
Interpretable Prototype-based Graph Information
Bottleneck

Sangwoo Seo1 Sungwon Kim1 Chanyoung Park1∗
1KAIST

{sangwooseo@kaist.ac.kr, swkim@kaist.ac.kr, cy.park@kaist.ac.kr}

Abstract

The success of Graph Neural Networks (GNNs) has led to a need for understanding
their decision-making process and providing explanations for their predictions,
which has given rise to explainable AI (XAI) that offers transparent explanations for
black-box models. Recently, the use of prototypes has successfully improved the
explainability of models by learning prototypes to imply training graphs that affect
the prediction. However, these approaches tend to provide prototypes with exces-
sive information from the entire graph, leading to the exclusion of key substructures
or the inclusion of irrelevant substructures, which can limit both the interpretability
and the performance of the model in downstream tasks. In this work, we propose a
novel framework of explainable GNNs, called interpretable Prototype-based Graph
Information Bottleneck (PGIB), that incorporates prototype learning within the in-
formation bottleneck framework to provide prototypes with the key subgraph from
the input graph that is important for the model prediction. This is the first work that
incorporates prototype learning into the process of identifying the key subgraphs
that have a critical impact on the prediction performance. Extensive experiments,
including qualitative analysis, demonstrate that PGIB outperforms state-of-the-art
methods in terms of both prediction performance and explainability. The source
code of PGIB is available at https://github.com/sang-woo-seo/PGIB.

1 Introduction

With the success of Graph Neural Networks (GNNs) in a wide range of deep learning tasks, there has
been an increasing demand for exploring the decision-making process of these models and providing
explanations for their predictions. To address this demand, explainable AI (XAI) has emerged as a
way to understand black-box models by providing transparent explanations for their predictions. This
approach can improve the credibility of models and ensure transparency in their decision-making
processes. As a result, XAI is actively being used in various applications, such as medical, finance,
security, and chemistry [3, 26].

In general, explainability can be viewed from two perspectives: 1) improving the interpretability
by providing explanations for the model’s predictions, and 2) providing the reasoning process
behind the model prediction by giving explanations for the model’s training process. Improving the
interpretability in GNNs involves detecting important substructures during the inference phase, which
is useful for tasks such as identifying functional groups (i.e., important substructures) in molecular
chemistry [29, 33, 23, 12]. On the other hand, it is also important to provide the reasoning process
for why the model predicts in a certain way, which requires an in-depth analysis of the training phase,
so as to understand the model in a more fundamental level. Through this reasoning process, we can
visualize and analyze how the model makes correct or incorrect decisions, thus obtaining crucial
information for improving its performance.

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/sang-woo-seo/PGIB

(a) ProtGNN (b) PGIB

𝓖𝒑𝟏
𝓖𝒑𝟐𝓖𝒔𝒖𝒃

Prototype graphs, 𝒢#Input graph, 𝒢

𝓖𝒑𝟏
𝓖𝒑𝟐

𝑁𝑂$

Prototype graphs, 𝒢#Input graph, 𝒢

Figure 1: Comparison of the learned prototypes between ProtGNN and PGIB.

In recent years, there has been a growing interest in exploring the reasoning process to provide
greater transparency and explainability in deep learning models. These approaches can be generally
classified into two main categories: 1) post-hoc approaches, and 2) built-in approaches. Post-hoc
approaches focus on exploring the model outputs by visualizing the degree of activation of neurons
through measuring their contribution based on gradients of the model predictions. For instance,
recent works [14, 9, 34] use techniques such as saliency maps and class activation maps to visualize
the activated areas during the model’s prediction process. However, these approaches require a
separate explanatory model for each trained model, resulting in the need for a new explanatory model
for additional training data and different models [2, 15]. In order to address the aforementioned
challenges, built-in approaches aim to integrate the generation of explanations into the model training
process. One such approach is prototype learning, which involves learning prototypes that represent
each class of the input data, which are then compared with new instances to make predictions.
ProtGNN [35], for instance, measures the similarity between the embedding of an input graph and
each prototype, providing explanations through the similarity calculation and making predictions for
the input graph based on its similarity with the learned prototypes. More precisely, ProtGNN projects
each learned prototype onto the closest training graph, enabling it to provide explanations of primary
structures for its prediction.

However, since ProtGNN compares the graph-level embedding of an input graph with the learned
prototypes, the model overlooks the key substructures in the input graph while also potentially
including uninformative substructures. This not only results in a degradation of the interpretability of
the reasoning process, but also limits the performance on the downstream tasks. Figure 1(a) shows
the prototype graphs in the training set (i.e., Gp, denoted as bold edges) detected by ProtGNN for
an input molecule (i.e., G) that belongs to the “mutagenic” class. Despite the NO2 structure being
the key functional group for classifying a given molecule as “mutagenic,” Gp detected by ProtGNN
tends to include numerous ring structures (i.e., uninformative substructures) that are commonly
found throughout the input graph, and exclude NO2 structures (i.e., key substructures) in learned
prototype graphs, which is mainly due to the fact that the input graph G is considered in the whole
graph-level. As a result, it is crucial to identify a key subgraph within the input graph that holds
essential information for the learning of prototypes, which in turn enhances both the explanation of
the reasoning process and the performance on the downstream tasks. Among the various solutions
for detecting important subgraphs, the Information Bottleneck (IB) has emerged as one of the most
effective methods [27, 31], and it has been demonstrated that key subgraphs detected based on IB can
contribute to performance improvement in various tasks such as relational learning [11] and structure
learning [19]. We aim to approach the IB principle from the perspective of prototypes to convey
important substructure information to the prototypes.

