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A Proofs

Lemma 1. Let β(s) = β̄min + s(β̄max − β̄min) with β̄max > β̄min > 0. Then, for each λk ∈ [0, 1]

and t ∈ [0, 1], there exists a unique time τ ∈ [0, 1] (denoted by τ = ξk(t)) such that
∫ t

0
β(s)λkds =∫ τ

0
β(s)ds and β(t)λkdt = β(τ)dτ , with the following form

ξk(t) =
−β̄min +

√
β̄2
min + 2(β̄max − β̄min)β̄mintλk + (β̄max − β̄min)2t2λk

β̄max − β̄min
. (A-1)

Proof. With the definition of β(s), we have β(s) > 0 for any s ∈ [0, 1]. Let F (t) =
∫ t

0
β(s)ds, we

have F (t) = β̄mint+ (β̄max − β̄min)t
2/2 and F (t) ∈ [0, (β̄max + β̄min)/2] is a continuous function

of t. Since the derivative of F (t) is strictly positive, the function exhibits strict monotonic growth.
Therefore, there exists the reverse function F−1 such that t = F−1(

∫ t

0
β(s)ds). As 0 ≤ λk ≤ 1, we

have
∫ t

0
β(s)λkds ∈ [0, (β̄max + β̄min)/2] for any t. Thus, there exists a unique time τ ∈ [0, 1] such

that τ = F−1(
∫ t

0
β(s)λkds) and

dτ

dt
=

1

F ′(τ)
·
(∫ t

0

β(s)λkds

)′

=
β(t)λk

β(τ)
. (A-2)

In Eq. (A-2), we apply the inverse function rule, and the Leibniz integral rule for differentiation under
the integral sign. Therefore, we have that β(t)λkdt = β(τ)dτ . For a given time t, we now provide
the specific form of τ that satisfies

∫ t

0
β(s)λkds =

∫ τ

0
β(s)ds. By solving the quadratic equation

β̄mintλk + (β̄max − β̄min)t
2λk/2 = β̄minτ + (β̄max − β̄min)τ

2/2 with condition τ ∈ [0, 1], we can
obtain

τ = ξk(t) =
−β̄min +

√
β̄2
min + 2(β̄max − β̄min)β̄mintλk + (β̄max − β̄min)2t2λk

β̄max − β̄min
. (A-3)

Theorem 1. For a pixel indexed by k, λk ∈ [0, 1], and let τ = ξk(t) with ξk(t) represented in
Eq. (A-3). With the same initial value yk(0), we have that the transition kernel at time t induced
by Eq. (7) in the main paper is equal to the transition kernel at time τ induced by the following
differential equation

dyk = −1

2
β(τ)ykdτ +

√
β(τ)dw with initial value yk(0). (A-4)

The total time of noising for Eq. (A-4) is Tk with Tk = ξk(T ).

* Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Proof. With the initial value yk(0), we can compute the transition kernel using the Eqs. (5.50)
and (5.51) in [1]. The transition kernel at time t induced by Eq. (7) in the main paper is
N

(
yk(t) | yk(0)e−

1
2

∫ t
0
β(s)λkds, 1− e−

∫ t
0
β(s)λkds

)
and the transition kernel at time τ induced

by Eq. (A-4) is N
(
yk(τ) | yk(0)e−

1
2

∫ τ
0

β(s)ds, 1− e−
∫ τ
0

β(s)ds
)

.

As τ = ξk(t), we have
∫ t

0
β(s)λkds =

∫ τ

0
β(s)ds according to Lemma 1. Thus, we have

N
(
yk(t) | yk(0)e−

1
2

∫ t
0
β(s)λkds, 1− e−

∫ t
0
β(s)λkds

)
=N

(
yk(τ) | yk(0)e−

1
2

∫ τ
0

β(s)ds, 1− e−
∫ τ
0

β(s)ds
) (A-5)

B Dataset Details and Additional Experimental Results

B.1 Dataset Details

For image editing experiment on Imagen dataset, we collect synthetic images generated by Imagen [2]
from https://imagen.research.google/. We use template prompts in the form of “{A photo of a} {fuzzy
panda | British shorthair cat | Persian cat | Shiba Inu dog | raccoon} {wearing a cowboy hat and |
wearing sunglasses and} {red shirt | black jacket} {playing a guitar | riding a bike | skateboarding}
{in a garden | on a beach | on top of a mountain}”. By combining these prompt templates, we generate
a total of 180 images. To perform text-based image editing, we modify specific attributes within the
prompts. For example, we replace “fuzzy panda” with “raccoon” in the prompt “A photo of a fuzzy
panda wearing a cowboy hat and red shirt playing a guitar in a garden”. This allows us to edit the
images generated from the original prompts. For each image, we can conduct 10 different attribute
replacements, resulting in a total of 1,800 edited images across the 180 original images.

