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Abstract

We present a novel language-driven ordering alignment method for ordinal classi-
fication. The labels in ordinal classification contain additional ordering relations,
making them prone to overfitting when relying solely on training data. Recent
developments in pre-trained vision-language models inspire us to leverage the rich
ordinal priors in human language by converting the original task into a vision-
language alignment task. Consequently, we propose L2RCLIP, which fully utilizes
the language priors from two perspectives. First, we introduce a complemen-
tary prompt tuning technique called RankFormer, designed to enhance the or-
dering relation of original rank prompts. It employs token-level attention with
residual-style prompt blending in the word embedding space. Second, to further
incorporate language priors, we revisit the approximate bound optimization of
vanilla cross-entropy loss and restructure it within the cross-modal embedding
space. Consequently, we propose a cross-modal ordinal pairwise loss to refine the
CLIP feature space, where texts and images maintain both semantic alignment and
ordering alignment. Extensive experiments on three ordinal classification tasks,
including facial age estimation, historical color image (HCI) classification, and
aesthetic assessment demonstrate its promising performance. The code is available
at https://github.com/raywang335/L2RCLIP.

1 Introduction

Ordinal classification aims to predict labels that are related in a natural or implied order, which can
be considered as a special case of ordinal regression after label discretization, i.e. discretize the
continuous labels and each bin is then treated as a class. Common examples of such tasks are facial
age estimation (e.g., estimating the facial age from 1 to 100), historical color image classification (e.g.,
assigning a time period to color photographs, ranging from the 1930s to the 1970s), and aesthetics
assessment(e.g., rating image quality on a scale from "unacceptable" to "exceptional").

Compared with common classification, ordinal property of labels need to be additionally considered in
ordinal classification. Many algorithms [4, 35, 12] employ the ordinal classification framework, which
trains a set of classifiers or integrates probabilistic priors to directly predict rank labels. However,
these methods exhibit suboptimal performance as a result of insufficiently harnessing the ordering
properties. Order learning algorithms [48, 39, 26, 12] demonstrate competitive performance by
effectively capturing relative ordering relationships. These approaches determine the target order of a
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novel instance by contrasting it with well-defined reference instances. Nonetheless, the algorithm’s
performance can be substantially compromised by inadequate indexing quality of the reference
instances.

Furthermore, many metric learning techniques [3, 41, 13, 49] have been developed to construct an
ordinal embedding space in which the distances between diverse features effectively represent the
differences in their respective ranks. However, all these methods learn ranking concepts depending
solely on training data, which renders them vulnerable to overfitting[29].

Figure 1: Comparison with CoOp(a) and OrdinalCLIP(b), where v represents the image features and
R, r represents the rank templates in word embedding space and CLIP feature space, respectively. (a)
CoOp aligns each rank template with its corresponding images via contrastive loss but vanilla CLIP
fails to ensure ordering alignment. (b) OrdinalCLIP considers additional interpolation to explicitly
maintain ordering alignment. However, the interpolation term can not preserve semantic alignment in
CLIP feature space. (c) Our method enhance the ordering relation of vanilla rank templates while
ensuring the semantic alignment of CLIP space.

Fortunately, recent developments in large pre-trained vision-language models offer new insights for
various visual tasks [32, 27, 29, 25, 56]. Compared with visual content, human language contains
highly abstract concepts and rich semantic knowledge [29, 32]. Motivated by it, we attempt to borrow
knowledge from language domain by two major observations. Firstly, rank templates inherently
contains ordinal information, e.g. "a sixty years old face" ≻ "a ten years old face", which is also
demonstrated in Figure 3(a). Secondly, inspired by [25, 56], rank features encapsulate the average
information of numerous image features within a well-aligned cross-modal feature space, which can
be considered as a robust prior for cross-modal metric learning.

Hence, we propose L2RCLIP to boost learning-to-rank of CLIP-based models for ordinal classifica-
tion. Specifically, we first introduce a complementary prompt tuning method, termed RankFormer,
to enhance the ordering relation of original rank templates. Specifically, RankFormer employs a
token-wise attention layer and performs residual-style prompt blending with the original templates for
prompt tuning. Moreover, inspired by pairwise metric learning [2], we propose cross-modal ordinal
pairwise loss to ensure both semantic and ordering alignment in the CLIP feature space. Concretely,
we revisit the approximate bound optimization of conventional cross-entropy loss and reformulate it
in the cross-modal embedding space with ordinal language priors. OrdinalCLIP [29] also incorporates
language priors to model ordering alignment, demonstrating impressive performance. However, our
method distinguishes itself from previous works, as depicted in Figure 1. CoOp achieves semantic
alignment through contrastive loss but fails to maintain ordering alignment. OrdinalCLIP addresses
ordering alignment at the cost of weakened semantic alignment. Conversely, by leveraging Rank-
Former and cross-modal ordinal pairwise loss, our approach simultaneously considers both semantic
alignment and ordering alignment.

The contributions of this paper can be summarized as follows: (1) We incorporate learning-to-rank
into vision-language pre-training model for ordinal classification, in which we present RankFormer
to enhance the ordering relation of vanilla language prompts. (2) We explicitly utilize the language
priors and further propose cross-modal ordinal pairwise loss to refine CLIP embedding space, in
which image features and text features maintain both semantic and ordering alignment. (3) Extensive
experiments demonstrate the competitive performance of L2RCLIP on age estimation, aesthetics
assessment and historical image dating, as well as improvements in few-shot and distribution shift
experiments.

