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Abstract

Decentralized learning has recently been attracting increasing attention for its
applications in parallel computation and privacy preservation. Many recent studies
stated that the underlying network topology with a faster consensus rate (a.k.a.
spectral gap) leads to a better convergence rate and accuracy for decentralized learn-
ing. However, a topology with a fast consensus rate, e.g., the exponential graph,
generally has a large maximum degree, which incurs significant communication
costs. Thus, seeking topologies with both a fast consensus rate and small maximum
degree is important. In this study, we propose a novel topology combining both a
fast consensus rate and small maximum degree called the BASE-(k + 1) GRAPH.
Unlike the existing topologies, the BASE-(k + 1) GRAPH enables all nodes to
reach the exact consensus after a finite number of iterations for any number of
nodes and maximum degree k. Thanks to this favorable property, the BASE-(k+1)
GRAPH endows Decentralized SGD (DSGD) with both a faster convergence rate
and more communication efficiency than the exponential graph. We conducted
experiments with various topologies, demonstrating that the BASE-(k+1) GRAPH
enables various decentralized learning methods to achieve higher accuracy with
better communication efficiency than the existing topologies. Our code is available
at https://github.com/yukiTakezawa/BaseGraph.

1 Introduction

Distributed learning, which allows training neural networks in parallel on multiple nodes, has
become an important paradigm owing to the increased utilization of privacy preservation and large-
scale machine learning. In a centralized fashion, such as All-Reduce and Federated Learning
[8, 9, 16, 26, 27], all or some selected nodes update their parameters by using their local dataset and
then compute the average parameter of these nodes, although computing the average of many nodes is
the major bottleneck in the training time [18, 19, 23]. To reduce communication costs, decentralized
learning gains significant attention [11, 18, 24]. Because decentralized learning allows nodes to
exchange parameters only with a few neighbors in the underlying network topology, decentralized
learning is more communication efficient than All-Reduce and Federated Learning.

While decentralized learning can improve communication efficiency, it may degrade the convergence
rate and accuracy due to its sparse communication characteristics [11, 48]. Specifically, the smaller
the maximum degree of an underlying network topology is, the fewer the communication cost
becomes [33, 39]; meanwhile, the faster the consensus rate (a.k.a. spectral gap) of a topology is, the
faster the convergence rate of decentralized learning becomes [11]. Thus, developing a topology with
both a fast consensus rate and small maximum degree is essential for decentralized learning. Table 1
summarizes the properties of various topologies. For instance, the ring and exponential graph are
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Table 1: Comparison among different topologies with n nodes. The definition of the consensus rate
and finite-time convergence is shown in Sec. 3.

Topology Consensus Rate Connection Maximum Degree #Nodes n

Ring [28] 1−O(n−2) Undirected 2 ∀n ∈ N
Torus [28] 1−O(n−1) Undirected 4 ∀n ∈ N
Exp. [43] 1−O((log2(n))

−1) Directed ⌈log2(n)⌉ ∀n ∈ N
1-peer Exp. [43] O(log2(n))-finite time conv. Directed 1 A power of 2
1-peer Hypercube [31] O(log2(n))-finite time conv. Undirected 1 A power of 2
Base-(k + 1) Graph (ours) O(logk+1(n))-finite time conv. Undirected k ∀n ∈ N

commonly used [1, 3, 12, 23]. The ring is a communication-efficient topology because its maximum
degree is two but its consensus rate quickly deteriorates as the number of nodes n increases [28]. The
exponential graph has a fast consensus rate, which does not deteriorate much as n increases, but it
incurs significant communication costs because its maximum degree increases as n increases [43].
Thus, these topologies sacrifice either communication efficiency or consensus rate.

Recently, the 1-peer exponential graph [43] and 1-peer hypercube graph [31] were proposed as
topologies that combine both a small maximum degree and fast consensus rate (see Sec. C.4 for
examples). As Fig. 1 shows, in the ring and exponential graph, node parameters only reach the con-
sensus asymptotically by repeating exchanges of parameters with neighbors. Contrarily, in the 1-peer
exponential and 1-peer hypercube graphs, parameters reach the exact consensus after a finite number
of iterations when n is a power of 2 (see Fig. 21 in Sec. F.2). Thanks to this property of finite-time
convergence, the 1-peer exponential and 1-peer hypercube graphs enable Decentralized SGD (DSGD)
[18] to converge at the same convergence rate as the exponential graph when n is a power of 2, even
though the maximum degree of the 1-peer exponential and 1-peer hypercube graphs is only one [43].

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1
Co

ns
en

su
s e

rro
r

n = 1500 Exp. (11)
Ring (2)
Torus (4)
1-peer Exp. (1)
1-peer D-EquiDyn (1)
1-peer U-EquiDyn (1)
Base-2 Graph (1)
Base-3 Graph (2)
Base-4 Graph (3)
Base-5 Graph (4)

Figure 1: Comparison of consensus rate. See
Sec. 6 for detailed experimental settings. The
number in the bracket is the maximum degree.

However, this favorable property only holds when n
is a power of 2. When n is not a power of 2, the 1-
peer hypercube graph cannot be constructed, and the
1-peer exponential graph only reaches the consensus
asymptotically as well as the ring and exponential
graph, as Fig. 1 illustrates. Thus, the 1-peer expo-
nential and 1-peer hypercube graphs cannot enable
DSGD to converge as fast as the exponential graph
when n is not a power of 2. Moreover, even if n is
a power of 2, the 1-peer hypercube and 1-peer expo-
nential graphs still cannot enable DSGD to converge
faster than the exponential graph.

In this study, we ask the following question: Can we construct topologies that provide DSGD with
both a faster convergence rate and better communication efficiency than the exponential graph for
any number of nodes? Our work provides the affirmative answer by proposing the BASE-(k + 1)
GRAPH,2 which is finite-time convergence for any number of nodes n and maximum degree k (see
Fig. 1). Thanks to this favorable property, the BASE-2 GRAPH enables DSGD to converge faster than
the ring and torus and as fast as the exponential graph for any n, while the BASE-2 GRAPH is more
communication-efficient than the ring, torus, and exponential graph because its maximum degree
is only one. Furthermore, when 2 ≤ k < ⌈log2(n)⌉, the BASE-(k + 1) GRAPH enables DSGD to
converge faster with fewer communication costs than the exponential graph because the maximum
degree of the BASE-(k + 1) GRAPH is still less than that of the exponential graph. Experimentally,
we compared the BASE-(k + 1) GRAPH with various existing topologies, demonstrating that the
BASE-(k+1) GRAPH enables various decentralized learning methods to more successfully reconcile
accuracy and communication efficiency than the existing topologies.

2 Related Work

Decentralized Learning. The most widely used decentralized learning methods are DSGD [18]
and its adaptations [1, 2, 19]. Many researchers have improved DSGD and proposed DSGD with
momentum [4, 20, 44, 45], communication compression methods [6, 10, 23, 35, 38], etc. While
DSGD is a simple and efficient method, DSGD is sensitive to data heterogeneity [36]. To mitigate this
issue, various methods have been proposed, which can eliminate the effect of data heterogeneity on
the convergence rate, including gradient tracking [21, 29, 30, 34, 42, 47], D2 [36], etc. [17, 37, 46].

