A Detailed Explanation of k-peer Hyperhypercube Graph

In this section, we explain Alg. 1 in more detail. The k-PEER HYper-hypercube Graph mainly consists of the following five steps.

Step 1. Decompose n as $n=n_{1} \times \cdots \times n_{L}$ with minimum L such that $n_{l} \in[k+1]$ for all $l \in[L]$.
Step 2. If $L=1$, we make all nodes obtain the average of parameters in V by using the complete graph. If $L \geq 2$, we split V into disjoint subsets $V_{1}, \cdots, V_{n_{L}}$ such that $\left|V_{l}\right|=\frac{n}{n_{L}}$ for all $l \in\left[n_{L}\right]$ and continue to step 3 .
Step 3. For all $l \in\left[n_{L}\right]$, we make all nodes in V_{l} obtain the average of parameters in V_{l} by using the k-peer Hyper-hypercube Graph $\mathcal{H}_{k}\left(V_{l}\right)$.
Step 4. We take n_{L} nodes from $V_{1}, \cdots, V_{n_{L}}$ respectively and construct a set U_{1}. Similarly, we construct $U_{2}, \cdots, U_{n_{L}}$ such that $U_{1}, \cdots, U_{n_{L}}$ are disjoint sets.
Step 5. For all $l \in\left[n_{L}\right]$, we make all nodes in U_{l} obtain the average of parameters in U_{l} by using the complete graph. Because the average of parameter U_{l} is equivalent to the average in V after step 4 , all nodes reach the exact consensus.

When $n \leq k+1$, the k-PEER HYPER-HYPERCUBE GRAPH becomes the complete graph because of step 2. When $n>k+1$, we decompose n in step 1 and construct the k-PEER HyPER-HYPERCUBE Graph recursively in step 3 . Thus, the k-PEER Hyper-hypercube Graph can make all nodes reach the exact consensus by the sequence of L graphs.

Using the example provided in Fig. 10 , we explain the k-PEer Hyper-hypercube Graph in a more detailed manner. When $n=12$, we decompose 12 as $2 \times 2 \times 3$. In step 2 , we split $V:=\{1, \cdots, 12\}$ into $V_{1}:=\{1, \cdots, 4\}, V_{2}:=\{5, \cdots, 8\}$, and $V_{3}:=\{9, \cdots, 12\}$. Step 3 corresponds to the first two graphs in Fig. 10b As shown in Fig. 10a the subgraphs consisting of V_{1}, V_{2}, and V_{3} in the first two graphs in Fig. 10b are equivalent to the k-PEER HYPER-HYPERCUBE GRAPH with the number of nodes 4. Thus, all nodes reach the exact consensus by exchanging parameters in Fig. 10b

Figure 10: Illustration of the 2 -PEER Hyper-hypercube Graph. In Fig. 10a, all edge weights are $\frac{1}{2}$. In Fig. 10b, edge weights are $\frac{1}{2}$ in the first two graphs and $\frac{1}{3}$ in the last graph.

B Detailed Explanation of Simple Base- $(k+1)$ Graph with $k \geq 2$

In Sec.4.2, we explain Alg. 2 only in the case where maximum degree k is one. In this section, we explain the details of Alg. 2 in the case with $k \geq 2$.

