
A Appendix

A.1 Prototype-based Graph Information Bottleneck - Eq. 4

From Eq. 3, the GIB objective is :

min
Gsub

−I(Y ;Gsub) + βI(G;Gsub). (18)

For the first term −I(Y ;Gsub), by definition:

−I(Y ;Gsub) = −EY,Gsub

[
log

p(Y,Gsub)

p(Y )p(Gsub)

]
. (19)

We allow the involvement of Gp in Eq. 19 as follows:

−I(Y ;Gsub) = −EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)

p(Gsub,Gp)p(Y )

]
− EY,Gsub,Gp

[
log

p(Y,Gsub)p(Gsub,Gp)

p(Y,Gsub,Gp)p(Gsub)

]
= −EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)

p(Gsub,Gp)p(Y )

]
+ EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)p(Gsub)

p(Y,Gsub)p(Gsub,Gp)

]
= −EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)

p(Gsub,Gp)p(Y )

]
+ EY,Gsub,Gp

[
log

p(Y,Gp|Gsub)

p(Y |Gsub)p(Gp|Gsub)

]
.

(20)

By the definition of conditional probability, we have the following equation:

−I(Y ;Gsub) = −I(Y ;Gsub,Gp) + I(Y ;Gp|Gsub). (21)

Finally, we have the following equation by combining Eq. 18 and Eq. 21:

min
Gsub

−I(Y ;Gsub,Gp) + I(Y ;Gp|Gsub) + βI(G;Gsub). (22)

A.2 Proof of Proposition 1

In this section, we provide a proof for Proposition 1 in the main paper.

For the term I(Y ;Gp,Gsub),

I(Y ;Gp,Gsub) = EY,Gsub,Gp

[
log

p (Y |Gsub,Gp)

p(Y )

]
≥ EY,Gsub,Gp

[
log

p (Y |γ(Gsub,Gp))

p(Y )

]
.

(23)

We introduce a variational approximation qθ (Y |γ (Gsub,Gp)) of p (Y |γ (Gsub,Gp)).

I(Y ;Gp,Gsub) ≥ EY,Gsub,Gp

[
log

qθ (Y |γ(Gsub,Gp))

p(Y )

]
+ EY,Gsub,Gp

[
log

p (Y |γ(Gsub,Gp))

qθ (Y |γ(Gsub,Gp))

]
= EY,Gsub,Gp

[
log

qθ (Y |γ(Gsub,Gp))

p(Y )

]
+ EGsub,Gp

[KL [p (Y |γ(Gsub,Gp)) ∥qθ (Y |γ(Gsub,Gp))]] .

(24)

According to the non-negativity of KL divergence, we have:
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I(Y ;Gp,Gsub) ≥ EY,Gsub,Gp

[
log

qθ (Y |γ(Gsub,Gp))

p(Y )

]
= EY,Gsub,Gp [log qθ (Y |γ(Gsub,Gp))]− EY [log p(Y )]

= EY,Gsub,Gp
[log qθ (Y |γ(Gsub,Gp))] +H(Y ).

(25)

Finally, we have the following equation as:

I(Y ;Gp,Gsub) ≥ EY,Gsub,Gp
[log qθ (Y |γ(Gsub,Gp))] . (26)

A.3 Decomposition of I(Y ;Gp|Gsub) - Eq. 9

For the term I(Y ;Gp|Gsub), by definition:

I(Y ;Gp|Gsub) = EY,Gsub,Gp

[
log

p(Y,Gp|Gsub)

p(Y |Gsub)p(Gp|Gsub)

]
. (27)

By the definition of conditional probability, we have the following equation:

I(Y ;Gp|Gsub) = EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)p(Gsub)

p(Y,Gsub)p(Gsub,Gp)

]
. (28)

We allow the involvement of Gp in Eq. 28 as follows:

I(Y ;Gp|Gsub) = EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)p(Gsub)p(Gp)

p(Y,Gsub)p(Gsub,Gp)p(Gp)

]
= EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)

p(Y,Gsub)p(Gp)
+ log

p(Gsub)p(Gp)

p(Gsub,Gp)

]
= EY,Gsub,Gp

[
log

p(Y,Gsub,Gp)

p(Y,Gsub)p(Gp)

]
− EGsub,Gp

[
log

p(Gsub,Gp)

p(Gsub)p(Gp)

]
.

(29)

Finally, we have the following equation as:

I(Y ;Gp|Gsub) = I(Gp;Y,Gsub)− I(Gsub;Gp). (30)

A.4 Additional Experiments

In this section, we present our additional experiments including ablation study (Section A.4.1),
analysis of the different graph readout functions (Section A.4.2), reasoning process (Section A.4.3)
and analysis of the hyperparameters α1, α2, α3 and J (Section A.4.4). All of our experiments were
performed with one NVIDIA GeForce A6000.

