
A Notations432

Table 5: Notation.

Xt
multivariate time series with a lookback window of L
at timestamps t, Xt ∈ RN×L

Xt the multivariate values of N distinct series at timestamp t, Xt ∈ RN

Yt
the prediction target with a horizon window of length τ
at timestamps t, Yt ∈ RN×τ

Ht the hidden representation of Xt, Ht ∈ RN×L×d

Zt the output of the frequency channel learner, Zt ∈ RN×L×d

St the output of the frequency temporal learner, St ∈ RN×L×d

Hchan the domain conversion of Ht on channel dimensions, Hchan ∈ CN×L×d

Zchan the FreMLP output of Hchan, Zchan ∈ CN×L×d

Ztemp the domain conversion of Zt on temporal dimensions, Ztemp ∈ CN×L×d

Stemp the FreMLP output of Ztemp, Stemp ∈ CN×L×d

Wchan the complex number weight matrix of FreMLP in the frequency
channel learner, Wchan ∈ Cd×d

Bchan the complex number bias of FreMLP in the frequency channel
learner, Bchan ∈ Cd

Wtemp the complex number weight matrix of FreMLP in the frequency
temporal learner, Wtemp ∈ Cd×d

Btemp the complex number bias of FreMLP in the frequency
temporal learner, Btemp ∈ Cd

B Experimental Details433

B.1 Datasets434

We adopt thirteen real-world benchmarks in the experiments to evaluate the accuracy of short-term435

and long-term forecasting. The details of the datasets are as follows:436

Solar5: It is about the solar power collected by National Renewable Energy Laboratory. We choose437

the power plant data points in Florida as the data set which contains 593 points. The data is collected438

from 01/01/2006 to 31/12/2016 with the sampling interval of every 1 hour.439

Wiki6: It contains a number of daily views of different Wikipedia articles and is collected from440

1/7/2015 to 31/12/2016. It consists of approximately 145k time series and we randomly choose 5k441

from them as our experimental data set.442

Traffic7: It contains hourly traffic data from 963 San Francisco freeway car lanes for short-term443

forecasting settings while it contains 862 car lanes for long-term forecasting. It is collected since444

01/01/2015 with a sampling interval of every 1 hour.445

ECG8: It is about Electrocardiogram(ECG) from the UCR time-series classification archive. It446

contains 140 nodes and each node has a length of 5000.447

5https://www.nrel.gov/grid/solar-power-data.html
6https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
7https://archive.ics.uci.edu/ml/datasets/PEMS-SF
8http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
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Electricity9: It contains electricity consumption of 370 clients for short-term forecasting while448

it contains electricity consumption of 321 clients for long-term forecasting. It is collected since449

01/01/2011. The data sampling interval is every 15 minutes.450

COVID-1910: It is about COVID-19 hospitalization in the U.S. state of California (CA) from451

01/02/2020 to 31/12/2020 provided by the Johns Hopkins University with the sampling interval of452

every day.453

METR-LA11: It contains traffic information collected from loop detectors in the highway of Los454

Angeles County. It contains 207 sensors which are from 01/03/2012 to 30/06/2012 and the data455

sampling interval is every 5 minutes.456

Exchange12: It contains the collection of the daily exchange rates of eight foreign countries including457

Australia, British, Canada, Switzerland, China, Japan, New Zealand, and Singapore ranging from458

1990 to 2016 and the data sampling interval is every 1 day.459

Weather13: It collects 21 meteorological indicators, such as humidity and air temperature, from the460

Weather Station of the Max Planck Biogeochemistry Institute in Germany in 2020. The data sampling461

interval is every 10 minutes.462

ETT14: It is collected from two different electric transformers labeled with 1 and 2, and each of them463

contains 2 different resolutions (15 minutes and 1 hour) denoted with m and h. We use ETTh1 and464

