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Abstract

Score-based diffusion models (SBDMs) have achieved state-of-the-art results in
image generation. In this paper, we propose a Non-isotropic Gaussian Diffusion
Model (NGDM) for image editing, which requires editing the source image while
preserving the image regions irrelevant to the editing task. We construct NGDM
by adding independent Gaussian noises with different variances to different image
pixels. Instead of specifically training the NGDM, we rectify the NGDM into an
isotropic Gaussian diffusion model with different pixels having different total for-
ward diffusion time. We propose to reverse the diffusion by designing a sampling
method that starts at different time for different pixels for denoising to generate im-
ages using the pre-trained isotropic Gaussian diffusion model. Experimental results
show that NGDM achieves state-of-the-art performance for image editing tasks,
considering the trade-off between the fidelity to the source image and alignment
with the desired editing target.

1 Introduction

Score-based diffusion models (SBDMs) [1–6] demonstrate state-of-the-art performance on image
synthesis quality and sample diversity. SBDMs are widely applied to applications such as text-to-
image synthesis [7–9], image editing [10–15], deblurring [16, 17], etc. SBDMs consist of a forward
diffusion stage that adds random noise to data and a reverse stage that generates desired data from
noise. The introduced noise in the forward process is commonly isotropic Gaussian noise [1, 6], i.e.,
independently and identically distributed noise in a normal distribution.

Non-isotropic diffusion model, by adding non-isotropic noises in the forward diffusion process has
been investigated in [18–22]. The blurring diffusion model in [18] adds blur and noise to samples
which is a Gaussian diffusion process with non-isotropic noise in the frequency space. [19] employs
auxiliary velocity variables to augment the data variables as Hamiltonian dynamics, and performs the
diffusion process in this expanded joint space by adding different noises to the auxiliary and the data
variables. [20] formulates the diffusion model using non-isotropic noise with a positive semi-definite
covariance matrix, and carries out a comparative analysis of the non-isotropic and isotropic diffusion
models. These works have shown better performance for data generation.

This paper focuses on image editing tasks that commonly require editing specific object/thing of an
image while preserving the remaining parts of the image. For image editing, [11] produces a mask
that allows the preservation of context while editing the remaining part. [23–25] use the learned text
embedding for the object that needs to be preserved in the image to ensure the object is unchanged
during editing. It is empirically known that the diffusion model can generate more diverse novel
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content if adding noise with larger variance to the image while preserving the image content if
adding smaller variance noise [13]. Motivated by this, we employ a non-isotropic diffusion model
to add noises with different variances to different image pixels, considering the degree to which the
corresponding pixels should be edited/preserved.

Along with this idea, we present a Non-isotropic Gaussian Diffusion Model (NGDM), utilizing an
off-the-shelf isotropic diffusion model (e.g., DDPM [1]) for achieving the data sampling in image
editing. Specifically, given a source image, the proposed NGDM is with a diffusion process that adds
independent Gaussian noises with different variances to different pixels, therefore the added noise is
independent and non-isotropic over image pixels. We then employ an off-the-shelf isotropic diffusion
model to execute the reverse denoising process for image editing. To achieve this goal, we rectify the
NGDM into the isotropic Gaussian diffusion model where each pixel is added with the same amount
of noise at each step but different pixels have varying total number of noise accumulation time steps.
We subsequently devise a specific sampling method for NGDM that can generate images by using
the pre-trained isotopic Gaussian diffusion model.

We demonstrate the effectiveness of NGDM in image editing tasks on five datasets including real and
synthetic datasets. In the experiments for cats to dogs editing task on AFHQ dataset, our method
achieves the best performance in the metric of FID and SSIM compared with the SoTA SBDMs-based
methods. For text-guided image editing, our method achieves better trade-off between CLIPScore
and LPIPS value. Furthermore, NGDM allows for flexible trade-off with varying hyper-parameters.

