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Abstract

Generative processes that involve solving differential equations, such as diffusion
models, frequently necessitate balancing speed and quality. ODE-based samplers
are fast but plateau in performance while SDE-based samplers deliver higher sample
quality at the cost of increased sampling time. We attribute this difference to sam-
pling errors: ODE-samplers involve smaller discretization errors while stochasticity
in SDE contracts accumulated errors. Based on these findings, we propose a novel
sampling algorithm called Restart in order to better balance discretization errors and
contraction. The sampling method alternates between adding substantial noise in ad-
ditional forward steps and strictly following a backward ODE. Empirically, Restart
sampler surpasses previous SDE and ODE samplers in both speed and accuracy.
Restart not only outperforms the previous best SDE results, but also accelerates the
sampling speed by 10-fold / 2-fold on CIFAR-10 / ImageNet 64×64. In addition,
it attains significantly better sample quality than ODE samplers within comparable
sampling times. Moreover, Restart better balances text-image alignment/visual
quality versus diversity than previous samplers in the large-scale text-to-image
Stable Diffusion model pre-trained on LAION 512×512. Code is available at
https://github.com/Newbeeer/diffusion_restart_sampling

1 Introduction

Deep generative models based on differential equations, such as diffusion models and Poission
flow generative models, have emerged as powerful tools for modeling high-dimensional data, from
image synthesis [23, 9, 13, 27, 28] to biological data [10, 26]. These models use iterative backward
processes that gradually transform a simple distribution (e.g., Gaussian in diffusion models) into a
complex data distribution by solving a differential equations. The associated vector fields (or drifts)
driving the evolution of the differential equations are predicted by neural networks. The resulting
sample quality can be often improved by enhanced simulation techniques but at the cost of longer
sampling times.

Prior samplers for simulating these backward processes can be categorized into two groups: ODE-
samplers whose evolution beyond the initial randomization is deterministic, and SDE-samplers
where the generation trajectories are stochastic. Several works [23, 12, 13] show that these samplers
demonstrate their advantages in different regimes, as depicted in Fig. 1(b). ODE solvers [22, 16, 13]
result in smaller discretization errors, allowing for decent sample quality even with larger step sizes
(i.e., fewer number of function evaluations (NFE)). However, their generation quality plateaus rapidly.
In contrast, SDE achieves better quality in the large NFE regime, albeit at the expense of increased
sampling time. To better understand these differences, we theoretically analyze SDE performance: the
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Figure 1: (a) Illustration of the implementation of drift and noise terms in ODE, SDE, and Restart. (b)
Sample quality versus number of function evaluations (NFE) for different approaches. ODE (Green)
provides fast speeds but attains only mediocre quality, even with a large NFE. SDE (Yellow) obtains
good sample quality but necessitates substantial sampling time. In contrast to ODE and SDE, which
have their own winning regions, Restart (Red) achieves the best quality across all NFEs.

stochasticity in SDE contracts accumulated error, which consists of both the discretization error along
the trajectories as well as the approximation error of the learned neural network relative to the ground
truth drift (e.g., score function in diffusion model [23]). The approximation error dominates when
NFE is large (small discretization steps), explaining the SDE advantage in this regime. Intuitively,
the stochastic nature of SDE helps "forget" accumulated errors from previous time steps.

Inspired by these findings, we propose a novel sampling algorithm called Restart, which combines
the advantages of ODE and SDE. As illustrated in Fig. 1(a), the Restart sampling algorithm involves
K repetitions of two subroutines in a pre-defined time interval: a Restart forward process that adds
a substantial amount of noise, akin to "restarting" the original backward process, and a Restart
backward process that runs the backward ODE. The Restart algorithm separates the stochasticity
from the drifts, and the amount of added noise in the Restart forward process is significantly larger
than the small single-step noise interleaving with drifts in previous SDEs such as [23, 13], thus
amplifying the contraction effect on accumulated errors. By repeating the forward-backward cycle
K times, the contraction effect introduced in each Restart iteration is further strengthened. The
deterministic backward processes allow Restart to reduce discretization errors, thereby enabling step
sizes comparable to ODE. To maximize the contraction effects in practice, we typically position the
Restart interval towards the end of the simulation, where the accumulated error is larger. Additionally,
we apply multiple Restart intervals to further reduce the initial errors in more challenging tasks.

Experimentally, Restart consistently surpasses previous ODE and SDE solvers in both quality and
speed over a range of NFEs, datasets, and pre-trained models. Specifically, Restart accelerates the
previous best-performing SDEs by 10× fewer steps for the same FID score on CIFAR-10 using
VP [23] (2× fewer steps on ImageNet 64 × 64 with EDM [13]), and outperforms ODE solvers
even in the small NFE regime. When integrated into previous state-of-the-art pre-trained models,
Restart further improves performance, achieving FID scores of 1.88 on unconditional CIFAR-10
with PFGM++ [28], and 1.36 on class-conditional ImageNet 64× 64 with EDM. To the best of our
knowledge, these are the best FID scores obtained on commonly used UNet architectures for diffusion
models without additional training. We also apply Restart to the practical application of text-to-image
Stable Diffusion model [19] pre-trained on LAION 512 × 512. Restart more effectively balances
text-image alignment/visual quality (measured by CLIP/Aesthetic scores) and diversity (measured by
FID score) with a varying classifier-free guidance strength, compared to previous samplers.

Our contributions can be summarized as follows: (1) We investigate ODE and SDE solvers and
theoretically demonstrate the contraction effect of stochasticity via an upper bound on the Wasserstein
distance between generated and data distributions (Sec 3); (2) We introduce the Restart sampling,
which better harnesses the contraction effect of stochasticity while allowing for fast sampling. The
sampler results in a smaller Wasserstein upper bound (Sec 4); (3) Our experiments are consistent with
the theoretical bounds and highlight Restart’s superior performance compared to previous samplers
on standard benchmarks in terms of both quality and speed. Additionally, Restart improves the
trade-off between key metrics on the Stable Diffusion model (Sec 5).

2



2 Background on Generative Models with Differential Equations

Many recent successful generative models have their origin in physical processes, including diffusion
models [9, 23, 13] and Poisson flow generative models [27, 28]. These models involve a forward
process that transforms the data distribution into a chosen smooth distribution, and a backward
process that iteratively reverses the forward process. For instance, in diffusion models, the forward
process is the diffusion process with no learned parameters:

dx =
√

2σ̇(t)σ(t)dWt,

where σ(t) is a predefined noise schedule increasing with t, and Wt ∈ Rd is the standard Wiener
process. For simplicity, we omit an additional scaling function for other variants of diffusion models
as in EDM [13]. Under this notation, the marginal distribution at time t is the convolution of data
distribution p0 = pdata and a Gaussian kernel, i.e., pt = p0 ∗N (0, σ2(t)Id×d). The prior distribution
is set to N (0, σ2(T )Id×d) since pT is approximately Gaussian with a sufficiently large T . Sampling
of diffusion models is done via a reverse-time SDE [1] or a marginally-equivalent ODE [23]:

(SDE) dx = −2σ̇(t)σ(t)∇x log pt(x)dt+
√

2σ̇(t)σ(t)dWt (1)
(ODE) dx = −σ̇(t)σ(t)∇x log pt(x)dt (2)

where ∇x log pt(x) in the drift term is the score of intermediate distribution at time t. W.l.o.g we set
σ(t) = t in the remaining text, as in [13]. Both processes progressively recover p0 from the prior
distribution pT while sharing the same time-dependent distribution pt. In practice, we train a neural
network sθ(x, t) to estimate the score field ∇x log pt(x) by minimizing the denoising score-matching
loss [25]. We then substitute the score ∇x log pt(x) with sθ(x, t) in the drift term of above backward
SDE (Eq. (1))/ODE (Eq. (2)) for sampling.

Recent work inspired by electrostatics has not only challenged but also integrated diffusion models,
notably PFGM/PFGM++, enhances performance in both image and antibody generation [27, 28, 10].
They interpret data as electric charges in an augmented space, and the generative processes involve
the simulations of differential equations defined by electric field lines. Similar to diffusion models,
PFGMs train a neural network to approximate the electric field in the augmented space.

3 Explaining SDE and ODE performance regimes

To sample from the aforementioned generative models, a prevalent approach employs general-purpose
numerical solvers to simulate the corresponding differential equations. This includes Euler and Heun’s
2nd method [2] for ODEs (e.g., Eq. (2)), and Euler-Maruyama for SDEs (e.g., Eq. (1)). Sampling
algorithms typically balance two critical metrics: (1) the quality and diversity of generated samples,
often assessed via the Fréchet Inception Distance (FID) between generated distribution and data
distribution [7] (lower is better), and (2) the sampling time, measured by the number of function
evaluations (NFE). Generally, as the NFE decreases, the FID score tends to deteriorate across all
samplers. This is attributed to the increased discretization error caused by using a larger step size in
numerical solvers.

However, as illustrated in Fig. 1(b) and observed in previous works on diffusion models [23, 22, 13],
the typical pattern of the quality vs time curves behaves differently between the two groups of
samplers, ODE and SDE. When employing standard numerical solvers, ODE samplers attain a decent
quality with limited NFEs, whereas SDE samplers struggle in the same small NFE regime. However,
the performance of ODE samplers quickly reaches a plateau and fails to improve with an increase in
NFE, whereas SDE samplers can achieve noticeably better sample quality in the high NFE regime.
This dilemma raises an intriguing question: Why do ODE samplers outperform SDE samplers in the
small NFE regime, yet fall short in the large NFE regime?

The first part of the question is relatively straightforward to address: given the same order of numerical
solvers, simulation of ODE has significantly smaller discretization error compared to the SDE. For
example, the first-order Euler method for ODE results in a local error of O(δ2), whereas the first-order
Euler-Maruyama method for SDEs yeilds a local error of O(δ

3
2 ) (see e.g., Theorem 1 of [4]), where

δ denotes the step size. As O(δ
3
2 ) ≫ O(δ2), ODE simulations exhibit lower sampling errors than

SDEs, likely causing the better sample quality with larger step sizes in the small NFE regime.