ETTm1 as our long-term forecasting benchmarks.465

B.2 Baselines466

We adopt eighteen representative and state-of-the-art baselines for comparison including LSTM-based467

models, GNN-based models, and Transformer-based models. We introduce these models as follows:468

VAR [23]: VAR is a classic linear autoregressive model. We use the Statsmodels library (https:469

//www.statsmodels.org) which is a Python package that provides statistical computations to470

realize the VAR.471

DeepGLO [36]: DeepGLO models the relationships among variables by matrix factorization and472

employs a temporal convolution neural network to introduce non-linear relationships. We download473

the source code from: https://github.com/rajatsen91/deepglo. We use the recommended474

configuration as our experimental settings for Wiki, Electricity, and Traffic datasets. For the COVID-475

19 dataset, the vertical and horizontal batch size is set to 64, the rank of the global model is set to 64,476

the number of channels is set to [32, 32, 32, 1], and the period is set to 7.477

LSTNet [10]: LSTNet uses a CNN to capture inter-variable relationships and an RNN to discover478

long-term patterns. We download the source code from: https://github.com/laiguokun/479

LSTNet. In our experiment, we use the recommended configuration where the number of CNN480

hidden units is 100, the kernel size of the CNN layers is 4, the dropout is 0.2, the RNN hidden units481

is 100, the number of RNN hidden layers is 1, the learning rate is 0.001 and the optimizer is Adam.482

TCN [11]: TCN is a causal convolution model for regression prediction. We download the source code483

from: https://github.com/locuslab/TCN. We utilize the same configuration as the polyphonic484

music task exampled in the open source code where the dropout is 0.25, the kernel size is 5, the485

number of hidden units is 150, the number of levels is 4 and the optimizer is Adam.486

Informer [13]: Informer leverages an efficient self-attention mechanism to encode the dependen-487

cies among variables. We download the source code from: https://github.com/zhouhaoyi/488

Informer2020. We use the recommended configuration as the experimental settings where the489

dropout is 0.05, the number of encoder layers is 2, the number of decoder layers is 1, the learning490

rate is 0.0001, and the optimizer is Adam.491

9https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
10https://github.com/CSSEGISandData/COVID-19
11https://github.com/liyaguang/DCRNN
12https://github.com/laiguokun/multivariate-time-series-data
13https://www.bgc-jena.mpg.de/wetter/
14https://github.com/zhouhaoyi/ETDataset
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Reformer [18]: Reformer combines the modeling capacity of a Transformer with an architecture that492

can be executed efficiently on long sequences and with small memory use. We download the source493

code from: https://github.com/thuml/Autoformer. We use the recommended configuration494

as the experimental settings.495

Autoformer [14]: Autoformer proposes a decomposition architecture by embedding the series496

decomposition block as an inner operator, which can progressively aggregate the long-term trend part497

from intermediate prediction. We download the source code from: https://github.com/thuml/498

Autoformer. We use the recommended configuration as the experimental settings.499

FEDformer [29]: FEDformer proposes an attention mechanism with low-rank approximation in500

frequency and a mixture of expert decomposition to control the distribution shifting. We download the501

source code from: https://github.com/MAZiqing/FEDformer. We use FEB-f as the Frequency502

Enhanced Block and select the random mode with 64 as the experimental mode.503

SFM [28]: On the basis of the LSTM model, SFM introduces a series of different frequency compo-504

nents in the cell states. We download the source code from: https://github.com/z331565360/505

State-Frequency-Memory-stock-prediction. We follow the recommended configuration as506

the experimental settings where the learning rate is 0.01, the frequency dimension is 10, the hidden507

dimension is 10 and the optimizer is RMSProp.508

StemGNN [16]: StemGNN leverages GFT and DFT to capture dependencies among variables in509

the frequency domain. We download the source code from: https://github.com/microsoft/510