2 Background: Score-based Diffusion Models

SBDMs [1, 2, 4–6] are a family of generative models that learn the data distribution based on
the Gaussian process. Two representative models are Denoising Diffusion Probabilistic Model
(DDPM) [1] and Score Matching with Langevin Dynamics (SMLD) [5]. We discuss the details based
on DDPM for the remainder of the main text for brevity.

Given the input data x(0) ∈ RD, which represents a sample from the data distribution pdata, a
forward process produces the noisy x(t) indexed by a time variable t ∈ [0, 1] via

x(t) =
√
ᾱ(t)x(0) +

√
1− ᾱ(t)z(t), (1)

where z(t) ∈ N (0, I) for any t and ᾱ(t) = e−
∫ t
0
β(s)ds controlling the noise schedule. β(s) =

β̄min + s(β̄max − β̄min) with β̄min = 0.1 and β̄max = 20 [1, 6]. This type of diffusion model is
dubbed Isotropic Gaussian Diffusion Model (IGDM), since the added Gaussian noise z(t) is from the
independently and identically distributed normal distribution.

DDPM is in the framework of Stochastic Differential Equations (SDEs) [5] with variance preservation

dx(t) = −1

2
β(t)x(t)dt+

√
β(t)dw with initial value x(0), (2)

where w is the standard Wiener process. The reverse process denoises the noisy sample x(T ) starting
from T using a reverse SDE

dx(t) =

[
−1

2
β(t)x(t)− β(t)∇x log pt(x(t))

]
dt+

√
β(t)dw̄ with initial value x(T ), (3)

where w̄ is a standard Wiener process when time flows backward from T to 0. The score function
∇x log pt(x) is approximated by training a time-dependent model sθ(x(t), t) via score matching [6,
26]. For inference, the time of the differential equation is discretized as t ∈ {0,∆t, 2∆t, · · · , T}with
∆t representing the sampling time interval. We can choose to utilize the reverse process of DDPM or
the reverse process of DDIM for sampling. With βt = β(t)∆t, the iteration rule of DDPM [1] is

x(t) =
1√

1− βt+∆t

(x(t+∆t) + βt+∆tsθ (x(t+∆t), t+∆t)) +
√
βt+∆tz(t+∆t), (4)

where z(t+∆t) ∈ N (0, I). With ᾱt =
∏t

s=0(1− βs), the iteration rule of DDIM [27] is

x(t) =
√
ᾱt(

x(t+∆t) + (1− ᾱt+∆t) · sθ(x(t+∆t), t+∆t)
√
ᾱt+∆t

)

−
√
(1− ᾱt − σ2(t+∆t))(1− ᾱt+∆t) · sθ (x(t+∆t), t+∆t) + σ(t+∆t)z(t+∆t).

(5)
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Figure 1: The overview of our NGDM. We rectify the non-isotropic diffusion model into isotropic
model with different total time steps (e.g., T1, · · · , TD) for different pixels. Based on this rectification,
the input data y(0) is firstly added isotropic noises until T time steps. Then in the reverse denoising
process, to apply the pre-trained isotropic Gaussian diffusion model, we construct the noisy image
to be denoised in each time step following Eq. (12). The red arrow in the figure indicates the pixel
replacement operation in Eq. (12) when Tk ≤ t ≤ T for the k-th pixel at a denoising time step t.

3 Method

In this section, we present a framework for utilizing the pre-trained Isotropic Gaussian Diffusion
Model (IGDM) to achieve the sampling process of Non-isotropic Gaussian Diffusion Model (NGDM).
In the following, first, we define the NGDM with added independent non-isotropic Gaussian noise.
Then, we implement NGDM by IGDM through rectifying the spatially different time of noising and
denoising procedures in NGDM and present our proposed data sampling algorithm for the proposed
NGDM using the pre-trained IGDM.

