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Abstract

The power of DNNs relies heavily on the quantity and quality of training data.
However, collecting and annotating data on a large scale is often expensive and time-
consuming. To address this issue, we explore a new task, termed dataset expansion,
aimed at expanding a ready-to-use small dataset by automatically creating new
labeled samples. To this end, we present a Guided Imagination Framework (GIF)
that leverages cutting-edge generative models like DALL-E2 and Stable Diffusion
(SD) to "imagine" and create informative new data from the input seed data.
Specifically, GIF conducts data imagination by optimizing the latent features of
the seed data in the semantically meaningful space of the prior model, resulting in
the creation of photo-realistic images with new content. To guide the imagination
towards creating informative samples for model training, we introduce two key
criteria, i.e., class-maintained information boosting and sample diversity promotion.
These criteria are verified to be essential for effective dataset expansion: GIF-SD
obtains 13.5% higher model accuracy on natural image datasets than unguided
expansion with SD. With these essential criteria, GIF successfully expands small
datasets in various scenarios, boosting model accuracy by 36.9% on average over
six natural image datasets and by 13.5% on average over three medical datasets. The
source code is available at https://github.com/Vanint/DatasetExpansion.

1 Introduction

A substantial number of training samples is essential for unleashing the power of deep networks [14].
However, such requirements often impede small-scale data applications from fully leveraging deep
learning solutions. Manual collection and labeling of large-scale datasets are often expensive and
time-consuming in small-scale scenarios [52]. To address data scarcity while minimizing costs, we
explore a novel task, termed Dataset Expansion. As depicted in Figure 1 (left), dataset expansion
aims to create an automatic data generation pipeline that can expand a small dataset into a larger and
more informative one for model training. This task particularly focuses on enhancing the quantity and
quality of the small-scale dataset by creating informative new samples. This differs from conventional
data augmentations that primarily focus on increasing data size through transformations, often
without creating samples that offer fundamentally new content. The expanded dataset is expected to
be versatile, fit for training various network architectures, and promote model generalization.

We empirically find that naive applications of existing methods cannot address the problem well
(cf. Table 1 and Figure 4). Firstly, data augmentation [12, 15, 109], involving applying pre-set
transformations to images, can be used for dataset expansion. However, these transformations
primarily alter the surface visual characteristics of an image, but cannot create images with novel
content (cf. Figure 5a). As a result, the new information introduced is limited, and the performance
gains tend to saturate quickly as more data is generated. Secondly, we have explored pre-trained
generative models (e.g., Stable Diffusion (SD) [59]) to create images for model training. However,
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Figure 1: Dataset Expansion aims to create data with new information to enrich small datasets for
training DNNs better (left). As shown, the created images by our method are all class-relevant but
diverse (e.g., new sitting postures of cats, new patterns of cushions). This enables ResNet-50 trained
on our expanded datasets to perform much better than the one trained on the original datasets (right).

these pre-trained generative models are usually category-agnostic to the target dataset, so they cannot
ensure that the synthetic samples carry the correct labels and are beneficial to model training.

Different from them, our solution is inspired by human learning with imagination. Upon observing
an object, humans can readily imagine its different variants in various shapes, colors, or contexts,
relying on their prior understanding of the world [75, 80]. Such an imagination process is highly
valuable for dataset expansion as it does not merely tweak an object’s appearance, but leverages rich
prior knowledge to create object variants infused with new information. In tandem with this, recent
generative models like SD and DALL-E2 [56] have demonstrated exceptional abilities in capturing
the data distribution of extremely vast datasets [4, 66] and generating photo-realistic images with rich
content. This motivates us to explore their use as prior models to establish our computational data
imagination pipeline for dataset expansion, i.e., imagining different sample variants given seed data.
However, the realization of this idea is non-trivial and is complicated by two key challenges: how to
generate samples with correct labels, and how to ensure the created samples boost model training.

To handle these challenges, we conduct a series of exploratory studies (cf. Section 3) and make two
key findings. First, CLIP [54], which offers excellent zero-shot classification abilities, can map latent
features of category-agnostic generative models to the specific label space of the target dataset. This
enables us to generate samples with correct labels. Second, we discover two informativeness criteria
that are crucial for generating effective training data: 1) class-maintained information boosting to
ensure that the imagined data are class-consistent with the seed data and bring new information; 2)
sample diversity promotion to encourage the imagined samples to have diversified content.

In light of the above findings, we propose a Guided Imagination Framework (GIF) for dataset
expansion. Specifically, given a seed image, GIF first extracts its latent feature with the prior
(generative) model. Unlike data augmentation that imposes variation over raw images, GIF optimizes
the "variation" over latent features. Thanks to the guidance carefully designed by our discovered
criteria, the latent feature is optimized to provide more information while maintaining its class. This
enables GIF to create informative new samples, with class-consistent semantics yet higher content
diversity, for dataset expansion. Such expansion is shown to benefit model generalization.

As DALL-E2 [56] and SD are powerful in generating images, and MAE [24] excels at reconstructing
images, we explore their use as prior models of GIF for data imagination. We evaluate our methods
on small-scale natural and medical image datasets. As shown in Figure 1 (right), compared to ResNet-
50 trained on the original dataset, our method improves its performance by a large margin across
various visual tasks. Specifically, with the designed guidance, GIF obtains 36.9% accuracy gains
on average over six natural image datasets and 13.5% gains on average over three medical datasets.
Moreover, the expansion efficiency of GIF is much higher than data augmentation, i.e., 5× expansion
by GIF-SD outperforms even 20× expansion by Cutout, GridMask and RandAugment on Cars and
DTD datasets. In addition, the expanded datasets also benefit out-of-distribution performance of
models, and can be directly used to train various architectures (e.g., ResNeXt [85], WideResNet [97],
and MobileNet [64]), leading to consistent performance gains. We also empirically show that GIF is
more applicable than CLIP to handle real small-data scenarios, particularly with non-natural image
domains (e.g., medicine) and hardware constraints (e.g., limited supportable model sizes). Please note
that GIF is much faster and more cost-effective than human data collection for dataset expansion.
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2 Related Work

Learning with synthetic images. Training with synthetic data is a promising direction [26, 34,
110]. For example, DatasetGANs [42, 105] explore GAN models [17, 33] to generate images for
segmentation model training. However, they require a sufficiently large dataset for in-domain GAN
training, which is not feasible in small-data scenarios. Also, as the generated images are without
labels, they need manual annotations on generated images to train a label generator for annotating
synthetic images. Similarly, many recent studies [2, 3, 22, 39, 63, 78, 82, 94] also explored generative
models to generate new data for model training. However, these methods cannot ensure that the
synthesized data bring sufficient new information and accurate labels for the target small datasets.
Moreover, training GANs from scratch [3, 39, 63, 78, 94], especially with very limited data, often fails
to converge or produce meaningful results. In contrast, our dataset expansion aims to expand a small
dataset into a larger labeled one in a fully automatic manner without involving human annotators. As
such, our method emerges as a more effective way to expand small datasets.

Data augmentation. Augmentation employs manually specified rules, such as image manipula-
tion [91], erasing [15, 109], mixup [28, 100, 101], and transformation selection [11, 12] to boost
model generalization [69]. Despite certain benefits, these methods enrich images by pre-defined
transformations, which only locally vary the pixel values of images and cannot generate images with
highly diversified content. Moreover, the effectiveness of augmented data is not always guaranteed
due to random transformations. In contrast, our approach harnesses generative models trained on large
datasets and guides them to generate more informative and diversified images, thus resulting in more
effective and efficient dataset expansion. For additional related studies, please refer to Appendix A.

3 Problem and Preliminary Studies

Problem statement. To address data scarcity, we explore a novel dataset expansion task. Without loss
of generality, we consider image classification, where a small-scale training datasetDo = {xi, yi}no

i=1
is given. Here, xi denotes an instance with class label yi, and no denotes the number of samples. The
goal of dataset expansion is to generate a set of new synthetic samples Ds = {x′

j , y
′
j}

ns
j=1 to enlarge

the original dataset, such that a DNN model trained on the expanded dataset Do ∪ Ds outperforms
the model trained on Do significantly. The key is that the synthetic sample set Ds should be highly
related to the original dataset Do and bring sufficient new information to boost model training.

3.1 A proposal for computational imagination models

Given an object, humans can easily imagine its different variants, like the object in various colors,
shapes, or contexts, based on their accumulated prior knowledge about the world [75, 80]. This
imagination process is highly useful for dataset expansion, as it does not simply perturb the object’s
appearance but applies rich prior knowledge to create variants with new information. In light of this,
we seek to build a computational model to simulate this imagination process for dataset expansion.

Deep generative models, known for their capacity to capture the distribution of a dataset, become
our tool of choice. By drawing on their prior distribution knowledge, we can generate new samples
resembling the characteristics of their training datasets. More importantly, recent generative models,
such as Stable Diffusion (SD) and DALL-E2, have demonstrated remarkable abilities in capturing the
distribution of extremely large datasets and generating photo-realistic images with diverse content.
This inspires us to explore their use as prior models to construct our data imagination pipeline.

Specifically, given a pre-trained generative model G and a seed example (x, y) from the target dataset,
we formulate the imagination of x′ from x as x′ = G(f(x) + δ). Here, f(·) is an image encoder of
G to transform the raw image into an embedding for imagination with the generative model. δ is
a perturbation applied to f(x) such that G can generate x′ different from x. A simple choice of δ
would be Gaussian random noise, which, however, cannot generate highly informative samples. In
the following subsection, we will discuss how to optimize δ to provide useful guidance.

It is worth noting that we do not aim to construct a biologically plausible imagination model that
strictly follows the dynamics and rules of the human brain. Instead, we draw inspiration from
the imaginative activities of the human brain and propose a pipeline to leverage well pre-trained
generative models to explore dataset expansion.
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Figure 2: Effectiveness of the informativeness criteria for sample creation. (a) Comparison
between random expansion and our selective expansion on CIFAR100-Subset. (b) Visualization of
DALLE expansion with and without diversity guidance.

3.2 How to guide imagination for effective expansion?

Our data imagination pipeline leverages generative models to create new samples from seed data.
However, it is unclear what types of samples are effective and how to optimize δ accordingly in the
pipeline to create data that are useful for model training. Our key insight is that the newly created
sample x′ should introduce new information compared to the seed sample x, while preserving the
same class semantics as the seed sample. To achieve these properties, we explore the following
preliminary studies and discover two key criteria: (1) class-maintained information boosting, and (2)
sample diversity promotion.

Class-maintained informativeness boosting. When enhancing data informativeness, it is non-trivial
to ensure that the generated x′ has the same label y as the seed sample x, since it is difficult to
maintain the class semantics after perturbation in the latent space f(x). To overcome this, we explore
CLIP [54] for its well-known image-text alignment ability: CLIP’s image encoder can project an
image x to an embedding space aligned with the language embedding of its class name y [72, 81].
Therefore, we can leverage CLIP’s embedding vectors of all class names as a zero-shot classifier to
guide the generation of samples that maintain the same class semantics as seed data. Meanwhile, the
entropy of the zero-shot prediction can serve as a measure to boost the classification informativeness
of the generated data.

To pinpoint whether the criteria of class-maintained information boosting helps to generate more
informative samples, we start with exploratory experiments on a subset of CIFAR100 [41]. Here,
the subset is built for simulating small-scale datasets by randomly sampling 100 instances per class
from CIFAR100. We first synthesize samples based on existing data augmentation methods (i.e.,
RandAugment and Cutout [15]) and expand CIFAR100-Subset by 5×. Meanwhile, we conduct
selective augmentation expansion based on our criteria (i.e., selecting the samples with the same
zero-shot prediction but higher prediction entropy compared to seed samples) until we reach the
required expansion ratio per seed sample. As shown in Figure 2a, selective expansion outperforms
random expansion by 1.3% to 1.6%, meaning that the selected samples are more informative for
model training. Compared to random augmentation, selective expansion filters out the synthetic
data with lower prediction entropy and those with higher entropy but inconsistent classes. The
remaining data thus preserve the same class semantics but bring more information gain, leading to
better expansion effectiveness.

Sample diversity promotion. To prevent the "imagination collapse" issue that generative models
yield overly similar or duplicate samples, we delve further into the criterion of sample diversity
promotion. To study its effectiveness, we resort to a powerful generative model (i.e., DALL-E2) as
the prior model to generate images and expand CIFAR100-Subset by 5×, where the guided expansion
scheme and the implementation of diversity promotion will be introduced in the following section. As
shown in Figure 2b, the generated images with diversity guidance are more diversified: starfish images
have more diverse object numbers, and motorbike images have more diverse angles of view and even
a new driver. This leads to 1.4% additional accuracy gains on CIFAR100-Subset (cf. Table 20 in
Appendix F.5), demonstrating that the criterion of sample diversity promotion is effective in bringing
diversified information to boost model training.

4



input

CLIP image
encoder

imagined images

DALL-E2
decoder

informativeness
guidance

CLIP text 
encoder

class names

perturbed

zero-shot classifier 

optimized 
latent

feature repeated

“cat”
“dog”
“car”

cat
dog
car

⊕

Figure 3: Illustration of the proposed GIF method based on DALL-E2 [56], which expands small
datasets by creating informative new samples with guided imagination. Here, we resort to DALL-E2
as the prior model, in which the image/text encoders are CLIP image/text encoders while the decoder
is the diffusion model of DALL-E2. Moreover, ⊕ denotes guided residual multiplicative perturbation.
More implementation details of GIF-DALLE, GIF-SD and GIF-MAE are provided in Appendix D.

4 GIF: A Guided Imagination Framework for Dataset Expansion

In light of the aforementioned studies, we propose a Guided Imagination Framework (GIF) for
dataset expansion. This framework guides the imagination of prior generative models based on the
identified criteria. Given a seed image x from a target dataset, we first extract its latent feature f(x)
via the encoder of the generative model. Different from data augmentation that directly imposes
variations over raw RGB images, GIF optimizes the "variations" over latent features. Thanks to the
aforementioned criteria as guidance, the optimized latent features result in samples that preserve the
correct class semantics while introducing new information beneficial for model training.

