrix.

Second, what happens if we switch the order of two projections ⇧r and ⇧⇥ in (44)? Our proposed
LPGD algorithm performs the convex projection ⇧⇥ first and then applies the low-rank projection
⇧r. The key inequality we derive in the proof of Thm. C.2 is (62):

kZt � Z
?kF  2⌘ kZt�1 � Z

?kF + k⇧t (⌧�Z
?)kF , (95)

where ⇧t is a linear projection onto a 3r-dimensional linear subspace that depends on Z
?, Zt, and

Zt�1. The last error term above can be bounded above uniformly in t using k⇧t(A)kF 
p
3rkAk2.

So we can apply the above inequality recursively to obtain the desired result.

Now if we consider an alternative algorithm that uses the low-rank projections ⇧r first and then the
convex projection ⇧⇥, then we can derive a corresponding key inequality:

kZt � Z
?kF  2⌘ kZt�1 � Z

?kF + k⌧�t
Z
?kF , (96)

where ⌧�t
Z
? := Z

? � ⇧t(Z? � ⌧rf(Z?)) denotes the gradient mapping at Z? w.r.t. the ‘virtual’
linear constraint that we constructed during the proof to approximate the low-rank constraint.

To give more detail, it amounts to derive similar inequalities in (65)-(69) assuming the reverse order
of projections. Namely, in place of (65), we use

Z
? = ⇧⇥(Z

?) (97)
= ⇧⇥ (⇧0(Z? � ⌧rf(Z?)) + Z

? �⇧0(Z? � ⌧rf(Z?))) . (98)
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Note that unlike in (65) we cannot distribute the convex projection ⇧⇥ since it is not in general a
linear projection as ⇧t is. Then in place of (66), using the non-expansiveness of ⇧t and ⇧⇥, we get

kẐt � Z
?kF (99)

=

����
⇧⇥ (⇧0 (Zt�1 � ⌧rf(Zt�1)))

�⇧⇥ (⇧0(Z? � ⌧rf(Z?)) + Z
? �⇧0(Z? � ⌧rf(Z?)))

����
F

(100)


����
(⇧0 (Zt�1 � ⌧rf(Zt�1)))

� (⇧0(Z? � ⌧rf(Z?)) + Z
? �⇧0(Z? � ⌧rf(Z?)))

����
F

(101)

 kZt�1 � ⌧rf(Zt�1)� Z
? + ⌧rf(Z?)kF + k⌧�t

Z
?kF . (102)

The first term in the last expression can be bounded by the same argument as in (69)-(75). Then by
recursively applying the inequality (96), we can obtain

kZt � Z
?kF  (2⌘)t kZ0 � Z

?kF +
tX

k=1

(2⌘)t�kk⌧�k
Z
?kF . (103)

Hence the rate of convergence we would get is the same as the original algorithm, but the additive
error takes a different form. Since the ‘low-rank gradient mapping’ �k

Z
? depends on the iterates

Zk,Zk�1, we find it easier to control the gradient mapping with respect to the convex projection that
comes out from the analysis of the original algorithm.

D Proof of Theorems 3.5 and 4.1

In this section, we prove the main results for SMF, Theorems 3.5 and 4.1. In the main text, we
explained that our algorithm for SMF (Alg. 1) is exactly an LPGD for the reformulated problems (11)
(for SMF-H) and (12) (for SMF-W). Therefore, our proofs of Theorems 3.5 and 4.1 are essentially
verifying the well-conditioning hypothesis L/µ < 3 of the general result for the LPGD algorithm
(Theorem C.2).

D.1 Proof of Theorem 3.5 and its generalization

Theorem 3.5 in the main text is a special case of the following more general result, which we prove
in this section.
Theorem D.1. (Exponential convergence for SMF) Let Zt := [✓t,�t] denote the iterates of Algorithm
1. Assume 3.1-3.3 hold. Let µ and L be as in (15), fix stepsize ⌧ 2 ( 1

2µ ,
3
2L ), and let ⇢ := 2(1�⌧µ) 2

(0, 1). Suppose L/µ < 3.

(i) (Correctly specified case; Theorem 3.5 in the main text) Suppose there exists a stationary point
Z

⇤ = [✓⇤,�⇤] of F over the convex constraint set ⇥ s.t. rank(✓⇤)  r. Then Z
⇤ is the

unique global minimizer of F among all Z = [✓,�] with rank(✓)  r. Moreover,

kZt � Z
⇤kF  ⇢t kZ0 � Z

⇤kF for t � 1. (104)

(ii) (Possibly misspecified case) Let Z? = [✓?,�?] be arbitrary in ⇥ s.t. rank(✓?)  r. Denote the
gradient mapping at Z? as [�✓?,��

?] := 1
⌧ (Z

? �⇧⇥(Z? � ⌧rF (Z?)). Then for t � 1,

kZt � Z
?kF  ⇢t kZ0 � Z

?kF +
2⌧

1� ⇢

⇣p
3rk�✓?k2 + k��?kF

⌘
. (105)

We remark that even in the presence of a nonzero additive error (which bounds the unnormalized
estimation error kZ1 � Z

?kF ), our Theorem 4.1 demonstrates that, under natural generative models
for SML, this error becomes vanishingly small with high probability with noise variance �2 = O(1/n)
for SMF-W and �2 = o(1/

p
n) for SMF-H. Roughly speaking, these results indicate that the

generative SMF models are nearly correctly specified with high probability. As a result, the algorithm
achieves exponential convergence to the correct parameters for the generative SMF model up to a
statistical error that vanishes as the sample size tends to infinity.