2Note that the maximum degree of the BASE-(k + 1) GRAPH is not k + 1, but at most k.
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Effect of Topologies. Many prior studies indicated that topologies with a fast consensus rate
improve the accuracy of decentralized learning [11, 13, 25, 39]. For instance, DSGD and gradient
tracking converge faster as the topology has a faster consensus rate [18, 34]. Zhu et al. [48] revealed
that topology with a fast consensus rate improves the generalization bound of DSGD. Especially
when the data distributions are statistically heterogeneous, the topology with a fast consensus rate
prevents the parameters of each node from drifting away and can improve accuracy [11, 34]. However,
communication costs increase as the maximum degree increases [33, 43]. Thus, developing a topology
with a fast consensus rate and small maximum degree is important for decentralized learning.

3 Preliminary and Notation

Notation. A graph G is represented by (V,E) where V is a set of nodes and E is a set of edges. If
G is a graph, V (G) (resp. E(G)) denotes the set of nodes (resp. edges) of G. For any a1, · · · , an,
(a1, · · · , an) denotes the ordered set. An empty (ordered) set is denoted by ∅. For any n ∈ N, let
[n] := {1, · · · , n}. For any n, a ∈ N, mod(a, n) is the remainder of dividing a by n. ∥ · ∥F denotes
Frobenius norm, and 1n denotes an n-dimensional vector with all ones.

Topology. Let G be an underlying network topology with n nodes, and W ∈ [0, 1]n×n be a mixing
matrix associated with G. That is, Wij is the weight of the edge (i, j), and Wij > 0 if and only if
(i, j) ∈ E(G). Most of the decentralized learning methods require W to be doubly stochastic (i.e.,
W1n = 1n and W⊤1n = 1n) [18, 20, 29, 36]. Then, the consensus rate of G is defined below.
Definition 1. Let W be a mixing matrix associated with a graph G with n nodes. Let xi ∈ Rd be a
parameter that node i has. Let X := (x1, · · · ,xn) ∈ Rd×n and X̄ := 1

nX1n1
⊤
n . The consensus

rate β ∈ [0, 1) is the smallest value that satisfies
∥∥XW − X̄

∥∥2
F
≤ β2

∥∥X − X̄
∥∥2
F

for any X .

Thanks to β ∈ [0, 1), xi asymptotically converge to consensus 1
n

∑n
i=1 xi by repeating parameter

exchanges with neighbors. However, this does not mean that all nodes reach the exact consensus
within a finite number of iterations except when β = 0, that is, when G is fully connected. Then,
utilizing time-varying topologies, Ying et al. [43] and Shi et al. [31] aimed to obtain sequences of
graphs that can make all nodes reach the exact consensus within finite iterations and proposed the
1-peer exponential and 1-peer hypercube graphs respectively (see Sec. C.4 for illustrations).
Definition 2. Let (G(1), · · · , G(m)) be a sequence of graphs with the same set of nodes (i.e.,
V (G(1)) = · · · = V (G(m))). Let n be the number of nodes. Let W (1), · · · ,W (m) be mixing
matrices associated with G(1), · · · , G(m), respectively. Suppose that W (1), · · · ,W (m) satisfy
XW (1)W (2) · · ·W (m) = X̄ for any X ∈ Rd×n, where X̄ = 1

nX1n1
⊤
n . Then, (G(1), · · · , G(m))

is called m-finite time convergence or an m-finite time convergent sequence of graphs.

Because Definition 2 assumes that V (G(1)) = · · · = V (G(m)) holds, we often write a sequence of
graphs (G(1), · · · , G(m)) as (E(G(1)), · · · , E(G(m))) using a slight abuse of notation. Additionally,
in the following section, we often abbreviate the weights of self-loops because they are uniquely
determined due to the condition that the mixing matrix is doubly stochastic.

4 Construction of Finite-time Convergent Sequence of Graphs

In this section, we propose the BASE-(k + 1) GRAPH, which is finite-time convergence for any
number of nodes n ∈ N and maximum degree k ∈ [n − 1]. Specifically, we consider the setting
where node i has a parameter xi and propose a graph sequence whose maximum degree is at most k
that makes all nodes reach the exact consensus 1

n

∑n
i=1 xi. To this end, we first propose the k-PEER

HYPER-HYPERCUBE GRAPH, which is finite-time convergence when n does not have prime factors
larger than k+1. Using it, we propose the SIMPLE BASE-(k+1) GRAPH and BASE-(k+1) GRAPH,
which are finite-time convergence for any n.
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Figure 2: Illustration of the 2-PEER HYPER-HYPERCUBE GRAPH.
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Algorithm 1 k-PEER HYPER-HYPERCUBE GRAPH Hk(V )

1: Input: the set of nodes V := {v1, · · · , vn} and number of nodes n.
2: Decompose n as n = n1 × · · · × nL with minimum L such that nl ∈ [k + 1] for all l ∈ [L].
3: for l ∈ [L] do
4: Initialize bi to zero for all i ∈ [n] and E(l) to ∅.
5: for i ∈ [n] do
6: for m ∈ [nl] do
7: j ← mod(i+m×

∏l−1
l′=1 nl′ − 1, n) + 1.

8: if bi < nl − 1 and bj < nl − 1 then
9: Add edge (vi, vj) with weight 1

nl
to E(l) and bi ← bi + 1.

10: return (E(1), E(2), · · · , E(L)).

4.1 k-peer Hyper-hypercube Graph

Before proposing the BASE-(k+1) GRAPH, we first extend the 1-peer hypercube graph [31] to the k-
peer setting and propose the k-PEER HYPER-HYPERCUBE GRAPH, which is finite-time convergence
when the number of nodes n does not have prime factors larger than k+1 and is used as a component
in the BASE-(k+1) GRAPH. Let V be a set of n nodes. We assume that all prime factors of n are less
than or equal to k+1. That is, there exists n1, n2, · · · , nL ∈ [k+1] such that n = n1× · · ·×nL. In
this case, we can construct the L-finite time convergent sequence of graphs whose maximum degree
is at most k. Using Fig. 2a, we explain how all nodes reach the exact consensus. Let G(1) and G(2)

denote the graphs in Fig. 2a from left to right, respectively. After the nodes exchange parameters
with neighbors in G(1), nodes 1 and 2, nodes 3 and 4, and nodes 5 and 6 have the same parameter
respectively. Then, after exchanging parameters in G(2), all nodes reach the exact consensus. We
present the complete algorithms for constructing the k-PEER HYPER-HYPERCUBE GRAPH in Alg. 1.