In the large NFE regime the step size δ shrinks and discretization errors become less significant
for both ODEs and SDEs. In this regime it is the approximation error — error arising from an
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inaccurate estimation of the ground-truth vector field by the neural network sθ — starts to dominate
the sampling error. We denote the discretized ODE and SDE using the learned field sθ as ODEθ and
SDEθ, respectively. In the following theorem, we evaluate the total errors from simulating ODEθ

and SDEθ within the time interval [tmin, tmax] ⊂ [0, T ]. This is done via an upper bound on the
Wasserstein-1 distance between the generated and data distributions at time tmin. We characterize the
accumulated initial sampling errors up until tmax by total variation distances. Below we show that the
inherent stochasticity of SDEs aids in contracting these initial errors at the cost of larger additional
sampling error in [tmin, tmax]. Consequently, SDE results in a smaller upper bound as the step size δ
nears 0 (pertaining to the high NFE regime).
Theorem 1 (Informal). Let tmax be the initial noise level and pt denote the true distribution at noise
level t. Let pODEθ

t , pSDEθ
t denote the distributions of simulating ODEθ, SDEθ respectively. Assume

that ∀t ∈ [tmin, tmax], ∥xt∥ < B/2 for any xt in the support of pt, p
ODEθ
t or pSDEθ

t . Then

W1(p
ODEθ
tmin

, ptmin) ≤ B · TV
(
p

ODEθ
tmax

, ptmax

)
+O(δ + ϵapprox) · (tmax − tmin)

W1(p
SDEθ
tmin

, ptmin)︸ ︷︷ ︸
total error

≤
(
1− λe−U

)
B · TV (p

SDEθ
tmax

, ptmax)︸ ︷︷ ︸
upper bound on contracted error

+O(
√

δtmax + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

In the above, U = BL1/tmin + L2
1t

2
max/t

2
min, λ < 1 is a contraction factor, L1 and ϵapprox are

uniform bounds on ∥tsθ(xt, t)∥ and the approximation error ∥t∇x log pt(x)− tsθ(x, t)∥ for all xt, t,
respectively. O() hides polynomial dependency on various Lipschitz constants and dimension.

We defer the formal version and proof of Theorem 1 to Appendix A.1. As shown in the theorem,
the upper bound on the total error can be decomposed into upper bounds on the contracted error
and additional sampling error. TV (p

ODEθ
tmax

, ptmax) and TV (p
SDEθ
tmax

, ptmax) correspond to the initial errors
accumulated from both approximation and discretization errors during the simulation of the backward
process, up until time tmax. In the context of SDE, this accumulated error undergoes contraction by a
factor of 1− λe−BL1/tmin−L2

1t
2
max/t

2
min within [tmin, tmax], due to the effect of adding noise. Essentially,

the minor additive Gaussian noise in each step can drive the generated distribution and the true
distribution towards each other, thereby neutralizing a portion of the initial accumulated error.

The other term related to additional sampling error includes the accumulation of discretization and
approximation errors in [tmin, tmax]. Despite the fact that SDE incurs a higher discretization error than
ODE (O(

√
δ) versus O(δ)), the contraction effect on the initial error is the dominant factor impacting

the upper bound in the large NFE regime where δ is small. Consequently, the upper bound for SDE is
significantly lower. This provides insight into why SDE outperforms ODE in the large NFE regime,
where the influence of discretization errors diminishes and the contraction effect dominates. In
light of the distinct advantages of SDE and ODE, it is natural to ask whether we can combine their
strengths. Specifically, can we devise a sampling algorithm that maintains a comparable level of
discretization error as ODE, while also benefiting from, or even amplifying, the contraction effects
induced by the stochasticity of SDE? In the next section, we introduce a novel algorithm, termed
Restart, designed to achieve these two goals simultaneously.

4 Harnessing stochasticity with Restart

In this section, we present the Restart sampling algorithm, which incorporates stochasticity during
sampling while enabling fast generation. We introduce the algorithm in Sec 4.1, followed by a
theoretical analysis in Sec 4.2. Our analysis shows that Restart achieves a better Wasserstein upper
bound compared to those of SDE and ODE in Theorem 1 due to greater contraction effects.

4.1 Method

In the Restart algorithm, simulation performs a few repeated back-and-forth steps within a pre-defined
time interval [tmin, tmax] ⊂ [0, T ], as depicted in Figure 1(a). This interval is embedded into the
simulation of the original backward ODE referred to as the main backward process, which runs from
T to 0. In addition, we refer to the backward process within the Restart interval [tmin, tmax] as the
Restart backward process, to distinguish it from the main backward process.

Starting with samples at time tmin, which are generated by following the main backward process,
the Restart algorithm adds a large noise to transit the samples from tmin to tmax with the help of
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the forward process. The forward process does not require any evaluation of the neural network
sθ(x, t), as it is generally defined by an analytical perturbation kernel capable of transporting
distributions from tmin to tmax. For instance, in the case of diffusion models, the perturbation kernel is
N (0, (σ(tmax)

2−σ(tmin)
2)Id×d). The added noise in this step induces a more significant contraction

compared to the small, interleaved noise in SDE. The step acts as if partially restarting the main
backward process by increasing the time. Following this step, Restart simulates the backward ODE
from tmax back to tmin using the neural network predictions as in regular ODE. We repeat these
forward-backward steps within [tmin, tmax] interval K times in order to further derive the benefit from
contraction. Specifically, the forward and backward processes in the ith iteration (i ∈ {0, . . . ,K−1})
proceed as follows:

(Restart forward process) xi+1
tmax

= xi
tmin

+ εtmin→tmax (3)

(Restart backward process) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin) (4)

where the initial x0
tmin

is obtained by simulating the ODE until tmin: x0
tmin

= ODEθ(xT , T → tmin),
and the noise εtmin→tmax is sampled from the corresponding perturbation kernel from tmin to tmax.
The Restart algorithm not only adds substantial noise in the Restart forward process (Eq. (3)), but
also separates the stochasticity from the ODE, leading to a greater contraction effect, which we will
demonstrate theoretically in the next subsection. For example, we set [tmin, tmax] = [0.05, 0.3] for
the VP model [13] on CIFAR-10. Repetitive use of the forward noise effectively mitigates errors
accumulated from the preceding simulation up until tmax. Furthermore, the Restart algorithm does
not suffer from large discretization errors as it is mainly built from following the ODE in the Restart
backward process (Eq. (4)). The effect is that the Restart algorithm is able to reduce the total sampling
errors even in the small NFE regime. Detailed pseudocode for the Restart sampling process can be
found in Algorithm 2, Appendix B.2.

4.2 Analysis

We provide a theoretical analysis of the Restart algorithm under the same setting as Theorem 1.
In particular, we prove the following theorem, which shows that Restart achieves a much smaller
contracted error in the Wasserstein upper bound than SDE (Theorem 1), thanks to the separation of
the noise from the drift, as well as the large added noise in the Restart forward process (Eq. (3)). The
repetition of the Restart cycle K times further leads to a enhanced reduction in the initial accumulated
error. We denote the intermediate distribution in the ith Restart iteration, following the discretized
trajectories and the learned field sθ, as p

Restartθ(i)
t∈[tmin,tmax]

.

Theorem 2 (Informal). Under the same setting of Theorem 1, assume K ≤ C
L2(tmax−tmin)

for some
universal constant C. Then

W1(p
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
total error

≤B · (1− λ)K TV (p
Restartθ(0)
tmax

, ptmax)︸ ︷︷ ︸
upper bound on contracted error

+(K + 1) ·O (δ + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

where λ < 1 is the same contraction factor as Theorem 1. O() hides polynomial dependency on
various Lipschitz constants, dimension.

Proof sketch. To bound the total error, we introduce an auxiliary process q
Restartθ(i)
t∈[tmin,tmax]

, which initiates
from true distribution ptmax and performs the Restart iterations. This process differs from p

Restartθ(i)
t∈[tmin,tmax]

only in its initial distribution at tmax (ptmax versus pRestartθ(0)
tmax

). We bound the total error by the following
triangular inequality:

W1(p
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
total error

≤ W1(p
Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)︸ ︷︷ ︸
contracted error

+W1(q
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
additional sampling error

To bound the contracted error, we construct a careful coupling process between two individual
trajectories sampled from p

Restartθ(i)
tmin

and q
Restartθ(i)
tmin

, i = 0, . . . ,K − 1. Before these two trajectories
converge, the Gaussian noise added in each Restart iteration is chosen to maximize the probability of
the two trajectories mapping to an identical point, thereby maximizing the mixing rate in TV. After
converging, the two processes evolve under the same Gaussian noise, and will stay converged as their
drifts are the same. Lastly, we convert the TV bound to W1 bound by multiplying B. The bound on
the additional sampling error echoes the ODE analysis in Theorem 1: since the noise-injection and
ODE-simulation stages are separate, we do not incur the higher discretization error of SDE.
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We defer the formal version and proof of Theorem 2 to Appendix A.1. The first term in RHS bounds
the contraction on the initial error at time tmax and the second term reflects the additional sampling
error of ODE accumulated across repeated Restart iterations. Comparing the Wasserstein upper
bound of SDE and ODE in Theorem 1, we make the following three observations: (1) Each Restart
iteration has a smaller contraction factor 1− λ compared to the one in SDE, since Restart separates
the large additive noise (Eq. (3)) from the ODE (Eq. (4)). (2) Restart backward process (Eq. (4))
has the same order of discretization error O(δ) as the ODE, compared to O(

√
δ) in SDE. Hence, the

Restart allows for small NFE due to ODE-level discretization error. (3) The contracted error further
diminishes exponentially with the number of repetitions K though the additional error increases
linearly with K. It suggests that there is a sweet spot of K that strikes a balance between reducing
the initial error and increasing additional sampling error. Ideally, one should pick a larger K when
the initial error at time tmax greatly outweigh the incurred error in the repetitive backward process
from tmax to tmin. We provide empirical evidences in Sec 5.2.

While Theorem 1 and Theorem 2 compare the upper bounds on errors of different methods, we
provide empirical validation in Section 5.1 by directly calculating these errors, showing that the
Restart algorithm indeed yields a smaller total error due to its superior contraction effects. The
main goal of Theorem 1 and Theorem 2 is to study how the already accumulated error changes
using different samplers, and to understand their ability to self-correct the error by stochasticity. In
essence, these theorems differentiate samplers based on their performance post-error accumulation.
For example, by tracking the change of accumulated error, Theorem 1 shed light on the distinct
"winning regions" of ODE and SDE: ODE samplers have smaller discretization error and hence
excel at the small NFE regime. In contrast, SDE performs better in large NFE regime where the
discretization error is negligible and its capacity to contract accumulated errors comes to the fore.

4.3 Practical considerations

The Restart algorithm offers several degrees of freedom, including the time interval [tmin, tmax] and
the number of restart iterations K. Here we provide a general recipe of parameter selection for
practitioners, taking into account factors such as the complexity of the generative modeling tasks and
the capacity of the network. Additionally, we discuss a stratified, multi-level Restart approach that
further aids in reducing simulation errors along the whole trajectories for more challenging tasks.