2



2 Related Work

Ordinal Classification Ordinal classification attempts to solve classification problems in which not
all wrong classes are equally wrong. Early techniques [4, 45] adopted the classification framework
and train a set of classifiers to directly estimate the rank labels. These methods got degraded
performance due to ignoring the ordering relation. By incorporating probabilistic priors, Geng et
al. [12] firstly proposed label distribution learning and assigned a Gaussian or Triangle distribution
for an instance. The mean-variance loss was introduced in [39] for learnable label distribution and
penalizes the learned variance of estimated distribution to ensure a sharp distribution. Probabilistic
embedding [28] was developed to model the data uncertainty for ordinal regression. Liu et al. [33]
proposed predicting the ordinal targets that fall within a certain interval with high confidence. These
methods learn better rank concepts and significantly reduce the model’s overconfidence toward
incorrect predictions. In contrast to them, our L2RCLIP only focuses on enhancing vision-language
alignment without complicated probabilistic distribution assumption.

Furthermore, many techniques [3, 41, 13, 49, 23, 24, 22] solve the ordinal classification task from the
perspective of metric learning. These methods exploit the pairwise ordering relation in embedding
space, where the distance between different features reflects ordinal information. For example,
Ordinal log-loss (OLL) was presented in [3] with an additional distance-aware weighting term for
ordinal classification. RankSim [13] proposed a regularization loss to ensure the ordinal consistency
between label and feature. Suárez et al. [49] ranked the embedding distances between pairwise
rank differences of features. Another way for ordinal classification is order learning [31, 48, 19],
which learns ordering relation by comparison between instances. It usually show more promising
results as learning relative ordering relation is much easier than learning absolute ordering relation.
Lim et al. [31] firstly proposed this concept and determined the ordinal information of an unseen
instance by compared to some known reference instances. Lee&Kim et al. [19] improved the quality
of indexing to boost the performance. MWR [48] further proposed to learn a continuous regression
score from reference instance. However, these methods often depend solely on training data to learn
rank concepts, potentially leading to overfitting. To mitigate these issues, we leverage rich priors in
human language to learn language-driven rank concepts.

Vision-language Learning Vision-language pre-training(VLP) has significantly improved the per-
formance on many downstream tasks by text and image matching, including segmentation [43, 8], ob-
ject detection [14], image retrieval [36, 1], generation tasks [18, 40, 25, 5] and ordinal regression [29].
CLIP [42] and ALIGN [15] proposed to embed images and texts into the same representation space
with two separate encoders in a contrastive-based approach. The experimental results show that
the impressive "zero-shot" performance on downstream tasks, which show the power of language
prior. Inspired by the recent advances in NLP, prompts and adapter-based tuning becomes prevalent
in improving ability of CLIP. CLIP-Adapter [11] adds a light-weight module on top of image and
text encoder. CoOp [55] proposes to learn context prompts for image classification. Due to lack of
ordinal property, these methods lead to degraded performance in ordinal classification. Considering
the great potential of language prior, we propose to incorporate learning-to-rank into CLIP for ordinal
classification.

3 Proposed Approach

3.1 Problem Formulation

Ordinal classification is a unique case of image classification where labels possess ordinal properties.
Mathematically, let xi ∈ X denote the i-th input instance with i = 1, 2, ..., N , yi ∈ {r1, r2, ..., rM}
with ordered ranks rM ≻ rM−1 ≻ · · · ≻ r1 denote the ground truth value and ŷi represent the
predicted rank by the network, where N represents the total number of instances, M represents
the number of ranks, and ≻ indicates the ordering between different ranks. Analogous to normal
classification, ordinal classification aims to recover yi by encoding the image to feature zi = Φ(xi)
with encoder Φ and then using a classifier fω(·) to compute probability pi. The predicted label ŷi is
the result with the highest probability pyi

. The classification probability can be calculated by:
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Figure 2: An overview of the proposed L2RCLIP. We incorporate learning-to-rank into CLIP from two
perspectives. First, RankFormer performs a token-level attention mechanism to enhance the ordering
relation of vanilla rank prompts. Then, refined rank-specific prompts and randomly initialized context
prompts are concatenated in the word embedding space and are sent to a text encoder to extract the
corresponding text features. Moreover, we present two types of losses to refine CLIP feature space
by attraction and repulsion, respectively. Attraction refers to an asymmetrical contrastive loss and
a tightness term to attract paired images and text features while repulsion refers to a reweighting
diversity term to ensure the ordering alignment.

pi =
exp(ω⊤

i zi)∑M
j=1 exp(ω

⊤
j zi)

. (1)

To exploit ordinal information in language, ordinal classification can be transformed into a vision-
language alignment task. Specifically, we use a pre-trained CLIP image feature extractor Image(·)
to extract features from input images: vi = zi = Image(xi). For text features, we first construct
hard rank templates R = {R1, R2, ..., RM} for a given ordinal classification task. For each template,
we convert it into fixed-length tokens and then map them into 512-dimensional word embeddings.
The language feature extractor Text(·) encodes the embeddings as a classifier weight ri. The process
can be formulated as: ri = wi = Text(Tokenizer(Ri)). Finally, we can calculate the prediction
probability pi for rank i with Eq.(1).