Overall pipeline. To detail the framework, we use DALL-E2 [56] as a prior generative model for
illustration. As shown in Figure 3, DALL-E2 adopts CLIP image/text encoders fCLIP-I and fCLIP-T
as its image/text encoders and uses a pre-trained diffusion model G as its image decoder. To create
a set of new images x′ from the seed image x, GIF first repeats its latent feature f = fCLIP-I(x) for
K times, with K being the expansion ratio. For each latent feature f , we inject perturbation over it
with randomly initialized noise z ∼ U(0, 1) and bias b ∼ N (0, 1). Here, to prevent out-of-control
imagination, we conduct residual multiplicative perturbation on the latent feature f and enforce an
ε-ball constraint on the perturbation as follows:

f ′ = Pf,ϵ((1 + z)f + b), (1)

where Pf,ϵ(·) means to project the perturbed feature f ′ to the ε-ball of the original latent feature,
i.e., ∥f ′ − f∥∞ ≤ ε. Note that each latent feature has independent z and b. Following our explored
criteria, GIF optimizes z and b over the latent feature space as follows:

z′, b′ ←− argmax
z,b

Sinf + Sdiv, (2)

where Sinf and Sdiv correspond to the class-maintained informativeness score and the sample
diversity score, respectively, which will be elaborated below. This latent feature optimization is the
key step for achieving guided imagination. After updating the noise z′ and bias b′ for each latent
feature, GIF obtains a set of new latent features by Eq. (1), which are then used to create new samples
through the decoder G.

Class-maintained informativeness. To boost the informativeness of the generated data without
changing class labels, we resort to CLIP’s zero-shot classification abilities. Specifically, we first use
fCLIP-T to encode the class name y of a sample x and take the embedding wy = fCLIP-T(y) as the
zero-shot classifier of class y. Each latent feature fCLIP-I(x) can be classified according to its cosine
similarity to wy , i.e., the affinity score of x belonging to class y is ŝy = cos(f(x), wy), which forms
a prediction probability vector s = σ([ŝ1, . . . , ŝC ]) for the total C classes of the target dataset based
on softmax σ(·). The prediction of the perturbed feature s′ can be obtained in the same way. We then
design Sinf to improve the information entropy of the perturbed feature while maintaining its class
semantics as the seed sample:

Sinf = s′j + (s log(s)− s′ log(s′)), s.t. j = argmax(s).

Specifically, s′j denotes the zero-shot classification score of the perturbed feature s′ regarding the
predicted label of the original latent feature j = argmax(s). Here, the zero-shot prediction of the

5



original data serves as an anchor to regularize the class semantics of the perturbed features in CLIP’s
embedding space, thus encouraging class consistency between the generated samples and the seed
sample. Moreover, s log(s) − s′ log(s′) means contrastive entropy increment, which encourages
the perturbed feature to have higher prediction entropy and helps to improve the classification
informativeness of the generated image.

Sample diversity. To promote the diversity of the generated samples, we design Sdiv as the
Kullback–Leibler (KL) divergence among all perturbed latent features of a seed sample: Sdiv =
DKL(f

′∥f̄), where f ′ denotes the current perturbed latent feature and f̄ indicates the mean over
the K perturbed features of the seed sample. To enable measuring KL divergence between features,
inspired by [84], we apply the softmax function to transform feature vectors into probability vectors
for KL divergence.

Theoretical analysis. We then analyze our method to conceptually understand its benefits to model
generalization. We resort to δ-cover [62] to analyze how data diversity influences the generalization
error bound. Specifically, "a dataset E is a δ-cover of a dataset S" means a set of balls with radius δ
centered at each sample of the dataset E can cover the entire dataset S. According to the property
of δ-cover, we define the dataset diversity by δ-diversity as the inverse of the minimal δmin, i.e.,
δdiv = 1

δmin
. Following the same assumptions of [67], we have the following result.

Theorem 4.1. Let A denote a learning algorithm that outputs a set of parameters given a dataset
D = {xi, yi}i∈[n] with n i.i.d. samples drawn from distribution PZ . Assume the hypothesis function
is λη-Lipschitz continuous, the loss function ℓ(x, y) is λℓ-Lipschitz continuous for all y, and is
bounded by L, with ℓ(xi, yi;A) = 0 for all i ∈ [n]. If D constitutes a δ-cover of PZ , then with
probability at least 1− γ, the generalization error bound satisfies:

|Ex,y∼PZ [ℓ(x, y;A)]− 1

n

∑
i∈[n]

ℓ(xi, yi;A)|
c
≤ λℓ + ληLC

δdiv
,

where C is a constant, and the symbol
c
≤ indicates "smaller than" up to an additive constant.

Please refer to Appendix C for proofs. This theorem shows that the generalization error is bounded
by the inverse of δ-diversity. That is, the more diverse samples are created, the more improvement of
generalization performance would be made in model training. In real small-data applications, data
scarcity leads the covering radius δ to be very large and thus the δ-diversity is low, which severely
affects model generalization. Simply increasing the data number (e.g., via data repeating) does
not help generalization since it does not increase δ-diversity. In contrast, our GIF applies two key
criteria (i.e., "informativeness boosting" and "sample diversity promotion") to create informative
and diversified new samples. The expanded dataset thus has higher data diversity than random
augmentation, which helps to increase δ-diversity and thus boosts model generalization. This
advantage can be verified by Table 2 and Figure 4.

Implementing GIF with different prior models. To enable effective expansion, we explore three
prior models for guided imagination: DALL-E2 [56] and Stable Diffusion [59] are advanced image
generative methods, while MAE [24] is skilled at reconstructing images. We call the resulting
methods GIF-DALLE, GIF-SD, and GIF-MAE, respectively. We introduce their high-level ideas
below, while their method details are provided in Appendix D.

GIF-DALLE adheres strictly to the above pipeline for guided imagination, while we slightly modify
the pipeline in GIF-SD and GIF-MAE since their image encoders are different from the CLIP image
encoder. Given a seed sample, GIF-SD and GIF-MAE first generate the latent feature via the encoders
of their prior models, and then conduct random noise perturbation following Eq. (1). Here, GIF-SD
has one more step than GIF-MAE before noise perturbation, i.e., conducting prompt-guided diffusion
for its latent feature, where the rule of the prompt design will be elaborated in Appendix D.2. Based
on the perturbed feature, GIF-SD and GIF-MAE generate an intermediate image via their decoders,
and apply CLIP to conduct zero-shot predictions for both the seed and intermediate images to compute
the informativeness guidance (i.e., Eq. (2)) for optimizing latent features. Note that, in GIF-SD and
GIF-MAE, we execute channel-level noise perturbation since we find it facilitates the generation of
content-consistent samples with a greater variety of image styles (cf. Appendix B.2).
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Table 1: Accuracy of ResNet-50 trained from scratch on small datasets and their expanded datasets
by various methods. Here, CIFAR100-Subset is expanded by 5×, Pets is expanded by 30×, and
all other natural image datasets are expanded by 20×. All medical image datasets are expanded
by 5×. Moreover, MAE, DALL-E2 and SD (Stable Diffusion) are the baselines of directly using
them to expand datasets without our GIF. In addition, CLIP indicates its zero-shot performance. All
performance values are averaged over three runs. Please see Appendix F for more comparisons.

Dataset Natural image datasets Medical image datasets

Caltech101 Cars Flowers DTD CIFAR100-S Pets Average PathMNIST BreastMNIST OrganSMNIST Average

Original 26.3 19.8 74.1 23.1 35.0 6.8 30.9 72.4 55.8 76.3 68.2
CLIP 82.1 55.8 65.9 41.7 41.6 85.4 62.1 10.7 51.8 7.7 23.4
Distillation of CLIP 33.2 18.9 75.1 25.6 37.8 11.1 33.6 77.3 60.2 77.4 71.6

Expanded
Cutout [15] 51.5 25.8 77.8 24.2 44.3 38.7 43.7 (+12.8) 78.8 66.7 78.3 74.6 (+6.4)
GridMask [8] 51.6 28.4 80.7 25.3 48.2 37.6 45.3 (+14.4) 78.4 66.8 78.9 74.7 (+6.5)
RandAugment [12] 57.8 43.2 83.8 28.7 46.7 48.0 51.4 (+20.5) 79.2 68.7 79.6 75.8 (+7.6)
MAE [24] 50.6 25.9 76.3 27.6 44.3 39.9 44.1 (+13.2) 81.7 63.4 78.6 74.6 (+6.4)
DALL-E2 [56] 61.3 48.3 84.1 34.5 52.1 61.7 57.0 (+26.1) 82.8 70.8 79.3 77.6 (+9.4)
SD [59] 51.1 51.7 78.8 33.2 52.9 57.9 54.3 (+23.4) 85.1 73.8 78.9 79.3 (+11.1)
GIF-MAE (ours) 58.4 44.5 84.4 34.2 52.7 52.4 54.4 (+23.5) 82.0 73.3 80.6 78.6 (+10.4)
GIF-DALLE (ours) 63.0 53.1 88.2 39.5 54.5 66.4 60.8 (+29.9) 84.4 76.6 80.5 80.5 (+12.3)
GIF-SD (ours) 65.1 75.7 88.3 43.4 61.1 73.4 67.8 (+36.9) 86.9 77.4 80.7 81.7 (+13.5)
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Figure 4: Accuracy of ResNet-50 trained from scratch on the expanded datasets with different
expansion ratios. The results on other datasets are reported in Appendix F.1.

5 Experiments

Datasets. We evaluate GIF on six small-scale natural image datasets and three medical datasets. Nat-
ural datasets cover a variety of tasks: object classification (Caltech-101 [18], CIFAR100-Subset [41]),
fine-grained classification (Cars [40], Flowers [49], Pets [50]) and texture classification (DTD [10]).
Here, CIFAR100-Subset is an artificial dataset for simulating small-scale datasets by randomly
sampling 100 instances per class from the original CIFAR100. Moreover, medical datasets [90]
cover a wide range of image modalities, such as breast ultrasound (BreastMNIST), colon pathology
(PathMNIST), and Abdominal CT (OrganSMNIST). Please refer to Appendix E for data statistics.

Compared methods. As there is no algorithm devoted to dataset expansion, we take representative
data augmentation methods as baselines, including RandAugment, Cutout, and GridMask [8]. We
also compare to directly using prior models (i.e., DALL-E2, SD, and MAE) for dataset expansion.
Besides, CLIP has outstanding zero-shot abilities, and some recent studies explore distilling CLIP to
facilitate model training. Hence, we also compare to zero-shot prediction and knowledge distillation
(KD) of CLIP on the target datasets. The implementation details of GIF are provided in Appendix D.

5.1 Results of small-scale dataset expansion

Expansion effectiveness. As shown in Table 1, compared with the models trained on original datasets,
GIF-SD boosts their accuracy by an average of 36.9% across six natural image datasets and 13.5%
across three medical datasets. This verifies the superior capabilities of GIF over other methods for
enhancing small datasets, particularly in the data-starved field of medical image understanding. This
also suggests that dataset expansion is a promising direction for real small-data applications. Here, the
reason why GIF-SD outperforms GIF-DALLE is that GIF-DALLE only exploits the image-to-image
variation ability of DALL-E2, while GIF-SD further applies text prompts to diversify samples.

Expansion efficiency. Our GIF is more sample efficient than data augmentations, in terms of the
accuracy gain brought by each created sample. As shown in Figure 4, 5× expansion by GIF-SD
outperforms even 20× expansion by various data augmentations on Cars and DTD datasets, implying
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Table 2: Corruption accuracy of ResNet-50 trained from scratch on CIFAR100-S and our 5× expanded
dataset, under 15 types of corruption in CIFAR100-C with the severity level 3. More results regarding
other severity levels are provided in Appendix F.2.

Noise Blur Weather Digital
Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 12.8 17.0 12.5 30.5 31.7 25.2 28.6 26.5 19.0 18.6 28.3 11.5 29.5 33.6 28.8 23.6
5×-expanded by RandAugment 16.7 21.9 27.5 42.2 42.5 35.8 40.2 36.9 31.9 30.0 43.1 20.4 41.2 44.7 37.6 34.2 (+10.6)
5×-expanded by GIF-SD 29.7 36.4 32.7 51.9 32.4 39.2 46.0 45.3 38.1 47.1 55.7 37.3 48.6 53.2 49.4 43.3 (+19.7)
20×-expanded by GIF-SD 31.8 39.2 34.7 58.4 33.4 43.1 51.9 51.7 47.4 55.0 63.3 46.5 54.9 58.0 53.6 48.2 (+24.6)

Table 3: Accuracy of various architectures trained
on 5× expanded Cars. The results on other
datasets are given in Appendix F.3.

Dataset ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original 18.4±0.5 32.0±0.8 26.2±4.2 25.5

Expanded
RandAugment 29.6±0.8 49.2±0.2 39.7±2.5 39.5 (+14.0)
GIF-DALLE 43.7±0.2 60.0±0.6 47.8±0.6 50.5 (+25.0)
GIF-SD 64.1±1.3 75.1±0.4 60.2±1.6 63.5 (+38.0)

Table 4: Comparison between our methods and
directly fine-tuning CLIP models on three medical
image datasets.

Dataset PathMNIST BreastMNIST OrganSMNIST

Original dataset 72.4±0.7 55.8±1.3 76.3±0.4

Linear-probing of CLIP 74.3±0.1 60.0±2.9 64.9±0.2

fine-tuning of CLIP 78.4±0.9 67.2±2.4 78.9±0.1

distillation of CLIP 77.3±1.7 60.2±1.3 77.4±0.8

5×-expanded by GIF-SD 86.9±0.3 77.4±1.8 80.7±0.2

Table 5: Benefits of dataset expansion to CLIP fine-tuning on CIFAR100-S. Moreover, ID indicates
in-distribution performance, while OOD indicates out-of-distribution performance on CIFAR100-C.

Methods ID Accuracy OOD Accuracy

Training from scratch on original dataset 35.0 23.6
Fine-tuning CLIP on original dataset 75.2 (+40.2) 55.4 (+31.8)
Fine-tuning CLIP on 5x-expanded dataset by GIF-SD 79.4 (+44.4) 61.4 (+37.8)

our method is at least 4× more efficient than them. The limitations of these augmentations lie in their
inability to generate new and highly diverse content. In contrast, GIF leverages strong prior models
(e.g., SD), guided by our discovered criteria, to perform data imagination. Hence, our method can
generate more diversified and informative samples, yielding more significant gains per expansion.

Benefits to model generalization. Theorem 4.1 has shown the theoretical benefit of GIF to model
generalization. Here, Table 2 demonstrates that GIF significantly boosts model out-of-distribution
(OOD) generalization on CIFAR100-C [27], bringing 19.3% accuracy gain on average over 15 types
of OOD corruption. This further verifies the empirical benefit of GIF to model generalization.