To this end, we propose a novel framework of explainable GNNs, called Interpretable Prototype-based
Graph Information Bottleneck (PGIB). The main idea is to incorporate prototype learning within the
Information Bottleneck (IB) framework, which enables the prototypes to capture the essential key
subgraph of the input graph detected by the IB framework. Specifically, PGIB involves prototypes
(i.e., Gp) in a process that maximizes the mutual information between the learnable key subgraph
(i.e., Gsub) of the input graph (i.e., G) and target information (i.e., Y), which allows the prototypes to
interact with the subgraph. This enables the learning of prototypes Gp based on the key subgraph
Gsub within the input graph G, leading to a more precise explanation of the reasoning process and
improvement in the performance on the downstream tasks. To the best of our knowledge, this is
the first work that combines the process of optimizing the reasoning process and interpretability by
identifying the key subgraphs that have a critical impact on the prediction performance. In Figure
1(b), PGIB is shown to successfully detect the key subgraph Gsub that includes NO2 from the input
graph G, even when the ring structures are dominant in G. It is important to note that PGIB is highly
efficient in detecting Gsub from G since PGIB adopts a learnable masking technique, effectively
resolving the time complexity issue. Last but not least, since the number of prototypes for each

2

class is determined before training, some of the learned prototypes may share similar semantics,
which negatively affects the model interpretability for which the small size and low complexity are
desirable [6, 25, 17]. Hence, we propose a method for effectively merging the prototypes, which in
turn contributes to enhancing both the explanation of the reasoning process and the performance on
the downstream tasks.

We conducted extensive experiments to evaluate the effectiveness and interpretability of the reasoning
process of PGIB in graph classification tasks. Our results show that PGIB outperforms recent state-
of-the-art methods, including existing prototype learning-based and IB-based methods. Moreover,
we evaluated the ability of PGIB in capturing the label information by evaluating the classification
performance using only the detected subgraph Gsub. We also conducted a qualitative analysis that
visualizes the subgraph Gsub and prototype graph Gp, suggesting the ability of PGIB in detecting
the key subgraph. Overall, our results show that PGIB significantly improves the interpretability
of both Gsub and Gp in the reasoning process, while simultaneously improving the performance in
downstream tasks.

In summary, our main contributions can be summarized as follows: 1) We propose an effective
approach, PGIB, that not only improves the interpretability of the reasoning process, but also the
overall performance in downstream tasks by incorporating the prototype learning in a process of
detecting key subgraphs based on the IB framework. 2) We provide theoretical background with
our method that utilizes interpretable prototypes in the process of optimizing Gsub. 3) Extensive
experiments, including qualitative analysis, demonstrate that PGIB outperforms state-of-the-art
methods in terms of both prediction performance and explainability.

2 Preliminaries

In this section, we introduce notations used throughout the paper followed by the definitions of IB
and IB-Graph.

Notations. We use G = (V, E ,A,X) to denote a graph, where V , E , A and X denote the
set of nodes and edges, the adjacency matrix and node features, respectively. We assume that
each node vi ∈ V is associated with a feature vector xi, which is the i-th row of X. We use
{(G1, y1), (G2, y2), · · · , (GN , yN)} to denote the set of N graphs with its corresponding labels. The
graph labels are given by a set of K classes C = {1, 2, . . . ,K}, and the ground truth label of a
graph Gi is denoted by yi ∈ C. We use Gsub to denote a subgraph of G, and use Ḡsub to denote
the complementary structure of Gsub in G. We also introduce the prototype layer, which consists
of a set of prototypes Zp =

{
z1Gp

, z2Gp
, · · · , zMGp

}
, where M is the total number of prototypes, and

each prototype zmGp
is a learnable parameter vector that serves as the latent representation of the

prototypical part (i.e., Gp) of graph G. We allocate J prototypes for each class, i.e., M = K × J .

Graph Information Bottleneck. The mutual information between two random variables X and Y ,
i.e., I(X;Y), is defined as follows:

I(X;Y) =

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (1)

Given the input X and its associated label Y , the Information Bottleneck (IB) [21] aims to obtain a
bottleneck variable Z by optimizing the following objective:

min
Z
−I(Y ;Z) + βI(X;Z), (2)

where β is the Lagrange multiplier used to control the trade-off between the two terms. IB principle
has recently been applied to learning a bottleneck graph, named IB-Graph, for a given graph G, which
retains the minimal sufficient information in terms of G’s properties [31]. This approach is motivated
by the Graph Information Bottleneck (GIB) principle, which seeks to identify an informative yet
compressed subgraph Gsub from the original graph G by optimizing the following objective:

min
Gsub

−I(Y ;Gsub) + βI(G;Gsub), (3)

where Y is the label of G. The first term maximizes the mutual information between the graph
label and the compressed subgraph, which ensures that the compressed subgraph contains as much
information as possible about the graph label. The second term minimizes the mutual information
between the input graph and the compressed subgraph, which ensures that the compressed subgraph
contains minimal information about the input graph.