4.2 Simple Base-(k + 1) Graph

As described in Sec. 4.1, when n do not have prime factors larger than k + 1, we can easily make
all nodes reach the exact consensus by the k-PEER HYPER-HYPERCUBE GRAPH. However, when
n has prime factors larger than k + 1, e.g., when (k, n) = (1, 5), the k-PEER HYPER-HYPERCUBE
GRAPH cannot be constructed. In this section, we extend the k-PEER HYPER-HYPERCUBE GRAPH
and propose the SIMPLE BASE-(k + 1) GRAPH, which is finite-time convergence for any number
of nodes n and maximum degree k. Note that the maximum degree of the SIMPLE BASE-(k + 1)
GRAPH is not k + 1, but at most k.

We present the pseudo-code for constructing the SIMPLE BASE-(k + 1) GRAPH in Alg. 2. For
simplicity, here we explain only the case when the maximum degree k is one. The case with k ≥ 2
is explained in Sec. B. The SIMPLE BASE-(k + 1) GRAPH mainly consists of the following four
steps. The key idea is that splitting V into disjoint subsets to which the k-PEER HYPER-HYPERCUBE
GRAPH is applicable.

Step 1. As in the base-2 number of n, we decompose n as n = 2p1 + · · ·+ 2pL in line 1, and then
split V into disjoint subsets V1, · · · , VL such that |Vl| = 2pl for all l ∈ [L] in line 3.3

Step 2. For all l ∈ [L], we make all nodes in Vl obtain the average of parameters in Vl using the
1-PEER HYPER-HYPERCUBE GRAPH H1(Vl) in line 11. Then, we initialize l′ as one.

Step 3. Each node in Vl′+1 ∪ · · · ∪ VL exchanges parameters with one node in Vl′ such that the
average in Vl′ becomes equivalent to the average in V . We increase l′ by one and repeat step
3 until l′ = L. This procedure corresponds to line 15.

Step 4. For all l ∈ [L], we make all nodes in Vl obtain the average in Vl using the 1-PEER HYPER-
HYPERCUBE GRAPH H1(Vl). Because the average in Vl is equivalent to the average in V
after step 3, all nodes can reach the exact consensus. This procedure corresponds to line 25.

Using the example presented in Fig. 3, we explain Alg. 2 in more detail. Let G(1), · · · , G(5) denote
the graphs in Fig. 3 from left to right, respectively. In step 1, we split V := {1, · · · , 5} into

3Splitting Vl into Vl,1, · · · , Vl,al becomes crucial when k ≥ 2 (see Sec. B).
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V1 := {1, · · · , 4} and V2 := {5}. In step 2, nodes in V1 obtain the average in V1 by exchanging
parameters in G(1) and G(2). In step 3, the average in V1 becomes equivalent to the average in V
by exchanging parameters in G(3). In step 4, nodes in V1 can get the average in V by exchanging
parameters in G(4) and G(5). Because node 5 also obtains the average in V after exchanging
parameters in G(3), all nodes reach the exact consensus after exchanging parameters in G(5).

Note that edges added in lines 20 and 27 are not necessary if we only need to make all nodes reach the
exact consensus. Nonetheless, these edges are effective in keeping the parameters of nodes close in
value to each other in decentralized learning because the parameters are updated by gradient descent
before the parameter exchange with neighbors. For instance, edge (1, 2) in G(3), which is added in
line 20, is not necessary for finite-time convergence because nodes 1 and 2 already have the same
parameter after exchanging parameters in G(1) and G(2). We provide more examples in Sec. C.
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Figure 3: SIMPLE BASE-2 GRAPH with n = 5(= 22 + 1). The value on the edge is the edge weight,
and the edges are colored in the same color as the line in Alg. 2 where they were added.

Algorithm 2 SIMPLE BASE-(k + 1) GRAPH Asimple
k (V )

1: Input: the set of nodes V and number of nodes n(= a1(k+1)p1+a2(k+1)p2+· · ·+aL(k+1)pL)
such that p1 > p2 > · · · > pL ≥ 0 and al ∈ [k] for all l ∈ [L].

2: If all prime factors of n are less than or equal to k + 1 then returnHk(V ).
3: Split V into disjoint subsets V1, · · · , VL such that |Vl| = al(k+1)pl for all l ∈ [L]. Then, for all

l ∈ [L], split Vl into disjoint subsets Vl,1, · · · , Vl,al
such that |Vl,a| = (k + 1)pl for all a ∈ [al].

4: Construct k-PEER HYPER-HYPERCUBE GRAPH Hk(Vl) for all l ∈ [L] and m1 = |Hk(V1)|.
5: Construct k-PEER HYPER-HYPERCUBE GRAPH Hk(Vl,a) for all l ∈ [L] and a ∈ [al].
6: Initialize bl as zero for all l ∈ [L], and initialize m as zero.
7: while b1 < |Hk(V1,1)| do
8: m← m+ 1 and E(m) ← ∅.
9: for l ∈ {L,L− 1, · · · , 1} do

10: if m ≤ m1 then
11: Add E(Hk(Vl)

(m′)) to E(m) where m′ = mod(m− 1, |Hk(Vl)|) + 1.
12: else if m < m1 + l then
13: for v ∈ Vl do
14: Select isolated node u1, · · · , uam−m1

from Vm−m1,1, · · · , Vm−m1,am−m1
.

15: Add edges (v, u1), · · · , (v, uam−m1
) with weight |Vm−m1 |

am−m1

∑L
l′=m−m1

|Vl′ |
to E(m).

16: else if m = m1 + l and l ̸= L then
17: while There are two or more isolated nodes in Vl do
18: c← the number of isolated nodes in Vl.
19: Select min{k + 1, c} isolated nodes V ′ in Vl.

20: Add edges with weights 1
|V ′| to E(m) such that V ′ compose the complete graph.

21: else
22: bl ← bl + 1.
23: if pl ̸= 0 then
24: for a ∈ [al] do

25: Add E(Hk(Vl,a)
(m′)) to E(m) where m′ = mod(bl − 1, |Hk(Vl,a)|) + 1.

26: else
27: Add E(Hk(Vl)

(m′)) to E(m) where m′ = mod(bl − 1, |Hk(Vl)|) + 1.

28: return (E(1), E(2), · · · , E(m)).
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Algorithm 3 BASE-(k + 1) GRAPH Ak(V )

1: Input: the set of nodes V and number of nodes n.
2: Decompose n as n = p × q such that p is a multiple of 2, 3, · · · , (k + 1) and q is prime to

2, 3, · · · , (k + 1).
3: Split V into disjoint subsets V1, · · · , Vp such that |Vl| = q for all l.
4: Construct SIMPLE BASE-(k + 1) GRAPH Asimple

k (Vl) for all l ∈ [p].
5: for m ∈ {1, 2, · · · , |Asimple

k (V1)|} do
6: E(m) ←

⋃
l∈[p] E(Asimple

k (Vl)
(m)).

7: Split V into disjoint subsets U1, · · · , Uq such that |Ul| = p and |Ul ∩ Vl′ | = 1 for all l, l′.
8: Construct k-PEER HYPER-HYPERCUBE GRAPH Hk(Ul) for all l ∈ [q].
9: for m ∈ {1, 2, · · · , |Hk(U1)|} do

10: E(m+|Asimple
k (V1)|) ←

⋃
l∈[q] E(Hk(Ul)

(m)).