3.2 Proposed Method

Our objective is to integrate learning-to-rank into CLIP and learn language-driven rank concepts for
ordering alignment while preserving original semantic alignment. Inspired by [16, 27], we firstly
learn rank concepts in the word embedding space and subsequently refine the CLIP feature space to
maintain both semantic and ordering alignment. Specifically, we introduce RankFormer to enhance
the ordering relation of the original language prompts. RankFormer employs a token-wise attention
layer for rank prompt tuning. To better utilize language prior, we reformulate the approximate
bound optimization within cross-modal embedding space. Furthermore, we propose a cross-modal
ordinal pairwise loss to ensure ordering alignment. Moreover, randomly initialized global context
prompts and an asymmetrical contrastive loss are adopted to ensure semantic alignment. The overall
framework is illustrated in Figure 2.

Rank-specific Prompts. As shown in Figure 3(a), rank templates in the vanilla CLIP contain
some degree of ordinal information. However, a substantial proportion, nearly half of the pairs, lack
clear ordinality. One intuitive approach to enhance this ordinal information is to further fine-tune
these rank templates. However, implementing such a strategy introduces two primary challenges.
First, the performance of different ranks for ordinal classification varies significantly driven by the
imbalanced training data, and certain ranks cannot even be trained due to insufficient training data in
extreme cases. Second, the contrastive loss introduces difficulties in enhancing the ordering relation
during the training [53]. To address the first challenge, OrdinalCLIP [29] trains only a small number
of base rank templates and generates other rank templates through explicit interpolation, which
confines the ordinal information of vanilla rank templates. In this paper, we train a RankFormer with
token-wise attention to enhance the ordinal information of the fixed rank templates. Specifically,
we denote tokenized rank templates as R ∈ RM×n×D, where M and D represent the number
of templates and word embedding channels, respectively. Note that we only consider the ranking
tokens with length of n. Subsequently, we perform token-wise attention for prompt tuning and
apply residual-style prompt blending with the original prompts. The process can be formulated as:
R

′
= (1− α) ·R+ α · fFFN (fMSA(fLN (R))), where α represents the residual ratio.
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Cross-modal Ordinal Pairwise Loss. Since cross-entropy loss ignored the ordinal information
during training [53], we turn to a solution that recovers the ordering relation while maintaining
semantic alignment. Inspired by the pairwise metric learning, we firstly revisit the vanilla cross-
entropy loss from the perspective of approximate bound optimization. Boudiaf et al. [2] proved
that minimizing the cross-entropy loss accomplishes by approximating a lower bound pairwise
cross-entropy loss LPCE . LPCE contains a tightness term and a diversity term, as follows:

LPCE = − 1

2λN2

N∑
i=1

∑
j:yj=yi

z⊤i zj︸ ︷︷ ︸
TIGHTNESS

+
1

N

N∑
i

log

K∑
k=1

exp

(∑N
j=1 pjkz

⊤
i zj

λN

)
− 1

2λ

K∑
k=1

||ck||︸ ︷︷ ︸
DIV ERSITY

, (2)

where zi represents the image feature in the embedding space, pij represents the softmax probability
of point zi belonging to class j, ck =

∑N
i=1 pikzi represents the soft mean of class k and λ ∈ R is to

make sure LCE is a convex function with respect to encoder Φw.

By incorporating the language priors, we turn Eq.(2) to a cross-modal pairwise cross-entropy loss.
Specifically, as human language contains rich prior knowledge, text features can be considered as
both hard mean rk = 1

Nk

∑Nk

i=1 vk and soft mean rk = 1
N

∑N
i=1 pikvi of image features at class k,

where Nk represents the sample number of class k and N represents the total sample number. Then,
we reformulate the original pairwise cross-entropy loss LPCE as cross-modal pairwise cross-entropy
loss LCPCE :

LCPCE = − 1

2λN

N∑
i=1

v⊤i ryi︸ ︷︷ ︸
TIGHTNESS

+
1

N

N∑
i

log

K∑
k=1

exp

(
v⊤i rk
λ

)
− 1

2λ

K∑
k=1

||rk||︸ ︷︷ ︸
DIV ERSITY

, (3)

Inspired by [53], we use meanNN entropy estimator [10] to estimate the diversity term in Eq.(3).
The process is formulated as:

Ldiversity
CPCE ∝ D

N(N − 1)

N∑
i=1

N∑
j ̸=i

log(v⊤i rj + r⊤i rj), (4)

Ltightness
CPCE ∝ − 1

N

N∑
i=1

v⊤i ryi
, (5)

where D represents the feature dimensions. To recover ordering relation, we propose an additional
weighting term. Intuitively, each rank template will have a high similarity score with images of a
close rank and a low similarity score with images of a distant rank. As such, we opt to weight the
cross-modal features with wij , where wij are the distances in the label space. The final cross-modal
ordinal pairwise loss is defined as follows:

Lcop(yi) =
1

(B − 1)

B∑
j ̸=i

wyij · (vyi + γryi)
⊤rj − v⊤yi

ryi , (6)

where γ controls the strength of the rank within rank templates and B represents the batchsize. To
further refining the CLIP feature space, we also propose a simplified cross-modal ordinal pairwise
loss Lscop with language-related parameters frozen(i.e. γ = 0).