StemGNN. We use the recommended configuration of stemGNN as our experiment setting where the511

optimizer is RMSProp, the learning rate is 0.0001, the number of stacked layers is 5, and the dropout512

rate is 0.5.513

MTGNN [15]: MTGNN proposes an effective method to exploit the inherent dependency relation-514

ships among multiple time series. We download the source code from: https://github.com/515

nnzhan/MTGNN. Because the experimental datasets have no static features, we set the parameter516

load_static_feature to false. We construct the graph by the adaptive adjacency matrix and add the517

graph convolution layer. Regarding other parameters, we follow the recommended settings.518

GraphWaveNet [27]: GraphWaveNet introduces an adaptive dependency matrix learning to cap-519

ture the hidden spatial dependency. We download the source code from: https://github.com/520

nnzhan/Graph-WaveNet. Since our datasets have no prior defined graph structures, we use only521

adaptive adjacent matrix. We add a graph convolutional layer and randomly initialize the adjacent522

matrix. We adopt the recommended setting as its experimental configuration where the learning rate523

is 0.001, the dropout is 0.3, the number of epochs is 50, and the optimizer is Adam.524

AGCRN [17]: AGCRN proposes a data-adaptive graph generation module for discovering spatial525

correlations from data. We download the source code from: https://github.com/LeiBAI/AGCRN.526

We follow the recommended settings where the embedding dimension is 10, the learning rate is 0.003,527

and the optimizer is Adam.528

TAMP-S2GCNets [4]: TAMP-S2GCNets explores the utility of MP to enhance knowledge represen-529

tation mechanisms within the time-aware DL paradigm. We download the source code from: https:530

//www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0. TAMP-531

S2GCNets require a pre-defined graph topology and we use the California State topology provided532

by the source code as input. We adopt the recommended settings as the experimental configuration533

for COVID-19.534

DCRNN [37]: DCRNN uses bidirectional graph random walk to model spatial dependency and535

recurrent neural network to capture the temporal dynamics. We download the source code from:536

https://github.com/liyaguang/DCRNN. We use the recommended configuration as our experi-537

mental settings with the batch size is 64, the learning rate is 0.01, the input dimension is 2 and the538

optimizer is Adam. DCRNN requires a pre-defined graph structure and we use the adjacency matrix539

as the pre-defined structure provided by the METR-LA dataset.540

STGCN [39]: STGCN integrates graph convolution and gated temporal convolution through spatial-541

temporal convolutional blocks. We download the source code from: https://github.com/542

VeritasYin/STGCN_IJCAI-18. We follow the recommended settings as our experimental config-543

uration where the batch size is 50, the learning rate is 0.001 and the optimizer is Adam. STGCN544

requires a pre-defined graph structure and we leverage the adjacency matrix as the pre-defined545
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structure provided by the METR-LA dataset.546

LTSF-Linear [34]: LTSF-Linear proposes a set of embarrassingly simple one-layer linear models to547

learn temporal relationships between input and output sequences. We download the source code from:548

https://github.com/cure-lab/LTSF-Linear. We use it as our long-term forecasting baseline549

and follow the recommended settings as experimental configuration.550

PatchTST [38]: PatchTST proposes an effective design of Transformer-based models for time series551

forecasting tasks by introducing two key components: patching and channel-independent structure.552

We download the source code from: https://github.com/PatchTST. We use it as our long-term553

forecasting baseline and adhere to the recommended settings as the experimental configuration.554

B.3 Implementation Details555

By default, both the frequency channel and temporal learners contain one layer of FreMLP with556

the embedding size d of 128, and the hidden size dh is set to 256. For short-term forecasting, the557

batch size is set to 32 for Solar, METR-LA, ECG, COVID-19, and Electricity datasets. And for Wiki558

and Traffic datasets, the batch size is set to 4. For the long-term forecasting, except for the lookback559

window size, we follow most of the experimental settings of LTSF-Linear [34]. The lookback window560

size is set to 96 which is recommended by FEDformer [29] and Autoformer [14]. In Appendix561

F.2, we also use 192 and 336 as the lookback window size to conduct experiments and the results562

demonstrate that FreTS outperforms other baselines as well. For the longer prediction lengths (e.g.,563