We begin with some preliminary computations. Let as denote the activation corresponding to the sth
sample (see (2)). More precisely, as = A

T
xs + �T

x
0
s for the filter-based model with A 2 Rp⇥,
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and as = A[:, s] + �T
x
0
s with A 2 R⇥n for the feature-based model. In both cases, B 2 Rp⇥n

and � 2 Rq⇥. Then the objective function f in (4) can be written as

f(A,B,�) :=

0

@�
nX

s=1

X

j=0

1(ys = j) log gj(as)

1

A+ ⇠kXdata �Bk2F + �
�
kAk2F + k�k2F

�

(106)

=
nX

s=1

 
log

 
1 +

X

c=1

h(as[c])

!
�

X

c=1

1(ys = c) log h(as[c])

!
(107)

+ ⇠kXdata �Bk2F + �
�
kAk2F + k�k2F

�
, (108)

where as[i] 2 R denotes the ith component of as 2 R. In the proofs we provided below, we
compute the Hessian of f above explicitly for the filter- and the feature-based SMF models and use
Theorem C.2 to derive the result.

For each label y 2 {0, . . . ,} and activation a 2 R, recall the negative log-likelihood

`(y,a) = log
X

c=1

h(ac)�
X

c=1

1{y=c} log h(ac) (109)

of observing label y from the probability distribution g(a) defined in (1). An easy computation shows

ra`(y,a) = ḣ(y,a) = (ḣ1, . . . , ḣ) 2 R, raraT `(y,a) = Ḧ(y,a) = (ḧij) 2 R⇥, (110)

where

ḣj = ḣj(y,a) :=

✓
h0(aj)

1 +
P

c=1 h(ac)
� 1(y = j)

h0(aj)

h(aj)

◆
(111)

ḧij :=

 
h00(aj)1(i = j)

1 +
P

c=1 h(ac)
� h0(ai)h0(aj)

(1 +
P

c=1 h(ac))
2

!
� 1(y = i = j)

 
h00(aj)

h(aj)
� (h0(aj))

2

(h(aj))
2

!
.

(112)

Proof of Theorem D.1 for SMF-W. Let f = F denote the loss function for the filter-based SMF
model in (12). Fix Z1,Z2 2 ⇥ ✓ Rd1⇥d2 ⇥ Rd3⇥d4 . Since the constraint set ⇥ is convex (see
Algorithm 1), tZ1 + (1� t)Z2 2 ⇥ for all t 2 [0, 1]. Then by the mean value theorem, there exists
t⇤ 2 [0, 1] such that for Z⇤ = t⇤Z1 + (1� t⇤)Z2,

f(Z2)� f(Z1)� hrf(Z1), Z2 � Z1i (113)

=
1

2
(vec(Z2)� vec(Z1))

T rvec(Z)rvec(Z)T f(Z
⇤) (vec(Z2)� vec(Z1)) . (114)

Hence, according to Theorem C.2, it suffices to verify that for some µ,L > 0 such that L/µ < 3 and

µI � rvec(Z)rvec(Z)T f(Z
⇤) � LI (115)

for all Z⇤ = [X,�] with rank(X⇤)  r.

To this end, let as = A
T
xs + �T

x
0
s for the filter-based model we consider here. We discussed that

the objective function f in (12) can be written as (106). Denote

as = A
T
xs + �T

x
0
s =:

*
A[:, j]
�[:, j]

�

| {z }
=:uj

,


xs

x
0
s

�

| {z }
=:�s

+
; j = 1, . . . ,

�T
2 R, (116)

where we have introduced the notations uj 2 R(p+q)⇥1 for j = 1, . . . , and �s 2 R(p+q)⇥1 for
s = 1, . . . , n. Denote U := [u1, . . . ,u] = [A k �] 2 R(p+q)⇥, which is a matrix parameter that
vertically concatenates A and �. Also denote � = (�1, . . . ,�n) 2 R(p+q)⇥n, which is the feature
matrix of n observations. Writing

f(U,B) =
nX

s=1

`(ys,U
T�s) + ⇠kXdata �Bk2F + �kUk2F (117)
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and using (109), we can compute the gradient and the Hessian of f above as follows:

rvec(U)f(U,B) =

 
nX

s=1

ḣ(ys,U
T�s)⌦ �s

!
+ 2� vec(U), (118)

rBf(U,B) = 2⇠(B�Xdata), (119)

rvec(U)rvec(U)T f(U,B) =

 
nX

s=1

Ḧ(ys,U
T�s)⌦ �s�

T
s

!
+ 2�I(p+q), (120)

rvec(B)rvec(B)T f(U,B) = 2⇠Ipn, rvec(B)rvec(U)T f(U,B) = O, (121)

where ⌦ above denotes the Kronecker product and the functions ḣ and Ḧ are defined in (110).