The Simple Base- $(k+1)$ Graph mainly consists of the following five steps.
Step 1. As in the base- $(k+1)$ number of n, we decompose n as $n=a_{1}(k+1)^{p_{1}}+\cdots+a_{L}(k+1)^{p_{L}}$ in line 1 , and then split V into disjoint subsets V_{1}, \cdots, V_{L} such that $\left|V_{l}\right|=a_{l}(k+1)^{p_{l}}$ for all $l \in[L]$.
Step 2. For all $l \in[L]$, we split V_{l} into disjoint subsets $V_{l, 1}, \cdots, V_{l, a_{l}}$ such that $\left|V_{l, a}\right|=(k+1)^{p_{l}}$ for all $a \in\left[a_{l}\right]$ in line 3 .
Step 3. For all $l \in[L]$, we make all nodes in V_{l} obtain the average of parameters in V_{l} using the k-PEER Hyper-hypercube Graph $\mathcal{H}_{k}\left(V_{l}\right)$ in line 11. Then, we initialize l^{\prime} as one.
Step 4. Each node in $V_{l^{\prime}+1} \cup \cdots \cup V_{L}$ exchange parameters with $a_{l^{\prime}}$ nodes in $V_{l^{\prime}}\left(=V_{l^{\prime}, 1} \cup \cdots \cup V_{l^{\prime}, a_{l^{\prime}}}\right)$ such that the average in $V_{l^{\prime}, a}$ becomes equivalent to the average in V for all $a \in\left[a_{l^{\prime}}\right]$. We increase l^{\prime} by one and repeat step 4 until $l^{\prime}=L$. This procedure corresponds to line 15 .
Step 5. For all $l \in[L]$ and $a \in\left[a_{l}\right]$, we make all nodes in $V_{l, a}$ obtain the average in $V_{l, a}$ using the k PEER HYPER-HYpERCUBE GRAPH $\mathcal{H}_{k}\left(V_{l, a}\right)$. Since the average in $V_{l, a}$ is equivalent to the average in V after step 4, all nodes reach the exact consensus. This procedure corresponds to line 25 .

The major difference compared with the case where $k=1$ is step 4 . In the case where $k=1$, each node in $V_{l^{\prime}+1} \cup \cdots \cup V_{L}$ exchange parameters with one node in $V_{l^{\prime}}$ such that the average in $V_{l^{\prime}}$ becomes equivalent to that in V, while in the case where $k \geq 2$, each node in $V_{l^{\prime}+1} \cup \cdots \cup V_{L}$ exchange parameters such that the average in $V_{l^{\prime}, a}$ becomes equivalent to that in V for all $a \in\left[a_{l}\right]$. Thanks to this step, we can make all nodes reach the exact consensus using k-PEER HYPER-HYPERCUBE Graph $\mathcal{H}_{k}\left(V_{l, a}\right)$ instead of $\mathcal{H}_{k}\left(V_{l}\right)$ in step 5 , and we can reduce the length of a graph sequence.
Using the example provided in Fig. 11, we explain Alg. 2 in a more detailed manner. Let $G^{(1)}, \cdots, G^{(4)}$ denote the graphs depicted in Fig. 11 from left to right, respectively. First, we split $V:=\{1, \cdots, 7\}$ into $V_{1}:=\{1, \cdots, 6\}$ and $V_{2}:=\{7\}$, and then split V_{1} into $V_{1,1}:=\{1,2,3\}$ and $V_{1,2}:=\{4,5,6\}$. In step 3 , all nodes in V_{1} obtain the same parameter by exchanging parameters in $G^{(1)}$ and $G^{(2)}$. In step 4, the average in $V_{1,1}$, that in $V_{1,2}$, and that in V_{2} become the same as the average in all nodes V by exchanging parameters in $G^{(3)}$. Thus, in step 5 , all nodes reach the exact consensus by exchanging parameters in $G^{(4)}$.

Figure 11: $k=2, n=7(=2 \times 3+1)$. The value on the edge indicates the edge weight. For simplicity, we omit the edge value when it is $\frac{1}{3}$.