Versatility to various architectures. We also apply the 5×-expanded Cars dataset by GIF to train
ResNeXt-50, WideResNet-50 and MobileNet V2 from scratch. Table 3 shows that the expanded
dataset brings consistent accuracy gains for all architectures. This underscores the versatility of our
method: once expanded, these datasets can readily be applied to train various model architectures.

Comparisons with CLIP. As our method applies CLIP for dataset expansion, one might question why
not directly use CLIP for classifying the target dataset. In fact, our GIF offers two main advantages
over CLIP in real-world small-data applications. First, GIF has superior applicability to the scenarios
of different image domains. Although CLIP performs well on natural images, its transferability to
non-natural domains, such as medical images, is limited (cf. Table 4). In contrast, our GIF is able to
create samples of similar nature as the target data for dataset expansion, making it more applicable to
real scenarios across diverse image domains. Second, GIF supplies expanded datasets suitable for
training various model architectures. In certain scenarios like mobile terminals, hardware constraints
may limit the supportable model size, which makes the public CLIP checkpoints (such as ResNet-50,
ViT-B/32, or even larger models) unfeasible to use. Also, distilling from these CLIP models can only
yield limited performance gains (cf. Table 1). In contrast, the expanded datasets by our method can
be directly used to train various architectures (cf. Table 3), making our approach more practical for
hardware-limited scenarios. Further comparisons and discussions are provided in Appendix F.4.

Benefits to model fine-tuning. In previous experiments, we have demonstrated the advantage of
dataset expansion over model fine-tuning on medical image domains. Here, we further evaluate the
benefits of dataset expansion to model fine-tuning. Hence, we use the 5x-expanded dataset by GIF-SD
to fine-tune the pre-trained CLIP VIT-B/32. Table 5 shows that our dataset expansion significantly
improves the fine-tuning performance of CLIP on CIFAR100-S, in terms of both in-distribution and
out-of-distribution performance.
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(b)
Figure 5: Visualization. (a) Examples of the created samples for Caltech101 by augmentation and
GIF. Please see Appendix G for the visualization of more datasets. (b) Failure cases by GIF-SD.
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Figure 6: Effects of different perturbation noise
on MAE for expanding CIFAR100-Subset by 5×.

Input RandAugment Our GIF-SD

Figure 7: Visualization of the created medical
images by GIF-SD, where SD is fine-tuned on
medical data before dataset expansion (Please see
the analysis of fine-tuning in Appendix B.6).

5.2 Analyses and discussions

We next empirically analyze GIF. Due to the page limit, we provide more analyses of GIF (e.g.,
mixup, CLIP, image retrieval, and long-tailed data) in Appendix B and Appendix F.

Effectiveness of zero-shot CLIP in GIF. We start with analyzing the role of zero-shot CLIP in GIF.
We empirically find (cf. Appendix B.5) that GIF with fine-tuned CLIP performs only comparably to
that with zero-shot CLIP on medical datasets. This reflects that zero-shot CLIP is enough to provide
sound guidance without the need for fine-tuning. Additionally, a random-initialized ResNet50
performs far inferior to zero-shot CLIP in dataset expansion, further highlighting the significant role
of zero-shot CLIP in GIF. Please refer to Appendix B.5 for more detailed analyses.

Effectiveness of guidance in GIF. Table 1 shows that our guided expansion obtains consistent
performance gains compared to unguided expansion with SD, DALL-E2 or MAE, respectively. For
instance, GIF-SD obtains 13.5% higher model accuracy on natural image datasets than unguided
expansion with SD. This verifies the effectiveness of our criteria in optimizing the informativeness and
diversity of the created samples. More ablation analyses of each criterion are given in Appendix F.5.

Pixel-wise vs. channel-wise noise. GIF-SD and GIF-MAE inject perturbation along the channel di-
mension instead of the spatial dimension. This is attributed to our empirical analysis in Appendix B.2.
We empirically find that the generated image based on pixel-level noise variation is analogous to
adding pixel-level noise to the original images. This may harm the integrity and smoothness of image
content, leading the generated images to be noisy (cf. Figure 10(d) of Appendix B.2). Therefore,
we decouple latent features into two dimensions (i.e., token and channel) and particularly conduct
channel-level perturbation. As shown in Figure 10(e), optimizing channel-level noise variation can
generate more informative data, leading to more effective expansion (cf. Figure 6).

Visualization. The samples we created are visualized in Figures 5a and 7. While GridMask obscures
some image pixels and RandAugment randomly alters images with pre-set transformations, both fail
to generate new image content (cf. Figure 5a). More critically, as shown in Figure 7, RandAugment
may crop the lesion location of medical images, leading to less informative and even noisy samples.
In contrast, our method can not only generate samples with novel content (e.g., varied postures and
backgrounds of water lilies) but also maintains their class semantics, and thus is a more effective
way to expand small-scale datasets than traditional augmentations, as evidenced by Table 1.
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Table 6: Consumption costs. Time and costs are calculated
from the expansion of 10,000 images. Accuracy improve-
ments are compared to the original, small dataset.

Method Expansion speed Time Costs Accuracy gains

Human collection 121.0s per image 2 weeks $800 -

Cutout 0.008s per image 76 seconds $0.46 +12.8
GridMask 0.007s per image 72 seconds $0.43 +14.4
RandAugment 0.008s per image 82 seconds $0.49 +20.5
GIF-MAE (ours) 0.008s per image 80 seconds $0.48 +23.5
GIF-SD (ours) 6.6s per image 2 hours $40 +36.9

Table 7: Relation analysis between the
domain gap (FID) and model accuracy.

Datasets FID Accuracy (%)

CIFAR100-S - 35.0
RandAugment 24.3 46.7
Cutout 104.7 44.3
GridMask 104.8 48.2
GIF-MAE 72.3 52.7
GIF-DALLE 39.5 54.5
GIF-SD 81.7 61.1

Failure cases. Figure 5b visualizes some failure cases by GIF-SD. As we use pre-trained models
without fine-tuning on the natural images, the quality of some created samples is limited due to
domain shifts. For example, the face of the generated cat in Figure 5b seems like a lion face with a
long beard. However, despite seeming less realistic, those samples are created following our guidance,
so they can still maintain class consistency and bring new information, thus benefiting model training.

Computational efficiency and time costs. Compared to human data collection, our GIF offers
substantial savings in time and costs for small dataset expansion. As shown in Table 6, GIF-MAE
achieves a 5× expansion per sample in just 0.04 seconds, while GIF-SD accomplishes the same in
33 seconds. To illustrate, according to rates from Masterpiece Group2, manually annotating 10,000
images takes two weeks and costs around $800. In contrast, GIF-SD generates the same amount of
labeled data in a mere two hours, costing roughly $40 for renting 8 V100 GPUs3. Moreover, with
a slight model performance drop, GIF-MAE can create 10,000 labeled data in just 6 seconds, at a
cost of about $0.48 for renting 8 V100 GPUs for 80 seconds. Specifically, GIF-MAE has a time cost
within the same magnitude as data augmentation, but it delivers much better performance gains. The
slight time overhead introduced by MAE is offset by GPU acceleration, resulting in competitive time
costs. For those prioritizing performance, GIF-SD becomes a more attractive option. Although it
involves a longer time due to its iterative diffusion process, it provides more significant performance
gains. Note that our method only requires one-time expansion: the resultant dataset can be directly
used to train various models (cf. Table 3), without the need for regeneration for each model.

Relation analysis between the domain gap and model performance. We further compute the
Fréchet Inception Distance (FID) between the synthetic data generated by different methods and
the original data of CIFAR100-S. Interestingly, while one might initially assume that a lower FID
implies better quality for the expanded data, the actual performance does not consistently follow this
notion. As shown in Table 7, even though GIF-SD has a worse FID than GIF-DALLE, it achieves
better performance. Likewise, despite having nearly identical FIDs, Cutout and GridMask lead to
different performance. These results suggest that the effectiveness of dataset expansion methods
depends on how much additional information and class consistency the generated data can provide to
the original dataset, rather than the distribution similarity between those samples and the original data.
This discussion may spark further research into the relationship between expansion effectiveness and
data fidelity (as measured by metrics like FID), potentially guiding the development of even more
effective dataset expansion techniques in the future.

6 Conclusion

This paper has explored a novel task, dataset expansion, towards resolving the data scarcity issue in
DNN training. Inspired by human learning with imagination, we presented a novel guided imagination
framework for dataset expansion. Promising results on small-scale natural and medical image datasets
have verified its effectiveness. Despite its encouraging results, there is still room to improve. That
is, using only the generated samples for model training is still worse than using real samples of
equivalent size, suggesting huge potential for algorithmic data generation to improve. We expect
that our work can inspire further exploration of dataset expansion so that it can even outperform a
human-collected dataset of the same size. Please refer to Appendix D.5 for a more detailed discussion
on limitations and broader impact of our work.

2https://mpg-myanmar.com/annotation
3https://cloud.google.com/compute/gpus-pricing#gpu-pricing
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A More Related Studies

Image synthesis. Over the past decade, image synthesis [2, 13, 65, 73, 111] has been extensively
explored, with four main approaches leading the way: generative adversarial networks (GANs) [17,
33], auto-regressive models [38, 57], diffusion models [16, 31], and neural radiance fields [20, 47, 93].
Recently, diffusion techniques, such as DALL-E2 [56], Imagen [61], and Stable Diffusion [59],
have demonstrated exceptional capabilities in producing photo-realistic images. In practice, these
techniques can serve as prior models in our GIF framework for dataset expansion.

Additionally, CLIP [54], thanks to its text-image matching ability, has been used to guide image
generation [37, 48, 51, 76]. In these approaches, CLIP matches a generated image with a given
text. In contrast, our work uses CLIP to align the latent features of category-agnostic generative
models with the label space of the target dataset. This alignment enables GIF to perform guided data
expansion, generating informative new samples specific to target classes.

Furthermore, model inversion [83, 86] is another technique that has been investigated for image
generation by inverting a trained classification network [77, 92] or a GAN model [112]. Although
we currently apply only two advanced generative models (DALL-E2 and Stable Diffusion) and a
reconstruction model (MAE) within the GIF framework in this study, model inversion methods could
also be incorporated into our framework for dataset expansion. This opens up exciting avenues for
future research.

More discussion on data augmentation. Image data augmentation has become a staple in enhanc-
ing the generalization of DNNs during model training [69, 91]. Based on technical characteristics,
image data augmentation can be categorized into four main types: image manipulation, image erasing,
image mix, and auto augmentation.

Image manipulation augments data through image transformations like random flipping, rotation,
scaling, cropping, sharpening, and translation [91]. Image erasing, on the other hand, substitutes
pixel values in certain image regions with constant or random values, as seen in Cutout [15], Random
Erasing [109], GridMask [8], and Fenchmask [43]. Image mix combines two or more images or
sub-regions into a single image, as exemplified by Mixup [100], CutMix [96], and AugMix [28].
Lastly, Auto Augmentation utilizes a search algorithm or random selection to determine augmentation
operations from a set of random augmentations, such as AutoAugment [11], Fast AutoAugment [45],
and RandAugment [12].

While these methods have shown effectiveness in certain applications, they primarily augment data
by applying pre-defined transformations on each image. This results in only local variations in pixel
values and does not generate images with significantly diversified content. Furthermore, as most
methods employ random operations, they cannot ensure that the augmented samples are informative
for model training and may even introduce noisy augmented samples. Consequently, the new
information brought about is often insufficient for expanding small datasets, leading to low expansion
efficiency (cf. Figure 4). In contrast, our proposed GIF framework utilizes powerful generative
models (such as DALL-E2 and Stable Diffusion) trained on large-scale image datasets, guiding
them to optimize latent features in accordance with our established criteria (i.e., class-maintained
information boosting and sample diversity promotion). This results in the creation of images that are
both more informative and diversified than those from simple image augmentation, thereby leading
to more efficient and effective dataset expansion.

We note that the work [87] also explores MAE for image augmentation based on its reconstruction
capability. It first masks some sub-regions of images and then feeds the masked images into MAE for
reconstruction. The recovered images with slightly different sub-regions are then used as augmented
samples. Like other random augmentation methods, this approach only varies pixel values locally and
cannot ensure that the reconstructed images are informative and useful. In contrast, our GIF-MAE
guides MAE to create informative new samples with diverse styles through our guided latent feature
optimization strategy. Therefore, GIF-MAE is capable of generating more useful synthetic samples,
effectively expanding the dataset.
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Contrasting with dataset distillation. Dataset distillation, also known as dataset condensation, is a
task that seeks to condense a large dataset into a smaller set of synthetic samples that are comparably
effective [6, 68, 79, 89, 106, 107, 108, 110]. The goal of this task is to train models to achieve
performance comparable to the original dataset while using significantly fewer resources. Such a
task is diametrically opposed to our work on dataset expansion, which strives to expand a smaller
dataset into a larger, richer, and more informative one. We achieve this by intelligently generating
new samples that are both informative and diverse. Hence, dataset distillation focuses on large-data
applications, whereas our focus lies on expanding dataset diversity and information richness for more
effective deep model training in small-data applications.

Contrasting with transfer learning. Numerous studies have focused on model transfer learning
techniques using publicly available large datasets like ImageNet [14, 58]. These approaches include
model fine-tuning [23, 44, 101], knowledge distillation [21, 30], and domain adaptation [19, 46, 53,
74, 95, 104].

Despite effectiveness in certain applications, these model transfer learning paradigms also suffer
from key limitations. For instance, the study [55] found that pre-training and fine-tuning schemes
do not significantly enhance model performance when the pre-trained datasets differ substantially
from the target datasets, such as when transferring from natural images to medical images. Moreover,
model domain adaptation often necessitates that the source dataset and the target dataset share the
same or highly similar label spaces, a requirement that is often unmet in small-data application
scenarios due to the inaccessibility of a large-scale and labeled source domain with a matching label
space. In addition, the work [71] found that knowledge distillation does not necessarily work if the
issue of model mismatch exists [9], i.e., large discrepancy between the predictive distributions of the
teacher model and the student model. The above limitations of model transfer learning underscore
the importance of the dataset expansion paradigm: if a small dataset is successfully expanded, it can
be directly used to train various model architectures.

We note that some data-free knowledge distillation studies [7, 92, 98] also synthesize images, but their
goal is particularly to enable knowledge distillation in the setting without data. In contrast, our task is
independent of model knowledge distillation. The expanded datasets are not method-dependent or
model-dependent, and, thus, can train various model architectures to perform better than the original
small ones.
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B More Preliminary Studies

B.1 Sample-wise expansion or sample-agnostic expansion?

