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Abstract

A good supervised embedding for a specific machine learning task is only sensitive
to changes in the label of interest and is invariant to other confounding factors.
We leverage the concept of repeatability from measurement theory to describe this
property and propose to use the intra-class correlation coefficient (ICC) to evaluate
the repeatability of embeddings. We then propose a novel regularizer, the ICC
regularizer, as a complementary component for contrastive losses to guide deep
neural networks to produce embeddings with higher repeatability. We use simulated
data to explain why the ICC regularizer works better on minimizing the intra-class
variance than the contrastive loss alone. We implement the ICC regularizer and
apply it to three speech tasks: speaker verification, voice style conversion, and
a clinical application for detecting dysphonic voice. The experimental results
demonstrate that adding an ICC regularizer can improve the repeatability of learned
embeddings compared to only using the contrastive loss; further, these embeddings
lead to improved performance in these downstream tasks.

1 Introduction

Embeddings, which are relatively low-dimensional latent representations of high-dimensional inputs,
are widely used in deep learning applications and often trained through supervised learning techniques.
In such cases, effective embeddings should be sensitive to changes in the target class (e.g., speaker
identity, clinical class) while remaining invariant to unrelated factors (e.g., noise, natural variations of
the data). Embeddings that satisfy this desired property have high repeatability, a term borrowed
from measurement theory where it characterizes the consistency between the outcomes of consecutive
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measurements of the same target when the underlying conditions remain unaltered [23, 45]. For
instance, in a text-independent speaker verification (TI-SV) task, the speaker embedding extracted
from recordings with varying content from the same speaker should remain consistent. Similarly,
in a dysphonic voice detection task, voice feature embeddings derived from the vowel phonation of
a healthy person over consecutive days should remain consistent. By achieving high repeatability,
embeddings effectively capture essential features while disregarding irrelevant factors.

A key to improving repeatability is reducing the intra-class variance, which is often increased by
various confounding factors. Several studies have proposed different approaches to handling intra-
class variation including increasing the variability of training data [60, 47, 7, 13, 61] and novel
learning algorithms [2, 4, 42]. However, repeatability is rarely explicitly considered during training
or evaluation of embeddings. In most cases, only the downstream applications’ performance is used
to indirectly evaluate the embeddings’ effectiveness. We posit that directly assessing repeatability,
regardless of downstream application, can help improve the quality of learned latent representations.

In this paper, we propose to use the intra-class correlation coefficient (ICC) to evaluate embeddings’
repeatability. The ICC was designed to assess the consistency between two or more quantitative
measurements [36], and often used to evaluate the repeatability of metrics across different fields [28,
33, 49]. We further propose a novel regularizer based on the ICC as a complementary component
to traditional contrastive losses to enforce deep architectures to learn repeatable embeddings. Some
contrastive losses, such as GE2E [54], push embeddings towards the centroid of the true class to
reduce their intra-class variance. Via analysis and intuition, we explain why the ICC regularizer
better focuses on minimizing the intra-class variance than contrastive loss alone and provide a new
perspective for latent representation learning.

Repeatability is an especially difficult property to enforce in complex, high-dimensional signals
like speech. Speech characteristics depend on the speaker’s neurological and physiological state,
the degrees of freedom in the speaking task, the recording setup, the environment, etc. [45]. These
sources of variation challenge the development of embeddings for a particular task (e.g., learning
speaker embeddings). We use the ICC regularizer to improve the embeddings’ repeatability in
three speech tasks: speaker embeddings for TI-SV, zero-shot voice style conversion, and voice
feature embeddings for a clinical application of dysphonic voice detection. Our experimental results
demonstrate that the proposed ICC regularizer can significantly improve the repeatability of learned
embeddings, and embeddings with higher repeatability perform better in the downstream tasks.
In the TI-SV task, the speaker embeddings’ repeatability is significantly enhanced, and the EER
decreases by ∼ 10% compared to the methods without ICC regularizer. AB preference test results
for zero-shot voice style conversion show that embeddings with higher repeatability are preferred
62% to 38% over those with lower repeatability. Objective evaluation metrics further confirm that
more repeatable embeddings lead to improved performance in the voice style conversion task. In the
clinical application, we demonstrate that highly repeatable voice feature embeddings further improve
the in-corpus classification accuracy by ∼ 3% and model generalizability across different corpora.