11: E ← (E(1), E(2), · · · , E(|Asimple
k (V1)|+|Hk(U1)|)).

12: If |Asimple
k (V )| < |E| then return Asimple

k (V ) else return E .
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(a) BASE-2 GRAPH with n = 6(= 2× (2 + 1))
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(b) SIMPLE BASE-2 GRAPH with n = 6(= 22 + 2)

Figure 4: Comparison of SIMPLE BASE-2 GRAPH and BASE-2 GRAPH with n = 6. The value on
the edge indicates the edge weight. The edges added in line 10 in Alg. 3 are colored black, and the
edges added in line 6 are colored the same color as the line in Alg. 2 where they are added.
4.3 Base-(k + 1) Graph

The SIMPLE BASE-(k + 1) GRAPH is finite-time convergence for any n and k, while the SIMPLE
BASE-(k + 1) GRAPH contains graphs that are not necessary for the finite-time convergence and
becomes a redundant sequence of graphs in some cases, e.g., (k, n) = (1, 6) (see the example in
Fig. 4b and a detailed explanation in Sec. C.2). To remove this redundancy, this section proposes the
BASE-(k + 1) GRAPH that can make all nodes reach the exact consensus after fewer iterations than
the SIMPLE BASE-(k + 1) GRAPH.

The pseudo-code for constructing the BASE-(k + 1) GRAPH is shown in Alg. 3. The BASE-(k + 1)
GRAPH consists of the following three steps.

Step 1. We decompose n as p × q such that p is a multiple of 2, · · · , (k + 1) and q is prime to
2, · · · , (k+1), and split V into disjoint subsets V1, · · · , Vp such that |Vl| = q for all l ∈ [p].

Step 2. For all l ∈ [p], we make all nodes in Vl reach the average in Vl by the SIMPLE BASE-(k+ 1)

GRAPH Asimple
k (Vl). Then, we take p nodes from V1, · · · , Vp respectively and construct a

set U1. Similarly, we construct U2, · · · , Uq such that U1, · · · , Uq are disjoint sets.

Step 3. For all l ∈ [q], we make all nodes in Ul reach the average in Ul by the k-PEER HYPER-
HYPERCUBE GRAPH Hk(Ul). Because the average in Ul is equivalent to the average in V
after step 2, all nodes reach the exact consensus.

Using the example in Fig. 4a, we explain the BASE-(k+1) GRAPH in more detail. Let G(1), · · · , G(4)

denote the graphs in Fig. 4a from left to right, respectively. In step 1, we split V into V1 := {1, 2, 3}
and V2 := {4, 5, 6}. In step 2, nodes in V1 and nodes in V2 have the same parameter respectively by
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exchanging parameters on G(1), · · · , G(3) because the subgraphs composed on V1 and V2 are same
as the SIMPLE BASE-(k + 1) GRAPH (see Fig. 14a). Then, we construct U1 := {1, 4}, U2 := {2, 5},
and U3 := {3, 6}. Finally, in step 3, all nodes reach the exact consensus by exchanging parameters in
G(4).
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Figure 5: Comparison of length.

Fig. 5 and Sec. F.1 compare the BASE-(k+1) GRAPH with the
SIMPLE BASE-(k + 1) GRAPH, demonstrating that the length
of the BASE-(k + 1) GRAPH is less than that of the SIMPLE
BASE-(k + 1) GRAPH in many cases. Moreover, Theorem 1
show the upper bound of the length of the SIMPLE BASE-(k+1)
GRAPH and BASE-(k + 1) GRAPH. The proof is provided in
Sec. D.
Theorem 1. For any number of nodes n ∈ N and maximum
degree k ∈ [n − 1], the length of the SIMPLE BASE-(k + 1)
GRAPH and BASE-(k + 1) GRAPH is less than or equal to
2 logk+1(n) + 2.
Corollary 1. For any number of nodes n ∈ N and maximum degree k ∈ [n − 1], the SIMPLE
BASE-(k + 1) GRAPH and BASE-(k + 1) GRAPH are O(logk+1(n))-finite time convergence.

Therefore, the BASE-(k + 1) GRAPH is a powerful extension of the 1-peer exponential [43] and
1-peer hypercube graphs [31] because they are O(log2(n))-finite time convergence only if n is a
power of 2 and their maximum degree cannot be set to any number other than 1.

5 Decentralized SGD on Base-(k + 1) Graph

In this section, we verify the effectiveness of the BASE-(k + 1) GRAPH for decentralized learning,
demonstrating that the BASE-(k + 1) GRAPH can endow DSGD with both a faster convergence rate
and fewer communication costs than the existing topologies, including the ring, torus, and exponential
graph. We consider the following decentralized learning problem:

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, fi(x) := Eξi∼Di [Fi(x; ξi)] ,

where n is the number of nodes, fi is the loss function of node i, Di is the data distribution held by
node i, Fi(x; ξi) is the loss of node i at data sample ξi, and∇Fi(x; ξi) denotes the stochastic gradient.
Then, we assume that the following hold, which are commonly used for analyzing decentralized
learning methods [18, 20, 23, 43].
Assumption 1. There exists f⋆ > −∞ that satisfies f(x) ≥ f⋆ for any x ∈ Rd.
Assumption 2. fi is L-smooth for all i ∈ [n].
Assumption 3. There exists σ2 that satisfies Eξi∼Di∥∇Fi(x; ξi)−∇fi(x)∥2 ≤ σ2 for all x ∈ Rd.
Assumption 4. There exists ζ2 that satisfies 1

n

∑n
i=1 ∥∇fi(x)−∇f(x)∥2 ≤ ζ2 for all x ∈ Rd.

We consider the case when DSGD [18], the most widely used decentralized learning method, is used
as an optimization method. Let W (1), · · · ,W (m) be mixing matrices of the BASE-(k + 1) GRAPH.
In DSGD on the BASE-(k + 1) GRAPH, node i updates its parameter xi as follows:

x
(r+1)
i =

n∑
j=1

W
(1+mod(r,m))
ij

(
x
(r)
j − η∇Fj(x

(r)
j ; ξ

(r)
j )
)
, (1)

where η is the learning rate. In this case, thanks to the property of finite-time convergence, DSGD on
the BASE-(k + 1) GRAPH converges at the following convergence rate.
Theorem 2. Suppose that Assumptions 1-4 hold. Then, for any number of nodes n ∈ N and
maximum degree k ∈ [n− 1], there exists η such that x̄ := 1

n

∑n
i=1 xi generated by Eq. (1) satisfies

1
R+1

∑R
r=0 E

∥∥∇f(x̄(r))
∥∥2 ≤ ϵ after

R = O

(
σ2

nϵ2
+

ζ logk+1(n) + σ
√
logk+1(n)

ϵ3/2
+

logk+1(n)

ϵ

)
· LF0 (2)

iterations, where F0 := f(x̄(0))− f⋆.
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The above theorem follows immediately from Theorem 2 stated in Koloskova et al. [11] and Corollary
1. The convergence rates of DSGD over commonly used topologies are summarized in Sec. E. From
Theorem 2 and Sec. E, we can conclude that for any number of nodes n, the BASE-2 GRAPH enables
DSGD to converge faster than the ring and torus and as fast as the exponential graph, although the
maximum degree of the BASE-2 GRAPH is only one. Moreover, if we set the maximum degree k
to the value between 2 to ⌈log2(n)⌉, the BASE-(k + 1) GRAPH enables DSGD to converge faster
than the exponential graph, even though the maximum degree of the BASE-(k + 1) GRAPH remains
less than that of the exponential graph. It is worth noting that if we increase the maximum degree of
the 1-peer exponential and 1-peer hypercube graphs (i.e., k-peer exponential and k-peer hypercube
graphs with k ≥ 2), these topologies cannot enable DSGD to converge faster than the exponential
graph because these topologies are no longer finite-time convergence even when the number of nodes
is a power of 2.