Where to Restart? Theorem 2 shows that the Restart algorithm effectively reduces the accumulated
error at time tmax by a contraction factor in the Wasserstein upper bound. These theoretical findings
inspire us to position the Restart interval [tmin, tmax] towards the end of the main backward process,
where the accumulated error is more substantial. In addition, our empirical observations suggest that a
larger time interval tmax−tmin is more beneficial for weaker/smaller architectures or more challenging
datasets. Even though a larger time interval increases the additional sampling error, the benefits of
the contraction significantly outweighs the downside, consistent with our theoretical predictions. We
leave the development of principled approaches for optimal time interval selection for future works.

Multi-level Restart For challenging tasks that yield significant approximation errors, the backward
trajectories may diverge substantially from the ground truth even at early stage. To prevent the ODE
simulation from quickly deviating from the true trajectory, we propose implementing multiple Restart
intervals in the backward process, alongside the interval placed towards the end. Empirically, we
observe that a 1-level Restart is sufficient for CIFAR-10, while for more challenging datasets such as
ImageNet [5], a multi-level Restart results in enhanced performance [5].

5 Experiments

In Sec 5.1, we first empirically verify the theoretical analysis relating to the Wasserstein upper
bounds. We then evaluate the performance of different sampling algorithms on standard image
generation benchmarks, including CIFAR-10 [14] and ImageNet 64 × 64 [5] in Sec 5.2. Lastly,
we employ Restart on text-to-image generation, using Stable Diffusion model [19] pre-trained on
LAION-5B [21] with resolution 512× 512, in Sec 5.3.

5.1 Additional sampling error versus contracted error

Our proposed Restart sampling algorithm demonstrates a higher contraction effect and smaller
addition sampling error compared to SDE, according to Theorem 1 and Theorem 2. Although our
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Figure 2: Additional sampling error versus (a) contracted error, where the Pareto frontier is plotted
and (b) total error, where the scatter plot is provided. (c) Pareto frontier of NFE versus total error.

theoretical analysis compares the upper bounds of the total, contracted and additional sampling errors,
we further verify their relative values through a synthetic experiment.

Setup We construct a 20-dimensional dataset with 2000 points sampled from a Gaussian mixture,
and train a four-layer MLP to approximate the score field ∇x log pt. We implement the ODE, SDE,
and Restart methods within a predefined time range of [tmin, tmax] = [1.0, 1.5], where the process
outside this range is conducted via the first-order ODE. To compute various error types, we define
the distributions generated by three methods as outlined in the proof of Theorem 2 and directly
gauge the errors at end of simulation t = 0 instead of t = tmin: (1) the generated distribution as
pSampler
0 , where Sampler ∈ {ODEθ, SDEθ,Restartθ(K)}; (2) an auxiliary distribution qSampler

0 initiating
from true distribution ptmax at time tmax. The only difference between pSampler

0 and qSampler
0 is their initial

distribution at tmax (pODEθ
tmax

versus ptmax ); and (3) the true data distribution p0. In line with Theorem 2,
we use Wasserstein-1 distance W1(p

Sampler
0 , qSampler

0 ) / W1(q
Sampler
0 , p0) to measure the contracted error

/ additional sampling error, respectively. Ultimately, the total error corresponds to W1(p
Sampler
0 , p0).

Detailed information about dataset, metric and model can be found in the Appendix C.5.

Results In our experiment, we adjust the parameters for all three processes and calculate the total,
contracted, and additional sampling errors across all parameter settings. Figure 2(a) depicts the Pareto
frontier of additional sampling error versus contracted error. We can see that Restart consistently
achieves lower contracted error for a given level of additional sampling error, compared to both the
ODE and SDE methods, as predicted by theory. In Figure 2(b), we observe that the Restart method
obtains a smaller total error within the additional sampling error range of [0.8, 0.85]. During this
range, Restart also displays a strictly reduced contracted error, as illustrated in Figure 2(a). This
aligns with our theoretical analysis, suggesting that the Restart method offers a smaller total error due
to its enhanced contraction effects. From Figure 2(c), Restart also strikes an better balance between
efficiency and quality, as it achieves a lower total error at a given NFE.

5.2 Experiments on standard benchmarks
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Figure 3: FID versus NFE on (a) unconditional generation on CIFAR-10 with VP; (b) class-
conditional generation on ImageNet with EDM.

To evaluate the sample quality and inference speed, we report the FID score [7] (lower is better) on 50K
samplers and the number of function evaluations (NFE). We borrow the pretrained VP/EDM/PFGM++
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Figure 4: CIFAR-10, VP, in the low NFE regime. Restart consistently outperforms the DPM-Solver
with an NFE ranging from 16 to 36.

models on CIFAR-10 or ImageNet 64 × 64 from [13, 28]. We also use the EDM discretization
scheme [13] (see Appendix B.1 for details) during sampling.

For the proposed Restart sampler, the hyperparameters include the number of steps in the main/Restart
backward processes, the number of Restart iteration K, as well as the time interval [tmin, tmax]. We
pick the tmin and tmax from the list of time steps in EDM discretization scheme with a number of steps
18. For example, for CIFAR-10 (VP) with NFE=75, we choose tmin=0.06, tmax=0.30,K=10, where
0.30/0.06 is the 12th/14th time step in the EDM scheme. We also adopt EDM scheme for the Restart
backward process in [tmin, tmax]. In addition, we apply the multi-level Restart strategy (Sec 4.3) to
mitigate the error at early time steps for the more challenging ImageNet 64× 64. We provide the
detailed Restart configurations in Appendix C.2.

For SDE, we compare with the previously best-performing stochastic samplers proposed by [13]
(Improved SDE). We use their optimal hyperparameters for each dataset. We also report the FID
scores of the adaptive SDE [12] (Gonna Go Fast) on CIFAR-10 (VP). Since the vanilla reverse-
diffusion SDE [23] has a significantly higher FID score, we omit its results from the main charts and
defer them to Appendix D. For ODE samplers, we compare with the Heun’s 2nd order method [2]
(Heun), which arguably provides an excellent trade-off between discretization errors and NFE [13].
To ensure a fair comparison, we use Heun’s method as the sampler in the main/Restart backward
processes in Restart.

We report the FID score versus NFE in Figure 3(a) and Table 1 on CIFAR-10, and Figure 3(b)
on ImageNet 64 × 64 with EDM. Our main findings are: (1) Restart outperforms other SDE or
ODE samplers in balancing quality and speed, across datasets and models. As demonstrated in
the figures, Restart achieves a 10-fold / 2-fold acceleration compared to previous best SDE results
on CIFAR-10 (VP) / ImageNet 64 × 64 (EDM) at the same FID score. In comparison to ODE
sampler (Heun), Restart obtains a better FID score, with the gap increasing significantly with NFE.
(2) For stronger models such as EDM and PFGM++, Restart further improve over the ODE baseline
on CIFAR-10. In contrast, the Improved SDE negatively impacts performance of EDM, as also
observed in [13]. It suggests that Restart incorporates stochasticity more effectively. (3) Restart
establishes new state-of-the-art FID scores for UNet architectures without additional training. In
particular, Restart achieves FID scores of 1.36 on class-cond. ImageNet 64× 64 with EDM, and 1.88
on uncond. CIFAR-10 with PFGM++.

Table 1: Uncond.
CIFAR-10 with EDM
and PFGM++

NFE FID

EDM-VP [13]

ODE (Heun) 63 1.97
35 1.97

Improved SDE 63 2.27
35 2.45

Restart 43 1.90

PFGM++ [28]

ODE (Heun) 63 1.91
35 1.91

Restart 43 1.88
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Figure 5: FID score with a
varying number of Restart itera-
tions K.

To further validate that Restart can be ap-
plied in low NFE regime, we show that one
can employ faster ODE solvers such as the
DPM-solver [16] to further accelerate Restart.
Fig. 4 shows that the Restart consistently out-
performs the DPM-Solver with an NFE rang-
ing from 16 to 36. This demonstrates Restart’s
capability to excel over ODE samplers, even
in the small NFE regime. It also suggests that
Restart can consistently improve other ODE
samplers, not limited to the DDIM, Heun. Sur-
prisingly, when paired with the DPM-Solver,
Restart achieves an FID score of 2.11 on VP
setting when NFE is 30, which is significantly
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lower than any previous numbers (even lower than the SDE sampler with an NFE greater than 1000 in
[23]), and make VP model on par with the performance with more advanced models (such as EDM).

Theorem 4 shows that each Restart iteration reduces the contracted errors while increasing the
additional sampling errors in the backward process. In Fig. 5, we explore the choice of the number
of Restart iterations K on CIFAR-10. We find that FID score initially improves and later worsens
with increasing iterations K, with a smaller turning point for stronger EDM model. This supports
the theoretical analysis that sampling errors will eventually outweigh the contraction benefits as K
increases, and EDM only permits fewer Restart iterations due to smaller accumulated errors. It also
suggests that, as a rule of thumb, we should apply greater Restart strength (e.g., larger K) for weaker
or smaller architectures and vice versa.

5.3 Experiments on large-scale text-to-image model
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(a) FID versus CLIP score
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(b) FID versus Aesthetic score

Figure 6: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-image
generation at 512×512 resolution, using Stable Diffusion v1.5 with a varying classifier-free guidance
weight w = 2, 3, 5, 8.

We further apply Restart to the text-to-image Stable Diffusion v1.5 2 pre-trained on LAION-5B [21] at
a resolution of 512×512. We employ the commonly used classifier-free guidance [8, 20] for sampling,
wherein each sampling step entails two function evaluations – the conditional and unconditional
predictions. Following [18, 20], we use the COCO [15] validation set for evaluation. We assess
text-image alignment using the CLIP score [6] with the open-sourced ViT-g/14 [11], and measure
diversity via the FID score. We also evaluate visual quality through the Aesthetic score, as rated
by the LAION-Aesthetics Predictor V2 [24]. Following [17], we compute all evaluation metrics
using 5K captions randomly sampled from the validation set and plot the trade-off curves between
CLIP/Aesthetic scores and FID score, with the classifier-free guidance weight w in {2, 3, 5, 8}.

We compare with commonly used ODE sampler DDIM [22] and the stochastic sampler DDPM [9].
For Restart, we adopt the DDIM solver with 30 steps in the main backward process, and Heun in the
Restart backward process, as we empirically find that Heun performs better than DDIM in the Restart.
In addition, we select different sets of the hyperparameters for each guidance weight. For instance,
when w = 8, we use [tmin, tmax]=[0.1, 2],K=2 and 10 steps in Restart backward process. We defer
the detailed Restart configuration to Appendix C.2, and the results of Heun to Appendix D.1.