We summarize our contributions as follows:

• We connect the concept of repeatability from measurement theory to deep-learned embed-
dings and suggest the ICC for evaluating the quality of embeddings.

• We propose a novel regularizer, the ICC regularizer, as a complementary component for
contrastive loss to regularize the deep-learned embeddings such that they are repeatable.

• We illustrate the reason why the ICC regularizer better minimizes the intra-class variance
than the contrastive loss and provide a new perspective for latent representation learning.

• Our experimental results demonstrate that ICC regularizer can improve the repeatability of
learned embeddings, and embeddings with higher repeatability exhibit better performance
in downstream tasks.

For reproducibility of our work, the code for the ICC regularizer and experiments is available
open-source in our GitHub repository1.

1https://github.com/vigor-jzhang/icc-regularizer/

2



2 Related Work

Learning invariant embeddings: Previous literature has proposed to improve the robustness of
learned latent representations by learning invariant embeddings. Most of these studies made the em-
beddings invariant to one or two types of variation, e.g. pose-invariance for re-identification [64, 35],
noise-invariance for speaker recognition [7, 38], personality-invariance for emotion recognition [59].
There are two main approaches to promoting invariance to confounding factors: (1) increase the vari-
ability of training data, e.g., combining datasets from different domains [13], data warping [60, 47],
data augmentation by GANs [61]; and (2) novel learning paradigms, such as variance-invariance-
covariance regularization [4], invariant risk minimization [2], and simultaneously enforcing equiv-
ariance and invariance [42]. In this work, we follow the second approach by introducing a new
regularizer for training embeddings.

Intra-class and inter-class variance: The variation between multiple observations of a class
(intra-class variance) and the variation between classes (inter-class variance) define the performance
of many machine learning criteria. Minimizing intra-class variance and maximizing inter-class
variance are keys to many deep learning tasks, including classification [39, 63], representation
learning [17, 29, 41], and few-shot learning [10, 8, 46]. However, these works typically rely on
visualization (e.g., t-SNE, UMAP) to show how well their methods minimize intra-class variance and
maximize inter-class variance [29, 34]. The proposed metric for repeatability, the ICC, can directly
evaluate the performance of a given method using an already-established and well-understood metric
from measurement theory. Furthermore, we can construct a regularizer centered around this metric.

Contrastive loss: Researchers have proposed finding task-relevant embedding features by contrastive
representation learning and leveraging labeled data [50]. There are several popular contrastive losses
in deep learning, such as the triplet loss [3, 31], tuple-based end-to-end (TE2E) loss [20], generalized
end-to-end (GE2E) loss [54], momentum contrast (MoCo) [19], and SimCLR [9]. A contrastive loss
encourages inputs of the same label class to have more similar latent representations compared to
inputs from different classes. We select GE2E loss as a representative contrastive loss for comparison
as it is widely adopted and used for supervised learning. The similarities and differences between the
contrastive loss and the ICC regularizer are discussed in Section 3.2.

Intra-class correlation coefficient: Repeatability is most frequently measured via an intra-class
correlation coefficient (ICC) [56]. Shrout and Fleiss elaborated several cases and corresponding
formulas for ICC [43]. The ICC is used widely in different fields to estimate the reliability and
repeatability, including clinical applications [45, 14], psychology and behavioral science [33, 15], and
medical imaging [6, 49]. To the best of our knowledge, the ICC has not been applied for embeddings
training and evaluation.

3 Method

In this section, we present the intra-class correlation coefficient (ICC) for evaluating the repeatability
of deep-learned embeddings, and we present a novel ICC regularizer for enforcing repeatability in
learned embeddings during training. Then, we illustrate the similarities and differences between
contrastive loss and ICC regularizer by analyzing the intra-class and inter-class variance in relation to
these two elements. Finally, we highlight why the ICC regularizer cannot function independently and
its requirement for hyperparameter fine-tuning.