When we design the selective expansion strategy in Section 3.2, another question appears: should we
ensure that each sample is expanded by the same ratio? To determine this, we empirically compare
RandAugment expansion with sample-wise selection and sample-agnostic selection according to
one expansion criteria, i.e., class-maintained information boosting. Figure 8 shows that sample-wise
expansion performs much better than sample-agnostic expansion. To find out the reason for this
phenomenon, we visualize how many times a sample is expanded by sample-agnostic expansion. As
shown in Figure 9, the expansion numbers of different samples by sample-agnostic expansion present
a long-tailed distribution [103], with many image samples not expanded at all. The main reason for
this is that, due to the randomness of RandAugment and the differences among images, not all created
samples are informative and it is easier for some samples to be augmented more frequently than
others. Therefore, given a fixed expansion ratio, the sample-agnostic expansion strategy, as it ignores
the differences in images, tends to select more expanded samples for more easily augmented images.
This property leads sample-agnostic expansion to waste valuable original samples for expansion (i.e.,
loss of information) and also incurs a class-imbalance problem, thus resulting in worse performance
in Figure 8. In contrast, sample-wise expansion can fully take advantage of all the samples in the
target dataset and thus is more effective than sample-agnostic expansion, which should be considered
when designing dataset expansion approaches.
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Figure 9: Statistics of the expansion numbers of
different data in CIFAR100-Subset by sample-
agnostic selective expansion with RandAugment,
which presents a long-tailed distribution.

B.2 Pixel-level noise or channel-level noise?

In our preliminary studies exploring the MAE expansion strategy, we initially used pixel-level noise to
modify latent features. However, this approach did not perform well. To understand why, we analyze
the reconstructed images. An example of this is presented in Figure 10(d). We find that the generated
image based on pixel-level noise variation is analogous to adding pixel-level noise to the original
images. This may harm the integrity and smoothness of image content, leading the reconstructed
images to be noisy and less informative. In comparison, as shown in Figure 10(b), a more robust
augmentation method like RandAugment primarily alters the style and geometric positioning of
images but only slightly modifies the content semantics. As a result, it better preserves content
consistency. This difference inspires us to factorize the influences on images into two dimensions:
image styles and image content. In light of the findings in [32], we know that the channel-level latent
features encode more subtle style information, whereas the token-level latent features convey more
content information. We thus decouple the latent features of MAE into two dimensions (i.e., a token
dimension and a channel dimension), and plot the latent feature distribution change between the
generated image and the original image in these two dimensions.
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(a) original image (b) RandAugment (c) MAE reconstruction (d) noised-added MAE (e) our Guided MAE

Figure 10: An illustrated visualization of the generated images by (b) RandAugment, (c) MAE recon-
struction, (d) random pixel-level variation over latent features, and (e) our guided MAE expansion.
We find our guided MAE can generate content-consistent images of diverse styles.

Figure 11 shows the visualization of this latent feature distribution change. The added pixel-level
noise changes the token-level latent feature distribution more significantly than RandAugment (cf.
Figure 11(a)). However, it only slightly changes the channel-level latent feature distribution (cf.
Figure 11(b)). This implies that pixel-level noise mainly alters the content of images but slightly
changes their styles, whereas RandAugment mainly influences the style of images while maintaining
their content semantics. In light of this observation and the effectiveness of RandAugment, we are
motivated to disentangle latent features into the two dimensions, and particularly conduct channel-
level noise to optimize the latent features in our method. As shown in Figure 11, the newly explored
channel-level noise variation varies the channel-level latent feature more significantly than the token-
level latent feature. It thus can diversify the style of images while maintaining the integrity of image
content. This innovation enables the explored MAE expansion strategy to generate more informative
samples compared to pixel-level noise variation (cf. Figure 10(d) vs. Figure 10(e)), leading to
more effective dataset expansion, as shown in Figure 6. In light of this finding, we also conduct
channel-level noise variation for GIF-SD.
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Figure 11: Changes of the latent feature distributions along the token dimension and the channel
dimension, between the latent feature of the generated image and that of the original image.
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B.3 How to design prompts for Stable Diffusion?

Text prompts play an important role in image generation of Stable Diffusion. The key goal of prompts
in dataset expansion is to further diversify the generated image without changing its class semantics.
We find that domain labels, class labels, and adjective words are necessary to make the prompts
semantically effective. The class label is straightforward since we need to ensure the created samples
have the correct class labels. Here, we show the influence of different domain labels and adjective
words on image generation of Stable Diffusion.

Domain labels. We first visualize the influence of different domain prompts on image generation.
As shown in Figure 12, domain labels help to generate images with different styles. We note that
similar domain prompts, like "a sketch of" and "a pencil sketch of", tend to generate images with
similar styles. Therefore, it is sufficient to choose just one domain label from a set of similar domain
prompts, which does not influence the effectiveness of dataset expansion but helps to reduce the
redundancy of domain prompts. In light of this preliminary study, we design the domain label set by
["an image of", "a real-world photo of", "a cartoon image of", "an oil painting of", "a sketch of"].

Input Images generated by pre-trained Stable Diffusion

“An image of samoyed”

“An oil painting of
samoyed”

“A cartoon image of
samoyed”

“A sketch of samoyed”

Prompts

“A pencil sketch of
samoyed”

Figure 12: The influence of the domain prompts on image generation of pre-trained Stable Diffusion.
The input image is selected from the Pets dataset. Here, the strength hyper-parameter is set to 0.9,
and the scale is set to 20.
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Adjective words. We next show the influence of different adjective words on image generation
of Stable Diffusion. As shown in Figure 13, different adjectives help diversify the content of the
generated images further, although some adjectives may lead to similar effects on image generation.
Based on the visualization exploration, we design the adjective set by [" ", "colorful", "stylized",
"high-contrast", "low-contrast", "posterized", "solarized", "sheared", "bright", "dark"].

Input Images generated by pre-trained Stable Diffusion

“An image of samoyed”

“An image of colorful
samoyed”

“An image of stylized
samoyed”

“An image of bright
samoyed”

Prompts

“An image of sheared
samoyed”

“An image of solarized
samoyed”

“An image of
posterized samoyed”

“An image of high-
contrast samoyed”

Figure 13: The influence of the adjective prompts on image generation of pre-trained Stable Diffusion.
The input image is selected from the Pets dataset. Here, the strength hyper-parameter is set to 0.9,
and the scale is set to 20.
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B.4 How to set hyper-parameters for Stable Diffusion?

B.4.1 Hyper-parameter of strength

The hyper-parameter of the nosing strength controls to what degree the initial image is destructed.
Setting strength to 1 corresponds to the full destruction of information in the input image while
setting strength to 0 corresponds to no destruction of the input image. The higher the strength value
is, the more different the generated images would be from the input image. In dataset expansion, the
choice of strength depends on the target dataset, but we empirically find that selecting the strength
value from [0.5, 0.9] performs better than other values. A too-small value of strength (like 0.1 or 0.3)
brings too little new information into the generated images compared to the seed image. At the same
time, a too-large value (like 0.99) may degrade the class consistency between the generated images
and the seed image when the hyper-parameter of scale is large.

Input Images generated by pre-trained Stable Diffusion

0

0.1

0.3

0.5

Strength

0.7

0.9

0.99

Figure 14: The influence of the "strength" hyper-parameter on image generation of pre-trained Stable
Diffusion. The input image is selected from the Pets dataset. The prompt is "an image of colorful
samoyed", while the scale is set to 20.
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B.4.2 Hyper-parameter of scale

The hyper-parameter of scale controls the importance of the text prompt guidance on image generation
of Stable Diffusion. The higher the scale value, the more influence the text prompt has on the generated
images. In dataset expansion, the choice of strength depends on the target dataset, but we empirically
find that selecting the strength value from [5, 50] performs better than other values. A too-small value
of scale (like 1) brings too little new information into the generated images, while a too-large value
(like 100) may degrade the class information of the generated images.

Input Images generated by pre-trained Stable Diffusion

1

5

10

20

Scale

50

100

0

Figure 15: The influence of the "scale" hyper-parameter on image generation of pre-trained Stable
Diffusion. The input image is selected from the Pets dataset. The prompt is "an image of colorful
samoyed", while the strength is set to 0.9.
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B.5 More discussions on the effectiveness of zero-shot CLIP

In GIF, we exploit the zero-shot discriminability of the pre-trained CLIP to guide dataset expansion. In
Table 1, we have found that the zero-shot performance of CLIP is not significantly good, particularly
on medical image datasets. It is interesting to know whether further fine-tuning CLIP on the target
medical dataset can bring further improvement. To determine this, we further compare the results of
GIF-MAE with fine-tuned CLIP and with zero-shot CLIP based on OrganSMNIST. To be specific,
we add a linear classifier on the top of the CLIP image encoder and fine-tune the CLIP model.

As shown in Table 8, GIF-MAE with fine-tuned CLIP performs only comparably to that with
zero-shot CLIP, which reflects that the CLIP’s zero-shot classifier is enough to provide sound
guidance. The reason is that, although the zero-shot performance is not that good, CLIP still plays
an important anchor effect in maintaining the class semantics of the generated samples and
helps to bring new information. Let us first recall the class-maintained informativeness score:
Sinf = s′j + (s log(s) − s′ log(s′)). Specifically, no matter whether CLIP zero-shot classifier is
accurate or not, maximizing s′j essentially uses the prediction of the seed data as an anchor in the
CLIP semantic space to regularize the class semantics of the perturbed features. This ensures
the created data maintain the correct class, which is highly important for effective dataset expansion.
In addition, maximizing the entropy difference, i.e., s log(s)− s′ log(s′), encourages the perturbed
feature to have higher entropy regarding CLIP zero-shot prediction. When CLIP zero-shot classifier is
accurate, the entropy increment enables the created data to become more difficult to classify regarding
CLIP zero-shot discrimination and thus brings more information for classification model training.
When CLIP zero-shot classifier is not that accurate, the entropy increment introduces variations into
the created data and makes them different from the seed data. Under the condition that the true
class is maintained, this optimization is beneficial to boosting the diversity of the expanded
dataset, which is helpful for model training. Hence, CLIP’s zero-shot abilities are useful for guided
imagination in various image domains.

Afterwards, given that zero-shot CLIP can provide valuable guidance despite its limited accuracy, one
may wonder whether a random-initialized deep model could serve a similar function. However, as
shown in Table 8, using a random-initialized ResNet50 as the guidance model for dataset expansion
performs much worse than zero-shot CLIP (i.e., 79.0 vs. 80.6). This could be attributed to the fact that,
although the classifiers of both random ResNet50 and zero-shot CLIP struggle with the target
medical classes, the CLIP’s pre-training results in a feature space that is more semantically
meaningful and representative than a randomly-initialized ResNet50. This distinction allows
zero-shot CLIP to better anchor the class semantics of synthetic samples, thereby leading to more
effective dataset expansion. These empirical observations further verify the effectiveness of using
zero-shot CLIP in guiding dataset expansion.

Table 8: Comparison between the model performance by GIF-MAE expansion with zero-shot CLIP
guidance and fine-tuned CLIP guidance, as well as random-initialized ResNet-50 guidance, based on
the OrganSMNIST medical image dataset. All results are averaged over three runs.

OrganSMNIST Guidance model Guidance model accuracy Model accuracy
Original dataset - - 76.3

5×-expanded by GIF-MAE
Random-initialized ResNet50 7.1±0.8 79.0 (+2.7)

Fine-tuned CLIP 75.6±1.2 80.7 (+4.4)
Zero-shot CLIP (ours) 7.7±0.0 80.6 (+4.3)
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B.6 Do we need to fine-tune generative models on medical image datasets?

Stable Diffusion (SD) and DALL-E2 are trained on large-scale datasets consisting of natural image
and text pairs, showing powerful capabilities in natural image generation and variation. However,
when we directly apply them to expand medical image datasets, we find the performance improvement
is limited, compared to MAE as shown in Table 9.

Table 9: Accuracy of ResNet-50 trained on the 5×-expanded medical image datasets by GIF based
on SD and DALLE w/o and w/ fine-tuning. All results are averaged over three runs.

Dataset PathMNIST BreastMNIST OrganSMNIST Average

Original 72.4±0.7 55.8±1.3 76.3±0.4 68.2
GIF-MAE 82.0±0.7 73.3±1.3 80.6±0.5 78.6

GIF-DALLE (w/o tuning) 78.4±1.0 59.3±2.5 76.4±0.3 71.4
GIF-DALLE (w/ tuning) 84.4±0.3 76.6±1.4 80.5±0.2 80.5

GIF-SD (w/o tuning) 80.8±1.6 59.4±2.2 79.5±0.4 73.2
GIF-SD (w/ tuning) 86.9±0.6 77.4±1.8 80.7±0.2 81.7

To pinpoint the reason, we visualize the generated images by SD on PathMNIST. As shown in
Figure 16(top), we find that SD fails to generate photo-realistic medical images, particularly when
the hyper-parameter of strength is high. For example, the generated colon pathological images by
pre-trained SD look more like a natural sketch and lack medical nidus areas found in the input image.
This implies that directly applying SD suffers from significant domain shifts between natural and
medical images, preventing the generation of photo-realistic and informative medical samples using
its image variation abilities. This issue also happens when applying DALL-E2 for medical dataset
expansion. In contrast, MAE is a reconstruction model and does not need to generate new content for
the target images, so it has much less negative impact by domain shifts. To address the issue, when
applying SD and DALL-E2 to medical domains, we first fine-tune them on target medical datasets,
followed by dataset expansion. Specifically, DALL-E2 is fine-tuned based on image reconstruction,
while SD is fine-tuned based on Dreambooth [60]. As shown in Figure 16(bottom), the fine-tuned
SD is able to generate medical images that are more domain-similar to the input colon pathological
image. Thanks to the fine-tuned SD and DALL-E2, GIF is able to bring more significant performance
gains over GIF-MAE (cf. Table 9), and thus expands medical image datasets better.