As illustrated in Fig. 6(a) and Fig. 6(b), Restart achieves better FID scores in most cases, given the
same CLIP/Aesthetic scores, using only 132 function evaluations (i.e., 66 sampling steps). Remark-
ably, Restart achieves substantially lower FID scores than other samplers when CLIP/Aesthetic scores
are high (i.e., with larger w values). Conversely, Restart generally obtains a better text-image align-
ment/visual quality given the same FID. We also observe that DDPM generally obtains comparable
performance with Restart in FID score when CLIP/Aesthetic scores are low, with Restart being more
time-efficient. These findings suggest that Restart balances diversity (FID score) against text-image
alignment (CLIP score) or visual quality (Aesthetic score) more effectively than previous samplers.

In Fig. 7, we visualize the images generated by Restart, DDIM and DDPM with w = 8. Compared
to DDIM, the Restart generates images with superior details (e.g., the rendition of duck legs by
DDIM is less accurate) and visual quality. Compared to DDPM, Restart yields more photo-realistic
images (e.g., the astronaut). We provide extended of text-to-image generated samples in Appendix E.

2https://huggingface.co/runwayml/stable-diffusion-v1-5
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(a) Restart (Steps=66) (b) DDIM (Steps=100) (c) DDPM (Steps=100)

Figure 7: Visualization of generated images with classifier-free guidance weight w = 8, using four
text prompts (“A photo of an astronaut riding a horse on mars.", "A raccoon playing table tennis",
"Intricate origami of a fox in a snowy forest" and "A transparent sculpture of a duck made out of
glass") and the same random seeds.

6 Conclusion and future direction

In this paper, we introduce the Restart sampling for generative processes involving differential
equations, such as diffusion models and PFGMs. By interweaving a forward process that adds a
significant amount of noise with a corresponding backward ODE, Restart harnesses and even enhances
the individual advantages of both ODE and SDE. Theoretically, Restart provides greater contraction
effects of stochasticity while maintaining ODE-level discretization error. Empirically, Restart achieves
a superior balance between quality and time, and improves the text-image alignment/visual quality
and diversity trade-off in the text-to-image Stable Diffusion models.

A current limitation of the Restart algorithm is the absence of a principled way for hyperparameters
selection, including the number of iterations K and the time interval [tmin, tmax]. At present, we
adjust these parameters based on the heuristic that weaker/smaller models, or more challenging tasks,
necessitate a stronger Restart strength. In the future direction, we anticipate developing a more
principled approach to automating the selection of optimal hyperparameters for Restart based on the
error analysis of models, in order to fully unleash the potential of the Restart framework.
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Appendix
A Proofs of Main Theoretical Results

In this section, we provide proofs of our main results. We define below some crucial notations
which we will use throughout. We use ODE(. . . ) to denote the backwards ODE under exact score
∇ log pt(x). More specifically, given any x ∈ Rd and s > r > 0, let xt denote the solution to the
following ODE:

dxt = −t∇ log pt(xt)dt. (5)

ODE(x, s → r) is defined as "the value of xr when initialized at xs = x". It will also be useful to
consider a "time-discretized ODE with drift tsθ(x, t)": let δ denote the discretization step size and let
k denote any integer. Let δ denote a step size, let xt denote the solution to

dxt = −tsθ(xkδ, kδ)dt, (6)

where for any t, k is the unique integer such that t ∈ ((k − 1)δ, kδ]. We verify that the dynamics of
Eq. (6) is equivalent to the following discrete-time dynamics for t = kδ, k ∈ Z:

x(k−1)δ = xkδ −
1

2

(
((k − 1)δ)

2 − (kδ)2
)
sθ(xkδ, kδ).

We similarly denote the value of xr when initialized at xs = x as ODEθ(x, s → r). Analogously, we
let SDE(x, s → r) and SDEθ(x, s → r) denote solutions to

dyt = −2t∇ log pt(yt)dt+
√
2tdBt

dyt = −2tsθ(yt, t)dt+
√
2tdBt

respectively. Finally, we will define the Restartθ process as follows:

(Restartθ forward process) xi+1
tmax

= xi
tmin

+ εitmin→tmax

(Restartθ backward process) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin), (7)

where εitmin→tmax
∼ N

(
0,
(
t2max − t2min

)
I
)
. We use Restartθ(x,K) to denote xK

tmin
in the above

processes, initialized at x0
tmin

= x. In various theorems, we will refer to a function Q(r) : R+ →
[0, 1/2), defined as the Gaussian tail probability Q(r) = Pr(a ≥ r) for a ∼ N (0, 1).

A.1 Main Result

Theorem 3. [Formal version of Theorem 1] Let tmax be the initial noise level. Let the initial random
variables xtmax = ytmax

, and

xtmin = ODEθ(xtmax , tmax → tmin)

ytmin
= SDEθ(ytmax

, tmax → tmin),

Let pt denote the true population distribution at noise level t. Let pODEθ
t , pSDEθ

t denote the distributions
for xt, yt respectively. Assume that for all x, y, s, t, sθ(x, t) satisfies ∥tsθ(x, t)− tsθ(x, s)∥ ≤
L0|s − t|, ∥tsθ(x, t)∥ ≤ L1, ∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2 ∥x− y∥, and the approximation error
∥tsθ(x, t)− t∇ log pt(x)∥ ≤ ϵapprox. Assume in addition that ∀t ∈ [tmin, tmax], ∥xt∥ < B/2 for any
xt in the support of pt, p

ODEθ
t or pSDEθ

t , and K ≤ C
L2(tmax−tmin)

for some universal constant C. Then

W1(p
ODEθ
tmin

, ptmin) ≤ B · TV
(
pODEθ
tmax

, ptmax

)
+ eL2(tmax−tmin) · (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (8)

W1(p
SDEθ
tmin

, ptmin) ≤ B ·
(
1− λe−BL1/tmin−L2

1t
2
max/t

2
min

)
TV (pSDEθ

tmax
, ptmax)

+ e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin) (9)

where λ := 2Q

(
B

2
√

t2max−t2min

)
.
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Proof. Let us define xtmax ∼ ptmax , and let xtmin = ODE(xtmax , tmax → tmin). We verify that xtmin

has density ptmin . Let us also define x̂tmin = ODEθ(xtmax , tmax → tmin). We would like to bound
the Wasserstein distance between x̄tmin and xtmin (i.e., pODEθ

tmin
and ptmin ), by the following triangular

inequality:
W1(x̄tmin , xtmin) ≤ W1(x̄tmin , x̂tmin) +W1(x̂tmin , xtmin) (10)

By Lemma 2, we know that

∥x̂tmin − xtmin∥ ≤ e(tmax−tmin)L2 (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) ,

where we use the fact that ∥x̂tmax − xtmax∥ = 0. Thus we immediately have

W1(x̂tmin , xtmin) ≤ e(tmax−tmin)L2 (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (11)
On the other hand,

W1(x̂tmin , xtmin) ≤B · TV (x̂tmin , xtmin)

≤B · TV (x̂tmax , xtmax) (12)
where the last equality is due to the data-processing inequality. Combining Eq. (11) , Eq. (12) and the
triangular inequality Eq. (10), we arrive at the upper bound for ODE (Eq. (8)). The upper bound for
SDE (Eq. (9)) shares a similar proof approach. First, let ytmax ∼ ptmax . Let ŷtmin = SDEθ(ytmax , tmax →
tmin). By Lemma 5,

TV
(
ŷtmin , ytmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

)
· TV

(
ŷtmax , ytmax

)
On the other hand, by Lemma 4,

E [∥ŷtmin − ytmin∥] ≤e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin) .

The SDE triangular upper bound on W1(ȳtmin , ytmin) follows by multiplying the first inequality by B (to
bound W1(ȳtmin , ŷtmin)) and then adding the second inequality (to bound W1(ytmin , ŷtmin)). Notice
that by definition, TV

(
ŷtmax , ytmax

)
= TV

(
ytmax , ytmax

)
. Finally, because of the assumption that

K ≤ C
L2(tmax−tmin)

for some universal constant, we summarize the second term in the Eq. (8) and
Eq. (9) into the big O in the informal version Theorem 1.

Theorem 4. [Formal version of Theorem 2] Consider the same setting as Theorem 3. Let pRestartθ,i
tmin

denote the distributions after ith Restart iteration, i.e., the distribution of xi
tmin

= Restartθ(x0
tmin

, i).
Given initial x0

tmax
∼ pRestart,0

tmax
, let x0

tmin
= ODEθ(x

0
tmax

, tmax → tmin). Then

W1(p
Restartθ,K
tmin

, ptmin) ≤B · (1− λ)
K
TV (pRestart,0

tmax
, ptmax)︸ ︷︷ ︸

upper bound on contracted error

+ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

(13)

where λ = 2Q

(
B

2
√

t2max−t2min

)
.

Proof. Let x0
tmax

∼ ptmax . Let xK
tmin

= Restart(x0
tmin

,K). We verify that xK
tmin

has density ptmin . Let us
also define x̂0

tmin
= ODEθ(x

0
tmax

, tmax → tmin) and x̂K
tmin

= Restartθ(x̂0
tmin

,K).

By Lemma 1,

TV
(
xK
tmin

, x̂K
tmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmin

, x̂0
tmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

, x̂0
tmax

)
=

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

, x0
tmax

)
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The second inequality holds by data processing inequality. The above can be used to bound the
1-Wasserstein distance as follows:

W1

(
xK
tmin

, x̂K
tmin

)
≤ B · TV

(
xK
tmin

, x̂K
tmin

)
≤

(
1− 2Q

(
B

2
√

t2max − t2min

))K

TV
(
x0
tmax

, x0
tmax

)
(14)

On the other hand, using Lemma 3,

W1

(
xK
tmin

, x̂K
tmin

)
≤
∥∥xK

tmin
− x̂K

tmin

∥∥
≤e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (15)

We arrive at the result by combining the two bounds above (Eq. (14), Eq. (15)) with the following
triangular inequality,

W1(x̄
K
tmin

, xK
tmin

) ≤ W1(x̄
K
tmin

, x̂K
tmin

) +W1(x̂
K
tmin

, xK
tmin

)

A.2 Mixing under Restart with exact ODE

Lemma 1. Consider the same setup as Theorem 4. Consider the Restartθ process defined in
equation 7. Let

xi
tmin

= Restartθ(x0
tmin

, i)

yitmin
= Restartθ(y0tmin

, i).