336, 720), we use the channel independence strategy and contain only the frequency temporal learner564

in our model. For some datasets, we carefully tune the hyperparameters including the batch size and565

learning rate on the validation set, and we choose the settings with the best performance. We tune the566

batch size over {4, 8, 16, 32}. The codes have been uploaded as supplementary and will be publicly567

available soon.568

B.4 Visualization Settings569

The Visualization Method for Global View. We follow the visualization methods in LTSF-570

Linear [34] to visualize the weights learned in the time domain on the input (corresponding to571

the left side of Figure 1(a)). For the visualization of the weights learned on the frequency spectrum,572

we first transform the input into the frequency domain and select the real part of the input frequency573

spectrum to replace the original input. Then, we learn the weights and visualize them in the same574

manner as in the time domain. The right side of Figure 1(a) shows the weights learned on the Traffic575

dataset with a lookback window of 96 and a prediction length of 96, Figure 9 displays the weights576

learned on the Traffic dataset with a lookback window of 72 and a prediction length of 336, and577

Figure 10 is the weights learned on the Electricity dataset with a lookback window of 96 and a578

prediction length of 96.579

The Visualization Method for Energy Compaction. Since the learned weights W = Wr + jWi ∈580

Cd×d of the frequency-domain MLPs are complex numbers, we visualize the corresponding real part581

Wr and imaginary part Wi, respectively. We normalize them by the calculation of 1/max(W) ∗W582

and visualize the normalization values. The right side of Figure 1(b) is the real part of W learned583

on the Traffic dataset with a lookback window of 48 and a prediction length of 192. To visualize584

the corresponding weights learned in the time domain, we replace the frequency spectrum of input585

Ztemp ∈ CN×L×d with the original time domain input Ht ∈ RN×L×d and perform calculations in586

the time domain with a weight W ∈ Rd×d, as depicted in the left side of Figure 1(b).587

B.5 Ablation Experimental Settings588

DLinear decomposes a raw data input into a trend component and a seasonal component, and two one-589

layer linear layers are applied to each component. In the ablation study part, we replace the two linear590

layers with two different frequency-domain MLPs (corresponding to DLinear (FreMLP) in Table 4),591

and compare their accuracy using the same experimental settings recommended in LTSF-Linear [34].592

NLinear subtracts the input by the last value of the sequence. Then, the input goes through a linear593

layer, and the subtracted part is added back before making the final prediction. We replace the linear594

layer with a frequency-domain MLP (corresponding to NLinear (FreMLP) in Table 4), and compare595

their accuracy using the same experimental settings recommended in LTSF-Linear [34].596
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C Complex Multiplication597

For two complex number values Z1 = (a + jb) and Z2 = (c + jd), where a and c is the real598

part of Z1 and Z2 respectively, b and d is the imaginary part of Z1 and Z2 respectively. Then the599

multiplication of Z1 and Z2 is calculated by:600

Z1Z2 = (a+ jb)(c+ jd) = ac+ j2bd+ jad+ jbc = (ac− bd) + j(ad+ bc) (10)

where j2 = −1.601

D Proof602

D.1 Proof of Theorem 1603

Theorem 1. Suppose that H is the representation of raw time series and H is the corresponding604

frequency components of the spectrum, then the energy of a time series in the time domain is equal to605

the energy of its representation in the frequency domain. Formally, we can express this with above606

notations by:607 ∫ ∞

−∞
|H(v)|2dv =

∫ ∞

−∞
|H(f)|2df (11)

where H(f) =
∫∞
−∞ H(v)e−j2πfvdv, v is the time/channel dimension, f is the frequency dimension.608

