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Abstract

Preparing training data for deep vision models is a labor-intensive task. To ad-
dress this, generative models have emerged as an effective solution for generating
synthetic data. While current generative models produce image-level category
labels, we propose a novel method for generating pixel-level semantic segmen-
tation labels using the text-to-image generative model Stable Diffusion (SD). By
utilizing the text prompts, cross-attention, and self-attention of SD, we introduce
three new techniques: class-prompt appending, class-prompt cross-attention, and
self-attention exponentiation. These techniques enable us to generate segmentation
maps corresponding to synthetic images. These maps serve as pseudo-labels for
training semantic segmenters, eliminating the need for labor-intensive pixel-wise
annotation. To account for the imperfections in our pseudo-labels, we incorporate
uncertainty regions into the segmentation, allowing us to disregard loss from those
regions. We conduct evaluations on two datasets, PASCAL VOC and MSCOCO,
and our approach significantly outperforms concurrent work. Our benchmarks and
code will be released at https://github.com/VinAIResearch/Dataset-Diffusion.

1 Introduction

Semantic segmentation is a fundamental task in computer vision. Its objective is to assign semantic
labels to each pixel in an image, making it crucial for applications such as autonomous driving,
scene comprehension, and object recognition. However, one of the primary challenges in semantic
segmentation is the high cost associated with manual annotation. Annotating large-scale datasets
with pixel-level labels is labor-intensive, time-consuming, and requires substantial human effort.

To address this challenge, an alternative strategy involves leveraging generative models to synthesize
datasets with pixel-level labels. Past research efforts have utilized Generative Adversarial Networks
(GANs) to effectively generate synthetic datasets for semantic segmentation, thereby mitigating the
reliance on manual annotation [1–3]. However, GAN models primarily concentrate on object-centric
images and have yet to capture the intricate complexities present in real-world scenes.

On the other hand, text-to-image diffusion models have emerged as a promising technique for
generating highly realistic images from textual descriptions [4–7]. These models possess unique
characteristics that make them well-suited for the generation of semantic segmentation datasets.
Firstly, the text prompts used as input to these models can serve as valuable guidance since they
explicitly specify the objects to be generated. Secondly, the application of cross and self-attention
maps in the image generation process endows these models with informative spatial cues, enabling
precise extraction of object positions within the generated images.

By leveraging these characteristics of text-to-image diffusion models, the concurrent works Diffu-
Mask [8] and DiffusionSeg [9] effectively generate pairs of synthetic images and corresponding
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Figure 1: Overview of our Dataset Diffusion for synthetic dataset generation. (Left) Given the target
classes, our framework generates high-fidelity images with their corresponding pixel-level semantic
segmentations. These segmentations serve as pseudo-labels for training a semantic segmenter. (Right)
The trained semantic segmenter is able to predict the semantic segmentation of a test image.

segmentation masks. DiffuMask achieves this by utilizing straightforward text prompts, such as "a
photo of a [class name] [background description]", to generate image and segmenta-
tion mask pairs. Meanwhile, DiffusionSeg focuses on creating synthetic datasets that address the
challenge of object discovery, which involves identifying salient objects within an image. While
these approaches successfully produce images paired with their corresponding segmentation masks,
they are currently limited to generating a single object segmentation mask per image.

In this paper, we present Dataset Diffusion, a novel framework for synthesizing high-quality semantic
segmentation datasets, as shown in Fig. 1. Our approach focuses on generating realistic images
depicting scenes with multiple objects, along with precise segmentation masks. We introduce two
techniques: class-prompt appending, which encourages diverse object classes in the generated images,
and class-prompt cross-attention, enabling more precise attention to each object within the scene. We
also introduce self-attention exponentiation, a simple refinement method using self-attention maps to
enhance segmentation quality. Finally, we employ the generated data to train a semantic segmenter
using uncertainty-aware segmentation loss and self-training.

To evaluate the quality of the synthesized datasets, we introduce two benchmark datasets: synth-VOC
and synth-COCO. These benchmarks utilize two well-established semantic segmentation datasets,
namely PASCAL VOC [10] and COCO [11], to standardize the text prompt inputs and ground-truth
segmentation evaluation. On the synth-VOC benchmark, Dataset Diffusion achieves an impressive
mIoU of 64.8, outperforming DiffuMask [8] by a substantial margin. On the synth-COCO benchmark,
the DeepLabV3 model trained on our synthesized dataset achieves noteworthy results of 34.2 in
mIoU compared to the model trained on real images with full supervision.

In summary, the contributions of our work are as follows:

• We present a framework that effectively employs a state-of-the-art text-to-image diffusion model to
generate synthetic datasets with pixel-level annotations.

• We introduce a simple and effective text prompt design that facilitates the generation of complex
and realistic images, closely resembling real-world scenes.

• We propose a straightforward method that utilizes self and cross-attention maps to achieve highly
accurate segmentation, thereby improving the quality and reliability of the synthesized datasets.

• We introduce synth-VOC and synth-COCO benchmarks for evaluating the performance of semantic
segmentation dataset synthesis.

In the following, Sec. 2 reviews prior work, Sec. 3 describes our proposed framework, and Sec. 4
presents our experimental results. Finally, Sec. 5 concludes with some remarks and discussions.