Let pRestartθ(i)
t and q

Restartθ(i)
t denote the densities of xi

t and yit respectively. Then

TV
(
p

Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)
≤ (1− λ)

K
TV

(
p

Restartθ(0)
tmin

, q
Restartθ(0)
tmin

)
,

where λ = 2Q

(
B

2
√

t2max−t2min

)
.

Proof. Conditioned on xi
tmin

, yitmin
, let xi+1

tmax
= xi

tmin
+
√
t2max − t2minξ

x
i and yi+1

tmax
= yitmin

+√
t2max − t2minξ

y
i . We now define a coupling between xi+1

tmin
and yi+1

tmin
by specifying the joint dis-

tribution over ξxi and ξyi .

If xi
tmin

= yitmin
, let ξxi = ξyi , so that xi+1

tmin
= yi+1

tmin
. On the other hand, if xi

tmin
̸= yitmin

, let xi+1
tmax

and yi+1
tmax

be coupled as described in the proof of Lemma 7, with x′ = xi+1
tmax

, y′ = yi+1
tmax

, σ =
√
t2max − t2min.

Under this coupling, we verify that,

E
[
1
{
xi+1
tmin

̸= yi+1
tmin

}]
≤E

[
1
{
xi+1
tmax

̸= yi+1
tmax

}]
≤E

[(
1− 2Q

(∥∥xi
tmin

− yitmin

∥∥
2
√
t2max − t2min

))
1
{
xi
tmin

̸= yitmin

}]

≤

(
1− 2Q

(
B

2
√
t2max − t2min

))
E
[
1
{
xi
tmin

̸= yitmin

}]
.

Applying the above recursively,

E
[
1
{
xK
tmin

̸= yKtmin

}]
≤

(
1− 2Q

(
B

2
√

t2max − t2min

))K

E
[
1
{
x0
tmin

̸= y0tmin

}]
.

The conclusion follows by noticing that TV
(
p

Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)
≤ Pr

(
xK
tmin

̸= yKtmin

)
=

E
[
1
{
xK
tmin

̸= yKtmin

}]
, and by selecting the initial coupling so that Pr

(
x0
tmin

̸= y0tmin

)
=

TV
(
p

Restartθ(0)
tmin

, q
Restartθ(0)
tmin

)
.
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A.3 W1 discretization bound

Lemma 2 (Discretization bound for ODE). Let xtmin = ODE (xtmax , tmax → tmin) and let xtmin =
ODEθ (xtmax , tmax → tmin). Assume that for all x, y, s, t, sθ(x, t) satisfies ∥tsθ(x, t)− tsθ(x, s)∥ ≤
L0|s− t|, ∥tsθ(x, t)∥ ≤ L1 and ∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2 ∥x− y∥. Then

∥xtmin − xtmin∥ ≤ e(tmax−tmin)L2 (∥xtmax − xtmax∥+ (δ(L2L1 + L0) + ϵapprox) (tmax − tmin))

Proof. Consider some fixed arbitrary k, and recall that δ is the step size. Recall that by definition of
ODE and ODEθ, for t ∈ ((k − 1)δ, kδ],

dxt = −t∇ log pt(xt)dt

dxt = −tsθ(xkδ, kδ)dt.

For t ∈ [tmin, tmax], let us define a time-reversed process x←t := x−t. Let v(x, t) := ∇ log p−t(x).
Then for t ∈ [−tmax,−tmin]

dx←t = tv(x←t , t)ds.

Similarly, define x←t := x−t and v(x, t) := sθ (x,−t). It follows that

dx←t = tv(x←kδ, kδ)ds,

where k is the unique (negative) integer satisfying t ∈ [kδ, (k + 1)δ). Following these definitions,

d

dt
∥x←t − x←t ∥

≤∥tv(x←t , t)− tv(x←t , t)∥
+ ∥tv(x←t , t)− tv(x←t , t)∥
+ ∥tv(x←t , t)− tv(x←t , kδ)∥
+ ∥tv(x←t , kδ)− tv(x←kδ, kδ)∥

≤ϵapprox + L2 ∥x←t − x←t ∥+ δL0 + L2 ∥x←t − x←kδ∥
≤ϵapprox + L2 ∥x←t − x←t ∥+ δL0 + δL2L1.

Applying Gronwall’s Lemma over the interval t ∈ [−tmax,−tmin],

∥xtmin − xtmin∥
=
∥∥x←−tmin

− x←−tmin

∥∥
≤eL2(tmax−tmin)

(∥∥x←−tmax
− x←−tmax

∥∥+ (ϵapprox + δL0 + δL2L1) (tmax − tmin)
)

=eL2(tmax−tmin) (∥xtmax − xtmax∥+ (ϵapprox + δL0 + δL2L1) (tmax − tmin)) .

Lemma 3. Given initial x0
tmax

, let x0
tmin

= ODE
(
x0
tmax

, tmax → tmin
)
, and let x̂0

tmin
=

ODEθ

(
x0
tmax

, tmax → tmin
)
. We further denote the variables after K Restart iterations as xK

tmin
=

Restart(x0
tmin

,K) and x̂K
tmin

= Restartθ(x̂0
tmin

,K), with true field and learned field respectively. Then
there exists a coupling between xK

tmin
and x̂K

tmin
such that∥∥xK

tmin
− x̂K

tmin

∥∥ ≤ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) .

Proof. We will couple xi
tmin

and x̂i
tmin

by using the same noise εitmin→tmax
in the Restart forward process

for i = 0 . . .K − 1 (see Eq. (7)). For any i, let us also define yi,jtmin
:= Restartθ

(
xi
tmin

, j − i
)
, and this

process uses the same noise εitmin→tmax
as previous ones. From this definition, yK,K

tmin
= xK

tmin
. We can

thus bound

∥∥xK
tmin

, x̂K
tmin

∥∥ ≤
∥∥∥y0,Ktmin

− x̂K
tmin

∥∥∥+ K−1∑
i=0

∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ (16)
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Using the assumption that tsθ(·, t) is L2 Lipschitz,∥∥∥y0,i+1
tmin

− x̂i+1
tmin

∥∥∥
=
∥∥∥ODEθ(y

0,i
tmax

, tmax → tmin)− ODEθ(x̂
i
tmax

, tmax → tmin)
∥∥∥

≤eL2(tmax−tmin)
∥∥∥y0,itmax

− x̂i
tmax

∥∥∥
=eL2(tmax−tmin)

∥∥∥y0,itmin
− x̂i

tmin

∥∥∥ ,
where the last equality is because we add the same additive Gaussian noise εitmin→tmax

to y0,itmin
and x̂i

tmin
in the Restart forward process. Applying the above recursively, we get∥∥∥y0,Ktmin

− x̂K
tmin

∥∥∥ ≤eKL2(tmax−tmin)
∥∥∥y0,0tmin

− x̂0
tmin

∥∥∥
≤eKL2(tmax−tmin)

∥∥x0
tmin

− x̂0
tmin

∥∥
≤e(K+1)L2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) , (17)

where the last line follows by Lemma 2 when setting xtmax = x̄tmax . We will now bound∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ for some i ≤ K. It follows from definition that

yi,i+1
tmin

= ODEθ

(
xi
tmax

, tmax → tmin
)

yi+1,i+1
tmin

= xi+1
tmin

= ODE
(
xi
tmax

, tmax → tmin
)
.

By Lemma 2,∥∥∥yi,i+1
tmin

− yi+1,i+1
tmin

∥∥∥ ≤ eL2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)

For the remaining steps from i+ 2 . . .K, both yi,· and yi+1,· evolve with ODEθ in each step. Again
using the assumption that tsθ(·, t) is L2 Lipschitz,∥∥∥yi,Ktmin

− yi+1,K
tmin

∥∥∥ ≤ e(K−i)L2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)

Summing the above for i = 0...K − 1, and combining with Eq. (16) and Eq. (17) gives∥∥xK
tmin

− x̂K
tmin

∥∥ ≤ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) .

Lemma 4. Consider the same setup as Theorem 3. Let xtmin = SDE (xtmax , tmax → tmin) and let
xtmin = SDE (xtmax , tmax → tmin). Then there exists a coupling between xt and xt such that

E [∥xtmin − xtmin∥] ≤ e2L2(tmax−tmin)E [∥xtmax − xtmax∥]

+ e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

Proof. Consider some fixed arbitrary k, and recall that δ is the stepsize. By definition of SDE and
SDEθ, for t ∈ ((k − 1)δ, kδ],

dxt = −2t∇ log pt(xt)dt+
√
2tdBt

dxt = −2tsθ(xkδ, kδ)dt+
√
2tdBt.

Let us define a coupling between xt and xt by identifying their respective Brownian motions. It
will be convenient to define the time-reversed processes x←t := x−t, and x←t := x−t, along with
v(x, t) := ∇ log p−t(x) and v(x, t) := sθ(x,−t). Then there exists a Brownian motion B←t , such
that for t ∈ [−tmax,−tmin],

dx←t = −2tv(x←t , t)dt+
√
−2tdB←t

dx←t = −2tv(x←kδ, kδ)dt+
√
−2tdB←t

⇒ d(x←t − x←t ) = −2t (v(x←t , t)− v(x←kδ, kδ)) dt,
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where k is the unique negative integer such that t ∈ [kδ, (k + 1)δ). Thus

d

dt
E [∥x←t − x←t ∥]

≤2 (E [∥tv(x←t , t)− tv(x←t , t)∥] + E [∥tv(x←t , t)− tv(x←t , t)∥])
+ 2 (E [∥tv(x←t , t)− tv(x←t , kδ)∥] + E [∥tv(x←t , kδ)− tv(x←kδ, kδ)∥])

≤2 (ϵapprox + L2E [∥x←t − x←t ∥] + δL0 + L2E [∥x←t − x←kδ∥])

≤2
(
ϵapprox + L2E [∥x←t − x←t ∥] + δL0 + L2

(
δL1 +

√
2δdtmax

))
.

By Gronwall’s Lemma,

E [∥xtmin − xtmin∥]
=E

[∥∥x←−tmin
− x←−tmin

∥∥]
≤e2L2(tmax−tmin)

(
E
[∥∥x←−tmax

− x←−tmax

∥∥]+ (ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

)
=e2L2(tmax−tmin)

(
E [∥xtmax − xtmax∥] +

(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

)

A.4 Mixing Bounds

Lemma 5. Consider the same setup as Theorem 3. Assume that δ ≤ tmin. Let

xtmin = SDEθ (xtmax , tmax → tmin)

ytmin = SDEθ (ytmax , tmax → tmin) .