Proof. Given the representation of raw time series H ∈ RN×L×d, let us consider performing609

integration in either the N dimension (channel dimension) or the L dimension (temporal dimension),610

denoted as the integral over v, then611 ∫ ∞

−∞
|H(v)|2dv =

∫ ∞

−∞
H(v)H∗(v)dv

where H∗(v) is the conjugate of H(v). According to IDFT, H∗(v) =
∫∞
−∞ H∗(f)e−j2πfvdf , we

can obtain612 ∫ ∞

−∞
|H(v)|2dv =

∫ ∞

−∞
H(v)[

∫ ∞

−∞
H∗(f)e−j2πfvdf ]dv

=

∫ ∞

−∞
H∗(f)[

∫ ∞

−∞
H(v)e−j2πfvdv]df

=

∫ ∞

−∞
H∗(f)H(f)df

=

∫ ∞

−∞
|H(f)|2df

Proved.613

Therefore, the energy of a time series in the time domain is equal to the energy of its representation614

in the frequency domain.615

D.2 Proof of Theorem 2616

Theorem 2. Given the time series input H and its corresponding frequency domain conversion H,617

the operations of frequency-domain MLP on H can be represented as global convolutions on H in618

the time domain. This can be given by:619

HW + B = F(H ∗W +B) (12)

where ∗ is a circular convolution, W and B are the complex number weight and bias, W and B are620

the weight and bias in the time domain, and F is DFT.621
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Proof. Suppose that we conduct operations in the N (i.e., channel dimension) or L (i.e., temporal622

dimension) dimension, then623

F(H(v) ∗W (v)) =

∫ ∞

−∞
(H(v) ∗W (v))e−j2πfvdv

According to convolution theorem, H(v) ∗W (v) =
∫∞
−∞(H(τ)W (v − τ))dτ , then624

F(H(v) ∗W (v)) =

∫ ∞

−∞

∫ ∞

−∞
(H(τ)W (v − τ))e−j2πfvdτdv

=

∫ ∞

−∞

∫ ∞

−∞
W (v − τ)e−j2πfvdvH(τ)dτ

Let x = v − τ , then625

F(H(v) ∗W (v)) =

∫ ∞

−∞

∫ ∞

−∞
W (x)e−j2πf(x+τ)dxH(τ)dτ

=

∫ ∞

−∞

∫ ∞

−∞
W (x)e−j2πfxe−j2πfτdxH(τ)dτ

=

∫ ∞

−∞
H(τ)e−j2πfτdτ

∫ ∞

−∞
W (x)e−j2πfxdx

= H(f)W(f)

Accordingly, (H(v) ∗W (v)) in the time domain is equal to (H(f)W(f)) in the frequency domain.626

Therefore, the operations of FreMLP (HW + B) in the channel (i.e., v = N ) or temporal dimension627

(i.e., v = L), are equal to the operations (H ∗ W + B) in the time domain. This implies that628

frequency-domain MLPs can be viewed as global convolutions in the time domain. Proved.629

E Further Analysis630

E.1 Ablation Study631

In this section, we further analyze the effects of the frequency channel and temporal learners with632

different prediction lengths on ETTm1 and ETTh1 datasets. The results are shown in Table 6. It633

demonstrates that with the prediction length increasing, the frequency temporal learner shows more634

effective than the channel learner. Especially, when the prediction length is longer (e.g., 336, 720),635

the channel learner will lead to worse performance. The reason is that when the prediction lengths636

become longer, the model with the channel learner is likely to overfit data during training. Thus for637

long-term forecasting with longer prediction lengths, the channel independence strategy may be more638

effective, as described in PatchTST [38].

Table 6: Ablation studies of the frequency channel and temporal learners in long-term forecasting.
’I/O’ indicates lookback window sizes/prediction lengths.