Input Generated images

Pre-trained
Stable Diffusion

Fined-tuned
Stable Diffusion

Figure 16: Visualization of the synthetic medical colon pathological images by Stable Diffusion
(SD) with or without fine-tuning. Here, the prompt of SD is "a colon pathological sketch of colorful
debris", while the strength is set to 0.5. We find that SD suffers from severe domain shifts between
natural and medical images and cannot generate photo-realistic and informative medical samples. In
contrast, the generated medical images by the fine-tuned SD are more domain-similar to the input
colon pathological image.
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B.7 Visualization of created medical images

In the main paper, we visualize the created medical samples by GIF-SD. Here, we further visualize
the created medical samples by GIF-MAE and discuss them. As shown in Figure 17, RandAugment
randomly varies the medical images based on a set of pre-defined transformations. However, due to
its randomness, RandAugment may crop the lesion location of medical images and cannot guarantee
the created samples to be informative, even leading to noise samples. In contrast, our GIF-MAE can
generate content-consistent images with diverse styles, so it can enrich the medical images while
maintaining their lesion location unchanged. Therefore, GIF-MAE is able to expand medical image
datasets better than RandAugment, leading to higher model performance improvement (cf. Table 1).
However, GIF-MAE is unable to generate images with diverse content, which limits its effectiveness.
In comparison, SD, after fine-tuning, is able to generate class-maintained samples with more diverse
content and styles, and thus achieves better expansion effectiveness (cf. Table 1). To summarize, our
methods can expand medical image datasets more effectively than data augmentation.

Input RandAugment Our GIF-MAE Our GIF-SD

Figure 17: Examples of the created samples for PathMNIST by RandAugment and GIF.
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C Theoretical Analysis

In this appendix, we seek to analyze the benefits of our dataset expansion to model generalization
performance. Inspired by [67], we resort to the concept of δ-cover [62, 29] to analyze how data
diversity influences the generalization error bound. Specifically, "a dataset E is a δ-cover of a dataset
S" means a set of balls with radius δ centered at each sample of the dataset E can cover the entire
dataset S.
Definition C.1. (δ-cover [62]) Let (M, ρ) be a metric space, let S ⊆ M and let µ > 0. A set
E ⊆M is a δ-cover for S, if for every s ∈ S, there is an e ∈ E such that ρ(s, e) ≤ δ. The minimal
δ regarding S and E is denoted by δmin.

In this work, we follow the assumptions of the work [67] and extend its Theorem 1 to the version
of the generalization error bound. Let A be a learning algorithm that outputs a set of parameters,
given a training dataset D = {xi, yi}i∈[n] with n i.i.d. samples drawn from the data distribution
PZ . Assume that the hypothesis function is λη-Lipschitz continuous, the loss function ℓ(x, y) is
λℓ-Lipschitz continuous for all y and bounded by L, and ℓ(xi, yi;A) = 0 for ∀i ∈ [n]. If the training
set D is a δ-cover of PZ , with probability at least 1− γ, the generalization error bound satisfies:

|Ex,y∼PZ [ℓ(x, y;A)]− 1

n

∑
i∈[n]

ℓ(xi, yi;A)|
c
≤ δmin(λ

ℓ + ληLC), (3)

where C is a constant, and the symbol
c
≤ indicates "smaller than" up to an additive constant. According

to the property of the δ-cover, we then define the dataset diversity, called δ-diversity, by the inverse of
the minimal δmin:
Definition C.2. (δ-diversity) If a dataset E is a δ-cover of the full dataset S, then the δ-diversity of
the set E regarding the full set S is δdiv = 1

δmin
.

The δ-diversity is easy to understand: given a training set D = {xi, yi}i∈[n] that is a δ-cover of the
data distribution PZ , if the radius δmin is high, the diversity of this dataset must be low. Then, we
have:
Theorem C.1. Let A denote a learning algorithm that outputs a set of parameters given a dataset
D = {xi, yi}i∈[n] with n i.i.d. samples drawn from distribution PZ . Assume the hypothesis function
is λη-Lipschitz continuous, the loss function ℓ(x, y) is λℓ-Lipschitz continuous for all y, and is
bounded by L, with ℓ(xi, yi;A) = 0 for all i ∈ [n]. If D constitutes a δ-cover of PZ , then with
probability at least 1− γ, the generalization error bound satisfies:

|Ex,y∼PZ [ℓ(x, y;A)]− 1

n

∑
i∈[n]

ℓ(xi, yi;A)|
c
≤ λℓ + ληLC

δdiv
, (4)

where C is a constant, and the symbol
c
≤ indicates "smaller than" up to an additive constant.

This theorem shows that the generalization error is bounded by the inverse of δ-diversity. That is,
the more diverse samples are created by a dataset expansion method, the more improvement of
generalization performance would be made in model training. In real small-data applications, the
data limitation issue leads the covering radius δ to be very large and thus the δ-diversity is low,
which severely affects the generalization performance of the trained model. More critically, simply
increasing the data number (e.g., via data repeating) does not help the generalization since it does
not increase δ-diversity. Instead of simply increasing the number of samples, our proposed GIF
framework adopts two key imagination criteria (i.e., "class-maintained informativeness boosting"
and "sample diversity promotion") to guide advanced generative models (e.g., DALL-E2 and Stable
Diffusion) to synthesize informative and diversified new samples. Therefore, the expanded dataset
would have higher data diversity than random augmentation, which helps to increase δ-diversity and
thus improves model generalization performance.
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D More Method and Implementation Details

D.1 Method details of GIF-DALLE

Thanks to strong image generation abilities, GIF-DALLE applies DALL-E2 [56] as its prior model
which follows the pipeline described in Section 4. Its pseudo-code is provided in Algorithm 1, where
the image embedding obtained by fCLIP-I serves as diffusion guidance to help the diffusion decoder
to generate new images. GIF-DALLE conducts guided imagination on the CLIP embedding space.

We further clarify the implementation of the proposed guidance. Specifically, class-maintained
informativeness Sinf encourages the consistency between the predicted classification scores s and s′,
and improves the information entropy for the predicted score of the generated sample s′:

Sinf = s′j + (s log(s)− s′ log(s′)), s.t., j = argmax(s). (5)

Here, j = argmax(s) is the predicted class label of the original latent feature. Such a criterion
helps to keep the class semantics of the optimized feature the same as that of the original one in the
CLIP embedding space while encouraging the perturbed feature to have higher information entropy
regarding CLIP zero-shot predictions. This enables the generated samples to be more informative
for follow-up model training. To promote sample diversity, the diversity Sdiv is computed by the
Kullback–Leibler (KL) divergence among all perturbed latent features of a seed sample as follows:

Sdiv = DKL(f
′∥f̄) = σ(f ′) log(σ(f ′)/σ(f̄)), (6)

where f ′ denotes the current perturbed latent feature and f̄ indicates the mean over the K perturbed
latent features of this seed sample. In implementing diversity promotion Sdiv, we measure the
dissimilarity of two feature vectors by applying the softmax function σ(·) to the latent features, and
then measuring the KL divergence between the resulting probability vectors.

Algorithm 1: GIF-DALLE Algorithm
Input: Original small dataset Do; CLIP image encoder fCLIP-I(·); DALL-E2 diffusion decoder G(·); CLIP

zero-shot classifier w(·); Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅;
for x ∈ Do do
Sinf = 0;
f = fCLIP-I(x) ; // latent feature encoding for seed sample
s = w(f) ; // CLIP zero-shot prediction for seed sample
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1);
f ′
i = Pf,ϵ((1 + zi)f + bi) ; // noise perturbation (Eq.(1))
s′ = w(f ′

i) ; // CLIP zero-shot prediction
Sinf += s′j + (s log(s)− s′ log(s′)), s.t. j = argmax(s) ; // class-maintained
informativeness (Eq.(5))

end
f̄ = mean({f ′

i}Ki=1);
Sdiv =

∑
i{DKL(σ(f

′
i)∥σ(f̄))}Ki=1 =

∑
i σ(f

′
i) log(σ(f

′
i)/σ(f̄)) ; // diversity (Eq.(6))

{z′i, b′i}Ki=1 ←− argmaxz,b Sinf + Sdiv ; // guided latent optimization (Eq.(2))
for i=1,...,K do

f ′′
i = Pf,ϵ((1 + z′i)f + b′i) ; // guided noise perturbation (Eq.(1))
x′′
i = G(f ′′

i ) ; // sample creation
Add x′′

i −→ Ds.
end

end
Output: Expanded dataset Do ∪ Ds.

More implementation details. In our experiment, DALL-E2 is pre-trained on Laion-400M [66] and
then used for dataset expansion. The resolution of the created images by GIF-DALLE is 64×64 for
model training without further super-resolution. Only when visualizing the created images, we use
super-resolution to up-sample the generated images to 256×256 for clarification. Moreover, we set
ε = 0.1 in the guided latent feature optimization. During the diffusion process, we set the guidance
scale as 4 and adopt the DDIM sampler [70] for 100-step diffusion. For expanding medical image
datasets, it is necessary to fine-tune the prior model for alleviating domain shifts.
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D.2 Method details of GIF-SD

GIF-SD applies Stable Diffusion (SD) [59] as its prior model. As its encoder differs from the CLIP
image encoder, we slightly modify the pipeline of GIF-SD.

Pipeline. As shown in Algorithm 2, GIF-SD first generates a latent feature for the seed image via its
image encoder. Following that, GIF-SD conducts prompt-based diffusion for the latent feature, where
the generation rule of prompts will be elaborated in Eq. (7). Please note that, with a suitable prompt
design, the prompt-based diffusion helps to create more diversified samples. Afterward, GIF-SD
conducts channel-wise noise perturbation. Here, the latent feature of SD has three dimensions: two
spatial dimensions and one channel dimension. As discussed in our preliminary (cf. Appendix B.2),
the channel-level latent feature encodes more subtle style information, whereas the spatial-level
latent features encode more content information. In light of the findings in this preliminary study,
we particularly conduct channel-level noise to optimize the latent features in GIF-SD for further
diversifying the style of the generated images while maintaining the content semantics of the latent
features (after prompt-guided diffusion) unchanged. Based on the randomly perturbed feature, GIF-
SD generates an intermediate image via its image decoder and applies CLIP to conduct zero-shot
prediction for both the seed and the intermediate image to compute the guidance. With the guidance,
GIF-SD optimizes the latent features for creating more style-diverse samples. Here, GIF-SD conducts
guided imagination on its own latent space.

Algorithm 2: GIF-SD Algorithm
Input: Original small dataset Do; SD image encoder f(·) and image decoder G(·); SD diffusion module

fdiff(·; [prompt]); CLIP image encoder fCLIP-I(·); CLIP zero-shot classifier w(·); Expansion
ratio K; Perturbation constraint ε.

Initialize: Synthetic data set Ds = ∅;
for x ∈ Do do
Sinf = 0;
f = f(x) ; // latent feature encoding for seed sample
Randomly sample a [prompt] ; // Prompt generation (Eq.(7))
f = fdiff(f ; [prompt]) ; // SD latent diffusion
s = w(fCLIP-I(x)) ; // CLIP zero-shot prediction for seed sample
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1);
f ′
i = Pf,ϵ((1 + zi)f + bi) ; // noise perturbation (Eq.(1))
s′ = w(f ′

i) ; // CLIP zero-shot prediction
Sinf += s′j + (s log(s)− s′ log(s′)), s.t. j = argmax(s) ; // class-maintained
informativeness (Eq.(5))

end
f̄ = mean({f ′

i}Ki=1);
Sdiv =

∑
i{DKL(σ(f

′
i)∥σ(f̄))}Ki=1 =

∑
i σ(f

′
i) log(σ(f

′
i)/σ(f̄)) ; // diversity (Eq.(6))

{z′i, b′i}Ki=1 ←− argmaxz,b Sinf + Sdiv ; // guided latent optimization (Eq.(2))
for i=1,...,K do

f ′′
i = Pf,ϵ((1 + z′i)f + b′i) ; // guided noise perturbation (Eq.(1))
x′′
i = G(f ′′

i ) ; // sample creation
Add x′′

i −→ Ds.
end

end
Output: Expanded dataset Do ∪ Ds.

Rule of prompt design. In our preliminary studies in Appendix B.3, we find that domain labels,
class labels, and adjective words are necessary to make the prompts semantically effective. Therefore,
we design the prompts using the following rule:

Prompt := [domain] of a(n) [adj] [class]. (7)
For example, "an oil painting of a colorful fox". To enable the prompts to be diversified, inspired
by our preliminary studies, we design a set of domain labels and adjective words for natural image
datasets as follows.

- Domain label set: ["an image of", "a real-world photo of", "a cartoon image of", "an oil painting of",
"a sketch of"]
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- Adjective word set: [" ", "colorful", "stylized", "high-contrast", "low-contrast", "posterized",
"solarized", "sheared", "bright", "dark"]

For a seed sample, we randomly sample a domain label and an adjective word from the above sets to
construct a prompt. Note that, for medical image datasets, we cancel the domain label set and replace
it as the modality of the medical images, e.g., ["Abdominal CT image of"], ["Colon pathological
image of"].

Implementation details. In our experiment, we implement GIF-SD based on CLIP VIT-B/32 and
Stable Diffusion v1-4, which are pre-trained on large datasets and then used for dataset expansion.
Here, we use the official checkpoints of CLIP VIT-B/32 and Stable Diffusion v1-4. The resolution
of the created images by GIF-SD is 512×512 for all datasets. Moreover, for guided latent feature
optimization in GIF-SD, we set ε = 0.8 for natural image datasets and ε = 0.1 for medical image
datasets. Here, we further adjust ε = 4 for Caltech101 to increase image diversity for better
performance. During the diffusion process, we adopt the DDIM sampler [70] for 50-step latent
diffusion. Moreover, the hyper-parameters of strength and scale in SD depend on datasets, while
more analysis is provided in Appendix B.4. Note that, for expanding medical image datasets, it is
necessary to fine-tune the prior model for alleviating domain shifts.
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D.3 Method details of GIF-MAE

Thanks to strong image reconstruction abilities, our GIF-MAE applies the MAE-trained model [24]
as its prior model. As its encoder is different from the CLIP image encoder, we slightly modify the
pipeline of GIF-MAE.

Pipeline. As shown in Algorithm 3, GIF-MAE first generates a latent feature for the seed image
via its encoder, and conducts channel-wise noise perturbation. Here, the latent feature of MAE
has two dimensions: spatial dimension and channel dimension. As discussed in our preliminary
(cf. Appendix B.2), the channel-level latent feature encodes more subtle style information, whereas
the token-level latent feature encodes more content information. Motivated by the findings in this
preliminary study, we particularly conduct channel-level noise to optimize the latent features in
our GIF-MAE method for maintaining the content semantics of images unchanged. Based on the
perturbed feature, GIF-MAE generates an intermediate image via its decoder and applies CLIP to
conduct zero-shot prediction for both the seed and the intermediate image to compute the guidance.
With the guidance, GIF-MAE optimizes the latent features for creating content-consistent samples of
diverse styles. Here, GIF-MAE conducts guided imagination on its own latent space.