Then there exists a coupling between xs and ys such that

TV (xtmin , ytmin) ≤

(
1− 2Q

(
B

2
√

t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

)
TV (xtmax , ytmax)

Proof. We will construct a coupling between xt and yt. First, let (xtmax , ytmax) be sampled from the
optimal TV coupling, i.e., Pr(xtmax ̸= ytmax) = TV (xtmax , ytmax). Recall that by definition of SDEθ,
for t ∈ ((k − 1)δ, kδ],

dxt = −2tsθ(xkδ, kδ)dt+
√
2tdBt.

Let us define a time-rescaled version of xt: xt := xt2 . We verify that

dxt = −sθ(x(kδ)2 , kδ)dt+ dBt,

where k is the unique integer satisfying t ∈ [((k − 1)δ)2, k2δ2). Next, we define the time-reversed
process x←t := x−t, and let v(x, t) := sθ(x,−t). We verify that there exists a Brownian motion Bx

t
such that, for t ∈ [−t2max,−t2min],

dx←t = vxt dt+ dBx
t ,

where vxt = sθ(x
←
−(kδ)2 ,−kδ), where k is the unique positive integer satisfying −t ∈ (((k −

1)δ)2, (kδ)2]. Let dy←t = vyt dt+ dBy
t , be defined analogously. For any positive integer k and for

any t ∈ [−(kδ)2,−((k − 1)δ)2), let us define

zt = x←−k2δ2 − y←−k2δ2 + (2k − 1)δ2
(
vx−(kδ)2 − vy−(kδ)2

)
+
(
Bx

t −Bx
−(kδ)2

)
−
(
By

t −By
−(kδ)2

)
.

Let γt := zt
∥zt∥ . We will now define a coupling between dBx

t and dBy
t as

dBy
t =

(
I − 21 {t ≤ τ}γtγT

t

)
dBx

t ,
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where 1 {} denotes the indicator function, i.e. 1 {t ≤ τ} = 1 if t ≤ τ , and τ is a stopping time given
by the first hitting time of zt = 0. Let rt := ∥zt∥. Consider some t ∈

(
−i2δ2,−(i− 1)2δ2

)
, and

Let j := tmax
δ (assume w.l.o.g that this is an integer), then

rt − r−t2max
≤

j∑
k=i

(2k − 1)δ2
∥∥∥(vx−(kδ)2 − vy−(kδ)2)

∥∥∥+ ∫ t

−t2max

1 {t ≤ τ}2dB1
s

≤
j∑

k=i

(
k2 − (k − 1)2

)
δ22L1/ (tmin) +

∫ t

−t2max

1 {t ≤ τ}2dB1
t

=

∫ −(i−1)δ2
−t2max

2L1

tmin
ds+

∫ t

−t2max

1 {t ≤ τ}2dB1
s ,

where dB1
s = ⟨γt, dBx

s − dBy
s ⟩ is a 1-dimensional Brownian motion. We also verify that

r−t2max
=
∥∥z−t2max

∥∥
=
∥∥∥x←−t2max

− y←−t2max
+ (2j − 1)δ2

(
vx−t2max

− vy−t2max

)
+
(
Bx

t −Bx
−t2max

)
−
(
By

t −By
−t2max

)∥∥∥
≤
∥∥∥x←−t2max

+ (2j − 1)δ2vx−t2max
+
(
Bx
−(j−1)2δ2 −Bx

−t2max

)∥∥∥
+
∥∥∥y←−t2max

+ (2j − 1)δ2vy−t2max
+
(
Bx
−(j−1)2δ2 −Bx

t +By
t −By

−t2max

)∥∥∥ ≤ B

where the third relation is by adding and subtracting Bx
−(j−1)2δ2 −Bx

t and using triangle inequality.

The fourth relation is by noticing that x←−t2max
+ (2j − 1)δ2vx−t2max

+
(
Bx
−(j−1)2δ2 −Bx

−t2max

)
=

x←−(j−1)2δ2 and that y←−t2max
+(2j−1)δ2vy−t2max

+
(
Bx
−(j−1)2δ2 −Bx

t +By
t −By

−t2max

)
d
= y←−(j−1)2δ2 ,

and then using our assumption in the theorem statement that all processes are supported on a ball of
radius B/2.

We now define a process st defined by dst = 2L1/tmindt+2dB1
t , initialized at s−t2max

= B ≥ r−t2max
.

We can verify that, up to time τ , rt ≤ st with probability 1. Let τ ′ denote the first-hitting time of st
to 0, then τ ≤ τ ′ with probability 1. Thus

Pr(τ ≤ −t2min) ≥Pr(τ ′ ≤ −t2min) ≥ 2Q

(
B

2
√

t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

where we apply Lemma 6. The proof follows by noticing that, if τ ≤ −t2min, then xtmin = ytmin . This
is because if τ ∈ [−k2δ2,−(k − 1)2δ2], then x←−(k−1)2δ2 = y←−(k−1)2δ2 , and thus x←t = y←t for all
t ≥ −(k − 1)2δ2, in particular, at t = −t2min.

Lemma 6. Consider the stochastic process

drt = dB1
t + cdt.

Assume that r0 ≤ B/2. Let τ denote the hitting time for rt = 0. Then for any T ∈ R+,

Pr(τ ≤ T ) ≥ 2Q

(
B

2
√
T

)
· e−ac− c2T

2 ,

where Q is the tail probability of a standard Gaussian defined in Definition 1.

Proof. We will use he following facts in our proof:

1. For x ∼ N (0, σ2), Pr(x > r) = 1
2

(
1− erf

(
r√
2σ

))
= 1

2erfc
(

r√
2σ

)
.

2.
∫ T

0

a exp
(
− a2

2t

)
√
2πt3

dt = erfc
(

a√
2T

)
= 2Pr (N (0, T ) > a) = 2Q

(
a√
T

)
by definition of Q.
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Let drt = dB1
t + cdt, with r0 = a. The density of the hitting time τ is given by

p(τ = t) = f(a, c, t) =
a exp

(
− (a+ct)2

2t

)
√
2πt3

. (18)

(see e.g. [3]). From item 2 above,∫ T

0

f(a, 0, t)dt = 2Q

(
a√
T

)
.

In the case of a general c ̸= 0, we can bound (a+ct)2

2t = a2

2t + ac+ c2t
2 . Consequently,

f(a, c, t) ≥ f(a, 0, t) · e−ac− c2t
2 .

Therefore,

Pr(τ ≤ T ) =

∫ T

0

f(a, c, t)dt ≥
∫ T

0

f(a, 0, t)dte−c = 2Q

(
B

2
√
T

)
· e−ac− c2T

2 .

A.5 TV Overlap

Definition 1. Let x be sampled from standard normal distribution N (0, 1). We define the Gaussian
tail probability Q(a) := Pr(x ≥ a).

Lemma 7. We verify that for any two random vectors ξx ∼ N (0, σ2I) and ξy ∼ N (0, σ2I), each
belonging to Rd, the total variation distance between x′ = x+ ξx and y′ = y + ξy is given by

TV (x′, y′) = 1− 2Q (r) ≤ 1− 2r

r2 + 1

1√
2π

e−r
2/2,

where r = ∥x−y∥
2σ , and Q(r) = Pr(ξ ≥ r), when ξ ∼ N (0, 1).

Proof. Let γ := x−y
∥x−y∥ . We decompose x′, y′ into the subspace/orthogonal space defined by γ:

x′ = x⊥ + ξ⊥x + x∥ + ξ∥x

y′ = y⊥ + ξ⊥y + y∥ + ξ∥y

where we define

x∥ := γγTx x⊥ := x− x∥

y∥ := γγT y y⊥ := y − y∥

ξ∥x := γγT ξx ξ⊥x := ξx − ξ∥x

ξ∥y := γγT ξy ξ⊥y := ξy − ξ∥y

We verify the independence ξ⊥x ⊥⊥ ξ
∥
x and ξ⊥y ⊥⊥ ξ

∥
y as they are orthogonal decompositions of the

standard Gaussian. We will define a coupling between x′ and y′ by setting ξ⊥x = ξ⊥y . Under this
coupling, we verify that(

x⊥ + ξ⊥x
)
−
(
y⊥ + ξ⊥y

)
= x− y − γγT (x− y) = 0

Therefore, x′ = y′ if and only if x∥ + ξ
∥
x = y∥ + ξ

∥
y . Next, we draw (a, b) from the optimal coupling

between N (0, 1) and N (∥x−y∥σ , 1). We verify that x∥ + ξ
∥
x and y∥ + ξ

∥
y both lie in the span of

γ. Thus it suffices to compare
〈
γ, x∥ + ξ

∥
x

〉
and

〈
γ, y∥ + ξ

∥
y

〉
. We verify that

〈
γ, x∥ + ξ

∥
x

〉
=
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〈
γ, y∥

〉
+
〈
γ, x∥ − y∥

〉
+
〈
γ, ξ
∥
x

〉
∼ N (

〈
γ, y∥

〉
+∥x− y∥ , σ2)

d
=
〈
γ, y∥

〉
+σb. We similarly verify

that
〈
γ, y∥ + ξ

∥
y

〉
=
〈
γ, y∥

〉
+
〈
γ, ξ
∥
y

〉
∼ N (

〈
γ, y∥

〉
, σ2)

d
=
〈
γ, y∥

〉
+ σa.

Thus TV (x′, y′) = TV (σa, σb) = 1− 2Q
(
∥x−y∥

2σ

)
. The last inequality follows from

Pr(N (0, 1) ≥ r) ≥ r

r2 + 1

1√
2π

e−r
2/2

B More on Restart Algorithm

B.1 EDM Discretization Scheme

[13] proposes a discretization scheme for ODE given the starting tmax and end time tmin. Denote the
number of steps as N , then the EDM discretization scheme is:

ti<N =

(
t
1
ρ
max +

i

N − 1
(t

1
ρ

min − t
1
ρ
max)

)ρ

with t0 = tmax and tN−1 = tmin. ρ is a hyperparameter that determines the extent to which steps near
tmin are shortened. We adopt the value ρ = 7 suggested by [13] in all of our experiments. We apply
the EDM scheme to creates a time discretization in each Restart interval [tmax, tmin] in the Restart
backward process, as well as the main backward process between [0, T ] (by additionally setting
tmin = 0.002 and tN = 0 as in [13]). It is important to note that tmin should be included within the
list of time steps in the main backward process to seamlessly incorporate the Restart interval into the
main backward process. We summarize the scheme as a function in Algorithm 1.