Dataset ETTm1 ETTh1

I/O 96/96 96/192 96/336 96/720 96/96 96/192 96/336 96/720

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

FreCL 0.053 0.078 0.059 0.085 0.067 0.095 0.097 0.125 0.063 0.089 0.067 0.093 0.071 0.097 0.087 0.115
FreTL 0.053 0.078 0.058 0.084 0.062 0.089 0.069 0.096 0.061 0.087 0.065 0.091 0.070 0.096 0.082 0.108
FreTS 0.052 0.077 0.057 0.083 0.064 0.092 0.071 0.099 0.063 0.089 0.066 0.092 0.072 0.098 0.086 0.113

639

E.2 Impacts of Real/Imaginary Parts640

To investigate the effects of real and imaginary parts, we conduct experiments on Exchange and641

ETTh1 datasets under different prediction lengths L ∈ {96, 192} with the lookback window of 96.642

Furthermore, we analyze the effects of Wr and Wi in the weights W = Wr + jWi of FreMLP. In643

this experiment, we only use the frequency temporal learner in our model. The results are shown in644
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Table 7. In the table, Inputreal indicates that we only feed the real part of the input into the network,645

and Inputimag indicates that we only feed the imaginary part of the input into the network. W(Wr)646

denotes that we set Wi to 0 and W(Wi) denotes that we set Wr to 0. From the table, we can observe647

that both the real part and imaginary part of input are indispensable and the real part is more important648

to the imaginary part, and the real part of W plays a more significant role for the model performances.649

Table 7: Investigation the impacts of real/imaginary parts

Dataset Exchange ETTh1

I/O 96/96 96/192 96/96 96/192

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Inputreal 0.048 0.062 0.058 0.074 0.080 0.111 0.083 0.113
Inputimag 0.143 0.185 0.143 0.184 0.130 0.156 0.130 0.156
W(Wr) 0.039 0.053 0.051 0.067 0.063 0.089 0.067 0.093
W(Wi) 0.143 0.184 0.142 0.184 0.116 0.138 0.117 0.139

FreTS 0.037 0.051 0.050 0.067 0.061 0.087 0.065 0.091

650

E.3 Parameter Sensitivity651

We further perform extensive experiments on the ECG dataset to evaluate the sensitivity of the input652

length L and the embedding dimension size d. (1) Input length: We tune over the input length with the653

value {6, 12, 18, 24, 30, 36, 42, 50, 60} on the ECG dataset and the prediction length is 12, and the654

result is shown in Figure 6(a). From the figure, we can find that with the input length increasing, the655

performance first becomes better because the long input length may contain more pattern information,656

and then it decreases due to data redundancy or overfitting. (2) Embedding size: We choose the657

embedding size over the set {32, 64, 128, 256, 512} on the ECG dataset. The results are shown in658

Figure 6(b). It shows that the performance first increases and then decreases with the increase of the659

embedding size because a large embedding size improves the fitting ability of our FSTN but may660

easily lead to overfitting especially when the embedding size is too large.661

(a) Input window length (b) Embedding size

Figure 6: The parameter sensitivity analyses of FreTS.

F Additional Results662

To further evaluate the performance of our FreTS in multi-step forecasting, we conduct more663

experiments on METR-LA and COVID-19 datasets with the input length of 12 and the prediction664

lengths of {3, 6, 9, 12}, and the results are shown in Tables 8 and 9, respectively. In this experiment,665

we only select the state-of-the-art (i.e., GNN-based and Transformer-based) models as the baselines666

since they perform better than other models, such as RNN and TCN. Among these baselines, STGCN,667

DCRNN, and TAMP-S2GCNets require pre-defined graph structures. The results demonstrate that668

FreTS outperforms other baselines, including those models with pre-defined graph structures, at669
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all steps. This further confirms that FreTS has strong capabilities in capturing channel-wise and670

time-wise dependencies.671

F.1 Multi-Step Forecasting672

Table 8: Multi-step short-term forecasting results comparison on the METR-LA dataset with the
input length of 12 and the prediction length of τ ∈ {3, 6, 9, 12}. We highlight the best results in bold
and the second best results are underline.

