
A Detailed Explanation of k-peer Hyperhypercube Graph

In this section, we explain Alg. 1 in more detail. The k-PEER HYPER-HYPERCUBE GRAPH mainly
consists of the following five steps.

Step 1. Decompose n as n = n1 × · · · × nL with minimum L such that nl ∈ [k + 1] for all l ∈ [L].
Step 2. If L = 1, we make all nodes obtain the average of parameters in V by using the complete

graph. If L ≥ 2, we split V into disjoint subsets V1, · · · , VnL
such that |Vl| = n

nL
for all

l ∈ [nL] and continue to step 3.
Step 3. For all l ∈ [nL], we make all nodes in Vl obtain the average of parameters in Vl by using the

k-PEER HYPER-HYPERCUBE GRAPH Hk(Vl).
Step 4. We take nL nodes from V1, · · · , VnL

respectively and construct a set U1. Similarly, we
construct U2, · · · , UnL

such that U1, · · · , UnL
are disjoint sets.

Step 5. For all l ∈ [nL], we make all nodes in Ul obtain the average of parameters in Ul by using the
complete graph. Because the average of parameter Ul is equivalent to the average in V after
step 4, all nodes reach the exact consensus.

When n ≤ k + 1, the k-PEER HYPER-HYPERCUBE GRAPH becomes the complete graph because of
step 2. When n > k + 1, we decompose n in step 1 and construct the k-PEER HYPER-HYPERCUBE
GRAPH recursively in step 3. Thus, the k-PEER HYPER-HYPERCUBE GRAPH can make all nodes
reach the exact consensus by the sequence of L graphs.

Using the example provided in Fig. 10, we explain the k-PEER HYPER-HYPERCUBE GRAPH in a more
detailed manner. When n = 12, we decompose 12 as 2× 2× 3. In step 2, we split V := {1, · · · , 12}
into V1 := {1, · · · , 4}, V2 := {5, · · · , 8}, and V3 := {9, · · · , 12}. Step 3 corresponds to the first two
graphs in Fig. 10b. As shown in Fig. 10a, the subgraphs consisting of V1, V2, and V3 in the first two
graphs in Fig. 10b are equivalent to the k-PEER HYPER-HYPERCUBE GRAPH with the number of
nodes 4. Thus, all nodes reach the exact consensus by exchanging parameters in Fig. 10b.
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Figure 10: Illustration of the 2-PEER HYPER-HYPERCUBE GRAPH. In Fig. 10a, all edge weights are
1
2 . In Fig. 10b, edge weights are 1

2 in the first two graphs and 1
3 in the last graph.
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B Detailed Explanation of Simple Base-(k + 1) Graph with k ≥ 2

In Sec. 4.2, we explain Alg. 2 only in the case where maximum degree k is one. In this section, we
explain the details of Alg. 2 in the case with k ≥ 2.

The SIMPLE BASE-(k + 1) GRAPH mainly consists of the following five steps.

Step 1. As in the base-(k+1) number of n, we decompose n as n = a1(k+1)p1+ · · ·+aL(k+1)pL

in line 1, and then split V into disjoint subsets V1, · · · , VL such that |Vl| = al(k + 1)pl for
all l ∈ [L].

Step 2. For all l ∈ [L], we split Vl into disjoint subsets Vl,1, · · · , Vl,al
such that |Vl,a| = (k + 1)pl

for all a ∈ [al] in line 3.
Step 3. For all l ∈ [L], we make all nodes in Vl obtain the average of parameters in Vl using the

k-PEER HYPER-HYPERCUBE GRAPH Hk(Vl) in line 11. Then, we initialize l′ as one.
Step 4. Each node in Vl′+1∪· · ·∪VL exchange parameters with al′ nodes in Vl′(= Vl′,1∪· · ·∪Vl′,al′ )

such that the average in Vl′,a becomes equivalent to the average in V for all a ∈ [al′ ]. We
increase l′ by one and repeat step 4 until l′ = L. This procedure corresponds to line 15.

Step 5. For all l ∈ [L] and a ∈ [al], we make all nodes in Vl,a obtain the average in Vl,a using the k-
PEER HYPER-HYPERCUBE GRAPH Hk(Vl,a). Since the average in Vl,a is equivalent to the
average in V after step 4, all nodes reach the exact consensus. This procedure corresponds
to line 25.

The major difference compared with the case where k = 1 is step 4. In the case where k = 1, each
node in Vl′+1∪· · ·∪VL exchange parameters with one node in Vl′ such that the average in Vl′ becomes
equivalent to that in V , while in the case where k ≥ 2, each node in Vl′+1 ∪ · · · ∪ VL exchange
parameters such that the average in Vl′,a becomes equivalent to that in V for all a ∈ [al]. Thanks
to this step, we can make all nodes reach the exact consensus using k-PEER HYPER-HYPERCUBE
GRAPH Hk(Vl,a) instead ofHk(Vl) in step 5, and we can reduce the length of a graph sequence.