2 Related Work

Semantic segmentation is a critical computer vision task that involves classifying each pixel in
an image to a specific class label. Popular semantic segmentation approaches include the fully
convolutional network (FCN) [12] and its successors, such as DeepLab [13], DeepLabV2 [14],
DeepLabv3 [15], DeepLabv3+ [16], UNet [17], SegNet [18], PSPNet [19], and HRNet [20]. Recently,
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transformer-based approaches like SETR [21], Segmenter [22], SegFormer [23], and Mask2Former
[24] have gained attention for their superior performance over convolution-based approaches. In our
framework, we focus on generating synthetic datasets that can be used with any semantic segmenter,
so we use DeepLabv3 and Mask2Former as they are commonly used.

Text-to-image diffusion models have revolutionized image generation research, moving beyond
simple class-conditioned to more complex text-conditioned image generation. Examples include
GLIDE [25], Imagen [6], Stable Diffusion (SD) [5], Dall-E [4], eDiff-I [7], and Muse [26]. These
models can generate images with multiple objects interacting with each other, more closely resembling
real-world images rather than the single object-centric images generated by prior generative models.
Our Dataset Diffusion marks a milestone in synthetic dataset generation literature, moving from
image-level annotation to pixel-level annotation. We utilize Stable Diffusion [5] in our framework, as
it is the only open-sourced pretrained text-to-image diffusion model available at the time of writing.

Diffusion models for segmentation. Diffusion models have proven effective for semantic, instance,
and panoptic segmentation tasks. These models either use input images to condition the mask-
denoising process [27–33], or employ pretrained diffusion models as feature extractors [34–37].
However, they still require ground-truth (GT) segmentation for training. In contrast, our framework
utilizes only a pretrained SD to generate semantic segmentation without GT labels.

Generative Adversarial Networks (GANs) for synthetic segmentation datasets. GANs have been
employed in the generation of synthetic segmentation datasets, as demonstrated in previous works
such as [1, 3, 38, 39]. However, these approaches primarily focus on object-centric images, where
a single mask is segmented for the salient object or specific parts of common objects like faces,
cars, or horses, as exemplified in [2]. In contrast, our framework is designed to generate semantic
segmentations for more complex images, where multiple objects interact with each other at the scene
level. Furthermore, while some techniques [38, 39] support foreground/background subtraction, and
others [1, 3] still require human annotations, our objective is to generate semantic segmentations for
multiple object classes in each image without the need for human involvement.

Diffusion models for synthetic data generation have been used to improve the performance of
image classification [40, 41], domain adaptation for classification [42, 43], and zero/few-shot learning
[44–47]. However, these methods produce only image-level annotations as augmentation datasets. In
contrast, our framework produces pixel-level annotations, which is considerably more challenging.

Recently, there have been concurrent works [8, 9] that utilize Stable Diffusion (SD) for generating
object segmentation without any annotations. However, they focus on segmenting a single object
in an image rather than multiple objects. Their text-prompt inputs to SD are simple, usually “a
photo of a [class name]”. The semantic segmenter trained on these annotations can segment
multiple objects to some extent. Our framework, on the other hand, employs more complex text
prompts where multiple objects can coexist and interact, making it more suitable for the semantic
segmentation task in real-world images.

3 Dataset Diffusion

Problem setting: Our objective is to generate a synthetic dataset D = (Ii, Si)
N
i=1, consisting of

high-fidelity images I and pixel-level semantic masks S. These images and masks capture both the
semantic and location information of the target classes C = {c1, c2, ..., cK}, where K represents
the number of classes. The purpose of constructing this dataset is to train a semantic segmenter Φ
without relying on human annotation.

In our approach, we follow a three-step process. Firstly, we prepare relevant text prompts P containing
the target classes (Sec. 3.1). Secondly, using Stable Diffusion (SD) as our model, we generate images
Ii ∈ RH×W×3 and their corresponding semantic segmentations Si ∈ {0, . . . ,K}H×W , where 0
represents the background class (Sec. 3.2). These images and segmentations form the synthetic
dataset D. Lastly, we train a semantic segmenter Φ on D and evaluate its performance on the test set
of standard semantic segmentation datasets (Sec. 3.3). It is worth noting that our approach primarily
focuses on segmenting common objects in everyday scenes, where the SD model excels, rather than
specialized domains like medical or aerial images. The overall framework is depicted in Fig. 2.
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Figure 2: Three stages of Dataset Diffusion. In the first stage, the target classes are provided,
and text prompts are generated using language models such as ChatGPT [48]. Real captions (for
COCO) or image-based captions (for VOC) can also be used for prompt generation to ensure standard
evaluation. The text prompts are then augmented with the target class labels to avoid missing objects.
In the second stage, given the augmented text prompt, a frozen Stable Diffusion [5] is employed to
generate an image and its self- and cross-attention maps. The cross-attention map for each target class
is refined using the self-attention map to match the object’s shape. Finally, the generated images and
corresponding semantic segmentations are used to train a semantic segmenter with uncertainty-aware
loss and the self-training technique.

3.1 Preparing Text Prompts for Stable Diffusion

To prepare prompts containing a given list of classes for SD, one option is to utilize a large language
model (LLM) such as ChatGPT [48] to generate the sentences, similar to the method described in [9].
This approach can be valuable in real-world applications.