Recall that the eigenvalues of A ⌦ B, where A and B are two square matrices, are given by
�iµj , where �i and µj run over all eigenvalues of A and B, respectively. Hence denoting HU :=Pn

s=1 Ḧ(ys,UT�s, )⌦ �s�
T
s and using 3.1-3.2, we can deduce

�min(HU) � n�min

⇣
n�1

��
T
⌘

min
1sn,U

�min

⇣
Ḧ(ys,�s,U)

⌘
� n��↵� � nµ⇤ > 0, (122)

�max(HU)  n�max

⇣
n�1

��
T
⌘

max
1sn,U

�max

⇣
Ḧ(ys,�s,U)

⌘
 n�+↵+  nL⇤. (123)

It follows that the eigenvalues of the Hessian Hfilt of the loss function f satisfy

�min(Hfilt) � min(2�+ nµ⇤, 2⇠), (124)
�max(Hfilt)  max (2�+ nL⇤, 2⇠) . (125)

This holds for all A,B,� such that rank([A,B])  r and under the convex constraint (also recall
that U is the vertical stack of A and �). Hence we conclude that the objective function F in
(12) verifies RSC and RSM properties (Def. C.1) with parameters µ = min(nµ⇤ + 2�, 2⇠) and
L = max(nL⇤ + 2�, 2⇠). This verifies (115) for the chosen parameters µ and L. Then the rest
follows from Theorem C.2.

Next, we prove Theorem D.1 for SMF-H, the exponential convergence of Algorithm 1 for the
feature-based SMF.

Proof of Theorem D.1 for SMF-H. We will use the same setup as in the proof of Theorem D.1 for
SMF-W. The main part of the argument is the computation of the Hessian of loss function f := F
for SMF-H in (11), which is straightforward but substantially more involved than the corresponding
computation for the filter-based case in the proof of Theorem D.1. Let as = A[:, s] + �T

x
0
s for the

feature-based model with A 2 R⇥n. Denote

as = IA[:, s] + �T
x
0
s =:

*
I[:, j]
�[:, j]

�

| {z }
=:vj

,


A[:, s]
x
0
s

�

| {z }
=: s

+
; j = 1, . . . ,

�T
2 R. (126)

Note that in the above representation we have concatenated A[:, s] with the auxiliary covariate x
0
s,

whereas previously for SMF-W (see (116)), we concatenated A[:, j] with regression coefficient
�[:, j] for the auxiliary covarate for the jth class2. A straightforward computation shows the following

2This is because for the feature-based model, the column A[:, s] 2 R for s = 1, . . . , n represent a feature
of the sth sample, whereas for the filter-based model, A[:, j] for j = 1, . . . , represents the jth filter that is
applied to the feature xs of the sth sample.
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gradient formulas:

rvec(A)f(A,�,B) =

 
nX

s=1

ḣ(ys,as)⌦ In[:, s]

!
+ 2� vec(A) =

2

64
ḣ(y1,a1)

...
ḣ(yn,an)

3

75+ 2� vec(A),

(127)

rvec(�)f(A,�,B) =

 
nX

s=1

ḣ(ys,as)⌦ x
0
s

!
+ 2� vec(�), (128)

rBf(A,�,B) = 2⇠(B�Xdata) (129)

rvec(A)rvec(A)T f(A,�,B) = diag
⇣
Ḧ(y1,a1), . . . , Ḧ(yn,an)

⌘
+ 2�In, (130)

rvec(�)rvec(�)T f(A,�,B) =

 
nX

s=1

Ḧ(ys,as)⌦ x
0
s(x

0
s)

T

!
+ 2�Iq, (131)

rvec(B)rvec(B)T f(A,�,B) = 2⇠Ipn, (132)

rvec(�)rvec(A)T f(A,�,B) =
h
Ḧ(y1,a1)⌦ x

0
1, . . . , Ḧ(yn,an)⌦ x

0
n

i
2 Rq⇥n, (133)

rvec(B)rvec(V)T f(A,�,B) = O for V = A,�. (134)

From this, we will compute the eigenvalues of the Hessian Hfeat of the loss function f . In order to
illustrate our computation in a simple setting, we first assume  = 1 = q, which corresponds to
binary classification  = 1 with one-dimensional auxiliary features q = 1. In this case, we have

Hfeat := rvec(A,�,B)rvec(A,�,B)T f(A,�,B) (135)

=

2

66666664

ḧ(y1,a1) + 2� 0 . . . 0 ḧ(y1,a1)x
0
1 O

0 ḧ(y2,a2) + 2� . . . 0 ḧ(y2,a2)x
0
2 O

...
...

. . .
...

...
...