6 Experiments

In this section, we validate the effectiveness of the BASE-(k + 1) GRAPH. First, we experimentally
verify that the BASE-(k + 1) GRAPH is finite-time convergence for any number of nodes in Sec. 6.1,
and we verify the effectiveness of the BASE-(k + 1) GRAPH for decentralized learning in Sec. 6.2.
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Figure 6: Comparison of consensus rates among various topologies. The number in the bracket
indicates the maximum degree of a topology. Because the maximum degree of the exponential graph
depends on n, the three numbers in the bracket indicate the maximum degree for each n.
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Figure 7: Test accuracy (%) of DSGD on various topologies with n = 25. The number in the bracket
indicates the maximum degree of a topology. We also compared with dense variants of the 1-peer {U,
D}-EquiDyn [33] in Sec. F.3.1, showing the superior performance of the BASE-(k + 1) GRAPH.
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6.1 Consensus Rate

Setup. Let xi ∈ R be the parameter that node i has, and let x̄ := 1
n

∑n
i=1 xi. For each i, the

initial value of xi was drawn from Gaussian distribution with mean 0 and standard variance 1.
Then, we evaluated how the consensus error 1

n

∑n
i=1(xi − x̄)2 decreases when xi is updated as

xi ←
∑n

j=1 Wijxj where W is the mixing matrix associated with a given topology.

Results. Figs. 1 and 6 present how the consensus errors decrease on various topologies. The results
indicate that the BASE-(k+1) GRAPH reaches the exact consensus after a finite number of iterations,
while the other topologies only reach the consensus asymptotically. Moreover, as the maximum
degree k increases, the BASE-(k + 1) GRAPH reaches the exact consensus with fewer iterations. We
also present the results when n is a power of 2 in Sec. F.2, demonstrating that the 1-peer exponential
graph can reach the exact consensus as well as the BASE-2 GRAPH, but requires more iterations than
the BASE-4 GRAPH.

6.2 Decentralized Learning

Next, we examine the effectiveness of the BASE-(k + 1) GRAPH in decentralized learning.

Setup. We used three datasets, Fashion MNIST [41], CIFAR-{10, 100} [14], and used LeNet
[15] for Fashion MNIST and VGG-11 [32] for CIFAR-{10, 100}. Additionally, we present the
results using ResNet-18 [5] in Sec. G. The learning rate was tuned by the grid search and we
used the cosine learning rate scheduler [22]. We distributed the training dataset to nodes by using
Dirichlet distributions with hyperparameter α [7], conducting experiments in both homogeneous and
heterogeneous data distribution settings. As α approaches zero, the data distributions held by each
node become more heterogeneous. We repeated all experiments with three different seed values and
reported their averages. See Sec. H for more detailed settings.

Results of DSGD on Various Topologies. We compared various topologies combined with
the DSGD with momentum [4, 18], showing the results in Fig. 7. From Fig. 7, the accu-
racy differences among topologies are larger as the data distributions are more heterogeneous.
From Fig. 7b, the BASE-{2, 3, 4, 5} GRAPH reach high accuracy faster than the other topolo-
gies. Furthermore, comparing the final accuracy, the final accuracy of the BASE-2 GRAPH is
comparable to or higher than that of the existing topologies, including the exponential graph.
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Figure 8: Test accuracy (%) of DSGD with
CIFAR-10 and α = 0.1.

Moreover, the final accuracy of the BASE-{3, 4, 5}
GRAPH is higher than that of all existing topologies.
From Fig. 7a, the accuracy differences among topolo-
gies become small when α = 10; however, the BASE-
5 GRAPH still outperforms the other topologies. In
Fig. 8, we present the results in cases other than n = 25,
demonstrating that the BASE-2 GRAPH outperforms
the 1-peer exponential graph and the BASE-{3, 4, 5}
GRAPH can consistently outperform the exponential
and 1-peer exponential graphs for all n. In Sec. F.3.2,
we show the learning curves and the comparison of the
consensus rate when n is 21, 22, 23, 24, and 25.

Results of D2 and QG-DSGDm on Various Topologies. The above results demonstrated that the
BASE-(k + 1) GRAPH outperforms the existing topologies, especially when the data distributions
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Figure 9: Test accuracy (%) of D2 and QG-DSGDm with CIFAR-
10, n = 25, and α = 0.1.

are heterogeneous. Hence, we
next compared the BASE-(k+1)
GRAPH with the existing topolo-
gies in the case where D2 [36]
and QG-DSGDm [20], which are
robust to data heterogeneity, are
used as decentralized learning
methods. From Fig. 9, the BASE-
2 GRAPH can achieve compara-
ble or higher accuracy than the
1-peer exponential graph, and the
BASE-5 GRAPH consistently out-
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performs the exponential graph. Thus, the BASE-(k+1) GRAPH is useful not only for DSGD but also
for D2 and QG-DSGDm and then enables these methods to achieve a reasonable balance between
accuracy and communication efficiency.

7 Conclusion

In this study, we propose the BASE-(k + 1) GRAPH, a novel topology with both a fast consensus
rate and small maximum degree. Unlike the existing topologies, the BASE-(k + 1) GRAPH is
finite-time convergence for any number of nodes and maximum degree k. Thanks to this favorable
property, the BASE-(k+ 1) GRAPH enables DSGD to obtain both a faster convergence rate and more
communication efficiency than the existing topologies, including the ring, torus, and exponential
graph. Through experiments, we compared the BASE-(k+1) GRAPH with various existing topologies,
demonstrating that the BASE-(k+1) GRAPH enables various decentralized learning methods to more
successfully reconcile accuracy and communication efficiency than the existing topologies.
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A Detailed Explanation of k-peer Hyperhypercube Graph

In this section, we explain Alg. 1 in more detail. The k-PEER HYPER-HYPERCUBE GRAPH mainly
consists of the following five steps.