A.4.1 Ablation Study

We perform ablation studies to examine the effectiveness of our model (i.e., PGIB and PGIBcont).
In Figure 7, the "with all" setting represents our final model that includes all the components. We
conducted ablation studies on losses related to mutual information (i.e., I(G;Gsub) and I(Gsub;Gp)),
merging prototypes, and the connectivity loss Lcon. We have the following observations: 1) The
performance of the models significantly deteriorates when the terms related to mutual information,
I(G;Gsub) and I(Gsub;Gp), are not considered, compared to our final model. Specifically, if we
exclude the consideration of Gsub when constructing the prototypes Gp (i.e., without maximizing
I(Gsub;Gp)), the representations of the prototypes that directly contribute to the final predictions can-
not effectively obtain the informative information from the subgraph Gsub, resulting in a deterioration
of performance. Moreover, if we fail to incorporate the minimal sufficient information from the entire
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graph G into Gsub (i.e., without minimizing I(G;Gsub)), there is a higher likelihood of prototypes
obtaining uninformative information, which can ultimately lead to a deterioration in performance.
2) Merging prototypes improves both PGIB and PGIBcont by enhancing the distinguishability of
the remaining prototypes. This process not only enhances the interpretability of the prototypes but
also results in improved classification accuracy. By merging similar prototypes, important features
are emphasized through the aggregation of weights from both prototypes. This results in a more
precise and effective representation of the data, enhancing the model’s interpretability and accuracy in
classification performance (i.e., "with all" setting performs better than "w/o merge" setting.). 3) The
connectivity loss Lcon, which promotes the construction of more realistic subgraphs by inducing a
compact topology, has a significant impact on the performance. This improvement can be attributed to
the fact that subgraphs relevant to the target often form connected components in real-world datasets.
Therefore, incorporating the connectivity loss leads to improved performance by ensuring that the
subgraph maintains realistic connectivity patterns.

w/o 𝐼(𝒢; 𝒢$%&) w/o 𝐼(𝒢$%&; 𝒢') w/o 𝑚𝑒𝑟𝑔𝑒 w/o ℒ()* with 𝑎𝑙𝑙

A
cc

u
ra

cy
 (
%

)

Figure 7: Ablation studies on PGIB.

A.4.2 Analysis of the Different Graph Readout Functions

We conduct experiments on graph classification using different readout functions for PGIB. In Table 3,
we show the classification performance based on three readout functions: max-pooling, mean-pooling,
and sum-pooling, for both the PGIB and PGIBcont. Table 3 demonstrates that max-pooling achieves
the best performance in all datasets except for MUTAG dataset.

Table 3: Evaluation on the Different Graph Readout Functions (accuracy).

Dataset
Methods

PGIB PGIBcont

MaxPool MeanPool SumPool MaxPool MeanPool SumPool
MUTAG 80.50 ± 7.07 86.50 ± 7.84 80.50 ± 10.39 85.50 ± 5.22 88.50 ± 6.34 86.50 ± 7.43

PROTEINS 77.14 ± 2.19 72.32 ± 5.17 60.89 ± 12.07 77.50 ± 2.42 68.39 ± 4.40 66.07 ± 4.79
NCI1 77.65 ± 2.20 77.59 ± 7.41 63.96 ± 8.37 78.25 ± 2.13 77.52 ± 2.94 61.82 ± 3.96
DD 73.36 ± 1.80 67.56 ± 4.62 68.99 ± 4.56 73.70 ± 2.14 63.78 ± 5.40 64.12 ± 6.50

A.4.3 Reasoning Process

We illustrate the reasoning process on two datasets, i.e., MUTAG and BA2Motif, in Figure 8. PGIB
detects important subgraphs, and obtains similarity scores between subgraph Gsub and prototype Gp.
Then, PGIB computes the “points contributed” to predicting each class by multiplying the similarity
score between Gsub and Gp, with the weight assigned to each prototype in the prediction layer. Lastly,
PGIB outputs the class with the highest total point among all the classes. We have the following
observations in the reasoning process: 1) PGIB identifies the specific substructures within G that
contain label-relevant information by extracting Gsub from G. 2) PGIB identifies which training
graphs play a crucial role in the predictions by conducting prototype projection to visualize the
training graph that closely resembles the prototype. In other words, since each prototype is projected
onto the nearest training graph, we can identify the training graph that had the most influence on
predicting the target graph through the prototypes. 3) PGIB identifies the influence of each “points
contributed” on the final prediction by examining the total point to each class.
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Figure 8: Reasoning process on MUTAG (a-b) and BA-2Motifs (c-d) datasets.
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A.4.4 Analysis of the Hyperparameters

We have conducted additional qualitative analysis. In this analysis, we compare the effects of different
choices for α1, α2, α3 (i.e., loss weights) and J (i.e., the number of prototypes for each class) at a
more fine-grained level.