3

⋮

FC-Layer

Lin
e

ar

So
ftm

ax

Output

Readout

𝒁𝒢𝑠𝑢𝑏

𝑝1, 𝑝2, … , 𝑝𝑛

𝑧𝑖 = 𝜆𝑖ℎ𝑖 + (1 − 𝜆𝑖)𝜖

𝜆1, 𝜆2, … , 𝜆𝑛

GNN
𝑓𝑔

Node Representations

MLP

MLP
Sigmoid

𝑍𝒢𝑠𝑢𝑏
SelectedNoised

Input graph, 𝒢

Prototype Layer

⋮

𝒁𝒢𝑝
1

𝒁𝒢𝑝
2

𝒁𝒢𝑝
3

𝒁𝒢𝑝
4

𝒁𝒢𝑠𝑢𝑏

𝒁𝒢𝑠𝑢𝑏

𝒁𝒢𝑠𝑢𝑏

𝒁𝒢𝑠𝑢𝑏

𝒁𝒢𝑠𝑢𝑏 𝒁𝒢𝑝
𝑀

𝒢𝑠𝑢𝑏
𝑔

𝑍𝒢𝑠𝑢𝑏

Subgraph Extraction Layer

⋮

(),

(),

(),

(),

(),
Prototypes
Merge

𝒁𝒢𝑠𝑢𝑏

⊕

Figure 2: The architecture of our proposed PGIB. PGIB generates a subgraph Gsub by injecting noise
to identify core subgraphs, and it is used to compute similarity scores between prototypes in the
prototype layer. The trained prototypes play a crucial role in visualizing the reasoning processes
during training in an interpretable manner. PGIB also involves merging pairs of similar prototypes to
decrease the number of prototypes. Finally, the integrated prototypes are utilized to predict the graph
labels in the fully connected layer.

3 Methodology

In this section, we present our proposed method, called PGIB. We introduce Prototype-based Graph
Information Bottleneck (Section 3.1), each layer in the architecture (Section 3.2 - 3.4), and the
interpretability stabilization process (Section 3.5), which enhances the interpretability and the tracking
capabilities of the reasoning process during the model training.

Model Architecture. Figure 2 presents an overview of PGIB. We first generate the representations
of nodes in the input graph G using a GNN encoder. Then, the node representations are passed to the
subgraph extraction layer that assigns each node in G to either Gsub or Ḡsub. Next, we compute the
similarities between the embedding zGsub

and the set of prototypes Zp =
{
z1Gp

, z2Gp
, · · · , zMGp

}
in

the prototype layer. Finally, we merge the prototypes that are semantically similar, which are then
used to generate the final prediction.

3.1 Prototype-based Graph Information Bottleneck

PGIB is a novel explainable GNN framework that incorporates the prototype learning within the
IB framework, thereby enabling the prototypes to capture the essential key subgraph of the input
graph detected by the IB framework. More precisely, we reformulate the GIB objective shown in
Equation 3 by decomposing the first term, i.e., I(Y ;Gsub), with respect to the prototype Gp using the
chain rule of mutual information in order to examine the impact of the joint information between
Gsub and Gp on Y as follows:

min
Gsub

−I(Y ;Gsub,Gp) + I(Y ;Gp|Gsub)︸ ︷︷ ︸
Section 3.3

+β I(G;Gsub)︸ ︷︷ ︸
Section 3.2

. (4)

Please refer to Appendix A.1 for a detailed proof of Equation 4. In the following sections, we describe
how each term is optimized during training.

3.2 Subgraph Extraction Layer (Minimizing I(G;Gsub))

The goal of the subgraph extraction layer is to extract an informative subgraph Gsub from G that
contains minimal information about G. We minimize I(G;Gsub) by training the model to inject noise
into insignificant subgraphs Ḡsub, while injecting less noise into more informative ones Gsub [32].
Specifically, given the representation of node vi, i.e., hi, we compute the probability pi with an MLP
followed by a sigmoid function, which is then used to replace the representation hi to obtain the final
representation zi as follows:

pi = Sigmoid(MLP(hi))

zi = λihi + (1− λi)ϵ, where λi ∼ Bernoulli(pi) and ϵ ∼ N (µhi , σ
2
hi
).