C Illustration of Topologies

C. 1 Examples

Fig. 12 shows the examples of the Simple Base- $(k+1)$ Graph. Using these examples, we explain how all nodes reach the exact consensus.
We explain the case depicted in Fig. 12a Let $G^{(1)}, G^{(2)}, G^{(3)}$ denote the graphs depicted in Fig. 12a from left to right, respectively. First, we split $V:=\{1, \cdots, 5\}$ into $V_{1}:=\{1,2,3\}$ and $V_{2}:=\{4,5\}$, and then split V_{2} into $V_{2,1}:=\{4\}$ and $V_{2,2}:=\{5\}$. After exchanging parameters in $G^{(1)}$, nodes in V_{1} and nodes in V_{2} have the same parameter respectively. Then, after exchanging parameters in $G^{(2)}$, the average in V_{1}, that in $V_{2,1}$, and that in $V_{2,2}$ become same as the average in V. Thus, by exchanging parameters in $G^{(3)}$, all nodes reach the exact consensus. Note that edge $(4,5)$ in $G^{(3)}$, which is added in line 27 in Alg. 2 , is not necessary for all nodes to reach the exact consensus because nodes 4 and 5 already have the same parameter after exchanging parameters in $G^{(2)}$; however, it is effective in decentralized learning as we explained in Sec.4.2.

(a) $k=2, n=5(=3+2)$

(b) $k=1, n=7\left(=2^{2}+2+1\right)$

Figure 12: Illustration of the SIMPLE BASE- $(k+1)$ GRAPH. The edge is colored in the same color as the line of Alg. 2 where the edge is added. The value on the edge indicates the edge weight. For simplicity, we omit the edge value when it is $\frac{1}{3}$.

C. 2 Illustrative Comparison between Simple Base- $(k+1)$ and Base- $(k+1)$ Graphs

In this section, we provide an example of the SIMPLE BASE- $(k+1)$ GRAPH, explaining the reason why the length of the Base- $(k+1)$ Graph is less than that of the $\operatorname{Simple} \operatorname{BaSE}-(k+1) \operatorname{Graph}$.
Let $G^{(1)}, \cdots, G^{(5)}$ denote the graphs depicted in Fig. 13 from left to right, respectively. $\left(G^{(1)}, G^{(2)}, G^{(3)}, G^{(4)}, G^{(5)}\right)$ is finite-time convergence, but $\left(G^{(1)}, G^{(2)}, G^{(3)}, G^{(5)}\right)$ is also finitetime convergence because after exchanging parameters in $G^{(3)}$, nodes 3 and 4 already have the same parameters. Then, using the technique proposed in Sec.4.3, we can remove such unnecessary graphs contained in the Simple Base- $(k+1)$ Graph (see Fig. 4a). Consequently, the Base- $(k+1)$ Graph can make all nodes reach the exact consensus faster than the Simple Base- $(k+1)$ Graph.

Figure 13: Illustration of the Simple Base-2 Graph with $n=6\left(=2^{2}+2\right)$. The edge is colored in the same color as the line of Alg. 2 where the edge is added.

C. 3 Additional Examples

C.3.1 Simple Base- $(k+1)$ Graph

(3)

Figure 14: Illustration of the Simple Base-2 Graph with the various numbers of nodes.

(a) $n=3$

(b) $n=4$

(c) $n=5$

(d) $n=6$

(e) $n=7$

(f) $n=8$

(g) $n=9$

(h) $n=10$

Figure 15: Illustration of the SIMPLE BASE-3 GRAPH with the various numbers of nodes.

C.3.2 Base- $(k+1)$ Graph

(3)

Figure 16: Illustration of the BASE-2 GRAPH with the various numbers of nodes.

$$
\text { (3) (a) } n=3
$$

Figure 17: Illustration of the BASE-3 GRAPH with the various numbers of nodes.

C. 4 1-peer Hypercube Graph and 1-peer Exponential Graph

For completeness, we provide examples of the 1-peer hypercube [31] and 1-peer exponential graphs [43] in Figs. 19 and 18, respectively.

(a) $n=4$

(b) $n=8$

Figure 18: Illustration of the 1-peer hypercube graph. All edge weights are 0.5 .

(e) $n=8$

Figure 19: Illustration of the 1-peer exponential graph. All edge weights are 0.5.