Algorithm 3: GIF-MAE Algorithm
Input: Original small dataset Do; MAE image encoder f(·) and image decoder G(·); CLIP image encoder

fCLIP-I(·); CLIP zero-shot classifier w(·); Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅;
for x ∈ Do do
Sinf = 0;
f = f(x) ; // latent feature encoding for seed sample
s = w(fCLIP-I(x)) ; // CLIP zero-shot prediction for seed sample
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1);
f ′
i = Pf,ϵ((1 + zi)f + bi) ; // channel-level noise perturbation (Eq.(1))
x′
i = G(f ′

i) ; // intermediate image generation
s′ = w(fCLIP-I(x

′
i));

Sinf += s′j + (s log(s)− s′ log(s′)), s.t. j = argmax(s) ; // class-maintained
informativeness (Eq.(5))

end
f̄ = mean({f ′

i}Ki=1);
Sdiv =

∑
i{DKL(σ(f

′
i)∥σ(f̄))}Ki=1 =

∑
i σ(f

′
i) log(σ(f

′
i)/σ(f̄)) ; // diversity (Eq.(6))

{z′i, b′i}Ki=1 ←− argmaxz,b Sinf + Sdiv ; // guided latent optimization (Eq.(2))
for i=1,...,K do

f ′′
i = Pf,ϵ((1 + z′i)f + b′i) ; // guided channel-wise noise perturbation (Eq.(1))
x′′
i = G(f ′′

i ) ; // sample creation
Add x′′

i −→ Ds.
end

end
Output: Expanded dataset Do ∪ Ds.

Implementation details. In our experiment, we implement GIF-MAE based on CLIP VIT-B/32 and
MAE VIT-L/16, which are pre-trained on large datasets and then fixed for dataset expansion. Here,
we use the official checkpoints of CLIP VIT-B/32 and MAE VIT-L/16. The resolution of the created
images by GIF-MAE is 224×224 for all datasets. Moreover, we set ε = 5 for guided latent feature
optimization in GIF-MAE.
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D.4 Implementation details of model training

We implement GIF in PyTorch based on CLIP VIT-B/32, DALL-E2, MAE VIT-L/16, and Stable
Diffusion (SD) V1-4, which are pre-trained on large datasets and then fixed for dataset expansion. We
use the official checkpoints of CLIP VIT-B/32, MAE VIT-L/16, and SD v1-4, and use the DALL-E2
pre-trained on Laion-400M [66]. On medical datasets, since DALL-E2 and SD were initially trained
on natural images and suffer from domain shifts to medical domains (please see the discussion in
Appendix B.6), we fine-tune them on the target dataset before dataset expansion.

To fairly evaluate the expansion effectiveness of different methods, we use them to expand the original
small datasets by the same ratios, followed by training models from scratch on the expanded dataset
with the same number of epochs and the same data pre-processing. In this way, the models are
trained with the same number of update steps, so that all expansion methods are fairly compared.
The expansion ratio depends on the actual demand of real applications. In the experiment of Table 1,
CIFAR100-Subset is expanded by 5×, Pets is expanded by 30×, and all other datasets are expanded
by 20×. Moreover, all medical image datasets are expanded by 5×. In addition, all augmentation
baselines expand datasets with the same expansion ratio for fair comparisons.

After expansion, we train ResNet-50 [25] from scratch for 100 epochs based on the expanded datasets.
During model training, we process images via random resize to 224×224 through bicubic sampling,
random rotation, and random flips. If not specified, we use the SGD optimizer with a momentum
of 0.9. We set the initial learning rate (LR) to 0.01 with cosine LR decay, except the initial LR of
CIFAR100-Subset and OrganSMNIST is 0.1. The model performance is averaged over three runs in
terms of micro accuracy on natural image datasets and macro accuracy on medical image datasets.

D.5 Discussions on limitations and broader impact

Limitations. We next discuss the limitations of our method.

1. Performance of generated samples. The expanded samples are still less informative
than real samples. For example, a ResNet-50 trained from scratch on our 5x-expanded
CIFAR100-Subset achieves an accuracy of 61.1%, which lags behind the 71.0% accuracy
on the original CIFAR100. This gap signals the potential for advancing algorithmic dataset
expansion. Please see Appendix F.6 for detailed discussions. We expect that this pioneering
work can inspire more studies to explore dataset expansion so that it can even outperform a
human-collected dataset of the same size.

2. Quality of generated samples. Some samples might have noise, as exemplified in Figure 5b.
Despite seeming less realistic, those samples are created following our guidance (e.g.,
class-maintained informativeness boosting). This ensures the class consistency of these
samples, mitigating potential negative effects on model training. Nonetheless, refining the
expansion method to address these noisy cases can further enhance the effectiveness of
dataset expansion.

3. Scope of work. Our current focus is predominantly on image classification. Exploring the
adaptability of our method to other tasks, such as object detection and semantic segmentation,
is an intriguing next step.

Broader impact. We further summarize our broader impact. Our method can offer a notable
reduction in the time and cost associated with manual data collection and annotation for dataset
expansion, as discussed in Section 5.1. This can revolutionize how small datasets are expanded,
making deep learning more accessible to scenarios with limited data availability (cf. Table 1).
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E Dataset Statistics

The statistics of natural image datasets. We evaluate our method on six small-scale natural
image datasets, including Caltech-101 [18], CIFAR100-Subset [41], Standard Cars [40], Oxford
102 Flowers [49], Oxford-IIIT Pets [50] and DTD [10]. Here, CIFAR100-Subset is an artificial
dataset for simulating small-scale datasets by randomly sampling 100 instances per class from the
original CIFAR100 dataset, and the total sample number is 10,000. These datasets cover a wide range
of classification tasks, including coarse-grained object classification (i.e., CIFAR100-Subset and
Caltech-101), fine-grained object classification (i.e., Cars, Flowers and Pets) and texture classification
(i.e., DTD). The data statistics of these natural image datasets are given in Table 10. Note that the
higher number of classes or the lower number of average samples per class a dataset has, the more
challenging the dataset is.

Table 10: Statistics of small-scale natural image datasets.

Datasets Tasks # Classes # Samples # Average samples per class

Caltech101 Coarse-grained object classification 102 3,060 30
CIFAR100-Subset Coarse-grained object classification 100 10,000 100
Standard Cars Fine-grained object classification 196 8,144 42
Oxford 102 Flowers Fine-grained object classification 102 6,552 64
Oxford-IIIT Pets Fine-grained object classification 37 3,842 104
Describable Textures (DTD) Texture classification 47 3,760 80

The statistics of medical image datasets. To evaluate the effect of dataset expansion on medical
images, we conduct experiments on three small-scale medical image datasets. These datasets cover
a wide range of medical image modalities, including breast ultrasound (i.e., BreastMNIST [1]),
colon pathology (i.e., PathMNIST [36]), and Abdominal CT (i.e., OrganSMNIST [88]). We provide
detailed statistics for these datasets in Table 11.

Table 11: Statistics of small-scale medical image datasets. To better simulate the scenario of small
medical datasets, we use the validation sets of BreastMNIST and PathMNIST for experiments instead
of training sets, whereas OrganSMNIST is based on its training set.

Datasets Data Modality # Classes # Samples # Average samples per class

BreastMNIST [1, 90] Breast Ultrasound 2 78 39
PathMNIST [36, 90] Colon Pathology 9 10,004 1,112
OrganSMNIST [88, 90] Abdominal CT 11 13,940 1,267
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F More Experimental Results and Discussion

F.1 More comparisons to expansion with augmentations

F.1.1 More results on expansion efficiency

In Figure 4, we have demonstrated the expansion efficiency of our proposed GIF over Cutout,
GridMask and RandAugment on the Cars, DTD and Pets datasets. Here, we further report the results
on Caltech101, Flowers, and CIFAR100-Subset datasets. As shown in Figure 18, 5× expansion by
GIF-SD and GIF-DALLE has already performed comparably to 20× expansion of these augmentation
methods, while 10× expansion by GIF-SD and GIF-DALLE outperforms 20× expansion by these
data augmentation methods a lot. This result further demonstrates the effectiveness and efficiency of
our GIF, and also reflects the importance of automatically creating informative synthetic samples for
model training.
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Figure 18: Accuracy of ResNet-50 trained from scratch on the expanded datasets with different
expansion ratios based on Caltech101, Flowers, and CIFAR100-Subset datasets.

F.1.2 Comparison to Mixup and CutMix

We further compare our method to more advanced augmentation methods. Specifically, we apply
Mixup-based methods, i.e., Mixup [99] and CutMix [96], to expand CIFAR100-Subset by 5 × and
use the expanded dataset to train the model from scratch. As shown in Table 12, GIF-SD performs
much better than Mixup and CutMix, further demonstrating the superiority of our method over
augmentation-based expansion methods.

Table 12: Comparison between GIF and Mixup methods for expanding CIFAR100-Subset by 5×.

CIFAR100-Subset Accuracy

Original dataset 35.0±1.7

Expanded dataset
5×-expanded by Mixup [99] 45.6±1.2

5×-expanded by CutMix [96] 50.7±0.2

5×-expanded by GIF-SD 61.1±0.8
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F.1.3 Comparison with an advanced generative method

We further compare our method with an advanced generative method [26] for dataset expansion. This
method includes strategies like language enhancement (LE) [26] and CLIP Filter (CF) [26]. We use
this method to expand the CIFAR100-S dataset based on Stable Diffusion (SD). As shown in the
following table, SD combined with the method [26] is still noticeably inferior to our GIF-SD for both
training from scratch and CLIP tuning. This further demonstrates the superiority of our method.

Table 13: Comparison between GIF and the method [26] for expanding CIFAR100-Subset by 5×.

CIFAR100-S Training from scratch CLIP fine-tuning

Original dataset 35.0 75.2
5x-expanded dataset by SD+method [26] 55.1 (+20.1) 77.0 (+1.8)
5x-expanded dataset by GIF-SD (ours) 61.1 (+26.1) 79.4 (+4.2)

F.1.4 Comparison to infinite data augmentation

The training time varies based on the specific datasets. However, it is pivotal to note that all dataset
expansion methods were compared based on the same expansion ratio, thus ensuring consistent
training time/cost and fair comparisons. We acknowledge that training on an expanded dataset
will inevitably take longer than training on the original dataset. However, as shown in Table 1 (cf.
Section 5.1), the significant improvement in model performance (i.e., by 36.9% on average over six
natural image datasets and by 13.5% on average over three medical datasets) makes the increased
investment in training time worthwhile.

Despite this, one may wonder how the explored dataset expansion would perform compared to training
with infinite data augmentation. Therefore, in this appendix, we further evaluate the performance of
infinite data augmentation on the CIFAR100-Subset. Specifically, based on RandAugment, we train
ResNet-50 using infinite online augmentation for varying numbers of epochs from 100 to 700. As
shown in Table 14, using RandAugment to train models for more epochs leads to better performance,
but gradually converges (around 51% accuracy at 500 epochs) and keeps fluctuating afterward.
By contrast, our proposed method proves advantageous with the same training consumption costs:
training the model on the original CIFAR100-S dataset for 5x more epochs performs much worse than
the model trained on our 5x-expanded dataset. This comparison further underscores the effectiveness
of our method in achieving higher accuracy without inflating training costs.

Table 14: Comparison between GIF-SD and infinite data augmentation on CIFAR100-Subset. Here,
consumption costs equal data number × training epoch.

Methods Epochs Consumption Accuracy

Original
Standard training 100 1 million 35.0±1.7

Training with RandAugment 100 1 million 39.6±2.5

Training with RandAugment 200 2 million 46.9±0.9

Training with RandAugment 300 3 million 48.1±0.6

Training with RandAugment 400 4 million 49.6±0.4

Training with RandAugment 500 5 million 51.3±0.3

Training with RandAugment 600 6 million 51.1±0.3

Training with RandAugment 700 7 million 50.6±1.1

Expanded
5×-expanded by GIF-SD 100 6 million 61.1±0.8
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F.1.5 Discussion of picking related samples from larger datasets

Picking and labeling data from larger image datasets with CLIP is an interesting idea for dataset
expansion. However, such a solution is limited in real applications, since a large-scale related dataset
may be unavailable in many image domains (e.g., medical image domains). Moreover, selecting
data from different image domains (e.g., from natural images to medical images) is unhelpful for
dataset expansion. Despite the above limitations in real applications, we also evaluate this idea on
CIFAR100-Subset and investigate whether it helps dataset expansion when there is a larger dataset
of the same image nature, e.g., ImageNet. Here, we use CLIP to select and annotate related images
from ImageNet to expand CIFAR100-Subset. Specifically, we scan over all ImageNet images and
use CLIP to predict them to the class of CIFAR100-Subset. We select the samples with the highest
prediction probability higher than 0.1 and expand each class by 5×. As shown in Table 15, the idea of
picking related images from ImageNet makes sense, but performs worse than our proposed method.
This result further demonstrates the effectiveness and superiority of our method. In addition, how to
better transfer large-scale datasets to expand small datasets is an interesting open question, and we
expect to explore it in the future.

Table 15: Comparison between GIF and picking related data from ImageNet for expanding CIFAR100-
Subset by 5×.

CIFAR100-Subset Accuracy

Original dataset 35.0±1.7

Expanded dataset
5×-expanded by picking data from ImageNet with CLIP 50.9±1.1

5×-expanded by GIF-SD 61.1±0.8
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F.2 More results of benefits to model generalization

In CIFAR100-C [27], there are 15 types of OOD corruption (as shown in Table 16), i.e., Gaussian
noise, shot noise, impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow, frost, fog,
brightness, contrast, elastic transformation, pixelation, and JPEG compression. Each corruption type
has 5 different severity levels: the larger severity level means more severe distribution shifts between
CIFAR100 and CIFAR100-C. In Table 2 of the main paper, we have shown the empirical benefit
of our method to model out-of-distribution (OOD) generalization based on CIFAR100-C with the
severity level 3. Here, we further report its performance on CIFAR100-C with other severity levels.
As shown in Table 16, our method is able to achieve consistent performance gains across all severity
levels, which further verifies the benefits of GIF to model OOD generalization.

Table 16: Corruption Accuracy of ResNet-50 trained from scratch on CIFAR100-S and our 5×
expanded dataset, under 15 types of corruption in CIFAR100-C with various severity levels.