(5)

That is, the learned probability pi enables selective preservation of information in Gsub, and based
on this probability, the quantity of information transmitted from hi to zi can be flexibly adjusted to
compress the information from G to Gsub. This approach not only retains interpretability within the

4

subgraph itself, but also potentially facilitates the learning of prototypes that are introduced in the
next step. Following [32], we minimize the upper bound of I(G;Gsub) as follows:

I(G;Gsub) ≤ EG(−
1

2
logA+

1

2|VG |
A+

1

2|VG |
B2) =: L1

MI(G,Gsub), (6)

where A =
∑|VG |

i=1 (1−λi)
2 and B =

∑|VG|
i=1 λi(hi−µhi

)

σhi
. Thus, minimizing L1

MI allows us to minimize
the upper bound of I(G;Gsub). After noise injection, we compute the embedding zGsub

through a
graph readout function such as max pooling and sum pooling. For further details and analysis of the
different graph readout functions, please refer to Appendix A.4.2.

3.3 Prototype Layer (Minimizing −I(Y ;Gsub,Gp) + I(Y ;Gp|Gsub))

The prototype layer involves allocation of a fixed number of prototypes for each class. The prototypes
are required to capture the most significant graph patterns that can aid in the identification of the
graphs within each class. To begin with, we define the similarity score between the prototype zGp

and the embedding zGsub
obtained from noise injection as follows:

g(zGsub , zGp) = log

(∥zGsub − zGp∥22 + 1

∥zGsub − zGp∥22 + ϵ

)
, (7)

where zGp is the prototype and shares the same dimension as zGsub
.

3.3.1 Minimizing −I(Y ;Gsub,Gp)

We derive the lower bound of I(Y ;Gsub,Gp) as follows:

Proposition 1. (Lower bound of I(Y ;Gsub,Gp)) Given significant subgraph Gsub for a graph G, its label
information Y , prototype graph Gp and similarity function γ, we have

I(Y ;Gsub,Gp) = EY,Gsub,Gp [log p (Y |Gsub,Gp)]− EY [log p(Y)]

≥ EY,Gsub,Gp [log p (Y |γ (Gsub,Gp))]− EY [log p(Y)]

≥ EY,Gsub,Gp [log qθ (Y |γ (Gsub,Gp))]
=: −Lcls(qθ (Y |γ (Gsub,Gp))

(8)

where qθ (Y |γ (Gsub,Gp)) is the variational approximation to the true posterior p (Y |γ (Gsub,Gp)).

Equation 8 demonstrates that the maximization of the mutual information I(Y ;Gsub,Gp) can be
attained by minimizing the classification loss, denoted as Lcls. This maximization of mutual informa-
tion between the label Y and the similarity information γ (Gsub,Gp) promotes the subgraph Gsub and
prototype Gp to possess predictive capabilities concerning the graph label Y . In practical applications,
the cross-entropy loss is chosen for a categorical Y . For a comprehensive understanding of the deriva-
tion process of Equation 8, refer to the Appendix A.2. Note that the similarity between Gsub and Gp,
i.e., γ (Gsub,Gp), is computed by the similarity score defined in Equation 7, i.e., g(zGsub

, zGp
).

3.3.2 Minimizing I(Y ;Gp|Gsub)

We investigate the mutual information, denoted as I(Y ;Gp|Gsub), from the perspective of the inter-
action between Gsub and Gp. We decompose I(Y ;Gp|Gsub) into the sum of two terms based on the
chain rule of mutual information as follows:

I(Y ;Gp|Gsub) = I(Gp;Y,Gsub)− I(Gsub;Gp). (9)

It is important to note that the first term, i.e., I(Gp;Y,Gsub), minimizes the mutual information
between Gp and the joint variables (Y , Gsub), which eliminates the information about Y related
to Gsub from Gp. However, since our goal is not to solely minimize I(Gp;Y,Gsub) but to ensure
the interpretability of the prototype Gp, including this term leads to diminished interpretability of
Gp. Consequently, we excluded the first term during training, and only consider the second term,
i.e., −I(Gsub;Gp), to simultaneously guarantee the interpretability of both Gsub and Gp. A detailed
derivation for Equation 9 is given in Appendix A.3. From now on, we describe approaches for
minimizing the second term. Inspired by [11], we introduce two different approaches for minimizing
−I(Gsub;Gp).

5

1) Variational IB-based approach. We obtain the upper bound of −I(Gsub;Gp) using the variational
IB-based approach as follows:

−I(Gsub;Gp) ≤ EGsub,Gp [− log qϕ(Gp|Gsub)] := L2
MI(Gsub,Gp), (10)

where qϕ(Gp|Gsub) is the variation approximation of p(Gp|Gsub). Equation 10 shows that the maxi-
mization of the mutual information I(Gsub;Gp) can be attained by minimizing L2

MI(Gsub,Gp). We
select a single-layer linear transformation as a modeling option for qϕ to minimize the information
loss of Gsub when predicting Gp.