3.1 Non-isotropic Gaussian Diffusion Model

In this work, we focus on the Non-isotropic Gaussian Diffusion Model (NGDM) by adding the non-
isotropic Gaussian noise in the input data y(0) ∈ RD and y(0) ∼ pdata, and the noises associated
with different pixels are independent. The forward SDE of NGDM is

dy = −1

2
β(t)Λ(I)ydt+

√
β(t)Λ(I)dw with initial value y(0), (6)

where I ∈ RD is the source data, Λ(I) : RD → RD×D is the weighting coefficient ma-
trix, defined as diagonal matrix Λ(I) = diag (λ1, · · · , λD) with 0 ≤ λk ≤ 1 scaling the
Gaussian noise level added to the k-th pixel. Note that the transition kernel p0t(y(t)|y(0)) =

N
(
y(t) | y(0)e− 1

2

∫ t
0
β(s)Λ(I)ds, I− e−

∫ t
0
β(s)Λ(I)ds

)
is an independent Gaussian distribution.

3.2 Rectify the Non-isotropic Gaussian Diffusion Model

With the added independent noise, we next discuss the forward SDE for NGDM in scalar form for
each pixel k. Given the initial yk(0) denoting the value of pixel k in y(0), the forward SDE of the
k-th pixel can be presented by

dyk = −1

2
β(t)λky

kdt+
√
β(t)λkdw with initial value yk(0), (7)

where w is a one-dimensional Wiener process.

We present Theorem 1 to illustrate the connection between the NGDM defined in Section 3.1 and the
IGDM defined in Section 2 at the pixel level. Beforehand, we introduce the following lemma.
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Lemma 1. Let β(s) = β̄min + s(β̄max − β̄min) with β̄max > β̄min > 0. Then, for each λk ∈ [0, 1]

and t ∈ [0, 1], there exists a unique time τ ∈ [0, 1] (denoted by τ = ξk(t)) such that
∫ t

0
β(s)λkds =∫ τ

0
β(s)ds and β(t)λkdt = β(τ)dτ , with the following form

ξk(t) =
−β̄min +

√
β̄2
min + 2(β̄max − β̄min)β̄mintλk + (β̄max − β̄min)2t2λk

β̄max − β̄min
. (8)

The proof is in Appendix A. Based on the above Lemma, we can rectify the NGDM, which adds
noise at each pixel with varying variance over the same time span, into an IGDM that adds noise at
each pixel with the same noise variance but with different total diffusion time for different pixels. We
introduce the following theorem to derive the differential equation as an IGDM.
Theorem 1. For a pixel indexed by k, λk ∈ [0, 1], and let τ = ξk(t) with ξk(t) represented in Eq. (8).
With the same initial value yk(0), we have that the transition kernel at time t induced by Eq. (7) is
equal to the transition kernel at time τ induced by the following differential equation

dyk = −1

2
β(τ)ykdτ +

√
β(τ)dw with initial value yk(0). (9)

The total time of noising for Eq. (9) is Tk with Tk = ξk(T ).

We provide the proof in Appendix A. Inspired by this, we rectify the reverse process in NGDM with
different speeds of denoising across pixels to be the reverse process with consistent speed but different
total time of denoising. We suggest rectifying the differential equation for the reverse process of pixel
k within the NGDM framework into the following form

dyk =

[
−1

2
β(τ)yk − β(τ)(∇y log pτ (y))

k

]
dτ +

√
β(τ)dw̄ with initial value yk(Tk), (10)

where w̄ is a one-dimensional Wiener process when time flows backward from Tk to 0. Theorem 1
establishes the conclusion that the NGDM in Eq. (7) can be rectified to the IGDM in Eq. (9) but with
different total diffusion time Tk for different pixel indexed by k, determined based on Eq. (8). This
inspires us to utilize the pre-trained IGDM to achieve the data sampling of NGDM for image editing.
Subsequently, we present a method that adjusts the total time of noising and denoising for each pixel
k to Tk, enabling us to use the pre-trained IGDM for data sampling. The corresponding sampling
method is presented in Algorithm 1.