0 . . . 0 ḧ(yn,an) + 2� ḧ(yn,an)x
0
n O

ḧ(y1,a1)x
0
1 ḧ(y2,a2)x

0
2 . . . ḧ(yn,an)x

0
n

⇣Pn
s=1 ḧ(ys,as)(x

0
s)

2
⌘
+ 2� O

O O . . . O O 2⇠Ipn

3

77777775

,

(136)

where we denoted ḧ = ḧ11 2 R and x0
s = x

0
s 2 R for s = 1, . . . , n. In order to compute the

eigenvalues of the above matrix, we will use the following formula for the determinant of 3⇥ 3 block
matrix: (O representing matrices of zero entries with appropriate sizes)

det

0

@

2

4
A B O
BT C O
O O D

3

5

1

A = det
�
C �BTA�1B

�
det(A) det(D). (137)

This yields the following simple formula for the characteristic polynomial of Hfeat:

det(Hfeat � tI) (138)

=

 
nX

s=1

ḧ(ys,as)(x
0
s)

2 �
nX

s=1

(ḧ(ys,as))2(x0
s)

2

ḧ(ys,as) + 2�� t
+ 2�� t

!
nY

s=1

⇣
ḧ(ys,as) + 2�� t

⌘
(2⇠ � t)pn

(139)

=

 
nX

s=1

(2�� t)ḧ(ys,as)(x0
s)

2

ḧ(ys,as) + 2�� t
+ 2�� t

!
nY

s=1

⇣
ḧ(ys,as) + 2�� t

⌘
(2⇠ � t)pn. (140)

Since the first term in the parenthesis in the above equation has solution 2�, it follows that

�min(Hfeat) � min(2�, ↵� + 2�, 2⇠) = min(2�, 2⇠), (141)
�max(Hfeat)  max

�
2�, ↵+ + 2�, 2⇠

�
= max

�
↵+ + 2�, 2⇠

�
. (142)
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Now we generalize the above computation for the general case , q � 1. First, note the general form
of the Hessian as below:
Hfeat := rvec(A,�,B)rvec(A,�,B)T f(A,�,B) (143)

=

2

6666666664

Ḧ(y1,a1) + 2�I 0 . . . 0 (Ḧ(y1,a1)⌦ x
0
1)

T
O

0 Ḧ(y2,a2) + 2�I . . . 0 (Ḧ(y2,a2)⌦ x
0
2)

T
O

...
...

. . .
...

...
...

0 . . . 0 Ḧ(yn,an) + 2�I (Ḧ(yn,an)⌦ x
0
n)

T
O

Ḧ(y1,a1)⌦ x
0
1 Ḧ(y2,a2)⌦ x

0
2 . . . Ḧ(yn,an)⌦ x

0
n

Pn
s=1 Ḧ(ys,as)⌦ x

0
s(x

0
s)

T

+2�Iq
O

O O . . . O O 2⇠Ipn

3

7777777775

.

(144)
Note that for any square symmetric matrix B and a column vector x of matching size,
B ⌦ xx

T � (B ⌦ x)T (B + wI)�1(B ⌦ x) =
�
B �B(B + wI)�1B

�
⌦ (xxT ) (145)

= ((B + wI)�B) (B + wI)�1B ⌦ (xxT ) (146)

= w(B + wI)�1B ⌦ xx
T . (147)

Hence by a similar computation as before, we obtain
det(Hfeat � tI) (148)

= det

 
(2�� t)

nX

s=1

⇣
Ḧ(ys,as) + (2�� t)I

⌘�1
Ḧ(ys,as)⌦ x

0
s(x

0
s)

T + (2�� t)Iq

!
(149)

⇥
 

nY

s=1

det
⇣
Ḧ(ys,as) + (2�� t)I

⌘!
(2⇠ � t)pn. (150)

It follows that
�min(Hfeat) � min(2�, 2⇠), (151)
�max(Hfeat)  max

�
↵+ + 2�, 2⇠

�
. (152)

Then the rest follows from Theorem C.2.

D.2 Proof of Theorem 4.1

In this section, we prove the statistical estimation guarantee for SMF in Theorem 4.1. Recall the
generative model for SMF in (17). Our proof is based on Theorem 3.5 that we have established
previously and standard matrix concentration bounds, which we provide below:
Lemma D.2 (2-norm of matrices with bounded and independent columns). Let X be a d1 ⇥ d2
random matrix of independent, mean zero, real-valued columns such that kXk1 < L almost surely
for some constant L > 0. Then

P (kXk2 � t)  (d1 + d2) exp

✓
�t2/2

max{d1, d2}L2 + (Lt/3)

◆
. (153)

Proof. This lemma is a simple consequence of the matrix Burnstein’s inequality (see, e.g., [52,
Thm. 6.1.1]). Indeed, write X = [x1, . . . ,xd2 ], where xjs are the columns of X. Note that, by the
hypothesis,

kE[XT
X]k2 = kdiag(E[kx1k22], . . . ,E[kxd2k22])k2  d1L

2. (154)
Similarly,

kE[XX
T ]k2 =

������

d2X

j=1

E[xjx
T
j ]