2) Contrastive learning-based approach. Recent studies on contrastive learning [20, 30, 7] have
proven that minimizing contrastive loss is equivalent to maximizing the mutual information between
two variables. Hence, we additionally propose a variant of PGIB, i.e., PGIBcont, that minimizes the
contrastive loss instead of minimizing the lower bound as defined in Equation 10. More precisely,
we consider Gp and Gsub with the same label as a positive pair, and the contrastive loss is defined
as follows:

L2
MI = −

1

n

n∑
i=1

log

∑
j:z

Gj
p
∈Pyi

exp(g(zGi
sub

, zGj
p
)/τ)

∑
k:zGk

p
/∈Pyi

exp(g(zGi
sub

, zGk
p
)/τ)

. (11)

where τ is the temperature hyperparameter, n denotes the number of graphs in a batch, and j and k
indicate indices of positive and negative samples, respectively. Pyi

is the set of prototypes that belong
to class yi. We effectively confer interpretability to Gp by increasing its similarity with each Gsub.

3.4 Prediction Layer

We obtain the set of similarity scores r ∈ RM , whose m-th element rm = g(zGsub
, zmGp

) denotes
the similarity score between zGsub

and zGp
as defined in Equation 7. Then, we compute the final

predicted probability π ∈ RK by passing r and zGsub
through a linear layer with weights ω, followed

by the softmax function. Specifically, ω[m, :] denotes weight assigned to rm, i.e., ω(zGm
p
). Finally,

we calculate the cross-entropy classification loss, as follows:

Lcls = −
1

N

N∑
i=1

K∑
c=1

I(yi = c) log(πc). (12)

3.5 Interpretability Stabilization
Merging Prototypes. Since the number of prototypes for each class is determined before training,
some of the learned prototypes may share similar semantics, which negatively affects the model
interpretability for which the small size and low complexity are desirable [6, 25]. Inspired by [17],
we propose a method to effectively merge the prototypes for graph-structured data, which, in turn,
enhances the explanation of the reasoning process and improves performance on downstream tasks
while reducing model complexity. The main idea is to merge prototypes based on the similarity
between prototype pairs using the embeddings zGsub. This similarity utilizes all training subgraphs
(i.e.,

⋃
G∈X

Gsub, where X is the training set) by measuring the disparity between g(zGsub
, zGi

p
) and

g(zGsub
, zGj

p
) as follows:

h(zGi
p
, zGj

p
) =

[∑
G∈X

(g(zGsub , zGi
p
)− g(zGsub , zGj

p
))2

]−1

. (13)

Then, for every pair (zGi
p
, zGj

p
) that falls within the highest ξ percent of similar pairs, the prototype

zGj
p

and its corresponding weights ω(zGj
p
) are removed, and the weights ω(zGi

p
) are updated to the

sum of ω(zGi
p
) and ω(zGj

p
). We combine the ξ percentage of the most similar prototype pairs based

on the calculated similarity scores.

Prototype Projection. Since the learned prototypes are embedding vectors that cannot be directly
interpreted, we project each prototype zGp

onto the nearest latent training subgraph from the same
class. This process establishes a conceptual equivalence between each prototype and a training
subgraph, thereby enhancing interpretability of the prototypes. Specifically, we update prototype zGp

of class k (i.e., zGp
∈ Pk) by performing the following operation:

6

zGp ← argmin
z̃∈Z

∥z̃− zGp∥2, where Z =
{
z̃ : Readout{fg(G̃)}, G̃ ∈ Subgraph(Gi) ∀i s.t. yi = k

}
. (14)

In the Equation 14, we use Monte Carlo Tree Search (MCTS) [18] to explore training subgraphs G̃
during prototype projection.

Connectivity Loss. For an input graph G, we construct a node assignment SG ∈ R|VG |×2 based on
the probability values that are computed by Equation 5. Specifically, SG [j, 0] and SG [j, 1] denote
the probability of node vj ∈ VG belonging to Gsub and Ḡsub, respectively. Following [31], poor
initialization of the matrix S may result in the proximity of its elements S[j, 0] and S[j, 1] for
∀vj ∈ VGi

, leading to an unstable connectivity of Gsub. This instability can have adverse effects
on the subgraph generation process. To enhance the interpretability of Gsub by inducing a compact
topology, we utilize a batch-wise loss function as follows:

Lcon = ∥Norm(ST
BABSB)− I2∥F (15)

where SB ∈ R
n∑

i=1
|VGi

|×2
and AB ∈ R

n∑
i=1

|VGi
|×

n∑
i=1

|VGi
|

are the node assignment and the adjacency
matrix at the batch level, respectively. I2 is 2-by-2 identity matrix, ∥ · ∥F is the Frobenius norm and
Norm(·) is the row normalization. Minimizing Lcon indicates that if vj is in Gsub its neighbors also
have a high probability to be in Gsub, while if vi is in Gsub, its neighbors have a low probability to be
in Ḡsub.

Final Objectives. Finally, we define the objective of our model as the sum of the losses as follows:

Ltotal = Lcls + α1L1
MI + α2L2

MI + α3Lcon (16)

where α1, α2 and α3 are hyper-parameters that adjust the weights of the losses. A detailed ablation
study for each loss term is provided in Appendix A.4.1 for further analysis.