Step 1. Decompose n as n = n1 × · · · × nL with minimum L such that nl ∈ [k + 1] for all l ∈ [L].
Step 2. If L = 1, we make all nodes obtain the average of parameters in V by using the complete

graph. If L ≥ 2, we split V into disjoint subsets V1, · · · , VnL
such that |Vl| = n

nL
for all

l ∈ [nL] and continue to step 3.
Step 3. For all l ∈ [nL], we make all nodes in Vl obtain the average of parameters in Vl by using the

k-PEER HYPER-HYPERCUBE GRAPH Hk(Vl).
Step 4. We take nL nodes from V1, · · · , VnL

respectively and construct a set U1. Similarly, we
construct U2, · · · , UnL

such that U1, · · · , UnL
are disjoint sets.

Step 5. For all l ∈ [nL], we make all nodes in Ul obtain the average of parameters in Ul by using the
complete graph. Because the average of parameter Ul is equivalent to the average in V after
step 4, all nodes reach the exact consensus.

When n ≤ k + 1, the k-PEER HYPER-HYPERCUBE GRAPH becomes the complete graph because of
step 2. When n > k + 1, we decompose n in step 1 and construct the k-PEER HYPER-HYPERCUBE
GRAPH recursively in step 3. Thus, the k-PEER HYPER-HYPERCUBE GRAPH can make all nodes
reach the exact consensus by the sequence of L graphs.

Using the example provided in Fig. 10, we explain the k-PEER HYPER-HYPERCUBE GRAPH in a more
detailed manner. When n = 12, we decompose 12 as 2× 2× 3. In step 2, we split V := {1, · · · , 12}
into V1 := {1, · · · , 4}, V2 := {5, · · · , 8}, and V3 := {9, · · · , 12}. Step 3 corresponds to the first two
graphs in Fig. 10b. As shown in Fig. 10a, the subgraphs consisting of V1, V2, and V3 in the first two
graphs in Fig. 10b are equivalent to the k-PEER HYPER-HYPERCUBE GRAPH with the number of
nodes 4. Thus, all nodes reach the exact consensus by exchanging parameters in Fig. 10b.
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Figure 10: Illustration of the 2-PEER HYPER-HYPERCUBE GRAPH. In Fig. 10a, all edge weights are
1
2 . In Fig. 10b, edge weights are 1

2 in the first two graphs and 1
3 in the last graph.
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B Detailed Explanation of Simple Base-(k + 1) Graph with k ≥ 2

In Sec. 4.2, we explain Alg. 2 only in the case where maximum degree k is one. In this section, we
explain the details of Alg. 2 in the case with k ≥ 2.

The SIMPLE BASE-(k + 1) GRAPH mainly consists of the following five steps.

Step 1. As in the base-(k+1) number of n, we decompose n as n = a1(k+1)p1+ · · ·+aL(k+1)pL

in line 1, and then split V into disjoint subsets V1, · · · , VL such that |Vl| = al(k + 1)pl for
all l ∈ [L].

Step 2. For all l ∈ [L], we split Vl into disjoint subsets Vl,1, · · · , Vl,al
such that |Vl,a| = (k + 1)pl

for all a ∈ [al] in line 3.
Step 3. For all l ∈ [L], we make all nodes in Vl obtain the average of parameters in Vl using the

k-PEER HYPER-HYPERCUBE GRAPH Hk(Vl) in line 11. Then, we initialize l′ as one.
Step 4. Each node in Vl′+1∪· · ·∪VL exchange parameters with al′ nodes in Vl′(= Vl′,1∪· · ·∪Vl′,al′ )

such that the average in Vl′,a becomes equivalent to the average in V for all a ∈ [al′ ]. We
increase l′ by one and repeat step 4 until l′ = L. This procedure corresponds to line 15.

Step 5. For all l ∈ [L] and a ∈ [al], we make all nodes in Vl,a obtain the average in Vl,a using the k-
PEER HYPER-HYPERCUBE GRAPH Hk(Vl,a). Since the average in Vl,a is equivalent to the
average in V after step 4, all nodes reach the exact consensus. This procedure corresponds
to line 25.

The major difference compared with the case where k = 1 is step 4. In the case where k = 1, each
node in Vl′+1∪· · ·∪VL exchange parameters with one node in Vl′ such that the average in Vl′ becomes
equivalent to that in V , while in the case where k ≥ 2, each node in Vl′+1 ∪ · · · ∪ VL exchange
parameters such that the average in Vl′,a becomes equivalent to that in V for all a ∈ [al]. Thanks
to this step, we can make all nodes reach the exact consensus using k-PEER HYPER-HYPERCUBE
GRAPH Hk(Vl,a) instead ofHk(Vl) in step 5, and we can reduce the length of a graph sequence.

Using the example provided in Fig. 11, we explain Alg. 2 in a more detailed manner. Let
G(1), · · · , G(4) denote the graphs depicted in Fig. 11 from left to right, respectively. First, we
split V := {1, · · · , 7} into V1 := {1, · · · , 6} and V2 := {7}, and then split V1 into V1,1 := {1, 2, 3}
and V1,2 := {4, 5, 6}. In step 3, all nodes in V1 obtain the same parameter by exchanging parameters
in G(1) and G(2). In step 4, the average in V1,1, that in V1,2, and that in V2 become the same as the
average in all nodes V by exchanging parameters in G(3). Thus, in step 5, all nodes reach the exact
consensus by exchanging parameters in G(4).
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Figure 11: k = 2, n = 7(= 2 × 3 + 1). The value on the edge indicates the edge weight. For
simplicity, we omit the edge value when it is 1
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C Illustration of Topologies

C.1 Examples

Fig. 12 shows the examples of the SIMPLE BASE-(k+ 1) GRAPH. Using these examples, we explain
how all nodes reach the exact consensus.

We explain the case depicted in Fig. 12a. Let G(1), G(2), G(3) denote the graphs depicted in Fig. 12a
from left to right, respectively. First, we split V := {1, · · · , 5} into V1 := {1, 2, 3} and V2 := {4, 5},
and then split V2 into V2,1 := {4} and V2,2 := {5}. After exchanging parameters in G(1), nodes
in V1 and nodes in V2 have the same parameter respectively. Then, after exchanging parameters in
G(2), the average in V1, that in V2,1, and that in V2,2 become same as the average in V . Thus, by
exchanging parameters in G(3), all nodes reach the exact consensus. Note that edge (4, 5) in G(3),
which is added in line 27 in Alg. 2, is not necessary for all nodes to reach the exact consensus because
nodes 4 and 5 already have the same parameter after exchanging parameters in G(2); however, it is
effective in decentralized learning as we explained in Sec. 4.2.
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(b) k = 1, n = 7(= 22 + 2 + 1)

Figure 12: Illustration of the SIMPLE BASE-(k + 1) GRAPH. The edge is colored in the same color
as the line of Alg. 2 where the edge is added. The value on the edge indicates the edge weight. For
simplicity, we omit the edge value when it is 1

3 .

C.2 Illustrative Comparison between Simple Base-(k + 1) and Base-(k + 1) Graphs

In this section, we provide an example of the SIMPLE BASE-(k + 1) GRAPH, explaining the reason
why the length of the BASE-(k + 1) GRAPH is less than that of the SIMPLE BASE-(k + 1) GRAPH.