������
2

 d2L
2. (155)

It follows that matrix variance statistics v(X) of X satisfies

v(X) := max
�
kE[XX

T ]k2, kE[XT
X]k2

 
 max{d1, d2}L2. (156)

Then the tail bound on the 2-norm of X as asserted follows immediately from the matrix Burnstein’s
inequality.
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Lemma D.3. (2-norm of matrices with independent sub-gaussian entries) Let A be an m⇥n random
matrix with independent subgaussian entries Aij of mean zero. Denote K to be the maximum
subgaussian norm of Aij , that is, K > 0 is the smallest number such that E[exp(Aij)2/K2]  2.
Then for each t > 0,

P
�
kAk2 � 3K(

p
m+

p
n+ t)

�
 2 exp(�t2). (157)

Proof. See Theorem 4.4.5 in [54].

Now we prove Theorem 4.1 for SMF-W.

Recall that the (L2-regularized) negative log-likelihood of observing triples (yi,xi,x0
i) for i =

1, . . . , n is given as

Ln := F (A,B,�) +
1

2(�0)2
kXaux �Ck2F + c, (158)

where c is a constant and F is as in (11) or (12) depending on the activation type with tuning parameter
⇠ = 1

2�2 . Write the true parameter Z? = [✓?,�?]. Recall that rank(✓?)  r by the model assumption
in (17).

Proof of Theorem 4.1 for SMF-W. Let us define the expected loss function F̄ (A,B,�) :=
E"i,"0i,1in [F (A,B,�)]. Define the following gradient mappings of Z? with respect to the empiri-
cal F and the expected F̄ loss functions:

G(Z?, ⌧) :=
1

⌧
(Z? �⇧⇥ (Z? � ⌧rF (Z?))) , Ḡ(Z?, ⌧) :=

1

⌧

�
Z
? �⇧⇥

�
Z
? � ⌧rF̄ (Z?)

��
.

(159)

It is elementary to show that the true parameter Z? is a stationary point of F̄ � �(kAk2F + k�k2F )
over ⇥ ✓ Rp⇥(+n) ⇥ Rq⇥. Hence we have Ḡ(Z?, ⌧) = 2�[A?, O,�?], so we may write

G(Z?, ⌧) = G(Z?, ⌧)� Ḡ(Z?, ⌧) + 2�[A?, O,�?] (160)

=
1

⌧

⇥
⇧⇥ (Z? � ⌧rF (Z?))�⇧⇥

�
Z
? � ⌧rF̄ (Z?)

�⇤
+ 2�[A?, O,�?] (161)

We will consider two cases, depending on whether the true parameter Z? satisfies the first-order
optimality condition for f over the convex constraint ⇥. The first-order optimality w.r.t. the low-rank
constraint is handled directly by Theorem D.1.

Case 1. Z? � ⌧rF (Z?) 2 ⇥ (In particular, this is the case where ⇥ equals the whole space).

In this case, we can disregard the projection ⇧⇥ in the above display so we get

G(Z?, ⌧)� 2�[A?, O,�?] = rF (Z?)�rF̄ (Z?) =: [�e✓
?
,�e�?]. (162)

We will show that, for some constants c, C > 0, with probability at least 1� n�1,

S :=
p
3rk�e✓

?
k2 + k�e�?kF  c

p
n log n+ 3C�(

p
p+
p
n+ c

p
log n). (163)

By Theorem D.1 with [�✓?,��
?] := G(Z?, ⌧),

kZt � Z
?kF � ⇢t kZ0 � Z

?kF (164)

 ⌧

1� ⇢

⇣p
3rk�✓?k2 + k��?kF

⌘
(165)

 ⌧

1� ⇢

⇣p
3r(k�e✓

?
k2 + 2�kA?k2) + (k�e�?kF + 2�k�?kF )

⌘
. (166)

It follows that with probability at least 1� n�1,

kZt � Z
?kF  ⇢t kZ0 � Z

?kF +
⌧

1� ⇢

⇣
c
p
n log n+ 3C�(

p
p+
p
n+ c

p
log n)

⌘
(167)

+
2�⌧

1� ⇢

⇣p
3rkA?k2 + k�?kF

⌘
. (168)
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Now since L/µ < 3 and ⌧ 2 ( 1
2µ ,

3
2L ), there exists " > 0 such that ⌧ = 1

(2�")µ . Then ⌧
1�⇢ =

⌧
2⌧µ�1 = 1

"µ . Thus, with probability at least 1� n�1,

kZt � Z
?kF � ⇢t kZ0 � Z

?kF  O

✓p
n log n+ �

µ

◆
, (169)

as desired.

Now we show (163). The argument is that, the norm of [�e✓
?
,�e�?] can be decomposed into the

sum of norms of random matrices with independent mean zero columns or mean zero Gaussian
random matrices, which should have norm at most

p
n log n with high probability by standard matrix

concentration inequalities.