4 Experiments

4.1 Experimental Settings

Each dataset is split into training, validation, and test sets with a ratio of 80%, 10%, and 10%, respec-
tively. All models are trained for 300 epochs using the Adam optimizer with a learning rate of 0.005.
GIN [28] is used as the encoder for all models used in the experiment. We evaluate the performance
based on accuracy, which is averaged over 10 independent runs with different random seeds. For sim-
plicity, the hyperparameters α1, α2, and α3 in Equation 16 are set to 0.0001, 0.01 to 0.1 and 5, respec-
tively. The prototype merge operation starts at epoch 100 and is performed every 50 epochs thereafter.
We set the number of prototypes per class to 7 and combine 30% of the most similar prototype pairs.

4.2 Graph Classification

Datasets and Baselines. We use the MUTAG [16], PROTEINS [1], NCI1 [24], and DD[5] datasets.
These are datasets related to molecules or bioinformatics, and are widely used for evaluations on
graph classification. We consider three GNN baselines, including GCN [10], GIN [28], GAT [22]. In
addition, we compare PGIB with several state-of-the-art built-in models that integrate explanation
functionality internally, including a prototype-based method ProtGNN [35], and IB-based models
such as GIB [31], VGIB [32], and GSAT [13]. Further details about the baselines and datasets are
provided in Appendix A.5 and A.6, respectively.

Experiment Results. Experimental results for graph classification are presented in the Table 1.
In the table, PGIB and PGIBcont represent our proposed methods. PGIB utilizes a Variational
IB-based approach, while PGIBcont employs a Contrastive learning-based approach to maximize
I(Gsub;Gp) (Section 3.3.2). We have the following observations: 1) All variants of PGIB outperform
the baselines including both the prototype-based and IB-based methods on all datasets. Notably,
PGIBs incorporate the crucial information of the key subgraph, which significantly contributes to
enhancing the classification performance. PGIBcont achieves a significant improvement of up to
5.6% compared to the runner-up baseline. 2) We observe that PGIBcont performs relatively better
than PGIB. We attribute this to the nature of the contrastive loss, which is generally shown to be
effective in classifying instances between different classes, allowing the prototypes learned based on
the contrastive loss to be more distinguishable from one another.

7

Table 1: Evaluation on graph classification (accuracy).

Dataset
Methods

GCN GIN GAT ProtGNN GIB VGIB GSAT PGIB PGIBcont

MUTAG 74.50±7.89 80.50±7.89 73.50±7.43 80.50±9.07 79.00±6.24 81.00±6.63 80.88±8.94 85.00±7.07 85.50±5.22

PROTEINS 72.83±4.23 70.30±4.84 71.35±4.85 73.83±4.22 75.25±5.92 73.66±3.32 69.64±4.71 77.14±2.19 77.50±2.42

NCI1 73.16±3.49 75.04±2.08 66.05±1.03 74.13±2.10 64.65±6.78 63.75±3.37 68.13±2.64 77.65±2.20 78.25±2.13

DD 72.53±4.51 72.04±3.62 70.81±4.33 69.15±4.33 72.61±8.26 72.77±5.63 71.93±2.74 73.36±1.80 73.70±2.14

4.3 Graph Interpretation
In this section, we evaluate the process of extracting subgraphs that possess the most similar properties
of the original graph. We present qualitative results including subgraph visualizations, and conduct
quantitative experiments to measure how accurately explanations capture the important components
that contribute to the model’s predictions.

Datasets and Baselines. We use four molecular properties from the ZINC [8] dataset, which consists
of 250,000 molecules, for graph interpretation. QED measures the likelihood of a molecule being
a drug and DRD2 indicates the probability of a molecule being active on dopamine type 2 receptors.
HLM-CLint and RLM represent estimates of in vitro human and rat liver microsomal metabolic
stability (mL/min/g as base 10 logarithm). We compare PGIBcont with several representative interpre-
tation models, including GNNexplainer [29], PGexplainer [12], GIB [31], and VGIB [32]. Note that
as PGIB shows similar results with PGIBcont, we only report the results of PGIBcont for simplicity.
Further details on baselines and datasets are described in Appendix A.5 and A.6, respectively.

Qualitative Analysis. Figure 3(a)-(d) present the visualization of subgraphs in Mutag dataset.
According to [29, 4], the NO2 functional group is known to be a cause of mutagenicity, while the
carbon ring is a substructure that is not related to mutagenicity. In the figure, the bold edges connect
the nodes that the models consider important. The NO2 group in Mutag is correctly identified by
PGIB, while VGIB, ProtGNN, and GNNexplainer fail to recognize all NO2 groups or include other
unnecessary substructures. Figure 3(e)-(h) present the visualization of subgraphs in BA-2Motifs
dataset. We observe that PGIB accurately recognizes motif graphs containing the label information
such as a house or a five-node cycle, but other models have difficulty in detecting the complete motifs.

Quantitative Analysis. Although visualizing the explanations generated by models plays a crucial
role in assessing various explanation models, relying solely on qualitative evaluations may not always
be reliable due to their subjective nature. Therefore, we also perform quantitative experiments using
the Fidelity metric [14, 34].