Using the example provided in Fig. 11, we explain Alg. 2 in a more detailed manner. Let
G(1), · · · , G(4) denote the graphs depicted in Fig. 11 from left to right, respectively. First, we
split V := {1, · · · , 7} into V1 := {1, · · · , 6} and V2 := {7}, and then split V1 into V1,1 := {1, 2, 3}
and V1,2 := {4, 5, 6}. In step 3, all nodes in V1 obtain the same parameter by exchanging parameters
in G(1) and G(2). In step 4, the average in V1,1, that in V1,2, and that in V2 become the same as the
average in all nodes V by exchanging parameters in G(3). Thus, in step 5, all nodes reach the exact
consensus by exchanging parameters in G(4).
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Figure 11: k = 2, n = 7(= 2 × 3 + 1). The value on the edge indicates the edge weight. For
simplicity, we omit the edge value when it is 1

3 .
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C Illustration of Topologies

C.1 Examples

Fig. 12 shows the examples of the SIMPLE BASE-(k+ 1) GRAPH. Using these examples, we explain
how all nodes reach the exact consensus.

We explain the case depicted in Fig. 12a. Let G(1), G(2), G(3) denote the graphs depicted in Fig. 12a
from left to right, respectively. First, we split V := {1, · · · , 5} into V1 := {1, 2, 3} and V2 := {4, 5},
and then split V2 into V2,1 := {4} and V2,2 := {5}. After exchanging parameters in G(1), nodes
in V1 and nodes in V2 have the same parameter respectively. Then, after exchanging parameters in
G(2), the average in V1, that in V2,1, and that in V2,2 become same as the average in V . Thus, by
exchanging parameters in G(3), all nodes reach the exact consensus. Note that edge (4, 5) in G(3),
which is added in line 27 in Alg. 2, is not necessary for all nodes to reach the exact consensus because
nodes 4 and 5 already have the same parameter after exchanging parameters in G(2); however, it is
effective in decentralized learning as we explained in Sec. 4.2.
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(b) k = 1, n = 7(= 22 + 2 + 1)

Figure 12: Illustration of the SIMPLE BASE-(k + 1) GRAPH. The edge is colored in the same color
as the line of Alg. 2 where the edge is added. The value on the edge indicates the edge weight. For
simplicity, we omit the edge value when it is 1

3 .

C.2 Illustrative Comparison between Simple Base-(k + 1) and Base-(k + 1) Graphs

In this section, we provide an example of the SIMPLE BASE-(k + 1) GRAPH, explaining the reason
why the length of the BASE-(k + 1) GRAPH is less than that of the SIMPLE BASE-(k + 1) GRAPH.

Let G(1), · · · , G(5) denote the graphs depicted in Fig. 13 from left to right, respectively.
(G(1), G(2), G(3), G(4), G(5)) is finite-time convergence, but (G(1), G(2), G(3), G(5)) is also finite-
time convergence because after exchanging parameters in G(3), nodes 3 and 4 already have the same
parameters. Then, using the technique proposed in Sec. 4.3, we can remove such unnecessary graphs
contained in the SIMPLE BASE-(k + 1) GRAPH (see Fig. 4a). Consequently, the BASE-(k + 1)
GRAPH can make all nodes reach the exact consensus faster than the SIMPLE BASE-(k + 1) GRAPH.
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Figure 13: Illustration of the SIMPLE BASE-2 GRAPH with n = 6(= 22 + 2). The edge is colored in
the same color as the line of Alg. 2 where the edge is added.
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C.3 Additional Examples

C.3.1 Simple Base-(k + 1) Graph
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Figure 14: Illustration of the SIMPLE BASE-2 GRAPH with the various numbers of nodes.
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Figure 15: Illustration of the SIMPLE BASE-3 GRAPH with the various numbers of nodes.

17



C.3.2 Base-(k + 1) Graph
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Figure 16: Illustration of the BASE-2 GRAPH with the various numbers of nodes.
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Figure 17: Illustration of the BASE-3 GRAPH with the various numbers of nodes.
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C.4 1-peer Hypercube Graph and 1-peer Exponential Graph

For completeness, we provide examples of the 1-peer hypercube [31] and 1-peer exponential graphs
[43] in Figs. 19 and 18, respectively.
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Figure 18: Illustration of the 1-peer hypercube graph. All edge weights are 0.5.
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Figure 19: Illustration of the 1-peer exponential graph. All edge weights are 0.5.
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D Proof of Theorem 1

Lemma 1 (Length of k-PEER HYPER-HYPERCUBE GRAPH). Suppose that all prime factors of the
number of nodes n are less than or equal to k + 1. Then, for any number of nodes n ∈ N and
maximum degree k ∈ [n− 1], the length of the k-PEER HYPER-HYPERCUBE GRAPH is less than or
equal to max{1, 2 logk+2(n)}.