We use the notation U = [AT ,�T ]T , U? = [(A?)T , (�?)T ]T , � = [�1, . . . ,�n] = [XT
data,X

T
aux]

T

(see also the proof of Theorem 3.5). Denote as = U
T�s and a

?
s = (U?)T�s for s = 1, . . . , n and

introduce the following random quantities
Q1 :=

⇥
ḣ(y1,a1), . . . , ḣ(yn,an)

⇤
2 R⇥n, (170)

Q2 := ["1, . . . , "n] 2 Rp⇥n, Q3 := ["01, . . . , "
0
n] 2 Rp⇥n. (171)

Recall that

rvec(U)F (U,B) =

 
nX

s=1

ḣ(ys,as)⌦ �s

!
+ 2� vec(U), rBF (U,B) =

2

2�2
(B�Xdata),

(172)

rvec(U)F̄ (U,B) =

 
nX

s=1

E
h
ḣ(ys,as)⌦ �s

i!
+ 2� vec(U), rBF̄ (U,B) =

2

2�2
(B�B

?),

(173)

where ḣ is defined in (111). Note that

E

ḣ(ys,as)

�����s

�
=

"✓
h0(a[j])

1 +
P

c=1 h(a[c])
� gj(a

?
s)
h0(a[j])

h(a[j])

◆

a=as

; j = 1, . . . ,

#
(174)

=

"✓
h0(a[j])

1 +
P

c=1 h(a[c])
� h(a?s[j])

1 +
P

c=1 h(a
?
s[c])

h0(a[j])

h(a[j])

◆

a=as

; j = 1, . . . ,

#
,

(175)
so the above vanishes when as = a

?
s . Hence

E
h
ḣ(ys,a

?
s)⌦ �s

i
= E


E

ḣ(ys,a

?
s)⌦ �s

�����s

��
= 0, (176)

Hence we can compute the following gradients

rvec(A)(F � F̄ )(A,B,�) =

 
nX

s=1

ḣ(ys,as)⌦ xs

!
(177)

rvec(�)(F � F̄ )(A,B,�) =

 
nX

s=1

ḣ(ys,as)⌦ x
0
s

!
(178)

rB(F � F̄ )(A,B,�) =
2

2�2
(B? �Xdata) =

2

2�2
["1, . . . , "n]. (179)

It follows that (recall the definition of �max in Assumption 3.3)

krA(F � F̄ )(A?,B?,�?)k2 =

�����

nX

s=1

(B?[:, s] + "s)ḣ(ys,a
?
s)

T

�����
2

(180)



�����

nX

s=1

B
?[:, s]ḣ(ys,a

?
s)

T

�����
2

+

�����

nX

s=1

"sḣ(ys,a
?
s)

T

�����
2

(181)

 kB?k1 kQ1k2 + �max kQ2k2 . (182)
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Similarly, we have

k�e�?kF = kr�(F � F̄ )(A?,B?,�?)kF 
p
qkrvec(�)(F � F̄ )(A?,B?,�?)k2 (183)

 pqkC?k1 kQ1k2 +
p
q�max kQ3k2 . (184)

Using the fact that k[A,B]k2  kAk2 + kBk2 for two matrices A,B with the same number of rows,
we have ����e✓

?
���
2
=
��rA(F � F̄ )(A?,B?,�?)

��
2
+
��rB(F � F̄ )(A?,B?,�?)

��
2

(185)

 kB?k1 kQ1k2 + �max kQ2k2 +
2

2�2
kQ2k2 . (186)

Thus, combining the above bounds, we obtain

S =
p
3rk�e✓

?
k2 + k�e�?kF 

3X

i=1

cikQik2, (187)

where the constants c1, c2, c3 > 0 are given by

c1 :=
⇣p

3rkB?k1 +
p
qkC?k1

⌘
, c2 :=

p
3r(�max +

2

2�2
), c3 :=

p
q�max. (188)

Next, we will use concentration inequalities to argue that the right hand side in (187) is small with
high probability and obtain the following tail bound on S:

P
⇣
S > c

p
n log n+ 3C�(

p
p+
p
n+ c

p
log n)

⌘
 1

n
, (189)

where C > 0 is an absolute constant and c > 0 can be written explicitly in terms of the constants we
use in this proof. This is enough to conclude (163).

Recall that for a random variable Z, its sub-Gaussian norm, denoted as kZk 2 , is the smalleset
number K > 0 such that E[exp(Z2/K2)]  2. The constant C > above is the sub-gaussian norm
of the standard normal variable, which can be taken as C  36e/ log 2. Using union bound with
Lemmas D.2 and D.3, for each t, t0 > 0, we get

P
�
S > c1t+ 3(c2 + c3)C�(

p
p+
p
n+ t0)

�
(190)

 P (kQ1k2 > t) +

 
3X

i=2

P
✓
kQik2 >

3C�

2
(
p
p+
p
n+ t0)

◆!
(191)

 2 exp

✓
�t2

C2
1

2n

◆
+ 2 exp(�(t0)2). (192)

Indeed, for bounding P(kQ1k2 > t), we used Lemma D.2; for bounding tail probabilities of kQ2k2
and kQ3k2, we used Lemma D.3 with K = C�

2 and K = C�0

2 , respectively. Observe that in order
to make the last expression in (190) small, we will chose t = c4

p
n log n and t0 = c4

p
log n, where

c4 > 0 is a constant to be determined. This yields

P
⇣
S > c1c4

p
n log n+ 3(c2 + c3)C�(

p
p+
p
n+ c4

p
log n)

⌘
 n�c5 , (193)

where c5 > 0 is an explicit constant that grows in c4. We assume c4 > 0 is such that c5 � 1. This
shows (189).