B.2 Qualitative Results on COCO-S and DreamBooth Datasets

We present our qualitative results on COCO-S and DreamBooth datasets in Figure 1 and Figure 2
respectively. It can be observed that our method can always edit the source image based on the
target prompt, while maintaining the information irrelevant to editing unchanged, compared with
the SoTA method. For example, for the image in the first column of Figure 1, DiffEdit/SDEdit/In-
structPix2Pix/EDICT does not generate images that match the target text. Moreover, DiffEdit/S-
DEdit/DDS/InstructPix2Pix/EDICT can not preserve the detailed background outside the bird. For
the image in the first column of Figure 2, the cats in the generated images by SDEdit/DDS/EDICT
do not wear a rainbow scarf. The regions below the cat in the images generated by DiffEdit/SDEd-
it/DDS/InstructPix2Pix/EDICT are not similar to the corresponding region in the source image. Our
method not only generates the image of a cat wearing a rainbow scarf, but also preserves the detailed
background below the cat. Note that for the other columns, our method can also successfully edit
based on prompt, while preserving information that is not related to editing.

B.3 Results at the Intermediate Steps of the Forward and Reverse Process

Figure 5 illustrates the results at the intermediate steps of the forward process and reverse process, as
well as the mask M used in the denoising process described in Algorithm 1. The masks reveal that
during the translation from cat to dog, we prioritize denoising the pixels corresponding to prominent
cat features, such as the eyes and nose. Subsequently, we proceed to denoise other facial regions
of the cat, followed by the denoising of the background. The generated images demonstrate that
we can successfully generate dog images while preserving the pose of the cat and maintaining the
background unchanged.

B.4 Computational Cost Comparision

We test the computational cost of SINE on NVIDIA Tesla V100, and the remaining methods including
our NGDM on NVIDIA GeForce RTX3090. Tables 1 and 2 show the computational time and memory
cost of different methods. It can be seen that our method is comparable to other methods in both
computational time and memory cost since our method requires no additional training.
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Table 1: Computational time and memory cost of methods with image space-based diffusion model.

Method SDEdit ILVR EGSDE DDIB DiffuseIT Ours

Time per iteration (s) ↓ 18 44 62 210 48 42
Memory(GB) ↓ 3.3 2.8 4.5 3.8 16.6 7.4

Table 2: Computational time and memory cost of methods with latent space-based diffusion model.

Method SDEdit DiffEdit SINE DDS InstructPix2Pix EDICT Ours

Time per iteration (s) ↓ 3 9 3480 46 12 648 6
Memory(GB) ↓ 10.0 6.7 28.0 16.7 18.0 13.8 6.7

B.5 More Tasks

We conduct experiments on two additional tasks to explore the potential of our approach, including
style transfer and gender transformation. The visual results are shown in Figures 3 and 4. The style
transfer task aims to transform the image into another style without changing the structure. For
example, from Figure 3, we can see that our method can transform a "real dog" into a "sculptural dog"
without changing the structure of the dog. From Figure 4, our method can turn males into females
while keeping the structure of the face unchanged.

B.6 More Qualitative Results

In this section, we show more qualitative results in Figures 6, 7, and 8 using the default hyper-
parameters. Besides, in Figures 9 and 10 we provide the visualization results of three methods of
DDS [3], InstructPix2Pix [4], and EDICT [5], in the examples in Figures 3 and 4 of the main paper.

B.7 More Examples Generated Using Hard Weighting Matrix

In this section, we show more examples generated using hard weighting matrix in Figure 11.
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Figure 1: Qualitative comparison on COCO-S dataset. The text below the source image represents
the simplified target prompt.
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Figure 2: Qualitative comparison on Dreambooth dataset. The text below the source image represents
the target prompt.
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Figure 3: Examples of style transfer. The text below the source image represents the target prompt
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Figure 4: Examples of gender transformation.
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Figure 5: Results at the intermediate steps of the forward process and reverse process. We present
the results at the intermediate steps of the forward and reverse process, along with the mask M at
the intermediate steps during the denoising, which is described in the sixth line of Algorithm 1 in
the main paper. The mask image at each time step indicates the regions in which the denoising has
already started and the regions where it has not yet started. The black regions in the mask image
indicate the pixels that have undergone the denoising process, while the white regions represent the
pixels that have not yet been denoised.
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Figure 6: Qualitative comparison on AFHQ dataset.
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Figure 7: Qualitative comparison on ImageNet dataset.
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Figure 8: Qualitative comparison on Imagen dataset.
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Figure 9: Visualization results of DDS, InstructPix2Pix, and EDICT on ImageNet dataset.
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Figure 10: Visualization results of DDS, InstructPix2Pix, and EDICT on Imagen dataset.
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Figure 11: Edited images and heatmaps with soft and hard weighting matrix. The images in the second
column represent the results generated by our method and the heatmap below the image depicts the
weighting matrix Λ(I) defined in Section 3.1 in the paper. The images in columns 3-7 represent the
results generated using the hard weighting matrix with threshold value in {0.1, 0.3, 0.5, 0.7, 0.9}.The
heatmaps below the images represent the binary hard weighting matrix.
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