D Proof of Theorem 1

Lemma 1 (Length of k-PEER HYper-hypercube Graph). Suppose that all prime factors of the number of nodes n are less than or equal to $k+1$. Then, for any number of nodes $n \in \mathbb{N}$ and maximum degree $k \in[n-1]$, the length of the k-PEER Hyper-Hypercube Graph is less than or equal to $\max \left\{1,2 \log _{k+2}(n)\right\}$.

Proof. We assume that n is decomposed as $n=n_{1} \times \cdots \times n_{L}$ with minimum L where $n_{l} \in[k+1]$ for all $l \in[L]$. Without loss of generality, we suppose $n_{1} \leq n_{2} \leq \cdots \leq n_{L}$. Then, for any $i \neq j$, it holds that $n_{i} \times n_{j} \geq k+2$ because if $n_{i} \times n_{j} \leq k+1$ for some i and j, this contradicts the assumption that L is minimum.
When L is even, we have

$$
n=\left(n_{1} \times n_{2}\right) \times \cdots \times\left(n_{L-1} \times n_{L}\right) \geq(k+2)^{\frac{L}{2}} .
$$

Then, we get $L \leq 2 \log _{k+2}(n)$.
Next, we discuss the case when L is odd. When $L \geq 3, n_{L} \geq \sqrt{k+2}$ holds because $n_{L-2} \times n_{L-1} \geq$ $k+2$. Thus, we get

$$
n=\left(n_{1} \times n_{2}\right) \times \cdots \times\left(n_{L-2} \times n_{L-1}\right) \times n_{L} \geq(k+2)^{\frac{L-1}{2}} \times n_{L} \geq(k+2)^{\frac{L}{2}} .
$$

Then, we get $L \leq 2 \log _{k+2}(n)$ when $L \geq 3$.
Thus, given the case when $L=1$, the length of the k-PEER Hyper-hypercube Graph is less than or equal to $\max \left\{1,2 \log _{k+2}(n)\right\}$.

Lemma 2 (Length of Simple Base- $(k+1)$ Graph). For any number of nodes $n \in \mathbb{N}$ and maximum degree $k \in[n-1]$, the length of the SIMPLE BASE- $(k+1)$ GRAPH is less than or equal to $2 \log _{k+1}(n)+2$.

Proof. When all prime factors of n are less than or equal to $k+1$, the Simple Base- $(k+1)$ Graph is equivalent to the k-PEER HYPER-HYPERCUBE GRAPH and the statement holds from Lemma 1 In the following, we consider the case when there exists a prime factor of n that is larger than $k+1$. Note that because when $L=1$ (i.e., $n=a_{1} \times(k+1)^{p_{1}}$), all prime factors of n are less than or equal to $k+1$, we only need to consider the case when $L \geq 2$. We have the following inequality:

$$
\begin{aligned}
\log _{k+1}(n) & =\log _{k+1}\left(a_{1}(k+1)^{p_{1}}+\cdots+a_{L}(k+1)^{p_{L}}\right) \\
& \geq p_{1}+\log _{k+1}\left(a_{1}\right) \\
& \geq p_{1} .
\end{aligned}
$$

Then, because $\left|V_{1}\right|=a_{1} \times(k+1)^{p_{1}}$, it holds that $m_{1}=\left|\mathcal{H}_{k}\left(V_{1}\right)\right| \leq 1+p_{1} \leq \log _{k+1}(n)+1$. Similarly, it holds that $\left|\mathcal{H}_{k}\left(V_{1,1}\right)\right|=p_{1} \leq \log _{k+1}(n)$ because $\left|V_{1,1}\right|=(k+1)^{p_{1}}$. In Alg. 2, the update rule $b_{1} \leftarrow b_{1}+1$ in line 22 is executed for the first time when $m=m_{1}+2$ because $L \geq 2$. Thus, the length of the Simple Base- $(k+1)$ Graph is at most $m_{1}+\left|\mathcal{H}_{k}\left(V_{1,1}\right)\right|+1 \leq 2 \log _{k+1}(n)+2$. This concludes the statement.