Case 2. Z? � ⌧rF (Z?) /2 ⇥.

In this case, we cannot directly simplify the expression (160). In this case, we take the Frobenius
norm and use non-expansiveness of the projection operator (onto convex set ⇥):

kG(Z?, ⌧)�Ḡ(Z?, ⌧)kF =
1

⌧

��⇥⇧⇥ (Z? � ⌧rF (Z?))�⇧⇥

�
Z
? � ⌧rF̄ (Z?)

�⇤��
F

(194)

 krF (Z?)�rF̄ (Z?)kF (195)

 k�e✓
?
kF + k�e�?kF . (196)
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According to Remark C.4, we also have Theorem C.2 (and hence Theorem 3.5) with
p
3rk�e✓

?
k2

replaced with k�e✓
?
kF . Then an identical argument with kQikF 

p
min(p, n)kQik2 for i = 2, 3

shows

S0 := k�e✓
?
kF + k�e�kF  c1kQ1k2 + c2

p
min(p, n)kQ2k2 + c3

p
min(p, n)kQ3k2, (197)

where the constants c1, c2, c3 > 0 are the same as in (188). So we have

kZt � Z
?kF  ⇢t kZ0 � Z

?kF +
⌧

1� ⇢
(S0 + 2�(kA?k2 + k�?kF )). (198)

Then an identical argument shows

P
⇣
S0 > c1t+ 3(c2 + c3)C�(

p
p+
p
n+ t0)

p
min(p, n)

⌘
(199)

 P (kQ1k2 > t) +
3X

i=2

P
✓
kQik2 >

3C�

2
(
p
p+
p
n+ t0)

◆
, (200)

and the assertion follows similarly as before.

It remains to show Theorem 4.1 for SMF-H.

Proof of Theorem 4.1 for SMF-H. The argument is entirely similar to the proof of Theorem 4.1 for
SMF-W. Indeed, denoting as = A[:, s] + �T

x
0
s for s = 1, . . . , n and keeping the other notations

the same as in the proof of Theorem 4.1, we can compute the following gradients

rA(F � F̄ )(A,B,�) =
⇥
ḣ(y1,a1), . . . , ḣ(yn,an)

⇤
(201)

rvec(�)(F � F̄ )(A,B,�) =

 
nX

s=1

ḣ(ys,as)⌦ x
0
s

!
(202)

rB(F � F̄ )(A,B,�) =
2

2�2
(B? �Xdata) =

2

2�2
["1, . . . , "n]. (203)

Hence repeating the same argument as before, using concentration inequalities for the following
random quantities Q1, Q2, Q3 we defined in (170), one can bound the size of G(Z?, ⌧) with high
probability. The rest of the details are omitted.

E Auxiliary computations

Remark E.1. Denoting ⇠ = ⇠0n and � = �0n, the condition L/µ in Theorem 3.5 for SMF-W
reduces to
L

⇤

µ⇤ < 3 )
✓
L

⇤

6
< ⇠

0
<

3µ⇤

2
, 0  �

0
<

6⇠0 � L
⇤

2

◆
[
✓
⇠
0
>

3µ⇤

2
,

2⇠0 � 3µ⇤

6
< �

0
<

6⇠0 � L
⇤

2

◆

(204)
L

⇤

µ⇤ � 3 )
✓
L

⇤ � µ
⇤

4
< ⇠

0
<

3(L⇤ � µ
⇤)

4
,
L

⇤ � 3µ⇤

4
< �

0
<

6⇠0 � L
⇤

2

◆
(205)

[
✓
⇠
0
>

3(L⇤ � µ
⇤)

2
,
2⇠0 � 3µ⇤

6
< �

0
<

6⇠0 � L
⇤

2

◆
. (206)

F Auxiliary lemmas

Lemma F.1. Fix a differentiable function f : Rp ⇥ R and a convex set ⇥ ✓ Rp. Fix ⌧ > 0 and

G(✓, ⌧) :=
1

⌧
(✓ �⇧⇥(✓ � ⌧rf(✓))). (207)

Then for each ✓ 2 ⇥, kG(✓, ⌧)k  krf(✓)k.
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Proof. The assertion is clear if kG(✓, ⌧)k = 0, so we may assume kG(✓, ⌧)k > 0. Denote ✓̂ :=
⇧⇥(✓ � ⌧rf(✓)). Note that

✓̂ = argmin
✓0

k✓ � ⌧rf(✓)� ✓0k2, (208)

so by the first-order optimality condition,

h✓̂ � ✓ + ⌧rf(✓), ✓0 � ✓̂i � 0 8✓0 2 ⇥. (209)

Plugging in ✓0 = ✓ and using Cauchy-Schwarz inequality,

⌧2kG(✓, ⌧)k2 = k✓ � ✓̂k2  ⌧hrf(✓), ✓ � ✓̂i  ⌧krf(✓)k ⌧kG(✓, ⌧)k. (210)

Hence the assertion follows by dividing both sides by ⌧2kG(✓, ⌧)k > 0.