Let G(1), · · · , G(5) denote the graphs depicted in Fig. 13 from left to right, respectively.
(G(1), G(2), G(3), G(4), G(5)) is finite-time convergence, but (G(1), G(2), G(3), G(5)) is also finite-
time convergence because after exchanging parameters in G(3), nodes 3 and 4 already have the same
parameters. Then, using the technique proposed in Sec. 4.3, we can remove such unnecessary graphs
contained in the SIMPLE BASE-(k + 1) GRAPH (see Fig. 4a). Consequently, the BASE-(k + 1)
GRAPH can make all nodes reach the exact consensus faster than the SIMPLE BASE-(k + 1) GRAPH.
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Figure 13: Illustration of the SIMPLE BASE-2 GRAPH with n = 6(= 22 + 2). The edge is colored in
the same color as the line of Alg. 2 where the edge is added.
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C.3 Additional Examples

C.3.1 Simple Base-(k + 1) Graph
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Figure 14: Illustration of the SIMPLE BASE-2 GRAPH with the various numbers of nodes.
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Figure 15: Illustration of the SIMPLE BASE-3 GRAPH with the various numbers of nodes.
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C.3.2 Base-(k + 1) Graph
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Figure 16: Illustration of the BASE-2 GRAPH with the various numbers of nodes.
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Figure 17: Illustration of the BASE-3 GRAPH with the various numbers of nodes.
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C.4 1-peer Hypercube Graph and 1-peer Exponential Graph

For completeness, we provide examples of the 1-peer hypercube [31] and 1-peer exponential graphs
[43] in Figs. 19 and 18, respectively.
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Figure 18: Illustration of the 1-peer hypercube graph. All edge weights are 0.5.
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Figure 19: Illustration of the 1-peer exponential graph. All edge weights are 0.5.
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D Proof of Theorem 1

Lemma 1 (Length of k-PEER HYPER-HYPERCUBE GRAPH). Suppose that all prime factors of the
number of nodes n are less than or equal to k + 1. Then, for any number of nodes n ∈ N and
maximum degree k ∈ [n− 1], the length of the k-PEER HYPER-HYPERCUBE GRAPH is less than or
equal to max{1, 2 logk+2(n)}.

Proof. We assume that n is decomposed as n = n1 × · · · × nL with minimum L where nl ∈ [k + 1]
for all l ∈ [L]. Without loss of generality, we suppose n1 ≤ n2 ≤ · · · ≤ nL. Then, for any i ̸= j,
it holds that ni × nj ≥ k + 2 because if ni × nj ≤ k + 1 for some i and j, this contradicts the
assumption that L is minimum.

When L is even, we have

n = (n1 × n2)× · · · × (nL−1 × nL) ≥ (k + 2)
L
2 .

Then, we get L ≤ 2 logk+2(n).

Next, we discuss the case when L is odd. When L ≥ 3, nL ≥
√
k + 2 holds because nL−2×nL−1 ≥

k + 2. Thus, we get

n = (n1 × n2)× · · · × (nL−2 × nL−1)× nL ≥ (k + 2)
L−1

2 × nL ≥ (k + 2)
L
2 .

Then, we get L ≤ 2 logk+2(n) when L ≥ 3.

Thus, given the case when L = 1, the length of the k-PEER HYPER-HYPERCUBE GRAPH is less than
or equal to max{1, 2 logk+2(n)}.

Lemma 2 (Length of SIMPLE BASE-(k + 1) GRAPH). For any number of nodes n ∈ N and
maximum degree k ∈ [n− 1], the length of the SIMPLE BASE-(k + 1) GRAPH is less than or equal
to 2 logk+1(n) + 2.

Proof. When all prime factors of n are less than or equal to k+1, the SIMPLE BASE-(k+1) GRAPH
is equivalent to the k-PEER HYPER-HYPERCUBE GRAPH and the statement holds from Lemma 1. In
the following, we consider the case when there exists a prime factor of n that is larger than k + 1.
Note that because when L = 1 (i.e., n = a1× (k+1)p1 ), all prime factors of n are less than or equal
to k + 1, we only need to consider the case when L ≥ 2. We have the following inequality:

logk+1(n) = logk+1(a1(k + 1)p1 + · · ·+ aL(k + 1)pL)

≥ p1 + logk+1(a1)

≥ p1.

Then, because |V1| = a1 × (k + 1)p1 , it holds that m1 = |Hk(V1)| ≤ 1 + p1 ≤ logk+1(n) + 1.
Similarly, it holds that |Hk(V1,1)| = p1 ≤ logk+1(n) because |V1,1| = (k + 1)p1 . In Alg. 2, the
update rule b1 ← b1+1 in line 22 is executed for the first time when m = m1+2 because L ≥ 2. Thus,
the length of the SIMPLE BASE-(k + 1) GRAPH is at most m1 + |Hk(V1,1)|+ 1 ≤ 2 logk+1(n) + 2.
This concludes the statement.

Lemma 3 (Length of BASE-(k+1) GRAPH). For any number of nodes n ∈ N and maximum degree
k ∈ [n− 1], the length of the BASE-(k + 1) GRAPH is less than or equal to 2 logk+1(n) + 2.

Proof. The statement follows immediately from Lemma 2 and line 12 in Alg. 3.
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E Convergence Rate of DSGD over Various Topologies

Table 2 lists the convergence rates of DSGD over various topologies. These convergence rates can
be immediately obtained from Theorem 2 stated in Koloskova et al. [11] and consensus rate of the
topology. As seen from Table 2, the BASE-2 GRAPH enables DSGD to converge faster than the ring
and torus and as fast as the exponential graph for any number of nodes, although the maximum degree
of the BASE-2 GRAPH is only one. Moreover, for any number of nodes, the BASE-(k + 1) GRAPH
with 2 ≤ k < ⌈log2(n)⌉ enables DSGD to converge faster than the exponential graph, even though
the maximum degree of the BASE-(k + 1) GRAPH remains to be less than that of the exponential
graph.

Table 2: Convergence rates and maximum degrees of DSGD over various topologies.
Topology Convergence Rate Maximum Degree #Nodes n

Ring [28] O
(

σ2

nϵ2
+

ζn2 + σn

ϵ3/2
+

n2

ϵ

)
· LF0 2 ∀n ∈ N

Torus [28] O
(

σ2

nϵ2
+

ζn+ σ
√
n

ϵ3/2
+

n

ϵ

)
· LF0 4 ∀n ∈ N

Exp. [43] O

(
σ2

nϵ2
+

ζ log2(n) + σ
√
log2(n)

ϵ3/2
+

log2(n)

ϵ

)
· LF0 ⌈log2(n)⌉ ∀n ∈ N

1-peer Exp. [43] O

(
σ2

nϵ2
+

ζ log2(n) + σ
√
log2(n)

ϵ3/2
+

log2(n)

ϵ

)
· LF0 1 A power of 2

1-peer Hypercube [31] O

(
σ2

nϵ2
+

ζ log2(n) + σ
√
log2(n)

ϵ3/2
+

log2(n)

ϵ

)
· LF0 1 A power of 2

Base-(k + 1) Graph (ours) O

(
σ2

nϵ2
+

ζ logk+1(n) + σ
√

logk+1(n)

ϵ3/2
+

logk+1(n)

ϵ

)
· LF0 k ∀n ∈ N

22



F Additional Experiments

F.1 Comparison of Base-(k + 1) and Simple Base-(k + 1) Graphs

Fig. 20 shows the length of the SIMPLE BASE-(k + 1) GRAPH and BASE-(k + 1) GRAPH. The
results indicate that for all k, the length of the BASE-(k + 1) GRAPH is less than the length of the
SIMPLE BASE-(k + 1) GRAPH in many cases.
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Figure 20: Comparison of the length of the SIMPLE BASE-(k+1) GRAPH and BASE-(k+1) GRAPH.