Global Context Prompts. Given that global context prompts significantly surpass manually de-
signed discrete prompts in vision tasks [55, 27, 54], we integrate them with our complementary
rank-specific prompts in RankFormer to enhance semantic alignment. Specifically, we randomly
initialize L global context prompts, denoted as G = {G1, G2, ..., GL}, and concatenate them with
rank-specific prompts in the word embedding space of CLIP.

Asymmetrical Contrastive Loss. In vanilla CLIP [42], models are optimized using the standard
contrastive loss, including a text-image contrastive loss Lt2i and an image-text contrastive loss Li2t.
In this work, we replace the original contrastive loss with an asymmetrical contrastive loss due to
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many-to-many image-text mappings within a batch. In other words, different images in a batch may
have the same rank, and the same rank may have the same description. Therefore, we replace ti with
tyi in both text-image contrastive loss Lt2i and image-text contrastive loss Li2t. Specifically, our
improved asymmetrical contrastive loss is defined as follows:

Lt2i(yi) =
1

|Z(yi)|
∑

z∈Z(yi)

log
exp(v⊤z ryi/τ)∑B
j=1 exp(v

⊤
j ryi

/τ)
, (7)

where τ is the temperature parameter and Z(yi) = {z ∈ 1...B : yz = yi}.

3.3 Loss functions

We employ a two-stage training scheme to refine our approach following [27]. In the first stage, our
focus is to enhance the ordinal information of the vanilla rank templates. We utilize cross-modal
ordinal pairwise loss Lcop and the asymmetrical contrastive losses Lt2i and Li2t. In the second
stage, our objective is to simultaneously improve both semantic alignment and ordering alignment
within the CLIP latent space. We use the simplified cross-modal ordinal pairwise loss Lscop and the
cross-entropy loss Lce. More detail can be found in Sec. 4.1 .

4 Experiments

4.1 Implementation details

We adopt the ViT-B/16 visual encoder and the text encoder from CLIP [42] as the backbone for
our image and text feature extractor. All training data is resized to 224 × 224 and subjected to
random horizontal flipping. For all experiments, we employ the Adam [17] optimizer with default
settings. The learning rates for the RankFormer and the visual backbone are 3.5×10−4 and 1×10−5,
respectively. The model is trained for 20 epochs in the first stage and 40 epochs in the second stage,
with the learning rate decayed by a factor of 0.1 in epoch 30. We set L = 5 in most of our experiments.
For MORPH and CLAP2015, we set Lt2i, Li2t, and Lcop with weights of 0.03, 0.03, and 3 for the
first stage, and Lce and Lscop with weights of 1 and 1 for the second stage. For other datasets, we
set Lt2i, Li2t, and Lcop with weights of 0.1, 0.1, and 3 for the first stage, and Lce and Lscop with
weights of 1 and 1 for the second stage. All experiments are conducted on a single NVIDIA 3090
GPU.

4.2 Age Estimation

Table 1: Results on MORPH II and CLAP2015.

Methods Morph CLAP2015

MAE(↓) MAE(↓)

AGEn [50] 2.52 2.94
BridgeNet [30] 2.38 2.87
AVDL [52] 2.37 -
POE [28] 2.35 -
DRC-ORID [19] 2.26 -
PML [6] 2.15 2.91
MWR [48] 2.13 2.77

Vanilla CLIP [42] 6.91 4.66
CoOp [55] 2.39 2.75
OridinalCLIP [29] 2.32 −
L2RCLIP(Ours) 2.13 2.62

Table 2: Results on Adience dataset.

Methods Adience

Accuracy(%, ↑) MAE(↓)

OR-CNN [37] 56.7 0.54
CNNPOR [34] 57.4 ± 5.8 0.55 ± 0.08
GP-DNNOR [35] 57.4 ± 5.5 0.54 ± 0.07
SORD [7] 59.6 ± 3.6 0.49 ± 0.05
POE [28] 60.5 ± 4.4 0.47 ± 0.06
MWR [48] 62.6 0.45
GOL [20] 62.5 0.43

Vanilla CLIP [42] 43.3 ± 3.6 0.80 ± 0.02
CoOp [55] 60.6 ± 5.5 0.50 ± 0.08
OridinalCLIP [29] 61.2 ± 4.2 0.47 ± 0.06
L2RCLIP(Ours) 66.2 ± 4.4 0.36 ± 0.05

Datasets. Age estimation aims to predict the age of a given facial image. We train and evaluate our
method on the widely-used MORPH II [44] dataset, CLAP2015 [9] dataset, and Adience [21] dataset.
MORPH II [44] is one of the largest and most commonly used longitudinal face databases and we
follow the widely adopted training and evaluation following [45, 28, 48, 47]. CLAP2015 [9] is used
for apparent age estimation, where each image is rated by at least 10 annotators, and the mean rating
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is set as the ground truth. Following [48], we split it into 2,476 for training, 1,136 for validation, and
1,079 for testing. Adience [21] contains discrete labels annotated with eight age groups. We adopt the
same five-fold cross-validation protocol used in [21]. For evaluation metric, we use the mean average
error (MAE) to measure the absolute differences between the ground truth labels and the predicted
ones. Classification accuracy is additionally adopted for Adience. For detailed experimental settings,
please refer to the supplementary material.