(a) CIFAR100-C with the severity level 1
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 25.6 29.3 25.0 34.2 32.2 31.7 30.9 32.3 28.3 31.8 33.7 29.2 31.7 34.1 30.9 30.7
5×-expanded by GIF-SD 50.3 54.6 50.8 59.2 29.4 53.7 51.9 53.1 54.0 58.7 59.5 57.1 52.5 57.9 54.7 53.2 (+22.5)
20×-expanded by GIF-SD 55.0 60.5 54.8 66.1 30.2 56.0 58.0 61.1 62.2 65.1 66.2 64.3 59.2 63.8 60.8 58.9 (+27.2)

(b) CIFAR100-C with the severity level 2
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 18.6 24.4 17.4 32.5 31.9 28.3 29.8 28.4 22.9 23.6 31.1 16.3 30.8 33.7 29.2 26.6
5×-expanded by GIF-SD 39.5 48.8 41.7 56.3 29.6 46.4 49.7 45.2 46.4 52.8 57.6 45.5 52.1 54.2 51.1 47.8 (+21.2)
20×-expanded by GIF-SD 42.7 53.7 43.9 63.1 31.2 51.8 56.1 52.0 54.9 60.4 65.2 54.3 59.2 60.0 55.6 52.3 (+25.7)

(c) CIFAR100-C with the severity level 3
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 12.8 17.0 12.5 30.5 31.7 25.2 28.6 26.5 19.0 18.6 28.3 11.5 29.5 33.6 28.8 23.6
5×-expanded by GIF-SD 29.7 36.4 32.7 51.9 32.4 39.2 46.0 45.3 38.1 47.1 55.7 37.3 48.6 53.2 49.4 43.3 (+19.3)
20×-expanded by GIF-SD 31.8 39.2 34.7 58.4 33.4 43.1 51.9 51.7 47.4 55.0 63.3 46.5 54.9 58.0 53.6 48.2 (+24.6)

(d) CIFAR100-C with the severity level 4
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average
Original 10.8 14.3 7.7 28.5 29.3 25.2 27.8 23.3 19.5 14.1 24.9 7.4 29.0 33.0 28.1 21.5
5×-expanded by GIF-SD 25.3 31.2 18.0 45.1 21.4 39.6 42.5 41.7 37.7 40.2 52.1 26.1 44.2 47.8 48.2 37.4 (+15.9)
20×-expanded by GIF-SD 27.4 33.7 20.2 50.7 21.7 43.9 47.8 48.8 46.7 47.6 60.7 35.3 47.9 49.3 51.2 42.2 (+20.7)

(e) CIFAR100-C with the severity level 5
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 9.4 10.7 5.5 24.9 28.9 22.3 25.9 19.4 16.6 8.2 18.3 2.7 29.0 31.8 27.3 18.7
5×-expanded by GIF-SD 21.4 23.8 10.8 31.8 22.8 33.1 37.6 38.1 31.1 24.7 43.7 8.6 38.6 36.0 45.6 29.8 (+11.1)
20×-expanded by GIF-SD 22.9 25.5 11.1 33.5 24.1 36.2 41.8 46.4 38.4 32.1 53.5 13.9 40.4 32.0 48.8 33.4 (+14.7)

39



F.3 More results of applicability to various model architectures

In Table 3, we have demonstrated the generalizability of our expanded Cars dataset to various
model architectures. Here, we further apply the expanded Caltech101, Flowers, DTD, CIFAR100-
S, and Pets datasets (5× expansion ratio) by GIF-SD and GIF-DALLE to train ResNeXt-50 [85],
WideResNet-50 [97] and MobileNet V2 [64] from scratch. Table 17 shows that our expanded datasets
bring consistent performance gains for all the architectures on all datasets. This further affirms the
versatility of our expanded datasets, which, once expanded, are readily suited for training various
model architectures.

Table 17: Model performance of various model architectures trained on 5× expanded natural image
datasets by GIF.

Dataset Caltech101 [18]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 26.3±1.0 32.6±0.5 34.7±0.8 33.8±1.1 31.9
5×-expanded by GIF-DALLE 57.3±0.4 55.2±0.1 61.8±0.5 59.4±0.7 58.4 (+26.5)
5×-expanded by GIF-SD 54.4±0.7 52.8±1.1 60.7±0.3 55.6±0.5 55.9 (+24.0)

Dataset Cars [40]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 19.8±0.9 18.4±0.5 32.0±0.8 26.2±4.2 24.1
5×-expanded by GIF-DALLE 53.1±0.2 43.7±0.2 60.0±0.6 47.8±0.6 51.2 (+27.1)
5×-expanded by GIF-SD 60.6±1.9 64.1±1.3 75.1±0.4 60.2±1.6 65.0 (+40.9)

Dataset Flowers [49]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 74.1±0.1 75.8±1.2 79.3±1.6 85.5±1.0 78.7
5×-expanded by GIF-DALLE 82.8±0.5 81.6±0.4 84.6±0.2 88.8±0.5 84.4 (+5.7)
5×-expanded by GIF-SD 82.1±1.7 82.0±1.2 85.0±0.6 89.0±0.1 84.5 (+5.8)

Dataset DTD [10]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 23.1±0.2 25.4±0.6 26.1±0.6 28.1±0.9 25.7
5×-expanded by GIF-DALLE 31.2±0.9 30.6±0.1 35.3±0.9 37.4±0.8 33.6 (+7.9)
5×-expanded by GIF-SD 33.9±0.9 33.3±1.6 40.6±1.7 40.8±1.1 37.2 (+11.5)

Dataset CIFAR100-S [41]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 35.0±3.2 36.3±2.1 42.0±0.3 50.9±0.2 41.1
5×-expanded by GIF-DALLE 54.5±1.1 52.4±0.7 55.3±0.3 56.2±0.2 54.6 (+13.5)
5×-expanded by GIF-SD 61.1±0.8 59.0±0.7 64.4±0.2 62.4±0.1 61.4 (+20.3)

Dataset Pets [50]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 6.8±1.8 19.0±1.6 22.1±0.5 37.5±0.4 21.4
5×-expanded by GIF-DALLE 46.2±0.1 52.3±1.5 66.2±0.1 60.3±0.3 56.3 (+34.9)
5×-expanded by GIF-SD 65.8±0.6 56.5±0.6 70.9±0.4 60.6±0.5 63.5 (+42.1)
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F.4 More discussions on CLIP

In the following subsections, we provide more discussions on the comparisons with CLIP.

F.4.1 Why not directly transfer CLIP models to target datasets?

In our proposed GIF framework, we leverage the pre-trained CLIP model to guide dataset expansion.
An inevitable question might be: why not directly use or transfer the CLIP model to the target dataset,
especially given its proven effectiveness on many natural image datasets? Before delving into that,
it is important to note that we aim to tackle small-data scenarios, where only a limited-size dataset
is available and there are no large-scale external datasets with a similar nature to the target dataset.
Consequently, training a new CLIP model on the target dataset (e.g., in the medical image domains) is
not feasible. Therefore, we rely on publicly available CLIP models for dataset expansion. Compared
to directly using or transferring CLIP models, our dataset expansion introduces a necessary new
paradigm for two primary reasons as follows.

First, our GIF method has better applicability to scenarios across various image domains. While CLIP
demonstrates good transfer performance on certain natural image datasets, it struggles to achieve this
performance on other domains, such as medical image datasets. To illustrate this, we test the linear-
probing and fine-tuning performance of the CLIP-trained ResNet-50 model on three medical datasets.
As shown in Table 18, directly employing or transferring the CLIP model yielded unsatisfactory
results or only marginally improved performance—significantly underperforming compared to our
dataset expansion approach. The limited transfer performance is attributed to the fact that, when
the pre-trained datasets are highly different from the target datasets, the pre-training weights do not
significantly bolster performance compared to training from scratch [55]. Such an issue cannot be
resolved by conducting CLIP pre-training on these domains, since there is no large-scale dataset of
similar data nature to the target dataset in real scenarios. In contrast, our GIF framework is capable of
generating images of similar nature as the target data for dataset expansion, enhancing its applicability
to real-world scenarios across diverse image domains.

Second, our dataset expansion can provide expanded datasets suitable for training various network
architectures. In certain practical scenarios, such as mobile terminals, the permissible model size is
severely limited due to hardware constraints. Nonetheless, the publicly available CLIP checkpoints are
restricted to ResNet-50, ViT-B/32, or even larger models, which may not be viable in these constrained
settings. In contrast, the expanded dataset by our method can be readily employed to train a various
range of model architectures (cf. Table 3), making it more applicable to scenarios with hardware
limitations. One might suggest using CLIP in these situations by conducting knowledge distillation
from large CLIP models to facilitate the training of smaller model architectures. However, as indicated
in Table 1 and Table 18, although knowledge distillation of CLIP does enhance model performance
on most datasets, the gains are limited. This arises from two key limitations of CLIP knowledge
distillation. First, distillation can only yield marginal improvements when the performance of CLIP
on the target dataset (e.g., medical image domains) is not good. Second, distillation tends to be
ineffective when there is a mismatch between the architectures of student and teacher models [9, 71].
This comparison further underscores the advantages of our method for training various network
architectures, while the CLIP model architectures are fixed and not editable.

Table 18: Comparison between our methods and directly fine-tuning CLIP models on three medical
image datasets. All results are averaged over three runs.

Dataset PathMNIST BreastMNIST OrganSMNIST

Original dataset 72.4±0.7 55.8±1.3 76.3±0.4

CLIP linear probing 74.3±0.1 60.0±2.9 64.9±0.2

CLIP fine-tuning 78.4±0.9 67.2±2.4 78.9±0.1

CLIP knowledge distillation 77.3±1.7 60.2±1.3 77.4±0.8

5×-expanded by GIF-SD 86.9±0.3 77.4±1.8 80.7±0.2
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F.4.2 Discussion on when to use GIF over zero-shot CLIP models

In Table 1, it is noted that while zero-shot CLIP performs well on datasets like Caltech 101 and Pets,
it struggles with medical image datasets. This poses the question: when should we prefer GIF over
pre-trained CLIP models? Although zero-shot CLIP outperforms our GIF-SD on the Caltech 101
and Pets datasets, our method demonstrates superior overall performance across six natural image
datasets, as well as medical image datasets (see Table 1). Thus, we recommend using our method as
the primary option.

Meanwhile, if the target dataset has a high distributional similarity with the CLIP training dataset,
it may also be beneficial to consider CLIP as an alternative and see whether it can achieve better
performance. Nevertheless, it is important to note that, as discussed in Section 5.1 and Appendix F.4.1,
CLIP is less effective in some specific application scenarios. For instance, its performance on non-
natural image domains like medical images is limited (as shown in Table 4). Additionally, publicly
available CLIP checkpoints are restricted to larger models like ResNet-50 and ViT-B/32, making
them unsuitable for scenarios with hardware constraints (e.g., mobile terminals) where smaller model
sizes are necessary. In these scenarios, our proposed method exhibits promising performance (as
shown in Tables 3 and 4), offering a more versatile solution.
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F.5 More ablation studies

F.5.1 The effectiveness of guidance in GIF-DALLE

GIF optimizes data latent features for informative sample creation by maximizing the designed
objective functions of guidance (i.e., class-maintained informativeness Sinf and sample diversity
Sdiv), which are essential for effective dataset expansion. With these essential guidance criteria, as
shown in Table 19, our guided expansion framework obtains consistent performance gains compared
to unguided expansion with SD, DALL-E2, or MAE, respectively. This verifies the effectiveness of
our criteria in optimizing the informativeness and diversity of the created samples.

Table 19: Accuracy of ResNet-50 trained from scratch on small datasets and their expanded datasets
by various methods. Here, CIFAR100-Subset is expanded by 5×, Pets is expanded by 30×, and all
other natural image datasets are expanded by 20×. All medical image datasets are expanded by 5×.
Moreover, MAE, DALL-E2 and SD (Stable Diffusion) are the baselines of directly using them to
expand datasets without our GIF. All results are averaged over three runs.

Dataset Natural image datasets Medical image datasets

Caltech101 Cars Flowers DTD CIFAR100-S Pets Average PathMNIST BreastMNIST OrganSMNIST Average

Original 26.3 19.8 74.1 23.1 35.0 6.8 30.9 72.4 55.8 76.3 68.2

Expanded by MAE 50.6 25.9 76.3 27.6 44.3 39.9 44.1 (+13.2) 81.7 63.4 78.6 74.6 (+6.4)
Expanded by GIF-MAE (ours) 58.4 44.5 84.4 34.2 52.7 52.4 54.4 (+23.5) 82.0 73.3 80.6 78.6 (+10.4)

Expanded by DALL-E2 61.3 48.3 84.1 34.5 52.1 61.7 57.0 (+26.1) 82.8 70.8 79.3 77.6 (+9.4)
Expanded by GIF-DALLE (ours) 63.0 53.1 88.2 39.5 54.5 66.4 60.8 (+29.9) 84.4 76.6 80.5 80.5 (+12.3)

Expanded by SD 51.1 51.7 78.8 33.2 52.9 57.9 54.3 (+23.4) 85.1 73.8 78.9 79.3 (+11.1)
Expanded by GIF-SD (ours) 65.1 75.7 88.3 43.4 61.1 73.4 67.8 (+36.9) 86.9 77.4 80.7 81.7 (+13.5)

In this appendix, we further explore the individual influence of these criteria on GIF-DALLE.
Specifically, as mentioned in Appendix D.1, GIF-DALLE conducts guided imagination on the
CLIP embedding space, which directly determines the content of the created samples. With the
aforementioned essential criteria, as shown in Figure 2b, our GIF-DALLE is able to create motorbike
images with more diverse angles of view and even a new driver compared to unguided DALLE
expansion. Here, we further dig into how different criteria influence the expansion effectiveness
of GIF-DALLE. As shown in Table 20, boosting the class-maintained informativeness Sinf is
the foundation of effective expansion, since it makes sure that the created samples have correct
labels and bring new information. Without it, only Sdiv cannot guarantee the created samples to
be meaningful, although the sample diversity is improved, even leading to worse performance. In
contrast, with Sinf , diversity promotion Sdiv can further bring more diverse information to boost
data informativeness and thus achieve better performance (cf. Table 20). Note that contrastive
entropy increment s log(s) − s′ log(s′) in class-maintained informativeness plays different roles
from diversity promotion Sdiv . Contrastive entropy increment promotes the informativeness of each
generated image by increasing the prediction difficulty over the corresponding seed image, but this
guidance cannot diversify different latent features obtained from the same image. By contrast, the
guidance of diversity promotion encourages the diversity of various latent features of the same seed
image, but it cannot increase the informativeness of generated samples regarding prediction difficulty.
Therefore, using the two guidance together leads the generated images to be more informative and
diversified, thus bringing higher performance improvement (cf. Table 20). As a result, as shown in
Table 19, with these two essential criteria as guidance, the model accuracy by GIF-DALLE is 3.3%
accuracy higher than unguided data generation with DALL-E2.