A.4.4.1 Visualization of Gsub based on α1

Figure 6 shows a large value of α1 reduces the performance. For further analysis, we visualize the
subgraph Gsub at different values of α1. The parameter α1 has an impact on the compression of
the subgraph from the entire input graph. In Figure 9, when α1 is large, Gsub receives too much
compressed information from G, causing the loss of important data. It prevents Gp from containing
label-relevant information, ultimately resulting in a negative impact on downstream performance.

𝑁𝑂2

𝛼1 = 0.0001 𝛼1 = 0.01

𝛼1 = 1

Figure 9: Visualization of Gsub based on α1 on MUTAG dataset

A.4.4.2 Visualization of Gp based on α2

We have extended the scale of qualitative analysis on α2 in Figure 5 to provide a better understanding
of its impact. It is crucial that the prototypes not only contain key structural information from the input
graph but also ensure a certain level of diversity since each class is represented by multiple prototypes.
In Figure 10, when we fix α1 at 0.1, the diversity of prototypes varies based on the degrees of α2.
Specifically, when α2 becomes 1, the diversity of prototypes decreases, leading to a decline in the
interpretability of the reasoning process and the overall model performance. This finding highlights
the importance of selecting proper α2 to ensure both interpretability and performance are optimized.

𝑁𝑂2

𝛼2 = 0.0001 𝛼2 = 0.001

𝛼2 = 0.01 𝛼2 = 0.1

𝛼2 = 1

Figure 10: Visualization of Gp based on α2 on MUTAG dataset

A.4.4.3 Visualization of Gsub based on α3

We mentioned that α3 is associated with the connectivity loss and plays a crucial role in influencing
the interpretability of Gsub by promoting compact topology in Section 3.5. To verify this, we visualize
the subgraph Gsub at different values of α3. In Figure 11, when we exclude the connectivity loss from
the loss function (i.e., set α3 to 0), Gsub tends to consist of non-connected components. As a result,
due to the wide and scattered range of detected subgraphs, the absence of connectivity loss results in
the formation of unrealistic subgraphs.
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Figure 11: Visualization of Gsub based on α3 on MUTAG dataset

A.4.4.4 Visualization of Gp based on J

We conducted interpretation visualizations of Gp based on the number of prototypes for each class
in Figure 12. When the number of prototypes is small (as seen in the case with 3 prototypes), the
prototypes do not contain diverse substructures. This limitation arises from making predictions using
a restricted number of prototypes. On the other hand, if the number of prototypes is large (as shown
in the case with 9 prototypes), a greater diversity of prototypes can be achieved because various and
complex information can be obtained from Gsub.

𝑁𝑂2

J = 3 J = 5

J = 9J = 7

Figure 12: Visualization of Gp based on the number of prototypes (J) on MUTAG dataset

A.5 Baselines

In this part, we provide details on the baselines used in our experiments.

• ProtGNN [35] utilizes prototypes to explain prediction results by potentially representing training
graphs in graph neural networks. Specifically, ProtGNN measures the similarity between the
embedding in the input graph and each prototype, and makes predictions based on the similarity.
Additionally, ProtGNN can be extended to ProtGNN+ by incorporating a module that samples the
subgraphs from the input graph to visualize the most similar subgraph to each prototype.

• GIB [31] utilizes the information bottleneck principle to detect important subgraphs in graph-
structured data. Specifically, this method aims to extract subgraph embeddings by restricting the
amount of information within the subgraph and retaining only the important information. During
the training of graph neural networks, GIB encourages the recognition of important subgraphs
within the graph data and performs graph classification tasks based on this recognition.

• VGIB [32] introduces noise injection into the graph information bottleneck. VGIB aims to
enhance subgraph recognition by incorporating randomness into the graph data. This addition of
randomness helps acquire diverse subgraph representations and captures the inherent uncertainty
in the data, leading to enhanced performance in both classification tasks and subgraph recognition
tasks.
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• GSAT [13] aims to achieve interpretable and generalizable graph learning through a stochastic
attention mechanism. It probabilistically estimates attention weights for the relationships between
nodes and edges in a graph. The probabilistic attention mechanism enables the model to learn
shared characteristics across domains and enhance its generalization performance.