Comparison with State-of-the-art Methods. In Table 1, our L2RCLIP outperforms both con-
ventional algorithms and language-powered algorithms in all tests. For results on the Morph II,
compared with conventional algorithms, L2RCLIP achieves state-of-the-art performance on MAE at
2.13, verifying the significance of leveraging rich priors in human language. Furthermore, compared
to methods utilizing language priors, our L2RCLIP exhibits substantial performance improvements.
CoOp significantly enhances the vanilla CLIP’s performance by learning global context prompts
for semantic alignment. Subsequently, OrdinalCLIP further reduces MAE by 0.07 through fixed
interpolation for ordering alignment. Nonetheless, a considerable margin remains compared to our
methods, which validates the effectiveness of our approach.

Table 1 also compares the results on CLAP2015. Due to the great challenge, many previous methods
adopt additional boosting schemes [30, 50]. However, without using such schemes, L2RCLIP
outperforms all conventional algorithms. Compared with language-guided models, our L2RCLIP
also shows much better results on MAE, specifically a significant MAE margin of 0.15 evaluated
on the test set. Table 2 shows the comparison results on Adience [21] using the metrics of MAE
and Accuracy. Compared with Morph II and CLAP2015, Adience is used for age group estimation.
The underline indicates the mean value reported in the original paper. Our method outperforms the
state-of-the-art algorithms by significant gaps of 5.7% in accuracy and 0.07 in MAE.

Figure 3: The similarity matrices of rank templates in different methods. The redder, the more similar
the pair of rank templates. The percentages of templates pairs that obey the ordinality are: 55.36%,
59.92%, 65.94%, and 71.87%, respectively.

Ordinality of Learned Rank Templates. Following [29], we report the ordinality score by mea-
suring the cosine similarity between rank templates. The ordinality score is the percentage of rank
template pairs that obey the ordinal property. Figure 3 reports the ordinality scores in different meth-
ods. Vanilla CLIP in Figure 3(a) contains a certain degree of ordering relations, where more than half
of the rank template pairs show correct ordering relation. Moreover, CoOp in Figure 3(b) introduces
additional global context prompts and improves the ordinality score by 4.56%. OrdinalCLIP in Figure
3(c) adopts an explicit interpolation strategy and further improves the ordinality by 6.02%. However,
there is a noticeable "red stripe" in the upper right corner, indicating that this section of rank template
pairs significantly violates ordinality. We believe that explicit interpolation effectively ensures local
ordinal properties, but may fail to preserve global ordinal properties. Our methods greatly alleviate
this problem and achieve a higher ordinality score. The "red blob" in the lower right corner results
from insufficient samples for old individuals. Therefore, to avoid the model’s overconfidence towards
incorrect predictions, this part of rank templates should exhibit higher similarity while ensuring
ordering alignment. By comparison, our method outperforms previous methods.

Few-shot Learning. Table 4 demonstrates the generalization ability of L2RCLIP for few-shot
learning. Following [29], the full dataset is split into 80% for training and 20% for testing. The
entire test set is used for validation, and only 1/2/4/8/16/32/64 samples in the training set from
each class of labels are chosen for training. We observe that introducing rank information in CLIP

i.e., OS(%) =
∑M

i=1

∑M−1
j=i I{si,j > si,j+1}/(M × (M − 1)/2), where M is the number of templates

and si,j represents the cosine similarity of each pair of templates.
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Table 3: We report the MAE results under few-shot settings on the MOPRH II dataset.
# Shots 1 2 4 8 16 32 64

CoOp [55] 5.09 4.50 3.81 3.57 3.23 2.87 2.61
OrdinalCLIP [29] 4.94 4.36 3.55 3.31 3.07 2.76 2.57
L2RCLIP(Ours) 4.54 3.92 3.40 3.28 2.81 2.55 2.38

actually benefits few-shot learning tasks. Compared with CoOp, both OrdinalCLIP and our L2RCLIP
achieve significant improvements across all settings, which verifies the effectiveness of ordering
alignment. Moreover, our L2RCLIP further reduces the average MAE by 0.24, which demonstrates
the effectiveness of the proposed learning-to-rank method in CLIP.

Table 4: The MAE results under the distribution shift setting on the MOPRH II. “re cls” denotes the
number of reduced classes, and “re smp” means the percentage of reduced sampled in one class.

re cls - re smp 10-80 10-90 20-80 20-90 30-80 30-90 40-80 40-90

CoOp [55] 2.71 2.85 2.98 3.51 3.06 3.36 2.99 3.30
OrdinalCLIP [29] 2.61 2.67 2.77 3.06 2.86 3.21 2.84 3.12
L2RCLIP(Ours) 2.28 2.30 2.37 2.43 2.51 2.61 2.68 2.79

Distribution Shift. Following [29], we conduct data distribution shift experiments on the MORPH
II dataset for generalization. We use the same setting as the general regression setting. For the
training set, we randomly choose several rank labels, e.g., 10, 20, 30, and 40. Then, in those classes,
we randomly discard some portion of training data, e.g., 80 and 90. We report our experiments
in Table 4. For the most severe settings, CoOp, OrdinalCLIP, and our L2RCLIP methods incur
performance losses of 42.24%, 34.49%, and 30.98%, respectively, which demonstrates that our
approach exhibits superior robustness when faced with data distribution shift problems. For all shift
settings, our method shows better performance than OrdinalCLIP, which highlights the effectiveness
of the proposed learning-to-rank method in CLIP compared with interpolation.