For image editing tasks, we use the source image I as y(0) and generate noisy data y(T ) through the
forward process. We generate the edited image ŷ(0) by denoising from y(T ). Utilizing the forward
noising process of IGDM, we add independent noise to each pixel k to obtain the noisy observation
xk(t) of discrete time t ∈ {0,∆t, · · · , T} with ∆t representing the sampling time interval

xk(t) =
√
ᾱtIk +

√
1− ᾱtz

k(t), (11)
where z(t) ∈ N (0, I). Next, with H(y(t+∆t), t+∆t) denotes the sampling procedure of DDPM
and DDIM given in Eq. (4) and Eq. (5) of Section 2, the data sampling iteration utilizing the IGDM
model with initial value yk(T ) = xk(T ) is defined as

yk(t) =

{
xk(t) Tk ≤ t < T

Hk(y(t+∆t), t+∆t) otherwise.
(12)

This implies that we use the noisy observation xk(t) to represent yk(t) at each step before Tk with
t ≥ Tk, rather than the actual denoised result starting from time step T . Until time Tk we begin the
denoising from xk(Tk) for k-th pixel. In such a way, different pixels have different starting time
steps (Tk for k-th pixel) for image denoising in the data sampling process.

3.3 Sampling Method in NGDM

Based on the above method, we further specify our sampling algorithm by utilizing a pre-trained
IGDM. We do not require the training of NGDM, but instead harness the power of a pre-trained
IGDM for data sampling. We generate the edited image with the source image I as a condition. We
first add noise to the source image I to T time steps as the starting point of denoising, and then use
the method in Section 3.2 to rectify NGDM into IGDM to denoise the image using the pre-trained
IGDM. We show the sampling algorithm of NGDM in the Algorithm 1.
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Algorithm 1 Sampling Method of NGDM

Inputs: The source image I, the weighting matrix Λ(I), the score function sθ, the time schedule
{β(t)}Tt=0, the maximal time steps T

1: Compute T̄ = [ξ1(T ), · · · , ξD(T )] according to Eq. (8)
2: z ∼ N (0, I)
3: y =

√
ᾱTI +

√
1− ᾱT z # The starting point of denoising

4: for t = T to 0 do
5: x =

√
ᾱtI +

√
1− ᾱtz # Sample the noisy source image at time step t

6: M = I(t ≥ T̄})
7: y←M⊙ x+ (1−M)⊙ y # 1 is the D-dimensional all-ones vector
8: y← H(y, t)
9: end for

Output: Generated image y conditioned on the source image I

3.4 Design of Input-dependent Weighting Matrix

We construct the weighting matrix Λ(I) based on the method for designing mask using a text-
conditioned diffusion model [9] in DiffEdit [11]. Specifically, given the source image I, the text
description R of the source image, and the target description Q that describes the desired target image
after editing. Following DiffEdit [11], we add noise to the source image up to 0.5T step and use the
texts R and Q as the conditions respectively for denoising in the current time step to estimate the
score values by using the score network sθ . We derive an attention map A(I) based on the absolute
difference of the estimated scores. We use the above method to compute 10 estimated absolute noise
differences by running 10 times with different random seeds, averaging and performing Gaussian
smoothing on the averaged map. Finally, we normalize the values of the smoothed map to [0, 1] as the
final attention map A(I). The pixel with larger value in the attention map should be added with the
noise with larger variance, to sufficiently edit the content of the pixel. The pixel with smaller value in
the attention map should be added with noise having smaller variance to preserve the content of pixel.
We transform the attention map A(I) into the weighting matrix Λ(I) through a Sigmoid function
by Λ(I) = 1

1+exp(−(aA(I)−b)) , where a and b are the hyper-parameters for the transformation. We
discuss the effect of hyper-parameters a and b on the generation of images in Section 4.

4 Experiment

In this section, we apply the proposed NGDM to image editing tasks, presenting both qualitative and
quantitative results.