Algorithm 1 EDM_Scheme(tmin, tmax, N, ρ = 7)

1: return
{
(t

1
ρ
max +

i
N−1 (t

1
ρ

min − t
1
ρ
max))ρ

}N−1

i=0

B.2 Restart Algorithm

We present the pseudocode for the Restart algorithm in Algorithm 2. In this pseudocode, we describe
a more general case that applies l-level Restarting strategy. For each Restart segment, the include
the number of steps in the Restart backward process NRestart, the Restart interval [tmin, tmax] and the
number of Restart iteration K. We further denote the number of steps in the main backward process
as Nmain. We use the EDM discretization scheme (Algorithm 1) to construct time steps for the main
backward process (t0 = T, tNmain = 0) as well as the Restart backward process, when given the
starting/end time and the number of steps.

Although Heun’s 2nd order method [2] (Algorithm 3) is the default ODE solver in the pseudocode, it
can be substituted with other ODE solvers, such as Euler’s method or the DPM solver [16].

The provided pseudocode in Algorithm 2 is tailored specifically for diffusion models [13]. To
adapt Restart for other generative models like PFGM++ [28], we only need to modify the Gaussian
perturbation kernel in the Restart forward process (line 10 in Algorithm 2) to the one used in
PFGM++.

C Experimental Details

In this section, we discuss the configurations for different samplers in details. All the experiments are
conducted on eight NVIDIA A100 GPUs.
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Algorithm 2 Restart sampling

1: Input: Score network sθ, time steps in main backward process ti∈{0,Nmain}, Restart parameters
{(NRestart,j ,Kj , tmin,j , tmax,j)}lj=1

2: Round tmin,j∈{1,l} to its nearest neighbor in ti∈{0,Nmain}
3: Sample x0 ∼ N (0, T 2I)
4: for i = 0 . . . Nmain − 1 do ▷ Main backward process
5: xti+1 = OneStep_Heun(sθ, ti, ti+1) ▷ Running single step ODE
6: if ∃j ∈ {1, . . . , l}, ti+1 = tmin,j then
7: tmin = tmin,j , tmax = tmax,j ,K = Kj , NRestart = NRestart,j
8: x0

tmin
= xti+1

9: for k = 0 . . .K − 1 do ▷ Restart for K iterations
10: εtmin→tmax ∼ N (0, (t2max − t2min)I)

11: xk+1
tmax

= xk
tmin

+ εtmin→tmax ▷ Restart forward process
12: {t̄m}NRestart−1

m=0 = EDM_Scheme(tmin, tmax, NRestart)
13: for m = 0 . . . NRestart − 1 do ▷ Restart backward process
14: xk+1

t̄m+1
= OneStep_Heun(sθ, t̄m, t̄m+1)

15: end for
16: end for
17: end if
18: end for
19: return xtNmain

Algorithm 3 OneStep_Heun(sθ, xti , ti, ti+1)

1: di = tisθ(xti , ti)
2: xti+1

= xti − (ti+1 − ti)di
3: if ti+1 ̸= 0 then
4: d′i = ti+1sθ(xti+1 , ti+1)

5: xti+1 = xti − (ti+1 − ti)(
1
2di +

1
2d
′
i)

6: end if
7: return xti+1

C.1 Configurations for Baselines

We select Vanilla SDE [23], Improved SDE [13], Gonna Go Fast [12] as SDE baselines and
the Heun’s 2nd order method [2] (Alg 3) as ODE baseline on standard benchmarks CIFAR-10 and
ImageNet 64×64. We choose DDIM [22], Heun’s 2nd order method, and DDPM [9] for comparison
on Stable Diffusion model.

Vanilla SDE denotes the reverse-time SDE sampler in [23]. For Improved SDE, we use the recom-
mended dataset-specific hyperparameters (e.g., Smax, Smin, Schurn) in Table 5 of the EDM paper [13].
They obtained these hyperparameters by grid search. Gonna Go Fast [12] applied an adaptive step
size technique based on Vanilla SDE and we directly report the FID scores listed in [12] for Gonna
Go Fast on CIFAR-10 (VP). For fair comparison, we use the EDM discretization scheme [13] for
Vanilla SDE, Improved SDE, Heun as well as Restart.

We borrow the hyperparameters such as discretization scheme or initial noise scale on Stable Diffusion
models in the diffuser 3 code repository. We directly use the DDIM and DDPM samplers implemented
in the repo. We apply the same set of hyperparameters to Heun and Restart.

C.2 Configurations for Restart

We report the configurations for Restart for different models and NFE on standard benchmarks
CIFAR-10 and ImageNet 64 × 64. The hyperparameters of Restart include the number of steps
in the main backward process Nmain, the number of steps in the Restart backward process NRestart,
the Restart interval [tmin, tmax] and the number of Restart iteration K. In Table 3 (CIFAR-10, VP)

3https://github.com/huggingface/diffusers

22

https://github.com/huggingface/diffusers


we provide the quintuplet (Nmain, NRestart, tmin, tmax,K) for each experiment. Since we apply the
multi-level Restart strategy for ImageNet 64× 64, we provide Nmain as well as a list of quadruple
{(NRestart,i,Ki, tmin,i, tmax,i)}li=1 (l is the number of Restart interval depending on experiments) in
Table 5. In order to integrate the Restart time interval to the main backward process, we round tmin,i
to its nearest neighbor in the time steps of main backward process, as shown in line 2 of Algorithm 2.
We apply Heun method for both main/backward process. The formula for NFE calculation is
NFE = 2 ·Nmain − 1︸ ︷︷ ︸

main backward process

+
∑l

i=1 Ki︸︷︷︸
number of repetitions

· (2 · (NRestart,i − 1))︸ ︷︷ ︸
per iteration in ith Restart interval

in this case. Inspired by

[13], we inflate the additive noise in the Restart forward process by multiplying Snoise = 1.003 on
ImageNet 64× 64, to counteract the over-denoising tendency of neural networks. We also observe
that setting γ = 0.05 in Algorithm 2 of EDM [13] would sligtly boost the Restart performance on
ImageNet 64× 64 when t ∈ [0.01, 1].

We further include the configurations for Restart on Stable Diffusion models in Table 10, with a
varying guidance weight w. Similar to ImageNet 64× 64, we use multi-level Restart with a fixed
number of steps Nmain = 30 in the main backward process. We utilize the Euler method for the
main backward process and the Heun method for the Restart backward process, as our empirical
observations indicate that the Heun method doesn’t yield significant improvements over the Euler
method, yet necessitates double the steps. The number of steps equals to Nmain +

∑l
i=1 Ki · (2 ·

(NRestart,i − 1)) in this case. We set the total number of steps to 66, including main backward process
and Restart backward process.

Given the prohibitively large search space for each Restart quadruple, a comprehensive enumeration
of all possibilities is impractical due to computational limitations. Instead, we adjust the configuration
manually, guided by the heuristic that weaker/smaller models or more challenging tasks necessitate
a stronger Restart strength (e.g., larger K, wider Restart interval, etc). On average, we select the
best configuration from 5 sets for each experiment; these few trials have empirically outperformed
previous SDE/ODE samplers. We believe that developing a systematic approach for determining
Restart configurations could be of significant value in the future.

C.3 Pre-trained Models

For CIFAR-10 dataset, we use the pre-trained VP and EDM models from the EDM repository 4, and
PFGM++ (D = 2048) model from the PFGM++ repository 5. For ImageNet 64× 64, we borrow the
pre-trained EDM model from EDM repository as well.

C.4 Classifier-free Guidance

We follow the convention in [20], where each step in classifier-free guidance is as follows:

s̃θ(x, c, t) = wsθ(x, c, t) + (1− w)sθ(x, t)

where c is the conditions, and sθ(x, c, t)/sθ(x, t) is the conditional/unconditional models, sharing
parameters. Increasing w would strength the effect of guidance, usually leading to a better text-image
alignment [20].

C.5 More on the Synthetic Experiment

C.5.1 Discrete Dataset

We generate the underlying discrete dataset S with |S| = 2000 as follows. Firstly, we sample 2000
points, denoted as S1, from a mixture of two Gaussians in R4. Next, we project these points onto R20.
To ensure a variance of 1 on each dimension, we scale the coordinates accordingly. This setup aims
to simulate data points that primarily reside on a lower-dimensional manifold with multiple modes.

The specific details are as follows: S1 ∼ 0.3N(a, s2I) + 0.7(−a, s2I), where a = (3, 3, 3, 3) ⊂ R4

and s = 1. Then, we randomly select a projection matrix P ∈ R20×4, where each entry is drawn
from N(0, 1), and compute S2 = PS1. Finally, we scale each coordinate by a constant factor to
ensure a variance of 1.

4https://github.com/NVlabs/edm
5https://github.com/Newbeeer/pfgmpp
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Figure 8: Comparison of additional sampling error versus (a) contracted error (plotting the Pareto
frontier) and (b) total error (using a scatter plot). (c) Pareto frontier of NFE versus total error.

C.5.2 Model Architecture

We employ a common MLP architecture with a latent size of 64 to learn the score function. The
training method is adapted from [13], which includes the preconditioning technique and denoising
score-matching objective [25].

C.5.3 Varying Hyperparameters

To achieve the best trade-off between contracted error and additional sampling error, and optimize
the NFE versus FID (Fréchet Inception Distance) performance, we explore various hyperparameters.
[13] shows that the Vanilla SDE can be endowed with additional flexibility by varying the coefficient
β(t) (Eq.(6) in [13]). Hence, regarding SDE, we consider NFE values from {20, 40, 80, 160, 320},
and multiply the original β(t) = σ̇(t)/σ(t) [13] with values from {0, 0.25, 0.5, 1, 1.5, 2, 4, 8}. It
is important to note that larger NFE values do not lead to further performance improvements. For
restarts, we tried the following two settings: first we set the number of steps in Restart backward
process to 40 and vary the number of Restart iterations K in the range {0, 5, 10, 15, 20, 25, 30, 35}.
We also conduct a grid search with the number of Restart iterations K ranging from 5 to 25 and the
number of steps in Restart backward process varying from 2 to 7. For ODE, we experiment with the
number of steps set to {20, 40, 80, 160, 320, 640}.

Additionally, we conduct an experiment for Improved SDE in EDM. We try different values of Schurn
in the range of {0, 1, 2, 4, 8, 16, 32, 48, 64}. We also perform a grid search where the number of steps
ranged from 20 to 320 and Schurn takes values of [0.2× steps, 0.5× steps, 20, 60]. The plot combines
the results from SDE and is displayed in Figure 8.

To mitigate the impact of randomness, we collect the data by averaging the results from five runs with
the same hyperparameters. To compute the Wasserstein distance between two discrete distributions,
we use minimum weight matching.