G Experimental details

All numerical experiments were performed on a 2022 Macbook Air with M1 chip and 16 GB of
RAM.

G.1 Experiments on semi-synthetic MNIST dataset

We give more details on the semi-synthetic MNIST we used in the experiment in Figure 2. Denote
p = 282 = 784, n = 500, r = 2, and  = 1. First, we randomly select 10 images each from digits
’2’ and ’5’. Vectorizing each image as a column in p = 784 dimension, we obtain a true factor
matrix for features Wtrue,X 2 Rp⇥r. Similarly, we randomly sample 10 images of each from digits
’4’ and ’7’ and obtain the true factor matrix of labels Wtrue,Y 2 Rp⇥r. Next, we sample a code
matrix Htrue 2 Rr⇥n whose entries are i.i.d. with the uniform distribution U([0, 1]). Then the ‘pre-
feature’ matrix X0 2 Rp⇥n of vectorized synthetic images is generated by Wtrue,XHtrue. The feature
matrix Xdata 2 Rp⇥n is then generated by adding an independent Gaussian noise "j ⇠ N(0,�2Ip)
to the jth column of X0 for j = 1, . . . , n, with � = 0.5. We generate the binary label matrix
Y = [y1, . . . , yn] 2 {0, 1}1⇥n (recall  = 1) as follows: Each entry yi is an independent Bernoulli

variable with probability pi =
⇣
1 + exp (��T

true,YW
T
true,YXdata[:, i])

⌘�1
, where �true,Y = [1,�1].

No auxiliary features were used for the semi-synthetic dataset (i.e., q = 0).

G.2 Experiments on the Job postings dataset

Next, we give details on the job postings dataset [6]. There are 17,880 postings and 15 variables in the
dataset including binary variables, categorical variables, and textual information of job description.
Among the 17,880 postings, 17,014 are true job postings (95.1%) and 866 are fraudulent postings
(4.84%). This reveals a significant class imbalance, where the number of true postings greatly
outweighs fraudulent ones, making this class imbalance a noteworthy characteristic of the dataset. In
our analysis, we have coded the fake job postings as positive examples and the true job postings as
negative examples.

In our experiments, we represented each job posting as a p = 2480 dimensional word frequency
vector computed from its job description and augmented with q = 72 auxiliary features of binary and
categorical variables, including indicators that specify whether a job posting has a company logo or if
the posted job is in the United States. For computing the word frequency vectors, we represent the job
description variable as a term/document frequency matrix with Term Frequency-Inverse Document
Frequency (TF-IDF) normalization [43]. Common words that appear in all documents are assigned
lower importance, while words specific to particular documents are deemed more significant. In our
analysis, we utilized the 2,480 most frequent words for further examination.

G.3 Details on CNN and FFNN

For the task of classifying microarray data into cancer classes, we compared the performance of our
method with both CNN and FFNN in Figure 3. Specifically, the CNN architecture was designed
with a convolutional layer with 32 filters and a kernel size of 3, followed by an average pooling layer
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with a pool size of 2. Subsequently, a second convolutional layer with 64 filters and a kernel size of
3 was integrated, further followed by another average pooling layer with the same pool size. The
architecture was finalized with a flatten layer, a fully connected layer of 128 neurons activated by
ReLU, a dropout layer with a rate of 0.5, and a final fully connected layer with a sigmoid activation.
On the other hand, the FFNN consisted of a fully connected layer featuring 64 neurons with ReLU,
followed by a dropout layer with a regularization rate of 0.5. A subsequent fully connected layer
with 32 neurons activated by the ReLU was incorporated, followed by a fully connected layer with a
sigmoid function. This comparative analysis was repeated five times, consistent with the procedure
outlined in the main paper.

An intriguing observation emerges from our benchmarking analysis. While the FFNN’s performance
on the breast cancer dataset is comparable to ours (The LPGD algorithms for SMF), the overall
performance of CNN is notably inferior to ours. This disparity can primarily be attributed to the small
sample size of the training set (145 samples for breast cancer and 25 samples for pancreatic cancer) in
comparison to the substantial dimensionality of gene features (exceeding 30,000 features). We note
that obtaining a substantial volume of biomedical data for cancer research is very expensive, making
it challenging to feasibly train complex models such as deep neural networks. The significance of our
approach becomes evident in its ability to retain robust performance even when facing the challenges
posed by a restricted sample size and a complex high-dimensional feature landscape. Moreover, our
method augments this resilience with the advantage of interpretability.
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