However, for evaluating the quality of the synthetic dataset, we need to rely on standard datasets for
semantic segmentation like PASCAL VOC [10] or COCO [11] to create standardized benchmarks.
In this regard, we propose using the provided or generated captions of the training images in these
datasets as the text prompts for SD. This is solely for the purpose of standard benchmarking where the
text prompts are fixed, and we do not utilize real images or image-label associations in our synthetic
dataset generation. We call these new benchmarks as synth-VOC and synth-COCO.

When using the COCO dataset, we can rely on the provided captions to describe the training images.
However, in the case of the PASCAL VOC dataset, which lacks captions, we employ a state-of-the-art
image captioner like BLIP [49] to generate captions for each image. However, we encountered several
issues with the provided or generated captions. Firstly, the text prompts may not use the exact terms
as the target class names C provided in the dataset. For instance, terms like “man” and “woman” may
be used instead of “person”, or “bike” instead of “bicycle”, resulting in a mismatch with the
target classes. Secondly, many captions do not contain all the classes that are actually present in the
images (as illustrated in Fig. 3). This leads to a shortage of text prompts for certain classes, affecting
the generation process for those particular classes.

To address the issues, we propose a method that leverages the class labels provided by the datasets.
We append the provided (or generated) captions Pi with the class labels, creating new text prompts
P ′

i that explicitly incorporate all the target classes Ci = [c1; . . . ; cM ], where M is the number
of classes in image i. This is achieved through the text appending operation or class-prompt
appending technique: P ′

i = [Pi; Ci]. For example, in the case of the left image in Fig. 3, the final
text prompt would be “a photograph of a kitchen inside a house; bottle microwave
sink refrigerator”. This ensures that the new text prompts encompass all the target classes,
addressing the issue of mismatched or missing class names in the captions.

3.2 Generating Segmentation from Self and Cross-attention Maps

We build our segmentation generator on Stable Diffusion (SD) by leveraging its self and cross-
attention layers. Given a text prompt P ′ first encoded by a text encoder into text embedding
e ∈ RΛ×de with the text length Λ and the number of dimensions de, SD seeks to output the final
latent state z0 ∈ RH×W×dz , where H,W, dz are height, width, and number of channels of z0,
reflecting the content encoded in e from the initial latent state zT ∼ N (0, I) after T denoising steps.
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Caption: A photograph of a kitchen inside a house.
Provided classes: bottle, microwave, sink, refrigerator

Caption: A bike leaning against a sign in Scotland.
Provided classes: bicycle, backpack, bottle

Caption: A man riding a dirt bike in a forest.
Provided classes: person, motorcycle

Figure 3: Common issues of using provided (or generated) captions. Red classes are often missing
from the captions, resulting in a lack of text prompts for those classes. Blue classes may have different
terms used in the captions, causing a discrepancy between the target class names and the text prompts.

Generated image Cross-attention Mask + Uncertainty

Figure 4: Given a text prompt “A bike is parked in a room; bicycle”, we obtain the gener-
ated image, cross-attention map, enhanced cross-attention map by the self-attention with τ = {1, 2, 4}
described in the Eq. (3), and mask with uncertainty value (white region) by Eq. (4) and Eq. (5).

At each denoising step t, a UNet architecture with L layers of self and cross-attention is used to
transform zt to zt−1. In particular, at layer l and time step t, the self-attention layer captures the
pairwise similarity between positions within a latent state zlt in order to enhance the local feature
with the global context in zl+1

t . In the meantime, the cross-attention layer models the relationship
between each position of the latent state zlt and each token of the text embedding e so that zl+1

t can
express more of the content encoded in e.

Formally, the self-attention map Al,t
S ∈ [0, 1]HW×HW and cross-attention map Al,t

C ∈ [0, 1]HW×Λ

at layer l and time step t are computed as follows:

Al,t
S = Softmax

(
QzK

⊤
z√

dl

)
, Al,t

C = Softmax
(
QzK

⊤
e√

dl

)
, (1)

where Qz,Kz,Ke are the query of z, key of z, and key of e, respectively, obtained by linear
projections and taken as inputs to the attention mechanisms, and dl is # features at layer l.

Since we only want to obtain the cross-attention map of the class labels Ci of image i for semantic
segmentation, we introduce class-prompt cross-attention that is similar to cross-attention in Eq. (1)
but produced by only taking the softmax over the class name part Ci rather than entire of the text
prompt P ′

i. In practice, we form a new text prompt P̂i = Ci just for the purpose of extracting the
cross-attention maps while the original text prompt P ′

i for generating images keeps unchanged. After
this, we obtain Al,t

C ∈ [0, 1]HW×M , where M is the number of classes in the image.