4.1 Experimental Setup

Evaluation tasks. We perform experiments on five datasets. First, we experiment on AFHQ
dataset [28] to edit cats into dogs. The source domain contains 500 images of cats. These images
are resized to 256 × 256 resolution and subsequently edited into dogs. Second, we experiment
on ImageNet dataset [29] to edit images from one class into another class based on text prompts,
following the protocol of [30]. Third, we experiment on synthetic Imagen [31] dataset following
DiffEdit [11]. We collect images generated by Imagen [31], along with their corresponding text
prompts, and edit these images by altering portions of the text. Fourth, we experiment on COCO-S
dataset and construct target prompts for editing from annotations provided by BISON [32]. We
collect 1000 images and target prompts from the COCO [33] dataset to build the COCO-S dataset.
We additionally consider DreamBooth dataset provided by [24], which contains 30 objects. Each
object has 25 prompts and 4-6 images for editing. We edit each image using the provided 25 prompts,
resulting in a total of 3950 edited images. More details are available in Appendix B.1.

Implementation details. We conduct experiments utilizing two types of pre-trained diffusion
models. For the cats to dogs editing task on AFHQ dataset, we utilize the public pre-trained score-
based diffusion model with the official code provided in ILVR [10]. This model operates directly in
the image space. We set the denoising step N to 1000. We implement the remaining task based on
the text-to-image latent diffusion model, i.e., Stable Diffusion [9]. This model was pre-trained on 512
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× 512 images of LAION dataset [34] with a latent dimension of 64 × 64. We use 50 steps in DDIM
sampling with a fixed noise schedule. For hyper-parameters a and b, we set them to 10.0 and 5.0
respectively to obtain all qualitative comparison results presented in this paper. We conduct additional
analysis to investigate the effect of different values of hyper-parameters in the experimental results.
Unless otherwise stated, we use the default parameters of the diffusion model during inference.
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Figure 2: Qualitative comparison on AFHQ dataset.

4.2 Results and Analysis

Results on AFHQ dataset. We report the widely-used Frechet Inception Distance (FID) [35] for
quantifying realism and SSIM [36] for quantifying faithfulness. The quantitative comparisons and
qualitative results are presented in Table 1 and Figure 2, respectively. The images generated by

Table 1: Quantitative comparison on AFHQ dataset. All
results are reported by repeating experiments 5 times.

Method FID ↓ SSIM ↑
StarGAN v2 [28] 54.88 ± 1.01 0.27 ± 0.003

CUT [37] 76.21 0.601
ILVR [10] 74.37 ± 1.55 0.363 ± 0.001

SDEdit [13] 74.17 ± 1.01 0.423 ± 0.001
EGSDE [14] 65.82 ± 0.77 0.415 ± 0.001
SDDM [38] 62.29 ± 0.63 0.422 ± 0.001

Ours 61.39 ± 0.27 0.478 ± 0.001

our method better preserves the con-
textural structure (e.g., pose) of cats
while yielding realistic dog images. For
example, Figure 2 shows that for im-
ages in columns 2-5 with complex back-
grounds, our method can accurately keep
the backgrounds unchanged while edit-
ing cats into dogs. Other methods ei-
ther blur the backgrounds or fail to main-
tain the source image backgrounds cor-
rectly. This observation is further sup-
ported by the quantitative results in Ta-
ble 1, where our method achieves the
best results of FID and SSIM among the
compared SBDM-based methods.
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Figure 3: Qualitative comparison on ImageNet dataset.
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Figure 5: Quantitative comparison on ImageNet (a), Imagen (b), COCO-S (c), and DreamBooth
(d) datasets. We report LPIPS distance [42] measuring image fidelity and CLIPScore [43] for text
alignment. A higher CLIPScore denotes better alignment with the text, while a lower LPIPS value
suggests higher fidelity to the input image. We report our results respectively using the default
parameters a = 10.0, b = 5.0, and the parameters a = 10.0, b = 6.0.