F.2 Consensus Rate

In Fig. 21, we demonstrate how consensus error decreases on various topologies when the number of
nodes n is a power of 2. The results indicate that the BASE-2 GRAPH and 1-peer exponential graph
can reach the exact consensus after the same finite number of iterations and reach the consensus faster
than other topologies. Note that the BASE-2 GRAPH is equivalent to the 1-peer hypercube graph
when n is a power of 2.

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 128

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 512

0 10 20 30 40 50
Iterations

10 25

10 21

10 17

10 13

10 9

10 5

10 1

Co
ns

en
su

s e
rro

r

n = 1024
Exp. (7,9,10)
Ring (2)
Torus (4)
1-peer Exp. (1)
1-peer D-EquiDyn (1)
1-peer U-EquiDyn (1)
Base-2 Graph (1)
Base-4 Graph (3)

Figure 21: Comparison of consensus rates among different topologies when the number of nodes
n is a power of 2. Because the BASE-{3, 5} GRAPH are the same as the BASE-{2, 4} GRAPH,
respectively, when n is a power of 2, we omit the results of the BASE-{3, 5} GRAPH.
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F.3 Decentralized Learning

F.3.1 Comparison of Base-(k + 1) Graph and EquiStatic

In this section, we compared the BASE-(k + 1) GRAPH with the {U, D}-EquiStatic [33]. The {U,
D}-EquiStatic are dense variants of the 1-peer {U, D}-EquiDyn, and their maximum degree can
be set as hyperparameters. We evaluated the {U, D}-EquiStatic varying their maximum degrees;
the results are presented in Fig. 22. In both cases with α = 10 and α = 0.1, the BASE-2 GRAPH
can achieve comparable or higher final accuracy than all {U, D}-EquiStatic, and the BASE-{3, 4, 5}
GRAPH outperforms all {U, D}-EquiStatic. Thus, the BASE-(k + 1) GRAPH is superior to the {U,
D}-EquiStatic from the perspective of achieving a balance between accuracy and communication
efficiency.
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Figure 22: Test accuracy (%) of DSGD with CIFAR-10 and n = 25. The number in the bracket is the
maximum degree of a topology.

F.3.2 Comparison with Various Number of Nodes

In this section, we evaluated the effectiveness of the BASE-(k+ 1) GRAPH when varying the number
of nodes n. Fig. 24 presents the learning curves, and Fig 23 shows how consensus error decreases
when n is 21, 22, 23, 24, and 25. From Fig. 24, the BASE-2 GRAPH consistently outperforms the
1-peer exponential graph and can achieve a final accuracy comparable to that of the exponential graph.
Furthermore, the BASE-{3, 4, 5} GRAPH can consistently outperform the exponential graph, even
though the maximum degree of the BASE-{3, 4, 5} GRAPH is less than that of the exponential graph.

In Fig. 25 presents the learning curve for n = 16. When the number of nodes is a power of two,
the 1-peer exponential graph is also finite-time convergence, and the 1-peer exponential graph and
BASE-2 GRAPH achieve competitive accuracy.
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Figure 23: Comparison of consensus rates among different topologies. The number in the bracket
denotes the maximum degree of a topology. We omit the results of the BASE-5 GRAPH when n = 24
because the BASE-5 GRAPH and BASE-4 GRAPH are equivalent when n = 24.
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Figure 24: Test accuracy (%) of DSGD with CIFAR-10 and α = 0.1. The number in the bracket
denotes the maximum degree of a topology. When n = 24, we omit the results of the BASE-5 GRAPH
because the BASE-5 GRAPH and BASE-4 GRAPH are equivalent. When n = 25, we omit the results
of the BASE-6 GRAPH because the BASE-6 GRAPH and BASE-5 GRAPH are equivalent.

0 100 200 300 400 500
Epoch

40

50

60

70

80

90

Ac
cu

ra
cy

n=16

450 475 500
86

88

90

92

Exp. (5)
1-peer Exp. (1)
Base-2 Graph (1)
Base-4 Graph (3)

Figure 25: Test accuracy (%) of DSGD with CIFAR-10 and n = 16. The number in the bracket is the
maximum degree of a topology. We omit the results of the BASE-3 GRAPH and BASE-5 GRAPH
because these graphs are equivalent to the BASE-2 GRAPH and BASE-4 GRAPH, respectively.
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G Results with Other Neural Network Architecture

In this section, we evaluate the effectiveness of the BASE-(k + 1) GRAPH with other neural network
architecture. Fig. 26 shows the accuracy when we use ResNet-18 [5]. The results are consistent with
the results with VGG-11 shown in Sec. 6.

0 100 200 300 400 500
Epoch

40

50

60

70

80

90
Ac

cu
ra

cy

=10.0

450 475 500
91

92

93

94

0 100 200 300 400 500
Epoch

40

50

60

70

80

90

Ac
cu

ra
cy

=0.1

450 475 500
86

90

94

Exp. (5)
1-peer Exp. (1)
Base-2 Graph (1)
Base-3 Graph (2)
Base-4 Graph (3)
Base-5 Graph (4)

Figure 26: Test accuracy (%) of DSGD with n = 25, CIFAR-10, and ResNet. The number in the
bracket denotes the maximum degree of a topology.

H Hyperparameter Setting

Tables 3 and 4 list the detailed hyperparameter settings used in Secs. 6 and F.3. We ran all experiments
on a server with eight Nvidia RTX 3090 GPUs.

Table 3: Hyperparameter settings for Fashion MNIST with LeNet.
Dataset Fashion MNIST
Neural network architecture LeNet [15] with group normalization [40]

Data augmentation RandomCrop of PyTorch
Step size Grid search over {0.1, 0.01, 0.001}.
Momentum 0.9
Batch size 32
Step size scheduler Cosine decay
Step size warmup 10 epochs
The number of epochs 200

Table 4: Hyperparameter settings for CIFAR-{10, 100} with {VGG-11, ResNet-18}.
Dataset CIFAR-{10, 100}
Neural network architecture {VGG-11 [32], ResNet-18 [5]} with group normalization [40]

Data augmentation RandomCrop, RandomHorizontalFlip, RandomErasing of PyTorch
Step size Grid search over {0.1, 0.01, 0.001}.
Momentum 0.9
Batch size 32
Step size scheduler Cosine decay
Step size warmup 10 epochs
The number of epochs 500
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