Length 3 6 9 12
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Reformer 0.086 0.154 0.097 0.176 0.107 0.193 0.118 0.206
Informer 0.082 0.156 0.094 0.176 0.108 0.193 0.125 0.214
Autoformer 0.087 0.149 0.091 0.162 0.106 0.178 0.099 0.184
FEDformer 0.064 0.127 0.073 0.145 0.079 0.160 0.086 0.175
DCRNN 0.160 0.204 0.191 0.243 0.216 0.269 0.241 0.291
STGCN 0.058 0.133 0.080 0.177 0.102 0.209 0.128 0.238
GraphWaveNet 0.180 0.366 0.184 0.375 0.196 0.382 0.202 0.386
MTGNN 0.135 0.294 0.144 0.307 0.149 0.328 0.153 0.316
StemGNN 0.052 0.115 0.069 0.141 0.080 0.162 0.093 0.175
AGCRN 0.062 0.131 0.086 0.165 0.099 0.188 0.109 0.204

FreTS 0.050 0.113 0.066 0.140 0.076 0.158 0.080 0.166

Table 9: Multi-step short-term forecasting results comparison on the COVID-19 dataset with the
input length of 12 and the prediction length of τ ∈ {3, 6, 9, 12}. We highlight the best results in bold
and the second best results are underline.

Length 3 6 9 12
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Reformer 0.212 0.282 0.139 0.186 0.148 0.197 0.152 0.209
Informer 0.234 0.312 0.190 0.245 0.184 0.242 0.200 0.259
Autoformer 0.212 0.280 0.144 0.191 0.152 0.201 0.159 0.211
FEDformer 0.246 0.328 0.169 0.242 0.175 0.247 0.160 0.219
GraphWaveNet 0.092 0.129 0.133 0.179 0.171 0.225 0.201 0.255
StemGNN 0.247 0.318 0.344 0.429 0.359 0.442 0.421 0.508
AGCRN 0.130 0.172 0.171 0.218 0.224 0.277 0.254 0.309
MTGNN 0.276 0.379 0.446 0.513 0.484 0.548 0.394 0.488
TAMP-S2GCNets 0.140 0.190 0.150 0.200 0.170 0.230 0.180 0.230

FreTS 0.071 0.103 0.093 0.131 0.109 0.148 0.124 0.164

F.2 Long-Term Forecasting under Varying Lookback Window673

In Table 10, we present the long-term forecasting results of our FreTS and other baselines674

(PatchTST [38], LTSF-linear [34], FEDformer [29], Autoformer [14], Informer [13], and Re-675

former [18]) under different lookback window lengths L ∈ {96, 192, 336} on the Exchange dataset.676

The prediction lengths are {96, 192, 336, 720}. From the table, we can observe that our FreTS677

outperforms all baselines in all settings and achieves significant improvements than FEDformer [29],678

Autoformer [14], Informer [13], and Reformer [18]. It verifies the effectiveness of our FreTS in679

learning informative representation under different lookback window.680

G Visualizations681

G.1 Weight Visualizations for Energy Compaction682

We further visualize the weights W = Wr + jWi in the frequency temporal learner under different683

settings, including different lookback window sizes and prediction lengths, on the Traffic and684

Electricity datasets. The results are illustrated in Figures 7 and 8. These figures demonstrate that685
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Table 10: Long-term forecasting results comparison with different lookback window lengths L ∈
{96, 192, 336}. The prediction lengths are as τ ∈ {96, 192, 336, 720}. The best results are in bold
and the second best results are underlined.

Models FreTS PatchTST LTSF-Linear FEDformer Autoformer Informer Reformer
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

96

96 0.037 0.051 0.039 0.052 0.038 0.052 0.050 0.067 0.050 0.066 0.066 0.084 0.126 0.146
192 0.050 0.067 0.055 0.074 0.053 0.069 0.064 0.082 0.063 0.083 0.068 0.088 0.147 0.169
336 0.062 0.082 0.071 0.093 0.064 0.085 0.080 0.105 0.075 0.101 0.093 0.127 0.157 0.189
720 0.088 0.110 0.132 0.166 0.092 0.116 0.151 0.183 0.150 0.181 0.117 0.170 0.166 0.201