With the observation that using different ranges of timesteps only affects the final result marginally,
(provided in Supp.), we average these cross and self-attention maps over layers and timesteps:

AS =
1

L× T

L∑
l=1

T∑
t=0

Al,t
S , AC =

1

L× T

L∑
l=1

T∑
t=0

Al,t
C , (2)

Although the cross-attention maps AC already exhibit the location of the target classes in the image,
they are still coarse-grained and noisy, as illustrated in Fig. 4. Thus, we propose to use the self-
attention map AS (as illustrated in Fig. 6 - Left) to enhance AC for a more precise object location.
This is because the self-attention maps capturing the pairwise correlations among positions within
the latent zt can help propagate the initial cross-attention maps to the highly similar positions,
e.g., non-salient parts of the object, thereby enhancing their quality. Therefore, we propose self-
attention exponentiation where the self-attention map AS is powered to τ before multiplying to the
cross-attention map AC as:

A∗
C = (AS)

τ · AC , A∗
C ∈ [0, 1]HW×M . (3)
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Next, we aim to identify two matrices: V ∈ [0, 1]H×W representing the objectness value at each
location (the higher the objectness, the more likely that location contains an object), and S ∈
{1, . . . ,M}H×W indicating which objects in the class labels Ci that each location could be. To
obtain those, we perform the pixel-wise argmax and max operator (over the category M dimension):

S = argmax
m

A∗,m
C , V = max

m
A∗,m

C . (4)

At a location x in the map V , if its value is less than a threshold, one can set its label to the background
class 0. However, we find that using a fixed threshold does not work for all images. Instead, we use a
lower threshold α for certain background decisions and a higher threshold β for certain foreground
decisions. Any value that falls inside the range (α, β) expresses an uncertain mask prediction with
value U = 255. That is, the final mask S̄ is illustrated in the last image of Fig. 4 and calculated as:

S̄x =


0 if Vx ≤ α,

U if α < Vx < β,

Sx otherwise.
(5)

3.3 Training Semantic Segmenter on Generated Segmentation

Given the synthetic images I and semantic segmentation masks S̄ , we train a semantic segmenter Φ
with an uncertainty-aware cross-entropy loss. Specifically, for pixels marked as uncertain, we ignore
the loss from those as: L =

∑
x 1(S̄x ̸= U)LCE(Ŝx, S̄x), where 1 is the indication function, LCE is

the cross entropy loss, and Ŝ = Φ(I) is the predicted segmentation from the generated image I.

We further enhance the segmentation mask S̄ by the self-training technique [50]. That is, after
being trained with S̄, the segmenter Φ makes its own prediction on I as pseudo labels S∗ without
uncertainty value U . Finally, the final semantic segmenter Φ∗ is the segmenter Φ trained again on S∗.

4 Experiments

Datasets: We evaluate our Dataset Diffusion on two datasets: PASCAL VOC 2012 [10] and COCO
2017 [11]. The PASCAL VOC 2012 dataset has 20 object classes and 1 background class. For
standard semantic segmentation evaluation, this dataset is usually augmented with the SBD dataset
[51] to have a total of 12, 046 training, 1, 449 validation, and 1, 456 test images. We additionally
augment the training images with captions generated from BLIP [49]. The COCO 2017 dataset
contains 80 object classes and 1 background class with 118, 288 training and 5K validation images,
along with provided captions for each image. It is worth noting that we only use the image-level class
annotation to form the text prompts as described in Sec. 3.1.

We introduce the set of our prepared text prompts along with the validation set of each dataset as
synth-VOC and synth-COCO – the two benchmarks for evaluation of semantic segmentation dataset
synthesis. To create a balance synthetic dataset among classes, we generate 2k images per object class
for PASCAL VOC, resulting in a total of 40k image-mask pairs and about 1k images per object class
for COCO, resulting in a total of 80k image-mask pairs. If the number of text prompts associated
with a certain class is insufficient, we use more random seeds to generate more images.

Evaluation metric: We evaluate the performance of Dataset Diffusion using the mean Intersec-
tion over Union (mIoU) metric. The mIoU(%) score measures the overlap between the predicted
segmentation masks and the ground truth masks for each class and takes the average across all classes.

Implementation details: We build our framework on PyTorch deep learning framework [52] and
Stable Diffusion [5] version 2.1-base with T = 100 timesteps. We construct the masks using optimal
values for τ , α, and β, which are defined in Sec. 6.2. Regarding semantic segmenter, we employ the
DeepLabV3 [15] and Mask2Former [24] segmenter implemented in the MMSegmentation framework
[53]. We use the AdamW optimizer with a learning rate of 1e−4 and weight decay of 1e−4. For other
hyper-parameters, we follow standard settings in MMSegmentation.

4.1 Main Results

Quantitative results: Tab. 1 compares the results of DeepLabV3 [15] and Mask2Former [24] trained
on the real training set, a synthetic dataset of DiffuMask [8], and the synthetic dataset of Dataset
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Table 1: Comparison in mIoU between training DeepLabV3 [15] and Mask2Former [24] on the real
training set, the synthetic dataset of DiffuMask [8], and the synthetic dataset of Dataset Diffusion.

Segmenter Backbone VOC dataset COCO dataset

Training set Val Test Training set Val

DeepLabV3 ResNet50
VOC’s training
(11.5k images)

77.4 75.2
COCO’s training
(2017: 118k images)

48.9
DeepLabV3 ResNet101 79.9 79.8 54.9
Mask2Former ResNet50 77.3 77.2 57.8

Mask2Former ResNet50
DiffuMask [8]
(60k images) 57.4 - - -

DeepLabV3 ResNet50
Dataset Diffusion
(40k images)

61.6 59.0
Dataset Diffusion
(80k images)

32.4
DeepLabV3 ResNet101 64.8 64.6 34.2
Mask2Former ResNet50 60.2 60.5 31.0

Table 2: Performance of different text prompt selections. Red: class names, blue: similar terms.