Results on ImageNet dataset. Figure 3 shows that our method performs well on images even with
complex backgrounds. For instance, when editing "custard apple" into "lemon", our generated image
successfully preserves the intricate details of the tree branches. DiffEdit [11] generates unnatural
images with artifacts. DiffuseIT [39] generates unnatural images, while DDIB [40] can hardly
maintain the content of the source image. Figure 5(a) shows that our method outperforms other
methods by achieving a better trade-off between CLIPScore and LPIPS value.

Results on Imagen dataset. We present our qualitative and quantitative results in Figures 4 and
5(b), respectively. Figure 4 shows visual results including background replacement and object
properties modification. We can see that our method can generate images with better visual quality
compared with the other methods. For instance, our results can successfully preserve the foreground
while replacing the "beach" in the background with "mountain", or vice versa.

Results on COCO-S dataset. From Figure 5(c), when a = 10.0 and b = 6.0, our method achieves
the highest CLIPScore 31.45, and the smallest LPIPS value 23.43 compared with all other methods.
InstructPix2Pix [41] is able to obtain CLIPScore comparable to that of ours, but the LPIPS value of
InstructPix2Pix [41] is worse. We provide qualitative comparison in Appendix B.2.

Results on DreamBooth dataset. Figure 5(d) shows the quantitative results on DreamBooth dataset.
As can be observed, our method outperforms compared methods by achieving a better trade-off

Table 2: User study results on AFHQ dataset.

ILVR [10] SDEdit [13] EGSDE [14] Ours

11.5% 10.5% 12.5% 65.5%

between CLIPScore and LPIPS value.
DDS [44] achieves the best CLIPScore
of 20.17 with a worse LPIPS value of
33.26. Our method obtains CLIPScore
comparable to that of DiffEdit with bet-
ter LPIPS value. We provide qualitative
comparison in Appendix B.2.
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Table 3: User study results on ImageNet, Imagen, COCO-S, and DreamBooth datasets.

SDEdit [13] DiffEdit [11] DDS [44] EDICT [45] InstructPix2Pix [41] Ours

4.5% 10.0% 3.0% 4.5% 6.0% 72.0%

Table 4: The performance on AFHQ dataset with varying
values of a or b while respectively fixing b = 5.0 or
a = 10.0.

a (b = 5.0) 6.0 8.0 12.0 14.0

FID ↓ 87.01 72.43 54.10 46.75
SSIM ↑ 0.556 0.513 0.449 0.425

b (a = 10.0) 3.0 4.0 6.0 7.0

FID ↓ 42.34 50.35 74.58 88.49
SSIM ↑ 0.373 0.423 0.539 0.601

User study. We conduct two user stud-
ies on AFHQ dataset and the remain-
ing datasets including ImageNet, Ima-
gen, COCO-S, and DreamBooth. For
each user study, 40 participants are pro-
vided with 30 randomly selected source
images and the corresponding generated
results of different methods. The gener-
ated images of ours and the other meth-
ods are displayed randomly in order. Par-
ticipants are suggested to select the im-
age that better applies the requested edit
while preserving most of the original im-
age details. The percentages of votes for
our method and the other method on different datasets are shown in Tables 2 and 3 respectively,
demonstrating that the participants exhibit a strong preference towards our method.

Effect of hyper-parameters a and b. As mentioned in Section 3.4, we transform the attention
map A(I) into weighting matrix Γ(I) with hyper-parameters a and b. We control the initial time
step of denoising each pixel by adjusting the hyperparameters a and b. In Table 4, we analyze the
impact of hyper-parameters a and b on AFHQ dataset. The upper part of the table reports the results
with varying a and fixed b = 5.0, and the lower part of the table shows results with varying b and
fixed a = 10.0. With b held constant, a larger a results in higher level of noise to the image, leading
to more accurate editing and obtaining smaller FID. A smaller a results in content preserving the
original image, obtaining larger SSIM value. The behavior of b is opposite to a.
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Figure 6: Failure examples. We show cases in which our
method fails to generate high-quality edited results.