Lemma 3 (Length of BASE- $(k+1)$ GRAPH). For any number of nodes $n \in \mathbb{N}$ and maximum degree $k \in[n-1]$, the length of the BASE- $(k+1)$ GRAPH is less than or equal to $2 \log _{k+1}(n)+2$.

Proof. The statement follows immediately from Lemma 2 and line 12 in Alg. 3

E Convergence Rate of DSGD over Various Topologies

Table 2 lists the convergence rates of DSGD over various topologies. These convergence rates can be immediately obtained from Theorem 2 stated in Koloskova et al. [11] and consensus rate of the topology. As seen from Table 2, the BASE-2 Graph enables DSGD to converge faster than the ring and torus and as fast as the exponential graph for any number of nodes, although the maximum degree of the BASE-2 GRAPH is only one. Moreover, for any number of nodes, the BASE- $(k+1)$ GRAPH with $2 \leq k<\left\lceil\log _{2}(n)\right\rceil$ enables DSGD to converge faster than the exponential graph, even though the maximum degree of the BASE- $(k+1)$ Graph remains to be less than that of the exponential graph.

Table 2: Convergence rates and maximum degrees of DSGD over various topologies.

Topology	Convergence Rate	Maximum Degree	\#Nodes n
Ring [28]	$\mathcal{O}\left(\frac{\sigma^{2}}{n \epsilon^{2}}+\frac{\zeta n^{2}+\sigma n}{\epsilon^{3 / 2}}+\frac{n^{2}}{\epsilon}\right) \cdot L F_{0}$	2	$\forall n \in \mathbb{N}$
Torus [28]	$\mathcal{O}\left(\frac{\sigma^{2}}{n \epsilon^{2}}+\frac{\zeta n+\sigma \sqrt{n}}{\epsilon^{3 / 2}}+\frac{n}{\epsilon}\right) \cdot L F_{0}$	4	$\forall n \in \mathbb{N}$
Exp. [43]	$\mathcal{O}\left(\frac{\sigma^{2}}{n \epsilon^{2}}+\frac{\zeta \log _{2}(n)+\sigma \sqrt{\log _{2}(n)}}{\epsilon^{3 / 2}}+\frac{\log _{2}(n)}{\epsilon}\right) \cdot L F_{0}$	$\left\lceil\log _{2}(n)\right\rceil$	$\forall n \in \mathbb{N}$
1-peer Exp. [43]	$\mathcal{O}\left(\frac{\sigma^{2}}{n \epsilon^{2}}+\frac{\zeta \log _{2}(n)+\sigma \sqrt{\log _{2}(n)}}{\epsilon^{3 / 2}}+\frac{\log _{2}(n)}{\epsilon}\right) \cdot L F_{0}$	1	A power of 2
1-peer Hypercube [31]	$\mathcal{O}\left(\frac{\sigma^{2}}{n \epsilon^{2}}+\frac{\zeta \log _{2}(n)+\sigma \sqrt{\log _{2}(n)}}{\epsilon^{3 / 2}}+\frac{\log _{2}(n)}{\epsilon}\right) \cdot L F_{0}$	1	A power of 2
Base- $(k+1)$ Graph (ours)	$\mathcal{O}\left(\frac{\sigma^{2}}{n \epsilon^{2}}+\frac{\zeta \log _{k+1}(n)+\sigma \sqrt{\log _{k+1}(n)}}{\epsilon^{3 / 2}}+\frac{\log _{k+1}(n)}{\epsilon}\right) \cdot L F_{0}$	k	$\forall n \in \mathbb{N}$

F Additional Experiments

F. 1 Comparison of Base- $(k+1)$ and Simple Base- $(k+1)$ Graphs

Fig. 20 shows the length of the Simple Base- $(k+1)$ Graph and Base- $(k+1)$ Graph. The results indicate that for all k, the length of the BASE- $(k+1)$ GrAPH is less than the length of the Simple BASE- $(k+1)$ Graph in many cases.