19
2

96 0.036 0.050 0.037 0.051 0.038 0.051 0.067 0.086 0.066 0.085 0.109 0.131 0.123 0.143
192 0.051 0.068 0.052 0.070 0.053 0.070 0.080 0.101 0.080 0.102 0.144 0.172 0.139 0.161
336 0.066 0.087 0.072 0.097 0.073 0.096 0.093 0.122 0.099 0.129 0.141 0.177 0.155 0.181
720 0.088 0.110 0.099 0.128 0.098 0.122 0.190 0.222 0.191 0.224 0.173 0.210 0.159 0.193

33
6

96 0.038 0.052 0.039 0.053 0.040 0.055 0.088 0.113 0.088 0.110 0.137 0.169 0.128 0.148
192 0.053 0.070 0.055 0.071 0.055 0.072 0.103 0.133 0.104 0.133 0.161 0.195 0.138 0.159
336 0.071 0.092 0.074 0.099 0.077 0.100 0.123 0.155 0.127 0.159 0.156 0.193 0.156 0.179
720 0.082 0.108 0.100 0.129 0.087 0.110 0.210 0.242 0.211 0.244 0.173 0.210 0.168 0.205

the weight coefficients of the real or imaginary part exhibit energy aggregation characteristics (clear686

diagonal patterns) which can facilitate frequency-domain MLPs in learning the significant features.

(a) Wr under I/O=48/192 (b) Wr under I/O=48/336 (c) Wr under I/O=72/336

(d) Wi under I/O=48/192 (e) Wi under I/O=48/336 (f) Wi under I/O=72/336

Figure 7: The visualizations of the weights W in the frequency temporal learner on the Traffic dataset.
’I/O’ denotes lookback window sizes/prediction lengths. Wr and Wi are the real and imaginary parts
of W , respectively.

687

G.2 Weight Visualizations for Global View688

To verify the characteristics of a global view of learning in the frequency domain, we perform689

additional experiments on the Traffic and Electricity datasets and compare the weights learned on690

the input in the time domain with those learned on the input frequency spectrum. The results are691

presented in Figures 9 and 10. The left side of the figures displays the weights learned on the input692

in the time domain, while the right side shows those learned on the real part of the input frequency693

spectrum. From the figures, we can observe that the patterns learned on the input frequency spectrum694

exhibit more obvious periodic patterns compared to the time domain. This is attributed to the global695

view characteristics of the frequency domain. Furthermore, we visualize the predictions of FreTS on696
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(a) Wr under I/O=96/96
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(b) Wr under I/O=96/336
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(c) Wr under I/O=96/720
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(d) Wi under I/O=96/96
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(e) Wi under I/O=96/336
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(f) Wi under I/O=96/720

Figure 8: The visualizations of the weights W in the frequency temporal learner on the Electricity
dataset. ’I/O’ denotes lookback window sizes/prediction lengths. Wr and Wi are the real and
imaginary parts of W , respectively.

the Traffic and Electricity datasets, as depicted in Figures 11 and 12, which show that FreTS exhibit697

a good ability to fit cyclic patterns. In summary, these results demonstrate that FreTS has a strong698

capability to capture the global periodic patterns, which benefits from the global view characteristics699

of the frequency domain.700
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Figure 9: Visualization of the weights (L× τ ) on the Traffic dataset with lookback window size of
72 and prediction length of 336.
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Figure 10: Visualization of the weights (L× τ ) on the Electricity dataset with lookback window size
of 96 and prediction length of 96.
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Figure 11: Visualizations of predictions (forecast vs. actual) on the Traffic dataset. ’I/O’ denotes
lookback window sizes/prediction lengths.
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(d) I/O=96/720

Figure 12: Visualizations of predictions (forecast vs. actual) on the Electricity dataset. ’I/O’ denotes
lookback window sizes/prediction lengths.
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