Comparison with hard weighting ma-
trix. We compare with the strategy
used to produce Λ(I) by Λ(I) =
I(A(I) ≥ η), where η is a threshold
chosen in {0.1, 0.3, 0.5, 0.7, 0.9}. The
generated weighting matrix by this strat-
egy is a “hard” weighting matrix that
only takes 0 or 1 entry. Our Algorithm 1
gradually increases the denoising region
with the increase of the denoising steps
in the diffusion. Each pixel begins to
be denoised with the denoising time step
according to its relevance to the editing
task. This helps to avoid artifacts caused
by a hard mask, as shown in Figure 7.

Failure examples We show several failure examples in Figure 6 that were unsuccessfully edited.
This could be because the computed weighting matrix is not accurate for determining the scale of
noise to be added to each pixel in the source image.

5 Related Work

Image editing aims to modify a real image to generate the desired image, resulting in tasks including
image translation [46], style transfer [47], inpainting [48], object modification [24], etc. We focus on
image editing tasks that commonly require editing specific object/thing of an image while preserving
the remaining parts of the image.
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Figure 7: Edited images and heatmaps with soft and hard weighting matrix. The images in the second
column represent the results generated by our method and the heatmap below the image depicts the
weighting matrix Λ(I) defined in Section 3.1 in the paper. The images in columns 3-7 represent the
results generated using the hard weighting matrix with threshold value in {0.1, 0.3, 0.5, 0.7, 0.9}.The
heatmaps below the images represent the binary hard weighting matrix.

Diffusion models showcase remarkable results for image editing. SDEdit [13] employs the source
noisy data as the starting point in the denoising process, and it explores the trade-off between realism
and faithfulness by controlling the initialization of the denoising time. EGSDE [14] utilizes the
energy functions trained on both source and target domains to guide the inference process. EGSDE
uses the noisy data at 0.5T time step as the starting point of denoising, where T denotes the total
number of denoising time steps in DDPM. Compared with them, our derived sampling method
incorporates an adaptive selection of the initial denoising time for each pixel during the denoising
process. Methods of [12, 23, 24, 49] utilize text-conditioned diffusion models to fine-tune the text
embedding of the object that needs to be preserved during editing using a few or a single image.
DDS [44] utilizes delta scoring to provide effective gradients for editing. DiffEdit [11] uses the
DDIM inversion method to obtain noisy data and automatically generates a binary mask to guide the
denoising process. RePaint [50] tackles the inpainting task by taking the unmasked image region
from the input image and the masked region from the DDPM generated image, using the hard 0-1
mask. Differently, we perform image editing by adding independent noise with different variances to
different pixels, depending on a weighting coefficient matrix that contains soft weights. Pixels with
less added noise will better preserve the content of the source image.

6 Conclusion, Limitations and Societal Impact

In this paper, we propose a Non-isotropic Gaussian Diffusion Model (NGDM) for image editing tasks.
The NGDM adds independent Gaussian noises with varying variances to different image pixels. To
avoid training score model for NGDM, we rectify NGDM into an isotropic Gaussian diffusion model
and design a data sampling method for NGDM by using a pre-trained isotropic Gaussian diffusion
model to generate images. We demonstrate that NGDM better trade-off the balance of realism and
faithfulness than the state-of-the-art methods for image editing tasks.

A limitation of our method could be that incorrect weighting matrix may lead to the failure of the
method. Moreover, our method relies on a pre-trained diffusion model. Artifacts are produced when
the edit involves generation failure cases of the underlying model. In future work, we will design a
better way to calculate the weighting matrix more precisely and efficiently. And we will explore the
application of our method in downstream tasks, such as domain adaptation.

In our experiments, all the considered datasets are open-sourced and publicly available. Our work
aims to manipulate images with minimum effort. However, this method might be misused by faking
images. We will take care to exploit the method to avoid the potential negative social impact and we
will help research in identifying and preventing malicious editing.
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