Table 5: Ablation Study of L2RCLIP on the MORPH II and CLAP2015.
Ablation Choices

RankFormer " " " "

Lcop " " " "

Lscop " " " "

Morph II MAE(↓) 2.50 2.48 2.37 2.38 2.21 2.29 2.31 2.13
OS(%,↑) 55.89 57.58 66.15 55.89 66.15 71.87 57.58 71.87

CLAP2015 MAE(↓) 2.75 2.68 2.71 2.71 2.70 2.65 2.66 2.62
OS(%,↑) 53.33 54.77 57.33 53.33 57.33 67.55 55.25 67.55

4.3 Analysis

Ablation Study. In this section, we conduct an ablation study to examine the respective roles
of each component in L2RCLIP, and the results are reported in Table 5. Three key observations
can be drawn from Table 5. First, each proposed component demonstrates improvements over the
baseline model and complements one another. Second, although RankFormer marginally enhances
the ordinal information of vanilla rank templates, its performance remains unsatisfactory compared
to other methods when only contrastive loss is utilized for training. This result further highlights the
importance of our cross-modal pairwise loss in refining the CLIP feature space. Third, fine-tuning
rank templates without RankFormer significantly impairs performance on CLAP2015, potentially
due to imbalanced training for certain rank templates. This finding underscores the effectiveness of
RankFormer in modeling the ordering relation derived from the complete set of rank templates.

Initialization Impact. As we aim to enhance the ordering relation vanilla rank templates, it is
essential to examine the effects of initialization. We report our results in Table 6. Although our
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Table 6: Initialization Impact Analysis.
Initialization MAE(↓) OS(%, ↑)

A photo of {age} years old face. 2.13 71.87
Age estimation: a person at the age of {age}. 2.14 72.07
The age of the person in the portrait is {age}. 2.12 71.32
The age of the person is {age}. 2.16 71.52
The age of the face is {age}. 2.14 71.08

Mean/Std 2.14/0.01 71.57/0.40

methods fix the original rank templates, different initializations lead to similar convergence and
performance with a low standard deviation value of 0.014. This observation further substantiates the
robustness of our methods against diverse initializations.

Table 7: Results on Morph, CLAP2015 and Adience datasets.

Methods Morph CLAP2015 Adience
(MAE, ↓) (MAE, ↓) (Accuracy, ↑) (MAE, ↓)

L2RCLIP-I 2.19 2.78 62.9 ± 5.5 0.42 ± 0.06
L2RCLIP (Ours) 2.13 2.62 68.2 ± 7.2 0.36 ± 0.05

Compared with interpolation-based method. To further prove the effectiveness of our proposed
method, we compare our L2RCLIP with previous interpolation-based method (e.g. OrdinalCLIP[29]).
We adopt the same setting except the process of ordinality learning and we term it as L2RCLIP-I. We
report the results on the aging dataset. More experiments for few-shot learning and distribution shift
and the implementation details setting for L2RCLIP-I can be found in appendix.

As illustrated in Table 7, our method outperforms interpolation-based methods with a significant
margin in experiments involving a large number of rank categories. This outcome is attributable to
the challenge posed by direct interpolation methods in modelling complex ordering relationships.
Our approach continues to surpass interpolation-based methods even in experiments with a smaller
number of rank categories. Collectively, these experiments corroborate the effectiveness of the
methods proposed in this study.

4.4 Image Aesthetics Assessment

Datasets. CrowdBeauty [46] consists of 13,929 available Flickr photos across four categories:
nature, animal, urban, and people. The aesthetic quality of each image is evaluated using five absolute
rating scales: "unacceptable", "flawed", "ordinary", "professional", and "exceptional". Following
previous methods [29, 20], we select 80% of the images for training and the rest for testing. Five-fold
cross-validation is employed for fair comparisons. Both the mean MAE and accuracy are reported.

Table 8: Results on Image Aesthetics dataset.

Methods Accuracy(%, ↑) MAE(↓)
Nature Animal Urban People Overall Nature Animal Urban People Overall

CNNPOR [34] 71.86 69.32 69.09 69.94 70.05 0.294 0.322 0.325 0.321 0.316
SORD [7] 73.59 70.29 73.25 70.59 72.03 0.271 0.308 0.276 0.309 0.290
POE [28] 73.62 71.14 72.78 72.22 72.44 0.273 0.299 0.281 0.293 0.287
GOL [20] 73.8 72.4 74.2 69.6 72.7 0.27 0.28 0.26 0.31 0.28

Vanilla CLIP [42] 65.24 45.67 58.78 53.06 55.68 0.461 0.557 0.468 0.524 0.502
CoOp [55] 72.74 71.46 72.14 69.34 71.42 0.285 0.298 0.294 0.330 0.302
OridinalCLIP [29] 73.65 72.85 73.20 72.50 73.05 0.273 0.279 0.277 0.291 0.280
L2RCLIP(Ours) 73.51 75.26 77.76 78.69 76.07 0.267 0.253 0.216 0.246 0.245

Results. Table 8 presents our results on the CrowdBeauty dataset. Aesthetic score prediction
is challenging due to the subjectivity and ambiguity of aesthetic criteria; however, our L2RCLIP
demonstrates state-of-the-art performance on most experimental settings by fully exploring learning-
to-rank with language prior. Compared with OrdinalCLIP, L2RCLIP improves accuracy by 3.02% and
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reduces MAE by 0.35 overall, which further verifies the effectiveness of our proposed learning-to-rank
method. When compared with the best approach without language prior, L2RCLIP improves overall
MAE by 0.35 and overall accuracy by 3.37%. Consistent improvements are observed across all
categories compared to previous methods, showcasing the effectiveness of our proposal in exploiting
language ordinal information.