The Fidelity metric quantifies the extent to which explanations accurately capture the important
components that contribute to the model’s predictions. Specifically, let yi and ŷi denote the ground-
truth and predicted values for the i-th input graph, respectively. Moreover, k denotes the sparsity score
of the selected subgraph in which nodes whose importance scores obtained by Equation 5 are among
the top-(k× 100)% within the original graph, and its prediction is denoted by ŷki . Additionally, ŷ1−k

i
denotes the prediction based on the remaining subgraph. The Fidelity scores are computed as follows:

F− =
1

N

N∑
i=1

I(yi = ŷi)− I(yi = ŷki), F+ =
1

N

N∑
i=1

I(yi = ŷi)− I(yi = ŷ1−k
i), (17)

where I(yi = ŷi) is the binary indicator which returns 1 if yi = ŷi, and 0 otherwise. In other words,
they measure how well the predictions made solely based on the extracted subgraph (i.e., F−) and
the remaining subgraph (i.e., F+) mimic the predictions made based on the entire graph, respectively.
Hence, a low value of F− and a high value of F− indicate better explainability of the model.

Table 2: Evaluation on graph interpretation (Fidelity scores).

Method F− ↓ F+ ↑
RLM HLM-CLint QED DRD2 RLM HLM-CLint QED DRD2

GNNexplainer 0.478 0.616 0.498 0.433 0.694 0.778 0.602 0.740
PGexplainer 0.502 0.620 0.560 0.540 0.632 0.692 0.598 0.686

GIB 0.483 0.643 0.525 0.428 0.654 0.781 0.601 0.724
VGIB 0.463 0.579 0.487 0.424 0.765 0.792 0.627 0.756

PGIBcont 0.441 0.593 0.459 0.406 0.747 0.772 0.613 0.771
PGIBcont + merge 0.415 0.543 0.447 0.379 0.765 0.796 0.635 0.781

Table 2 shows the fidelity
scores on four datasets at
the sparsity score of k =
0.5. Our proposed model
outperforms both post-hoc
and built-in state-of-the-
art explanation models in
all datasets. Furthermore,
merging prototypes achieves significant improvements in terms of interpretability. This implies

8

(a) PGIBcont (b)�VGIB (c)�ProtGNN (d)�GNNexplainer (e)�PGIBcont (f)�VGIB (g)�ProtGNN (h)�GNNexplainer

Figure 3: Explanation visualizations on Mutag (a-d) and BA-2Motifs (e-h)

PGIBcont

ℱ !
ℱ "

Sparsity (k) Sparsity (k) Sparsity (k) Sparsity (k)

Figure 4: Comparisons of fidelity scores over sparsity scores k.

(a) 𝛼! = 0.0001 (b) 𝛼! = 1

𝑁𝑂!

𝒢"!

𝒢""

𝒢"#

𝒢"!

𝒢""

𝒢"#

Figure 5: Gp visualization over α2.

that decreasing the number of prototypes can eliminate uninformative substructures and emphasize
key substructures, which increases the interpretability of the extracted subgraphs. Figure 4 visualizes
the comparison of fidelity scores over various sparsity scores of subgraphs. To ensure a fair compari-
son, the fidelity scores are compared under the same subgraph sparsity, as the difference between the
predictions of the original graph and subgraph strongly depends on the level of sparsity. We observe
that PGIBcont achieves the best performance in most sparsity environments on the four datasets.

4.4 Hyperparameter Analysis

Figure 6: Impact of α1 and α2 on PROTEINS dataset.

a 𝛼! b 𝛼"

In Figure 6, we conduct a sensitivity analysis
on the hyperparameters α1 and α2 of the
final loss (Equation 16) relevant to mutual
information. Note that α1 and α2 are related
to minimizing I(G;Gsub) and maximizing
I(Gsub;Gp), respectively. 1) Figure 6(a)
shows a significant decrease in performance
when α1 becomes large, i.e., when the model
focuses on compressing the subgraphs.
This is because too much compression of
subgraphs results in the loss of important information, ultimately having a negative impact on
the downstream performance. However, when α1 = 0 (i.e., G = Gsub; no compression at all),
uninformative information would be included in Gsub, which incurs a performance degradation. 2)
Figure 6(b) visualizes the change in performance depending on α2. A small value of α2 prevents
sufficient transmission of information from Gsub to Gp, whereas excessive value of α2 allows the
influence of Gsub to dominate the prototypes Gp, both of which lead to a performance deterioration.
For example, in Mutag dataset, a low value of α2 ultimately results in Gp not obtaining label-relevant
information (i.e., NO2) that is captured by Gsub (See Figure 5(a)). On the other hand, a high value
of α2 hinders the formation of diverse prototypes (See Figure 5(b)).

5 Conclusion and Future work
We propose a novel framework of explainable GNNs, called interpretable Prototype-based Graph
Information Bottleneck (PGIB), that integrates prototype learning into the information bottleneck
framework. The main idea of PGIB is to learn prototypes that capture subgraphs containing key
structures relevant to the label information, and to merge the semantically similar prototypes for
better model interpretability and model complexity. Experimental results show that PGIB achieves
improvements not only in the performance on downstream tasks, but also provides more precise

9

explanation of the reasoning process. For future work, we plan to further extend the applicability of
PGIB by integrating domain knowledge into prototype learning by imposing constraints on subgraphs.
We expect that this approach would enable the learning of prototypes that align with the domain
knowledge as they obtain domain-specific information from the subgraphs.