Proof. We assume that n is decomposed as n = n1 × · · · × nL with minimum L where nl ∈ [k + 1]
for all l ∈ [L]. Without loss of generality, we suppose n1 ≤ n2 ≤ · · · ≤ nL. Then, for any i ̸= j,
it holds that ni × nj ≥ k + 2 because if ni × nj ≤ k + 1 for some i and j, this contradicts the
assumption that L is minimum.

When L is even, we have

n = (n1 × n2)× · · · × (nL−1 × nL) ≥ (k + 2)
L
2 .

Then, we get L ≤ 2 logk+2(n).

Next, we discuss the case when L is odd. When L ≥ 3, nL ≥
√
k + 2 holds because nL−2×nL−1 ≥

k + 2. Thus, we get

n = (n1 × n2)× · · · × (nL−2 × nL−1)× nL ≥ (k + 2)
L−1

2 × nL ≥ (k + 2)
L
2 .

Then, we get L ≤ 2 logk+2(n) when L ≥ 3.

Thus, given the case when L = 1, the length of the k-PEER HYPER-HYPERCUBE GRAPH is less than
or equal to max{1, 2 logk+2(n)}.

Lemma 2 (Length of SIMPLE BASE-(k + 1) GRAPH). For any number of nodes n ∈ N and
maximum degree k ∈ [n− 1], the length of the SIMPLE BASE-(k + 1) GRAPH is less than or equal
to 2 logk+1(n) + 2.

Proof. When all prime factors of n are less than or equal to k+1, the SIMPLE BASE-(k+1) GRAPH
is equivalent to the k-PEER HYPER-HYPERCUBE GRAPH and the statement holds from Lemma 1. In
the following, we consider the case when there exists a prime factor of n that is larger than k + 1.
Note that because when L = 1 (i.e., n = a1× (k+1)p1 ), all prime factors of n are less than or equal
to k + 1, we only need to consider the case when L ≥ 2. We have the following inequality:

logk+1(n) = logk+1(a1(k + 1)p1 + · · ·+ aL(k + 1)pL)

≥ p1 + logk+1(a1)

≥ p1.

Then, because |V1| = a1 × (k + 1)p1 , it holds that m1 = |Hk(V1)| ≤ 1 + p1 ≤ logk+1(n) + 1.
Similarly, it holds that |Hk(V1,1)| = p1 ≤ logk+1(n) because |V1,1| = (k + 1)p1 . In Alg. 2, the
update rule b1 ← b1+1 in line 22 is executed for the first time when m = m1+2 because L ≥ 2. Thus,
the length of the SIMPLE BASE-(k + 1) GRAPH is at most m1 + |Hk(V1,1)|+ 1 ≤ 2 logk+1(n) + 2.
This concludes the statement.

Lemma 3 (Length of BASE-(k+1) GRAPH). For any number of nodes n ∈ N and maximum degree
k ∈ [n− 1], the length of the BASE-(k + 1) GRAPH is less than or equal to 2 logk+1(n) + 2.

Proof. The statement follows immediately from Lemma 2 and line 12 in Alg. 3.
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E Convergence Rate of DSGD over Various Topologies

Table 2 lists the convergence rates of DSGD over various topologies. These convergence rates can
be immediately obtained from Theorem 2 stated in Koloskova et al. [11] and consensus rate of the
topology. As seen from Table 2, the BASE-2 GRAPH enables DSGD to converge faster than the ring
and torus and as fast as the exponential graph for any number of nodes, although the maximum degree
of the BASE-2 GRAPH is only one. Moreover, for any number of nodes, the BASE-(k + 1) GRAPH
with 2 ≤ k < ⌈log2(n)⌉ enables DSGD to converge faster than the exponential graph, even though
the maximum degree of the BASE-(k + 1) GRAPH remains to be less than that of the exponential
graph.

Table 2: Convergence rates and maximum degrees of DSGD over various topologies.
Topology Convergence Rate Maximum Degree #Nodes n

Ring [28] O
(

σ2

nϵ2
+

ζn2 + σn

ϵ3/2
+

n2

ϵ

)
· LF0 2 ∀n ∈ N

Torus [28] O
(

σ2

nϵ2
+

ζn+ σ
√
n

ϵ3/2
+

n

ϵ

)
· LF0 4 ∀n ∈ N

Exp. [43] O

(
σ2

nϵ2
+

ζ log2(n) + σ
√
log2(n)

ϵ3/2
+

log2(n)

ϵ

)
· LF0 ⌈log2(n)⌉ ∀n ∈ N

1-peer Exp. [43] O

(
σ2

nϵ2
+

ζ log2(n) + σ
√
log2(n)