Method Example mIoU (%)

1: Simple text prompts a photo of an aeroplane 54.7
2: Captions only a large white airplane sitting on top of a boat 50.8
3: Class labels only aeroplane boat 57.4
4: Simple text prompts + class labels a photo of an aeroplane; aeroplane boat 57.6
5: Caption + class labels a large white plane sitting on top of a boat; aeroplane boat 62.0

Diffusion. On VOC, our approach yields satisfactory results of 64.8 mIoU when compared to the real
training set of 79.9 mIoU. Further, ours outperforms DiffuMask by a large margin of 4.2 mIoU using
the same Resnet50 backbone. The detailed IoU of each class is reported in the Supp. Also, Dataset
Diffusion achieves a promising result of 34.2 mIoU compared to 54.9 mIoU of real COCO training
set. These results demonstrate the effectiveness of Dataset Diffusion, although the gaps with the real
dataset are still substantial, i.e., 15 mIoU in VOC and 20 mIoU in COCO. This is due to the fact
that the image content of COCO is more complex than that of VOC, reducing the ability of Stable
Diffusion to produce images with the same level of complexity. We will discuss more in Sec. 5.

Qualitative results on the validation set of VOC are shown in Fig. 5. In Fig. 5a, the synthetic
images and their corresponding masks are utilized for training the semantic segmenter. The first
two rows (1, 2) serve as excellent examples of successful segmentation, while the last two rows
(3, 4) demonstrate failure cases. In certain instances, the self-training technique proves effective in
rectifying mis-segmented objects (as seen in rows 2 and 3). However, it can also adversely impact
the original masks when dealing with objects of small size (as observed in row 4). In Fig. 5b, our
predicted segmentation results on the validation set of VOC exhibit varying outcomes. The first three
rows exhibit satisfactory results, with the predicted masks closely aligning with the ground truth.
Conversely, the last three rows illustrate failure cases resulting from multiple small objects (row 4)
and the presence of intertwined objects (rows 5 and 6).

4.2 Ablation Study

We conduct all ablation study experiments on the text prompts described in Sec. 3.1. Additionally,
we report the results with 20k images using the initial mask generated by Dataset Diffusion without
using the self-training technique or test-time augmentation unless indicated in each experiment.

Effect of text prompt selection. Tab. 2 compares different text prompt selection methods. Our
class-prompt appending technique outperforms the text prompts using captions or class labels only.
Specifically, the class-prompt appending technique increases the performance by 11.2 and 4.6 mIoU
over the “caption-only” and “class-label-only” text prompts, respectively. Class-prompt appending
also outperforms the simple text prompts by 7.3 mIoU. These results indicate that our text prompt
selection method can help SD generate datasets with both diversity and accurate attention.

Effects of different components of stage 2 and stage 3 in Fig. 2 on the overall performance are
summarized in Tab. 3. Using only cross-attention results in a low performance of 44.8 mIoU as the
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"A bike is parked behind a fence; bicycle"

"A man walking down a sidewalk with a dog; person dog"

"A living room with a couch, chair, and a coffee table; sofa chair dining table"

Generated image Mask with uncertainty

"A man riding a horse; person horse"

Mask after self-training

(a) Our synthetic images and segmentation masks

Test image Ground-truth mask Our predicted mask

(b) Segmentation results on VOC’s validation set

Figure 5: (a) Row 1 (R1) and R2 are successful cases, while R3 and R4 demonstrate failures. Self-
training helps correct mis-segmented objects in some cases (R2 and R3) but can harm the original
mask for small objects (R4). (b) R1 to R3 show accurate results, closely matching the GT. R4 to R6
reveal failure cases due to numerous small objects (R4) and intertwined objects (R5 and R6).

Table 3: Impact of cross-attention, self-attention, uncertainty, self-training, and test time augmentation
(TTA) (refer to Sec. 3.2, Sec. 3.3). TTA includes multi-scale and input flipping at test time.

Cross-attention Self-attention Uncertainty Self-training TTA mIoU (%)

✓ 44.8
✓ ✓ 61.0
✓ ✓ ✓ 62.0
✓ ✓ ✓ ✓ 62.7
✓ ✓ ✓ ✓ ✓ 64.3

cross-attention map is coarse and inaccurate (as illustrated in Fig. 4). Using self-attention refinement
boosts the performance significantly to 61.0 mIoU. Also, using other techniques like uncertainty-
aware loss, self-training, and test time augmentation help improve performance incrementally.

Effect of different feature scales used for aggregating self-attention and cross-attention maps is
shown in Tab.4. As can be seen, for the cross-attention map, choosing too small and too large feature
scales both hurt the performance since the former lacks details while the latter focuses on fine details
instead of object shape. For the self-attention map, using the scale of 32 gives slightly better results.