Acknowledgments and Disclosure of Funding

This work was supported by Institute of Information & Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-2023-00216011, No.2022-0-
00077), and the National Research Foundation of Korea(NRF) funded by Ministry of Science and
ICT (NRF-2022M3J6A1063021).

References
[1] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P. Kriegel.

Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

[2] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This looks like that: deep learning
for interpretable image recognition. Advances in neural information processing systems, 32,
2019.

[3] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho.
Discovering symbolic models from deep learning with inductive biases. In Advances in Neural
Information Processing Systems, pages 17429–17442, 2020.

[4] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry,
34(2):786–797, 1991.

[5] P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

[6] F. Doshi-Velez and B. Kim. A roadmap for a rigorous science of interpretability. arXiv preprint
arXiv:1702.08608, 2(1), 2017.

[7] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio. Learning deep representations by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

[8] J. J. Irwin and B. K. Shoichet. Zinc- a free database of commercially available compounds for
virtual screening. Journal of chemical information and modeling, 45(1):177–182, 2005.

[9] G. Jaume, P. Pati, B. Bozorgtabar, A. Foncubierta, A. M. Anniciello, F. Feroce, T. Rau, J.-
P. Thiran, M. Gabrani, and O. Goksel. Quantifying explainers of graph neural networks in
computational pathology. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 8106–8116, 2021.

[10] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[11] N. Lee, D. Hyun, G. S. Na, S. Kim, J. Lee, and C. Park. Conditional graph information
bottleneck for molecular relational learning. arXiv preprint arXiv:2305.01520, 2023.

[12] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer
for graph neural network. In Advances in Neural Information Processing Systems, pages
19620–19631, 2020.

[13] S. Miao, M. Liu, and P. Li. Interpretable and generalizable graph learning via stochastic attention
mechanism. In International Conference on Machine Learning, pages 15524–15543. PMLR,
2022.

10

[14] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. Explainability methods for
graph convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10772–10781, 2019.

[15] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

[16] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld. Fast and accurate modeling of
molecular atomization energies with machine learning. Physical review letters, 108(5):058301,
2012.

[17] D. Rymarczyk, Ł. Struski, J. Tabor, and B. Zieliński. Protopshare: Prototypical parts sharing
for similarity discovery in interpretable image classification. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1420–1430, 2021.

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 550
(7676):354–359, 2017.

[19] Q. Sun, J. Li, H. Peng, J. Wu, X. Fu, C. Ji, and S. Y. Philip. Graph structure learning
with variational information bottleneck. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 4165–4174, 2022.

[20] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16,
pages 776–794. Springer, 2020.

[21] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. arXiv preprint
physics/0004057, 2000.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[23] M. Vu and M. T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. In Advances in Neural Information Processing Systems, pages 12225–12235,
2020.

[24] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

[25] T. Wang. Gaining free or low-cost interpretability with interpretable partial substitute. In
International Conference on Machine Learning, pages 6505–6514. PMLR, 2019.

[26] J. Wencel-Delord and F. Glorius. C–h bond activation enables the rapid construction and
late-stage diversification of functional molecules. Nature chemistry, 5(5):369–375, 2013.

[27] T. Wu, H. Ren, P. Li, and J. Leskovec. Graph information bottleneck. Advances in Neural
Information Processing Systems, 33:20437–20448, 2020.

[28] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[29] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explana-
tions for graph neural networks. In Advances in Neural Information Processing Systems, pages
9240–9251, 2019.

[30] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph contrastive learning with
augmentations. Advances in neural information processing systems, 33:5812–5823, 2020.

[31] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He. Graph information bottleneck for subgraph
recognition. In International Conference on Learning Representations, 2021.

[32] J. Yu, J. Cao, and R. He. Improving subgraph recognition with variational graph information
bottleneck. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19396–19405, 2022.

11

[33] H. Yuan, J. Tang, X. Hu, and S. Ji. Xgnn: Towards model-level explanations of graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 430–438, 2020.

[34] H. Yuan, H. Yu, S. Gui, and S. Ji. Explainability in graph neural networks: A taxonomic survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[35] Z. Zhang, Q. Liu, H. Wang, C. Lu, and C. Lee. Protgnn: Towards self-explaining graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
9127–9135, 2022.

12

	Introduction
	Preliminaries
	Methodology
	Prototype-based Graph Information Bottleneck
	Subgraph Extraction Layer (Minimizing I(G ; Gsub))
	Prototype Layer (Minimizing -I(Y; Gsub, Gp) + I(Y;Gp|Gsub))
	Minimizing -I(Y; Gsub, Gp)
	Minimizing I(Y;Gp|Gsub)

	Prediction Layer
	Interpretability Stabilization

	Experiments
	Experimental Settings
	Graph Classification
	Graph Interpretation
	Hyperparameter Analysis

	Conclusion and Future work