ϵ3/2
+

log2(n)

ϵ

)
· LF0 1 A power of 2

1-peer Hypercube [31] O

(
σ2

nϵ2
+

ζ log2(n) + σ
√
log2(n)

ϵ3/2
+

log2(n)

ϵ

)
· LF0 1 A power of 2

Base-(k + 1) Graph (ours) O

(
σ2

nϵ2
+

ζ logk+1(n) + σ
√

logk+1(n)

ϵ3/2
+

logk+1(n)

ϵ

)
· LF0 k ∀n ∈ N
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F Additional Experiments

F.1 Comparison of Base-(k + 1) and Simple Base-(k + 1) Graphs

Fig. 20 shows the length of the SIMPLE BASE-(k + 1) GRAPH and BASE-(k + 1) GRAPH. The
results indicate that for all k, the length of the BASE-(k + 1) GRAPH is less than the length of the
SIMPLE BASE-(k + 1) GRAPH in many cases.
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Figure 20: Comparison of the length of the SIMPLE BASE-(k+1) GRAPH and BASE-(k+1) GRAPH.

F.2 Consensus Rate

In Fig. 21, we demonstrate how consensus error decreases on various topologies when the number of
nodes n is a power of 2. The results indicate that the BASE-2 GRAPH and 1-peer exponential graph
can reach the exact consensus after the same finite number of iterations and reach the consensus faster
than other topologies. Note that the BASE-2 GRAPH is equivalent to the 1-peer hypercube graph
when n is a power of 2.
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Figure 21: Comparison of consensus rates among different topologies when the number of nodes
n is a power of 2. Because the BASE-{3, 5} GRAPH are the same as the BASE-{2, 4} GRAPH,
respectively, when n is a power of 2, we omit the results of the BASE-{3, 5} GRAPH.
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F.3 Decentralized Learning

F.3.1 Comparison of Base-(k + 1) Graph and EquiStatic

In this section, we compared the BASE-(k + 1) GRAPH with the {U, D}-EquiStatic [33]. The {U,
D}-EquiStatic are dense variants of the 1-peer {U, D}-EquiDyn, and their maximum degree can
be set as hyperparameters. We evaluated the {U, D}-EquiStatic varying their maximum degrees;
the results are presented in Fig. 22. In both cases with α = 10 and α = 0.1, the BASE-2 GRAPH
can achieve comparable or higher final accuracy than all {U, D}-EquiStatic, and the BASE-{3, 4, 5}
GRAPH outperforms all {U, D}-EquiStatic. Thus, the BASE-(k + 1) GRAPH is superior to the {U,
D}-EquiStatic from the perspective of achieving a balance between accuracy and communication
efficiency.
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Figure 22: Test accuracy (%) of DSGD with CIFAR-10 and n = 25. The number in the bracket is the
maximum degree of a topology.

F.3.2 Comparison with Various Number of Nodes

In this section, we evaluated the effectiveness of the BASE-(k+ 1) GRAPH when varying the number
of nodes n. Fig. 24 presents the learning curves, and Fig 23 shows how consensus error decreases
when n is 21, 22, 23, 24, and 25. From Fig. 24, the BASE-2 GRAPH consistently outperforms the
1-peer exponential graph and can achieve a final accuracy comparable to that of the exponential graph.
Furthermore, the BASE-{3, 4, 5} GRAPH can consistently outperform the exponential graph, even
though the maximum degree of the BASE-{3, 4, 5} GRAPH is less than that of the exponential graph.

In Fig. 25 presents the learning curve for n = 16. When the number of nodes is a power of two,
the 1-peer exponential graph is also finite-time convergence, and the 1-peer exponential graph and
BASE-2 GRAPH achieve competitive accuracy.

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 21

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 22

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 23

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 24

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 25 Exp. (5)
1-peer Exp. (1)
Base-2 Graph (1)
Base-3 Graph (2)
Base-4 Graph (3)
Base-5 Graph (4)

Figure 23: Comparison of consensus rates among different topologies. The number in the bracket
denotes the maximum degree of a topology. We omit the results of the BASE-5 GRAPH when n = 24
because the BASE-5 GRAPH and BASE-4 GRAPH are equivalent when n = 24.
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Figure 24: Test accuracy (%) of DSGD with CIFAR-10 and α = 0.1. The number in the bracket
denotes the maximum degree of a topology. We omit the results of the BASE-5 GRAPH when n = 24
because the BASE-5 GRAPH and BASE-4 GRAPH are equivalent when n = 24.
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Figure 25: Test accuracy (%) of DSGD with CIFAR-10 and n = 16. The number in the bracket is the
maximum degree of a topology. We omit the results of the BASE-3 GRAPH and BASE-5 GRAPH
because these graphs are equivalent to the BASE-2 GRAPH and BASE-4 GRAPH, respectively.
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