Hyper-parameters selection for mask generation (Sec. 3.2). We conduct sensitivity analysis on τ ,
α, and β to determine the optimal values in Tab. 5. Tab. 5a shows the results of choosing τ (with
fixed α = 0.5, β = 0.6) with the best result with τ = 4. A too-large value of τ = 5 decreases the
performance as the refined cross-attention map tends to spread out the whole image rather than the
object only. Additionally, Tab. 5b exhibits the analysis on the (α, β) range given the fixed τ = 4, the
range of (0.5− 0.6) achieves the best performance of 62.0 mIoU.
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Table 4: Study on different feature scales

Self-attention

Cross-attention 32 64

8 39.7 38.1
16 62.0 59.6
32 52.8 50.9
64 35.4 31.5

16, 32 59.7 57.3
16, 32, 64 59.1 57.2

Table 5: Hyper-parameters for mask generation.
(a) Analysis of τ with α = 0.5 and β = 0.6

τ 0 1 2 3 4 5

mIoU (%) 44.8 59.5 60.5 60.2 62.0 60.5

(b) Analysis of (α, β) given τ = 4

α− β 0.4-0.5 0.5-0.6 0.4-0.6

mIoU (%) 59.5 62.0 60.7

A close up of a cat on a desk near
a sandwich; cat apple sandwich

A group of lawn chairs sitting on top
of a beach; person umbrella chair

1

2

345

2

1

3
4

5

An unusual looking red bus going
down a road.; person car bus

A person on a skateboard on the
road; person car skateboard

Figure 6: Left: Correlation maps at some positions with others, extracted from a self-attention map.
Right: Failure cases of SD when generating images with multiple objects. Red: classes are missed.

5 Discussion and Conclusion

Limitations: While our method is effective for generating synthetic datasets, there are some lim-
itations to consider. Our primary reliance on Stable Diffusion [5] for image generation can result
in difficulties with producing complex scenes. First, when given a text prompt that involves three
or more objects, the diffusion model may only produce an image depicting two or three objects
as exemplified in Fig. 6 - Right. However, there is ongoing research to improve the quality of
the diffusion model and to incorporate stronger guidance, such as layout or box conditions, which
shows promise in addressing this issue. Second, it is worth noting that in some cases, our Dataset
Diffusion may not produce high-quality segmentation masks when objects are closely intertwined, as
seen in Fig.5a with the example of a man riding a horse. Third, the bias in the LAION-5B dataset, on
which Stable Diffusion was trained, may be transferred to the generated dataset. This is the current
limitation of Stable Diffusion as it was trained on a large-scale uncurated dataset like LAION-5B.
However, there are several studies addressing the bias problem in generative models [54–56] focusing
on enhancing fairness and reducing biases in generative models. We believe that these studies and
future work on the topic of fairness in GenAI will help to mitigate the bias in the generated images.

Conclusion: We have presented our novel framework – Dataset Diffusion – which enables the
generation of synthetic semantic segmentation datasets. By leveraging Stable Diffusion, Dataset
Diffusion can produce high-quality semantic segmentation and visually realistic images from specified
object classes. Throughout our experiments, we have demonstrated the superiority of Dataset
Diffusion over the concurrent method, DiffuMask, achieving an impressive mIoU of 64.8 in VOC and
34.2 in COCO. This remarkable advancement paves the way for future research endeavors focused
on the creation of large-scale datasets with precise annotations using generative models.
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6 Supplementary Material

In this supplementary material, we first elaborate on our implementation details in Sec. 6.1 Then, we
present additional results from our ablation study in Sec. 6.2, focusing on two key aspects: the impact
of timesteps on aggregating attention maps and the influence of the number of generated images on
the segmentation results. Next, we provide a comprehensive per-class IoU using PASCAL VOC
test set and COCO2017 val set in Sec. 6.3. After that, we present the quantitative results of Dataset
Diffusion in other image domains in Sec. 6.4. Finally, we provide more qualitative results in Sec. 6.5.

6.1 Elaboration of Implementation Details

Other text prompt selection methods. In this part, we discuss how we implement other text
prompt selection methods in the first ablation study in the main paper. We note that the difference
between these methods and Dataset Diffusion lies in the prompt construction and the cross-attention
aggregation. For the ‘simple text prompts’ method, we construct prompts as “A photo of a
[class name]” with the cross-attention map at the token “[class name]”. For the ‘caption only’
method, the class labels are not appended to the captions as in Dataset Diffusion with the cross-
attention at the class category token. In this way, the terms that do not match exactly with the class
names, e.g., “aeroplane” vs. “airplane”), will be ignored. For the “class labels only” method, we use
the prompts as “[class name 1] [class name 2] ...” with the cross-attention at the class
tokens. For compound class names such as “dining table”, we take the mean of the cross-attention
maps at all positions.

More on Sec 3.1. We have observed a major issue with Stable Diffusion. It often fails to generate
an adequate number of target classes when multiple object classes are provided in the text prompts,
particularly in the case of COCO. To avoid this issue, we introduce a limit on the number of class
labels, denoted as k. If the number of classes M in an image exceeds this threshold, we select the
top-k classes based on their frequency. Then, we generate k simpler text prompts, each containing
only one class from Ci classes of image i, ranked by the least frequent classes. The simple text
prompt used is “a photo of a [class name]; [class name]”. This approach ensures that
the generated images are more faithful to the provided text prompts, and it facilitates the creation of a
more diverse set of text prompts that includes both simple prompts and real captions. This strategy
helps to enhance the quality and coverage of the synthetic dataset, mitigating the issue of missing
target classes in the generated images.

Computation details. We conduct our experiments on NVIDIA A100 40G GPUs. Generating a 40k
image dataset with Stable Diffusion V2.1 takes about 30 hours and training the DeepLabV3 for 20k
iterations takes about 3 hours on a single GPU.