4.5 Historical Image Dating

Datasets. The historical image dating dataset [38] serves as a benchmark for automatically predict-
ing the decade of historical colored images. The dataset comprises five-decade categories, ranging
from the 1930s to the 1970s. Following [34, 38], we adopt the same train-test split and ten-fold
cross-validation. Both the mean and standard deviation for MAE and accuracy metrics are reported.

Table 9: Results on HCI dataset.

Methods HCI

MAE(↓) Accuracy(%, ↑)
CNNPOR [34] 0.82 ± 0.05 50.12 ± 2.65
GP-DNNOR [35] 0.76 ± 0.05 46.60 ± 2.98
POE [28] 0.76 ± 0.04 54.68 ± 3.21
MWR [48] 0.58 57.8
GOL [20] 0.55 56.2

Vanilla CLIP [42] 1.01 ± 0.03 30.41 ± 3.32
CoOp [55] 0.76 ± 0.06 51.94 ± 2.60
OridinalCLIP [29] 0.67 ± 0.03 56.44 ± 1.66
L2RCLIP(Ours) 0.43 ± 0.02 67.22 ± 1.59

Results. Table 9 showcases improvements com-
pared to other state-of-the-art models using the full
dataset. Initially, zero-shot CLIP exhibits subopti-
mal performance resulting from inadequate seman-
tic and ordinal alignment. CoOp enhances the re-
sults by incorporating global context prompts to fa-
cilitate semantic alignment. Furthermore, Ordinal-
CLIP exploits interpolation to improve the average
MAE by 0.09. Our L2RCLIP further advances the
average MAE by 0.25 with a lower standard devia-
tion. In comparison with the previous conventional
model, L2RCLIP achieves a new state-of-the-art per-
formance with an MAE of 0.43 and an accuracy of
67.22%, thereby validating the effectiveness of our
proposed method.

5 Discussions and Conclusions

In this paper, we propose L2RCLIP to boost learning-to-rank of CLIP for ordinal classification.
Specifically, we introduce a complementary prompt tuning method, termed RankFormer, to enhance
the ordering relation of the original rank prompts. It performs token-level attention and residual-style
prompt blending for prompt tuning. Additionally, we revisit the approximate bound optimization of
cross-entropy and reformulate it in the cross-modal embedding space by incorporating the language
knowledge. To additionally recover the ordinal information, we further introduce cross-modal
ordinal pairwise loss to refine the ordering alignment of CLIP feature space. Extensive experiments
demonstrate the effectiveness of our approach on various ordinal classification tasks, including facial
age estimation, historical image dating, and image aesthetics assessment. Furthermore, L2RCLIP
outperforms in the challenging few-shot learning and data distribution shift learning scenarios. Lastly,
we conduct a comprehensive ablation study to verify the effectiveness of each component of our
proposed method.

Broader Impacts. As a versatile approach, L2RCLIP can be applied to any ordinal classification
tasks such as image aesthetics assessment or other rank assessment. However, these tasks may pose a
risk of unlawful surveillance or invasion of privacy if abused. Meanwhile, as L2RCLIP is based on a
large-scale vision-language model, addressing demographic biases in pre-trained vision-language
models is of significant importance. Therefore, we emphasize that L2RCLIP represents a research
proof of language-driven learning and is not appropriate for real-world usage without strict technical
controls.
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6 Appendix

This supplementary material begins with a comprehensive visualization of the datasets central to our
study. The specifics of our experimental settings are subsequently outlined in Section 6.2. Section 6.1
features an expanded analysis, including results from ablation studies. A key highlight of this section
is the visual interpretation of the CLIP image features facilitated by t-SNE [51]. Concurrently, a
comparative analysis is conducted, comparing the efficacy of interpolation-based strategies with our
learning-based methods(i.e. L2RCLIP).

6.1 More Analysis of L2RCLIP

Figure 4: Visualizing the ablation effects on the MORPH II dataset: t-SNE visualizations of 512D
spaces in CLIP latent space.

Additional Ablation Study. Figure 4 presents the embedding spaces corresponding to various
ablation settings, mapped from the original 512D embedding spaces via t-SNE [51]. In Panel (a), the
vanilla CLIP implementation reveals a sub-optimal ordering relationship among images of distinct
ranks. Feature demarcations across different ranks are ambiguous, displaying considerable overlap.
The incorporation of RankFormer with global context prompts [55], illustrated in Panel (b), aids
in improving and consolidating the order alignment of these image features. As shown in Panel
(c), the implementation of our proposed loss function, Lcop, further enhances this order alignment.
Conversely, Panel (d) indicates that without the RankFormer module, the order alignment between the
lowest and highest ranks falls short of the desired outcome. These findings substantiate the efficacy
of the modules proposed in this study, with each component playing a significant role in the overall
model performance. This underscores the criticality of their synergistic implementation.