Figure 20: Comparison of the length of the Simple Base- $(k+1)$ Graph and Base- $(k+1)$ Graph.

F. 2 Consensus Rate

In Fig. 21, we demonstrate how consensus error decreases on various topologies when the number of nodes n is a power of 2 . The results indicate that the BASE-2 GRAPH and 1-peer exponential graph can reach the exact consensus after the same finite number of iterations and reach the consensus faster than other topologies. Note that the BASE-2 GRAPH is equivalent to the 1-peer hypercube graph when n is a power of 2 .

Figure 21: Comparison of consensus rates among different topologies when the number of nodes n is a power of 2 . Because the BASE- $\{3,5\}$ GRAPH are the same as the BASE- $\{2,4\}$ GRAPH, respectively, when n is a power of 2 , we omit the results of the BASE- $\{3,5\}$ GrAPh.

F. 3 Decentralized Learning

F.3.1 Comparison of Base- $(k+1)$ Graph and EquiStatic

In this section, we compared the BASE- $(k+1)$ Graph with the $\{\mathrm{U}, \mathrm{D}\}$-EquiStatic [33]. The $\{\mathrm{U}$, $D\}$-EquiStatic are dense variants of the 1-peer $\{U, D\}$-EquiDyn, and their maximum degree can be set as hyperparameters. We evaluated the $\{U, D\}$-EquiStatic varying their maximum degrees; the results are presented in Fig. 22. In both cases with $\alpha=10$ and $\alpha=0.1$, the BASE-2 Graph can achieve comparable or higher final accuracy than all $\{\mathrm{U}, \mathrm{D}\}$-EquiStatic, and the BASE- $\{3,4,5\}$ Graph outperforms all $\{\mathrm{U}, \mathrm{D}\}$-EquiStatic. Thus, the BaSE- $(k+1)$ Graph is superior to the $\{\mathrm{U}$, D\}-EquiStatic from the perspective of achieving a balance between accuracy and communication efficiency.

Figure 22: Test accuracy (\%) of DSGD with CIFAR-10 and $n=25$. The number in the bracket is the maximum degree of a topology.

F.3.2 Comparison with Various Number of Nodes

In this section, we evaluated the effectiveness of the BASE- $(k+1)$ GRAPH when varying the number of nodes n. Fig. 24 presents the learning curves, and Fig 23 shows how consensus error decreases when n is 21, 22, 23, 24, and 25. From Fig. 24, the BASE-2 GRAPH consistently outperforms the 1-peer exponential graph and can achieve a final accuracy comparable to that of the exponential graph. Furthermore, the BASE- $\{3,4,5\}$ GrAPH can consistently outperform the exponential graph, even though the maximum degree of the BASE- $\{3,4,5\}$ GRAPH is less than that of the exponential graph.
In Fig. 25 presents the learning curve for $n=16$. When the number of nodes is a power of two, the 1-peer exponential graph is also finite-time convergence, and the 1-peer exponential graph and BASE-2 GRAPH achieve competitive accuracy.

Figure 23: Comparison of consensus rates among different topologies. The number in the bracket denotes the maximum degree of a topology. We omit the results of the BASE-5 GRAPH when $n=24$ because the BASE-5 GRAPH and BASE-4 GRAPH are equivalent when $n=24$.

Figure 24: Test accuracy (\%) of DSGD with CIFAR-10 and $\alpha=0.1$. The number in the bracket denotes the maximum degree of a topology. We omit the results of the BASE-5 GRAPH when $n=24$ because the BASE- 5 GRAPH and BASE- 4 Graph are equivalent when $n=24$.

Figure 25: Test accuracy (\%) of DSGD with CIFAR-10 and $n=16$. The number in the bracket is the maximum degree of a topology. We omit the results of the BASE-3 GRAPH and BASE-5 Graph because these graphs are equivalent to the BASE-2 GRAPH and BASE-4 GRAPH, respectively.