6.2 Additional Ablation Studies

Study on different ranges of timesteps to aggregate attention maps. In the main paper, we only
experiment with aggregating self-attention and cross-attention maps over all the timesteps. Here, we
provide an ablation study in Tab. 6 to show that the variation in timesteps has a minimal impact on the
results. As can be seen, averaging all the timesteps yields the best performance, and the maximum
decrease is only 0.5 mIoU.

Study on numbers of generated image-mask pairs in the synthetic dataset. We evaluate the
performance of our semantic segmenter on three numbers of generated images: 10k, 20k, and 40k.
The results are shown in Tab. 7. By using a four times larger training dataset (from 10k to 40k), we
only gain 1.0% in mIoU. We expect the gain to be smaller when increasing the number of training
images further since the system performance is reaching its limit. Because the gain is small compared
to the additional computation cost, we do not examine our system when using more than 40k images.
We further experiment with the pseudo masks generated using a semantic segmenter well-trained
on the real Pascal VOC 2012 dataset to make predictions on our synthetic images. We consider
them highly accurate pseudo masks. The results in Tab. 8 show that the performance of the semantic
segmenter training on 40k images with these masks yields a 1.4 mIoU gain compared to when training
on 10k images, suggesting this small gain comes solely from the mask quality, not from increasing
number of generated images.
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Table 6: The impact of different ranges of timesteps to aggregate attention maps.

Timesteps 100-88 88-75 75-50 50-0 100-0

mIoU (%) 61.9 61.5 61.5 61.8 62.0

Table 7: The impact of different numbers of generated images in the synthetic dataset.

# images 10k 20k 40k

mIoU (%) 63.8 64.3 64.8

Table 8: Different # generated images with masked produced by DeepLabV3 trained on real data.

# images 10k 20k 40k

mIoU (%) 71.2 71.6 72.6

6.3 Detailed Per-class IoU on the VOC and COCO datasets

The detailed per-class IoUs of the COCO 2017 dataset are shown in Tab. 9. Furthermore, in Tab. 10,
we report the mIoU on the VOC test set of each class when training DeepLabV3 on our synthetic
dataset and the Pascal VOC training set. We observe that for the class “tv/monitor”, the cross-attention
frequently focuses on the boundary of the monitor rather than capturing the entire objects, and the
self-attention map cannot help alleviate this issue, resulting in poorly generated masks (as illustrated
in Fig. 7). This behavior could explain the significant performance drop of that class compared to the
results trained on the real dataset.

6.4 Other Image Domains

Driving Scenes (Tab. 11): Our synthetic dataset exhibits a performance gap with real datasets (3k
real images + manual labeling) of approximately 19 mIoU. This discrepancy parallels those observed
in the VOC and COCO datasets, as previously discussed in our main paper. Notably, our synthetic
dataset performs comparably with real datasets for specific classes such as bicycle, car, and person.
The process of generating images for this dataset is similar to those of VOC and COCO.

Facial Part Segmentation (Tab. 12): A performance gap of around 16.5 mIoU (for 5k images)
exists between real and synthetic datasets. This disparity is reasonable, considering our approach’s
zero-shot nature, where training images are generated based on text prompts. Compared to the faces
generated in DatasetGAN whose training images are from CelebA-HQ-Mask, the faces generated by
Dataset Diffusion are often not well-aligned. However, Dataset Diffusion still competes favorably
(78.2 vs 87.0). Furthermore, DatasetGAN requires a number of manual-labeled images (20 in this
case) for generating new images and segmentations. Hence, for a fair comparison, we combine our
synthetic data with 20 labeled images, and DatasetDiffusion surpasses DatasetGAN (89.9 vs. 87.0).
An example of text prompt used is "A portrait photo of a young woman; hair eye nose ear mouth"
where hair, eye, nose, ear, mouth are parts’ names.

Satellite/Aerial Images (Tab. 13): Dataset Diffusion’s generated image quality and segmentations do
not align with DroneDeploy’s standards, leading to a mIoU gap of 37.4. This discrepancy stems from
the limited presence of aerial/satellite images in SD’s training set (LAION-5B). The text prompts
hinder the generation of images that match DroneDeploy’s style. The results are presented with the
prompt: "An aerial view of a [building, clutter, water, vegetation, ground, car]" and 15k images.

6.5 More Qualitative Results

We first demonstrate the qualitative results of the segmenter on the VOC val set in Fig. 8 and COCO
2017 val set in Fig. 9. Next, in Figs. 10, 11, and 12, we present further qualitative results to illustrate
the effectiveness of Dataset Diffusion in generating scenes with different complexities. In Fig. 10,
a simple prompt with a single object is depicted, and Dataset Diffusion performs remarkably well
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Table 9: COCO 2017’s per-class IoU with DeepLabV3 trained on COCO’s training set (118k images)
and Dataset Diffusion (100k images).