Table 20: Ablation of guidance in GIF-DALLE for expanding CIFAR100-Subset by 5×.

Method Sinf Sdiv CIFAR100-Subset

GIF-DALLE

52.1±0.9

53.1±0.3

51.8±1.3

54.5±1.1
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F.5.2 The effectiveness of guidance in GIF-SD

We next analyze GIF-SD. As mentioned in Appendix D.2, we conduct channel-wise noise perturbation
for latent optimization in GIF-SD. As analyzed in Appendix B.2, the channel-level latent feature
encodes more subtle style information, and conducting channel-level noise perturbation diversifies
the style of images while maintaining its content integrity. Therefore, our guided optimization
particularly diversifies the style of the created images, without changing the content semantics of
the latent features after diffusion (cf. Figure 19). Moreover, the prompt-guided diffusion with our
explored prompts helps to enrich image styles further (e.g., cartoon or oil painting). Hence, combining
both of them enables GIF-SD to create new samples with much higher diversity (cf. Figure 19).

Input Generated images

Stable Diffusion

+ our guided optimization

+ our designed prompts

+ our guided optimization
+ designed prompts

Methods

Figure 19: Visualization of the generated images by SD with our explored guided optimization and
designed prompts.

We then investigate the individual influence of our guidance criteria on GIF-SD on the basis of our
prompt-guided diffusion. As shown in Table 21, both the class-maintained informativeness guidance
Sinf and the diversity promotion guidance Sdiv contribute to model performance. One interesting
thing is that, unlike GIF-DALLE that does not work without Sinf , GIF-SD can work well using
only the diversity promotion guidance Sdiv. The key reason is that GIF-SD conducts channel-level
noise perturbation over latent features and particularly diversifies the style of the created images
without changing the content semantics of the latent features after diffusion. Therefore, the class
semantics can be maintained well when only promoting sample diversity. Moreover, combining both
guidance criteria enables GIF-SD to achieve the best expansion effectiveness (cf. Table 21), leading
to promising performance gains (i.e., 13.5% accuracy improvement on average over six natural image
datasets) compared to unguided expansion with SD (cf. Table 19).

Table 21: Ablation of guidance and prompts in GIF-SD for expanding CIFAR100-Subset by 5×.

Method Designed prompts Sinf Sdiv CIFAR100-Subset

GIF-SD

52.9±0.8

56.2±1.0

59.6±1.1

59.4±1.2

61.1±0.8
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F.5.3 Discussions on the constraint of the perturbed feature in GIF

The hyper-parameter ε is used to ensure that the perturbed feature does not deviate from the input
feature significantly, and its value depends on the prior model and target dataset. As described in
Appendix D, for GIF-SD, we set ε = 0.8 for most natural image datasets and further adjust ε = 4 for
Caltech101 to increase its dataset diversity for better performance. Once determined for a given prior
model and target dataset, ε remains fixed for various expansion ratios. As shown in the following
table, there is no need to increase when the expansion ratio becomes larger.

Table 22: Ablation of hyper-parameter ε on Caltech101 for GIF-SD.

ε on Caltech101 2 4 8
5×-expanded by GIF-SD 53.0 54.4 53.6
10×-expanded by GIF-SD 59.2 59.3 58.2
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F.6 Discussion of training models with only expanded images

It is interesting to know how the model performs when trained with only the created images by our
method. To this end, we train ResNet-50 from scratch using only images generated by GIF-DALLE
on the CIFAR100-Subset and compare the result with a model trained on the real images of the
CIFAR100-Subset.

We report the results regarding 1× expansion in Table 23. We find that the model trained with only
1× synthetic images performs worse than the model trained with the original dataset, indicating
that the quality of synthetic data still lags behind that of real images. Please note that this does not
degrade our contribution, since our work aims to expand small datasets rather than replace them
entirely. Moreover, mixing the original images with the created images to the same size as the original
dataset can lead to better performance than using only the original dataset. This suggests that the
created images are not a simple repetition of the original dataset but offer new information that is
useful for model training. Lastly, the model trained on the complete 1x-expanded dataset significantly
outperforms the models trained either only on the original dataset or solely on the generated images,
underscoring the potential of synthetic images in expanding small-scale datasets for model training.

Table 23: Performance of the model trained with only the expanded data of the 5×-expanded
CIFAR100-Subset dataset by GIF-DALLE.

CIFAR100-Subset Data amount Accuracy

Training with real images in original dataset 10,000 35.0±1.7

Training with only the 1×-created data by GIF-DALLE 10,000 21.0±0.7

Training with mixing original data and 1×-created data by GIF-DALLE 10,000 37.2±0.8

Training with 1×-expanded dataset by GIF-DALLE 20,000 45.6±1.1

We next report the results regarding 5× expansion in Table 24. The model trained with 5× synthetic
images has already performed comparably to the model trained with real images. This result further
verifies the effectiveness of our explored dataset expansion method. Moreover, the model trained with
the full 5×-expanded dataset performs much better than that trained with only the original dataset or
with only the generated images. This further shows that using synthetic images for model training is
a promising direction. We expect that our innovative work on dataset expansion can inspire more
studies to explore this direction in the future.

Table 24: Performance of the model trained with only the expanded data of the 5×-expanded
CIFAR100-Subset dataset by GIF-DALLE.

CIFAR100-Subset Data amount Accuracy

Training with real images in original dataset 10,000 35.0±1.7

Training with only the 5×-created data by GIF-DALLE 50,000 35.2±1.3

Training with 5×-expanded dataset by GIF-DALLE 60,000 54.5±1.1
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F.7 Effectiveness on long-tailed classification dataset

In previous experiments, we have demonstrated the effectiveness of our proposed method on relatively
balanced small-scale datasets. However, real-world classification datasets are usually class imbalanced
and even follow a long-tailed class distribution. Therefore, we further apply GIF-SD to expand a
long-tailed dataset, i.e., CIFAR100-LT [5] (with the imbalance ratio of 100), to see whether it is
also beneficial to long-tailed learning. Here, we train ResNet-50 from scratch with the cross-entropy
loss or the balanced softmax loss [35] for 200 epochs, where Balanced Softmax [35, 102] is a class
re-balancing loss designed for long-tailed learning.

As shown in Table 25, compared to training with cross-entropy directly on the original CIFAR100-LT
dataset, 20× expansion by our GIF-SD leads to a 13.5% model accuracy gain. This demonstrates the
effectiveness of our proposed method in long-tailed learning. More encouragingly, our GIF expansion
boosts the performance of few-shot classes more than many-shot classes, which means that GIF helps
to address the issue of class imbalance.

Besides the cross-entropy loss, our dataset expansion is also beneficial to model training with long-
tailed losses, such as Balanced Softmax. As shown in Table 25, 20× expansion by GIF-SD boosts the
accuracy of the Balanced Softmax trained model by 14.8%, and significantly improves its tail-class
performance by 26.8%. These results further demonstrate the applicability of our GIF to long-tailed
learning applications. We expect that this work can inspire more long-tailed learning studies to explore
dataset expansion since information lacking is an important challenge in long-tailed learning [103].

Table 25: Effectiveness of GIF-SD for expanding CIFAR100-LT (imbalance ratio 100) by 10×, where
all models are trained for 200 epochs. Here, Balanced Softmax [35, 102] is a class re-balancing
losses designed for long-tailed learning.

CIFAR100-LT Training losses Many-shot classes Medium-shot classes Few-shot classes Overall

Original Cross-entropy 70.5 41.1 8.1 41.4
20×-expanded by GIF-SD Cross-entropy 79.5 (+9.0) 54.9 (+13.8) 26.4 (+18.3) 54.9 (+13.5)

Original Balanced Softmax 67.9 45.8 17.7 45.1
20×-expanded by GIF-SD Balanced Softmax 73.7 (+5.8) 59.2 (+13.4) 44.5 (+26.8) 59.9 (+14.8)

F.8 Effectiveness on larger-scale dataset

In previous experiments, we have demonstrated the effectiveness of our proposed method on small-
scale natural and medical image datasets. In addition to that, one may also wonder whether our
method can be applied to larger-scale datasets. Although expanding larger-scale datasets is not the
goal of this paper, we also explore our method to expand the full CIFAR100 by 5× for model training.
As shown in Table 26, compared to direct training on the original CIFAR100 dataset, our GIF-SD
leads to a 9.4% accuracy gain and GIF-DALLE leads to an 8.7% accuracy gain. Such encouraging
results verify the effectiveness of our methods on larger-scale datasets.

Table 26: Effectiveness of GIF for expanding the full CIFAR100.

Dataset CIFAR100

Original 70.9±0.6

Expanded
5×-expanded by GIF-DALLE 79.6±0.3

5×-expanded by GIF-SD 80.3±0.3
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F.9 Safety check

Ethical considerations, especially in AI research and data generation, are indeed paramount. Our
approach is constructed with care to avoid negative implications, as evidenced in the following points:

• Controlled generation: In our approach, the generation of synthetic data is driven by our
expansion guidances, which ensure that new data is derived directly and meaningfully from
the original dataset. This controlled mechanism minimizes the risks of creating unrelated or
potentially harmful images.

• No personal or sensitive data: It is also worth noting that our method primarily focuses
on publicly available datasets like CIFAR, Stanford Cars, and similar, which do not con-
tain personal or sensitive information. As such, the risks related to privacy breaches or
misrepresentations are substantially diminished.

Following this, we further employ the Google Cloud Vision API4 to perform a safety check on
the 50,000 images generated during 5x-expansion of CIFAR100-S by GIF-SD. The Google Cloud
Vision API is a tool from Google that uses deep learning to analyze and categorize content in images,
commonly used for safety checks. It evaluates the likelihood of the image containing adult themes
such as nudity or sexual activities, alterations made for humor or offensiveness (spoof), medical
relevance, violent content, and racy elements which could include suggestive clothing or poses. This
assessment aids in ensuring that images adhere to content standards and are appropriate for their
target audiences.

As evidenced by Table 27, the synthetic images by our method are safe and harmless. To be specific,
the majority of our generated images are categorized as either "Very unlikely" or "Unlikely" across all
five metrics. Moreover, for categories like "Adult" and "Medical", the likelihood is almost negligible.
Moreover, the visualized images in Appendix G also highlight the benign nature of the images
produced by our method.

Table 27: Safety check of the generated images of CIFAR100-S by our GIF-SD, in terms of different
metrics of Google Cloud Vision API.

Metrics Very unlikely Unlikely Neutral Likely Very likely

Adult 96% 4% 0% 0% 0%
Spoof 82% 15% 3% 0% 0%
Medical 86% 14% 0% 0% 0%
Violence 69% 31% 0% 0% 0%
Racy 66% 25% 9% 0% 0%

4https://cloud.google.com/vision/docs/detecting-safe-search
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G More Visualization Results

This appendix provides more visualized results for the created samples by our methods on various
natural image datasets. Specifically, we report the synthetic images by GIF-SD on Caltech101 in
Figure 20, those by GIF-DALLE in Figure 21 and those by GIF-MAE in Figure 22. The visualized
results show that our GIF-SD and GIF-DALLE can create semantic-consistent yet content-diversified
images well, while GIF-MAE can generate content-consistent yet highly style-diversified images. The
visualization of GIF-SD and GIF-DALLE on other natural image datasets are shown in Figures 23-32.

G.1 Visualization of the expanded images on Caltech101

G.1.1 Visualization of the expanded images by GIF-SD on Caltech101

Input Our GIF-SD expansion

Figure 20: Visualization of the created samples on Caltech101 by GIF-SD.
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G.1.2 Visualization of the expanded images by GIF-DALLE on Caltech101

Input Our GIF-DALLE expansion

Figure 21: Visualization of the created samples on Caltech101 by GIF-DALLE.
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G.1.3 Visualization of the expanded images by GIF-MAE on Caltech101

Input Our GIF-MAE expansion

Figure 22: Visualization of the created samples on Caltech101 by GIF-MAE.
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G.2 Visualization of the expanded images on Cars

G.2.1 Visualization of the expanded images by GIF-SD on Cars

Input Our GIF-SD expansion

Figure 23: More visualization of the synthetic samples on Cars by GIF-SD.
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G.2.2 Visualization of the expanded images by GIF-DALLE on Cars

Input Our GIF-DALLE expansion

Figure 24: More visualization of the synthetic samples on Cars by GIF-DALLE.
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G.3 Visualization of the expanded images on Flowers

G.3.1 Visualization of the expanded images by GIF-SD on Flowers

Input Our GIF-SD expansion

Figure 25: More visualization of the synthetic samples on Flowers by GIF-SD.
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G.3.2 Visualization of the expanded images by GIF-DALLE on Flowers

Input Our GIF-DALLE expansion

Figure 26: More visualization of the synthetic samples on Flowers by GIF-DALLE.
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G.4 Visualization of the expanded images on Pets

G.4.1 Visualization of the expanded images by GIF-SD on Pets

Input Our GIF-SD expansion

Figure 27: More visualization of the synthetic samples on Pets by GIF-SD.
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G.4.2 Visualization of the expanded images by GIF-DALLE on Pets

Input Our GIF-DALLE expansion

Figure 28: More visualization of the synthetic samples on Pets by GIF-DALLE.

57



G.5 Visualization of the expanded images on CIFAR100-Subset

G.5.1 Visualization of the expanded images by GIF-SD on CIFAR100-Subset

Input Our GIF-SD expansion

Figure 29: More visualization of the synthetic samples on CIFAR100-Subset by GIF-SD.
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G.5.2 Visualization of the expanded images by GIF-DALLE on CIFAR100-Subset

Input Our GIF-DALLE expansion

Figure 30: More visualization of the synthetic samples on CIFAR100-Subset by GIF-DALLE. Note
that the resolution of the input CIFAR100 images is small (i.e., 32×32), so their visualization is a
little unclear.
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G.6 Visualization of the expanded images on DTD

G.6.1 Visualization of the expanded images by GIF-SD on DTD

Input Our GIF-SD expansion

Figure 31: More visualization of the synthetic samples on DTD by GIF-SD.

60



G.6.2 Visualization of the expanded images by GIF-DALLE on DTD

Input Our GIF-DALLE expansion

Figure 32: More visualization of the synthetic samples on DTD by GIF-DALLE.
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