C.5.4 Plotting the Pareto frontier

We generate the Pareto frontier plots as follows. For the additional sampling error versus contracted
error plot, we first sort all the data points based on their additional sampling error and then connect
the data points that represent prefix minimums of the contracted error. Similarly, for the NFE versus
FID plot, we sort the data points based on their NFE values and connect the points where the FID is a
prefix minimum.

D Extra Experimental Results

D.1 Numerical Results

In this section, we provide the corresponding numerical reuslts of Fig. 3(a) and Fig. 3(b), in Ta-
ble 2, 3 (CIFAR-10 VP, EDM, PFGM++) and Table 4, 5 (ImageNet 64× 64 EDM), respectively. We
also include the performance of Vanilla SDE in those tables. For the evaluation, we compute the
Fréchet distance between 50000 generated samples and the pre-computed statistics of CIFAR-10 and
ImageNet 64× 64. We follow the evaluation protocol in EDM [13] that calculates each FID scores
three times with different seeds and report the minimum.
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We also provide the numerical results on the Stable Diffusion model [19], with a classifier guidance
weight w = 2, 3, 5, 8 in Table 6, 7, 8, 9. As in [17], we report the zero-shot FID score on 5K random
prompts sampled from the COCO validation set. We evaluate CLIP score [6] with the open-sourced
ViT-g/14 [11], Aesthetic score by the more recent LAION-Aesthetics Predictor V2 6. We average the
CLIP and Aesthetic scores over 5K generated samples. The number of function evaluations is two
times the sampling steps in Stable Diffusion model, since each sampling step involves the evaluation
of the conditional and unconditional model.

Table 2: CIFAR-10 sample quality (FID score) and number of function evaluations (NFE) on VP [23]
for baselines

NFE FID

ODE (Heun) [13] 1023 2.90
511 2.90
255 2.90
127 2.90
63 2.89
35 2.97

Vanilla SDE [23] 1024 2.79
512 4.01
256 4.79
128 12.57

Gonna Go Fast [12] 1000 2.55
329 2.70
274 2.74
179 2.59
147 2.95
49 72.29

Improved SDE [13] 1023 2.35
511 2.37
255 2.40
127 2.58
63 2.88
35 3.45

Table 3: CIFAR-10 sample quality (FID score), number of function evaluations (NFE) and Restart
configurations on VP [23], EDM [13] and PFGM++ [28]

Method NFE FID Configuration
(Nmain, NRestart,i,Ki, tmin,i, tmax,i)

VP

519 2.11 (20, 9, 30, 0.06, 0.20)
115 2.21 (18, 3, 20, 0.06, 0.30)
75 2.27 (18, 3, 10, 0.06, 0.30)
55 2.45 (18, 3, 5, 0.06, 0.30)
43 2.70 (18, 3, 2, 0.06, 0.30)

EDM

43 1.90 (18, 3, 2, 0.14, 0.30)

PFGM++

43 1.88 (18, 3, 2, 0.14, 0.30)

6https://github.com/christophschuhmann/improved-aesthetic-predictor
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Table 4: ImageNet 64× 64 sample quality (FID score) and number of function evaluations (NFE) on
EDM [13] for baselines

NFE FID (50k)

ODE (Heun) [13] 1023 2.24
511 2.24
255 2.24
127 2.25
63 2.30
35 2.46

Vanilla SDE [23] 1024 1.89
512 3.38
256 11.91
128 59.71

Improved SDE [13] 1023 1.40
511 1.45
255 1.50
127 1.75
63 2.24
35 2.97

Table 5: ImageNet 64× 64 sample quality (FID score), number of function evaluations (NFE) and
Restart configurations on EDM [13]

NFE FID (50k) Configuration
Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

623 1.36
36, {(10, 3, 19.35, 40.79),(10, 3, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

535 1.39
36, {(6, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

385 1.41
36, {(3, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(6, 5, 0.59, 1.09), (6, 5, 0.30, 0.59),
(6, 20, 0.06, 0.30)}

203 1.46
36, {(4, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(6, 6, 0.06, 0.30)}

165 1.51
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(4, 10, 0.06, 0.30)}

99 1.71
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 4, 0.59, 1.09), (4, 1, 0.30, 0.59),
(4, 4, 0.06, 0.30)}

67 1.95 18, {(5, 1, 19.35, 40.79),(5, 1, 1.09, 1.92),
(5, 1, 0.59, 1.09), (5, 1, 0.06, 0.30)}

39 2.38 14, {(3, 1, 19.35, 40.79),
(3, 1, 1.09, 1.92), (3, 1, 0.06, 0.30)}
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Table 6: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 2

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 16.08 0.2905 5.13

100 15.35 0.2920 5.15

Heun 51 18.80 0.2865 5.14
101 18.21 0.2871 5.15

DDPM [9] 100 13.53 0.3012 5.20
200 13.22 0.2999 5.19

Restart 66 13.16 0.2987 5.19

Table 7: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 3

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 14.28 0.3056 5.22

100 14.30 0.3056 5.22

Heun 51 15.63 0.3022 5.20
101 15.40 0.3026 5.21

DDPM [9] 100 15.72 0.3129 5.28
200 15.13 0.3131 5.28

Restart 66 14.48 0.3079 5.25

Table 8: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 5

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 16.60 0.3154 5.31

100 16.80 0.3157 5.31

Heun 51 16.26 0.3135 5.28
101 16.38 0.3136 5.29

DDPM [9] 100 19.62 0.3197 5.36
200 18.88 0.3200 5.35

Restart 66 16.21 0.3179 5.33

Table 9: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight w = 8

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑
DDIM [22] 50 19.83 0.3206 5.37

100 19.82 0.3200 5.37

Heun 51 18.44 0.3186 5.35
101 18.72 0.3185 5.36

DDPM [9] 100 22.58 0.3223 5.39
200 21.67 0.3212 5.38

Restart 47 18.40 0.3228 5.41

D.2 Sensitivity Analysis of Hyper-parameters

We also investigate the impact of varying tmin when tmax = tmin + 0.3, and the length the restart
interval when tmin = 0.06. Fig. 10(a) reveals that FID scores achieve a minimum at a tmin close to 0
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Table 10: Restart (Steps=66) configurations on Stable Diffusion v1.5

w
Configuration

Nmain, {(NRestart,i,Ki, tmin,i, tmax,i)}li=1

2 30, {(5, 2, 1, 9), (5, 2, 5, 10)}
3 30, {(10, 2, 0.1, 3)}
5 30, {(10, 2 0.1, 2)}
8 30, {(10, 2, 0.1, 2)}
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Figure 9: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-image
generation at 512× 512 resolution, using Stable Diffusion v1.5 with varying classifier-free guidance
weight w = 2, 3, 5, 8.

on VP, indicating higher accumulated errors at the end of sampling and poor neural estimations at
small t. Note that the Restart interval 0.3 is about twice the length of the one in Table 1 and Restart
does not outperform the ODE baseline on EDM. This suggests that, as a rule of thumb, we should
apply greater Restart strength (e.g., larger K, tmax − tmin) for weaker or smaller architectures and
vice versa.

In theory, a longer interval enhances contraction but may add more additional sampling errors. Again,
the balance between these factors results in a V-shaped trend in our plots (Fig. 10(b)). In practice,
selecting tmax close to the dataset’s radius usually ensures effective mixing when tmin is small.
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Figure 10: (a): Adjusting tmin in Restart on VP/EDM; (b): Adjusting the Restart interval length when
tmin = 0.06.
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E Extended Generated Images

In this section, we provide extended generated images by Restart, DDIM, Heun and DDPM on
text-to-image Stable Diffusion v1.5 model [19]. We showcase the samples of four sets of text prompts
in Fig. 11, Fig. 12, Fig. 13, Fig. 14, with a classifier-guidance weight w = 8.

(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 11: Generated images with text prompt="A photo of an astronaut riding a horse on mars" and
w = 8.

F Heun’s method is DPM-Solver-2 (with r2 = 1)

The first order ODE in DPM-Solver [16] (DPM-Solver-1) is in the form of:

x̂ti−1
=

αti

αti−1

x̂ti−1 − (σ̂ti−1

αti

αti−1

− σ̂ti)σ̂ti∇x log pσ̂ti
(x̂ti) (19)

The first order ODE in EDM is in the form of

xti−1
= xti − (σti−1

− σti)σti∇x log pσti
(xti) (20)
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 12: Generated images with text prompt="A raccoon playing table tennis" and w = 8.

When xt =
x̂t

αt
, σ̂t = σtαt, we can rewrite the DPM-Solver-1 (Eq. (19)) as:

xti−1
= xti − (σti−1

− σti)σ̂ti∇x log pσ̂ti
(x̂ti)

= xti − (σti−1
− σti)σ̂ti∇x log pσti

(xti)
1

αti

(change-of-variable)

= xti − (σti−1 − σti)σti∇x log pσti
(xti)

where the expression is exact the same as the ODE in EDM [13]. It indicates that the sampling
trajectory in DPM-Solver-1 is equivalent to the one in EDM, up to a time-dependent scaling (αt).
As limt→0 αt = 1, the two solvers will leads to the same final points when using the same time
discretization. Note that the DPM-Solver-1 is also equivalent to DDIM (c.f. Section 4.1 in [16]), as
also used in this paper.

With that, we can further verify that the Heun’s method used in this paper corresponds to the
DPM-Solver-2 when setting r1 = 1.
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 13: Generated images with text prompt="Intricate origami of a fox in a snowy forest" and
w = 8.
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(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure 14: Generated images with text prompt="A transparent sculpture of a duck made out of glass"
and w = 8.
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G Broader Impact

The field of deep generative models incorporating differential equations is rapidly evolving and holds
significant potential to shape our society. Nowadays, a multitude of photo-realistic images generated
by text-to-image Stable Diffusion models populate the internet. Our work introduces Restart, a novel
sampling algorithm that outperforms previous samplers for diffusion models and PFGM++. With
applications extending across diverse areas, the Restart sampling algorithm is especially suitable
for generation tasks demanding high quality and rapid speed. Yet, it is crucial to recognize that
the utilization of such algorithms can yield both positive and negative repercussions, contingent on
their specific applications. On the one hand, Restart sampling can facilitate the generation of highly
realistic images and audio samples, potentially advancing sectors such as entertainment, advertising,
and education. On the other hand, it could also be misused in deepfake technology, potentially leading
to social scams and misinformation. In light of these potential risks, further research is required to
develop robustness guarantees for generative models, ensuring their use aligns with ethical guidelines
and societal interests.
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