Class COCO Dataset Diffusion Class COCO Dataset Diffusion

background 89.1 80.9 wine glass 48.8 29.3
person 80.6 50.5 cup 44.8 13.7
bicycle 64.7 39.9 fork 18.0 11.1
car 53.1 35.5 knife 19.0 6.1
motorcycle 76.9 62.6 spoon 15.8 7.7
airplane 78.0 62.2 bowl 38.0 24.4
bus 77.2 64.8 banana 62.0 49.0
train 77.2 58.7 apple 40.1 34.9
truck 52.8 36.8 sandwich 40.9 19.4
boat 53.1 42.5 orange 64.4 48.4
traffic light 60.5 31.0 broccoli 51.0 36.8
fire hydrant 84.6 55.9 carrot 41.8 22.1
stop sign 90.5 42.9 hot dog 49.8 30.9
parking meter 68.3 51.0 pizza 67.8 44.1
bench 46.8 27.5 donut 62.7 48.3
bird 66.9 47.2 cake 51.3 30.1
cat 79.9 64.0 chair 34.3 10.5
dog 74.5 46.5 couch 52.3 29.5
horse 77.4 60.5 potted plant 26.1 4.5
sheep 79.7 63.1 bed 58.3 42.0
cow 75.0 63.9 dining table 39.6 14.6
elephant 87.4 76.6 toilet 70.0 51.3
bear 88.4 78.1 tv 63.8 6.3
zebra 88.2 81.8 laptop 65.8 42.5
giraffe 82.5 77.0 mouse 60.3 12.7
backpack 23.1 7.5 remote 48.6 21.2
umbrella 69.3 51.2 keyboard 55.5 32.6
handbag 18.9 0.04 cell phone 57.1 35.7
tie 6.7 4.6 microwave 59.9 39.1
suitcase 65.8 29.8 oven 50.1 17.8
frisbee 55.8 29.1 toaster 0.5 6.4
skis 22.4 7.2 sink 54.9 21.4
snowboard 48.7 21.9 refrigerator 70.3 20.1
sports ball 42.1 24.5 book 37.3 23.2
kite 46.7 34.2 clock 64.0 24.3
baseball bat 23.1 8.3 vase 48.0 39.4
baseball glove 59.8 2.5 scissors 59.1 25.1
skateboard 45.3 22.0 teddy bear 70.8 46.1
surfboard 60.2 43.4 hair drier 0.08 2.6
tennis racket 72.6 15.7 toothbrush 36.6 21.9
bottle 37.5 20.1 mIoU (%) 54.9 34.2

in this scenario. In Fig. 11, more complex scenes are shown, and Dataset Diffusion still produces
acceptable results. However, the limitations of Stable Diffusion become apparent in Fig. 12, where
generated scenes are complex but often lack the objects explicitly mentioned in the prompt. This
highlights the challenges Stable Diffusion faces when generating scenes with multiple objects.
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Table 10: VOC’s per-class IoU with DeepLabV3 trained on VOC’s training set and Dataset Diffusion.

Class VOC Dataset Diffusion Class VOC Dataset Diffusion

aeroplane 93.6 81.6 diningtable 58.9 42.9
bicycle 43.8 35.8 dog 89.7 71.8
bird 93.4 73.3 horse 93.4 78.2
boat 67.0 62.2 motorbike 90.9 80.6
bottle 78.5 72.6 person 87.1 70.8
bus 95.9 85.5 pottedplant 68.2 53.9
car 90.7 64.8 sheep 90.9 77.8
cat 94.9 78.2 sofa 58.7 41.8
chair 36.8 21.6 train 84.9 72.7
cow 89.4 69.2 tv/monitor 74.3 29.6

mIoU (%) 79.8 64.6

Figure 7: The poorly generated masks for the class “tv/monitor”.

Table 11: Cityscapes Object Segmentation Results

Training set Bicycle Bus Car Motorbike Person Train mIoU

Cityscapes 78.0 89.7 95.4 69.8 82.5 84.6 83.3
Dataset Diffusion 72.9 57.7 93.7 39.8 82.1 39.9 64.4

Table 12: CelebA-HQ-Mask Facial Part Segmentation Results

Training set # Samples Hair Eye Nose Ear Mouth mIoU

CelebA-HQ-Mask 5k labeled 98.9 98.0 99.5 77.9 99.4 94.7
Dataset Diffusion 5k synthetic 97.2 74.5 85.1 41.2 93.1 78.2

DatasetGAN 5k synthetic + 20 labeled 97.5 95.3 96.6 48.1 95.7 87.0
Dataset Diffusion 5k synthetic + 20 labeled 97.9 95.3 97.2 61.5 97.6 89.9

Table 13: DroneDeploy Results

Training set Building Clutter Vegetation Water Ground Car mIoU

DroneDeploy 47.8 32.3 64.4 73.9 84.6 65.5 61.4
Dataset Diffusion 21.9 13.6 28.8 10.1 58.7 11.0 24.0
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Figure 8: Segmentation results on VOC’s val set. Three separate columns show examples of simple
scenes with a single object, quite complex scenes with multiple objects, and very complex scenes
with intertwined objects, respectively. In each example from left to right: test image, ground truth
segmentation, and our predicted mask.
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Figure 9: Segmentation results on COCO 2017. Please refer to the caption of Fig. 8 for more details.
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Figure 10: Dataset Diffusion can generate high-quality image-mask pairs with a simple text prompt
containing a single object. Each row shows two examples with text prompts underneath. From left to
right: generated image, initial mask with uncertain regions in white, and final mask after self-training.

Figure 11: Dataset Diffusion still works well with some scenes containing multiple objects. Please
refer to the caption of Fig. 10 for more details.
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Figure 12: When the prompt becomes excessively complex, Stable Diffusion faces challenges in
generating accurate images, i.e., not including all the objects mentioned in the caption, resulting in
the absence of these objects’ masks. Please refer to the caption of Fig. 10 for more details.
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