Table 10: Batchsize Analysis.
Batchsize 16 32 64 96 128

MAE(↓) 2.15 2.13 2.13 2.17 2.17
OS(%, ↑) 67.21 68.55 71.87 71.71 75.42

We also explore the role of different batchsize settings. We report the result in Table 10. According
to the result, we choose batchsize with 64 to conduct other experiments.

Table 11: The MAE results under the distribution shift setting and few shot setting on the MOPRH II.
re cls - re smp 10-90 20-80 20-90 30-80 30-90 40-80 40-90

L2RCLIP-I 2.39 2.45 2.50 2.57 2.70 2.73 2.93
L2RCLIP(Ours) 2.30 2.37 2.43 2.51 2.61 2.68 2.79
#Shots #1 #2 #4 #8 #16 #32 #64

L2RCLIP-I 4.31 4.02 3.63 3.48 3.13 2.80 2.62
L2RCLIP(ours) 4.54 3.92 3.40 3.28 2.81 2.55 2.38

Compared with Interpolation-based method. In this study, we also propose an interpolation
technique for our basic rank templates, which we term L2RCLIP-I. Two distinguishing characteristics
set L2RCLIP-I apart from OrdinalCLIP [29]. Firstly, we utilize the ViT-B/16 visual backbone of
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CLIP for image feature extraction, whereas OrdinalCLIP employs a pre-trained VGG-16 network
supplemented by a linear projection layer. Secondly, our method relies on a two-stage training
strategy, in contrast to the one-stage approach adopted by OrdinalCLIP. Importantly, both training
strategies require a comparable time commitment. The results are reported in Tables 7 and 11.

Local ordinality score of L2RCLIP. To further prove our L2RCLIP have learned better ordering
relationship, we follow OrdinalCLIP[29] and use the local ordinality score. The formula is defined as:
LOS(%) =

∑K
i=1

∑K
j=i I{si,j > si,j+1}/(K × (K − 1)/2), where K is the size of local window

and si,j represents the cosine similarity of each pair of templates. We propose that the locally linear
manifold can be preserved within a fixed small window size. Therefore, we calculate the local
ordinality score using window sizes of 2, 4, 8, 16, and 32. The results of the local ordinality score are
shown in Table 12.

Table 12: The local ordinality score results on the MORPH II dataset.
# window size 2 4 8 16 32

Vanilla CLIP 100.00 83.33 78.57 70.83 60.08
OrdinalCLIP[29] 100.00 100.00 100.00 96.19 -
L2RCLIP(Ours) 100.00 100.00 100.00 100.00 97.78

Table 13: Ablation study of global context prompts and architecture.
Method Morph(MAE) Morph(OS%) CLAP2015(MAE) CLAP2015(OS%)

Vanilla CLIP 6.91 55.36 4.66 52.51
w/o context prompt 2.23 65.46 2.76 67.17
RankFormer→ MLP 2.27 67.48 - -
L2RCLIP(Ours) 2.13 71.87 2.62 67.55

More ablation study of L2RCLIP To avoid the effect of token mixing and the type of architecture
of RankFormer, we conduct more detailed ablation study. The results are shown in Table13. Our
proposed method is complementary to previous prompt tuning methods and our L2RCLIP can achieve
comparable performance with OrdinalCLIP even without context prompt. We have also compared
L2RCLIP performance with an MLP-based architecture to avoid effects driven by extra computation.
Note that both RankFormer and MLP have similar training parameters. The results show that our
token-wise RankFormer can enhance the ordinality between input rank templates.

Table 14: Additional results on Morph II.
Methods Setting A Setting B Setting C Setting D

DRC-ORID[19] 2.26 2.51 2.58 2.16
OL[31] 2.41 2.75 2.68 2.22
MWR-G[48] 2.24 2.55 2.61 2.16
GOL[20] 2.17 2.60 2.51 2.09
L2RCLIP(Ours) 2.13 2.53 2.56 1.95

More results on Morph II datasets We have conducted experiments on the other three settings of
Morph II. The results are presented in Table 14. The details for each settings are as follows:

• Setting A: A total of 5,492 images of Caucasians are sampled and then randomly divided
into training and test sets with a ratio of 8 : 2.

• Setting B: Approximately 21,000 images of Caucasians and Africans are randomly selected,
ensuring a balanced ratio of 1 : 1 between Caucasians and Africans, as well as a ratio of
1 : 3 between females and males. The dataset is then divided into three subsets (S1, S2, S3).
The training and testing process is repeated twice: 1) training on S1 and testing on S2+S3,
and 2) training on S2 and testing on S1+S3.
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• Setting C: The entire dataset is randomly partitioned into five folds, with the constraint
that images of the same person belong to only one fold. The 5-fold cross-validation is then
performed.

• Setting D: The entire dataset is randomly divided into five folds without any restrictions.
The 5-fold cross-validation is then performed.

6.2 Experiment settings

Dataset Details. In the scope of this study, we only utilize publicly available data. To provide a
comprehensive understanding of the tasks at hand, we illustrate a selection of random samples from
the image aesthetics assessment dataset (Figure 5) and the historical image dating dataset (Figure 6).
To further enhance our exposition, Figure 7 depicts both the original and adjusted distributions of the
MORPH II dataset.

Figure 5: Samples from the urban collections of the aesthetics dataset.

Figure 6: Samples from the historical image dating dataset.

Figure 7: Original and shifted distributions of the MORPH II dataset.
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