• GNNexplainer [29] is a post-hoc interpretation model designed to interpret the prediction results
of GNN models. Specifically, GNNExplainer optimizes a masking algorithm to maximize the
mutual information with the existing label information. Its goal is to make the masked subgraph’s
prediction as close as possible to the original graph, which helps to detect substructures significant
for predictions.

• PGexplainer [12] parameterizes the underlying structure as an edge distribution and generates
the explanatory graph by sampling. PGExplainer collectively explains multiple instances by
utilizing deep neural networks to parameterize the process of generating explanations. It enables
the interpretability of the GNN model’s behavior by adjusting the weight parameters of the GNN
model, which allows it to be readily applied in an inductive setting.

Table 4: Source code links of the baseline methods
Methods Source code

ProtGNN https://github.com/zaixizhang/ProtGNN

GIB https://github.com/Samyu0304/graph-information-bottleneck-for-Subgraph-Recognition

VGIB https://github.com/Samyu0304/Improving-Subgraph-Recognition-with-Variation-Graph-Information-Bottleneck-VGIB-

GSAT https://github.com/Graph-COM/GSAT

GNNExplainer https://github.com/RexYing/gnn-model-explainer

PGExplainer https://github.com/flyingdoog/PGExplainer

A.6 Datasets

In this section, we provide details on the datasets used during training.

• MUTAG [16] consists of 188 molecular graphs, which are used to predict the properties of
mutagenicity in chemical structures. The graph labels are determined by the mutagenicity of
Salmonella typhimurium.

• PROTEINS [1] includes 1113 protein structures and is utilized for the classification of proteins
into enzymes or non-enzyme. Each node represents an amino acid in the protein molecule, and
edges connect nodes if the distance between the amino acids is less than 6 angstroms.

• NCI1 [24] contains 4110 chemical compounds specifically designed for anticancer testing. Each
chemical compound is labeled as either positive or negative based on its response to cell lung
cancer.

• DD [5] consists of 1178 protein structures labeled as either an enzyme or a non-enzyme, similar
to the previous dataset.

• BA2Motifs [12] is a synthetic dataset used for graph classification. Each graph is constructed
based on a random graph generated using the Barabási–Albert (BA) model. It is then connected
to one of two types of motifs: a house motif and a five-node cycle motif. The label of each graph
is determined to belong to one of two classes based on the attached motif.

• ZINC [8] is a database of commercially accessible compounds used for virtual screening. It
contains over 230 million purchasable compounds in a 3D format that can be docked readily.

A.7 Limitations and Societal Impacts

PGIB does not incorporate domain knowledge, so domain-specific information cannot be conveyed to
the extracted subgraph. For example, the extracted key subgraph may not necessarily correspond to a
biologically or chemically existing functional group. It can cause unrealistic subgraphs to significantly
affect the overall training of the model, including prototype training and final performance.

With the advancement and increasing sophistication of explainable artificial intelligence (XAI), these
limitations may have a broader societal impact. There is a potential risk of excessive dependence
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on XAI systems, leading to a decrease in human autonomy and decision-making. Blindly accepting
the decisions of AI systems without critically evaluating XAI undermines human judgment and
agency, which can potentially result in inappropriate or harmful behavior. For example, if a non-
existent functional group is unquestioningly accepted from the model, it can lead to an erroneous
understanding of the algorithm as a whole, with incorrect judgment about the functional group.

A.8 Algorithm

Algorithm 1: Overview of PGIB Training
Input: Training dataset {(Gi, yi)}ni=1, prototype merge epoch Tm, prototype merge period τ , the number

of prototypes M , the number of classes K, hyper-parameters of the weights of the losses α1, α2,
and α3

1 for training epochs t = 1, 2, . . . , T do
2 Gsub ← argminGsub

I(G;Gsub) by injecting noise into subgraph in Eq. 6 // L1
MI

3 Evaluate the loss Lcon in Eq. 15
4 rm ← g(zGsub , z

m
Gp

)

5 Minimize −I(Gsub;Gp) in Eq. 10 or 11 // L2
MI

6 Evaluate the loss Lcls = − 1
N

∑N
i=1

∑K
c=1 I(yi = c) log(πc)

7 if Merge = True and t > Tm and t%τ = 0 then

8 Calculate prototype similarity h(zGi
p
, zGj

p
) =

[ ∑
G∈X

(g(zGsub , zGi
p
)− g(zGsub , zGj

p
))2

]−1

9 Perform prototype-merge
10 end
11 Total loss L = Lcls + α1L1

MI + α2L2
MI + α3Lcon

12 Update model parameters by gradient descent
13 end
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