3.1 Intra-class correlation regularizer

Shrout and Fleiss elaborated several cases and corresponding formulas for the ICC [43], and we select
the ICC 1-1 formulation, which is a measure of absolute agreement (i.e., the model generates the
same embeddings to different samples from the same target) [16, 27], for assessing the repeatability
of deep-learned embeddings.

In our problem formulation, we assume there are a set of high-dimensional data x ∈ RD, each
with label y ∈ [1, ..., N ]. The goal is to learn lower-dimensional latent representations e ∈ RL

that exhibit maximum separability: embeddings belonging to the same class should be closely
clustered together, while embeddings from different classes should be distinctly separated from each
other [32]. An encoder with weights w and characterized by f(x;w), takes x as input and outputs
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lower-dimensional representation e. During training, the weights of the encoder are modified by
optimizing a loss function that depends on x and labels y. Considering a dataset with y ∈ [1, ..., N ]
and M input samples per class, the embedding vector eji is defined as the ℓ2 normalization of the
encoder output f(xji;w) (1 ≤ j ≤ N, 1 ≤ i ≤ M, 1 ≤ l ≤ L):

eji = [e1ji, e
2
ji, ..., e

l
ji, ...] =

f(xji;w)

∥f(xji;w)∥2
, (1)

where the xji represents the i-th sample of j-th class and the eji represents the corresponding
embedding vector (the notation is similar to other contrastive losses), and elji represents the l-th
embedding dimension of eji.

Then ICC(el), the ICC score for l-th embedding dimension, can be calculated as follows [16]:

ICC(el) =
MSB(e

l)−MSW (el)

MSB(el) + (M − 1)MSW (el)
. (2)

Here the MSB(e
l) represents inter-class (between-class) variance2 and MSW (el) represents the

intra-class (within-class) variance for l-th embedding dimension. MSB(e
l) is calculated as

MSB(e
l) =

M ·
∑N

j=1(e
l
j − el)2

N − 1
, (3)

where elj =
∑M

i elji/M represents the mean of l-th embedding dimension for the j-th class and
el =

∑N
j

∑M
i elji/(N ×M) represents the overall mean of l-th embedding dimension. Intuitively,

MSB(e
l) measures the inter-class variance of l-th embedding dimension.

MSW (el) is calculated as

MSW (el) =

∑N
j Mσ2

j,l

N(M − 1)
, (4)

where σ2
j,l =

∑M
i (elji − elj)

2/M represents the variance of l-th embedding dimension for j-th class.
Intuitively, MSW (el) measures the overall intra-class variance of l-th embedding dimension.

After obtaining the ICC score for each embedding point, we use the mean value of all embedding
dimensions’ ICC scores as the repeatability metric:

ICC(e) =
∑L

l ICC(el)

L
. (5)

ICC score interpretation: When the learned embeddings exhibit perfect repeatability (characterized
by intra-class variance MSW = 0 and inter-class variance MSB > 0), the ICC score is equal to
1. A decrease in the ICC score signifies reduced repeatability, which implies a relative increase in
intra-class variance MSW compared to inter-class variance MSB . If the intra-class variance MSW

exceeds the inter-class variance MSB , the ICC score may become negative3.

We propose a novel regularizer, the ICC regularizer, for regularizing learned representations to
enforce high repeatability. The ICC regularizer operates on each batch: we assume a single batch
contains samples from N classes, and M input samples from each class, and the dimension of the
embedding is L. The ICC loss firstly uses Equation 5 to calculate the mean ICC score ICC(e) for
the embeddings e of current batch, and then the ICC regularizer can be written as

2Often noted as MSR in ICC related literature [43, 16].
3For instance, consider a simple numerical example where there is N = 2 classes and M = 6 samples per

class. Class 1 has mean µ1 = 0 and variance σ2
1 = 100, class 2 has mean µ2 = 0.1 and variance σ2

2 = 100. In
this situation, MSB = 0.3, MSW = 120, then ICC = −0.199 < 0. M has big effect in this situation: when
M is large, the ICC score is still negative but very close to 0.
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RICC = 1− ICC(e). (6)

In this paper, the ICC and ICC regularizer require equal class size, i.e., M is the same for all classes.
However, to expand the ICC regularizer usage for scenarios where the number of samples per class
may not be equal, we provide an extended version of the ICC formulation and code for the imbalanced
classes in the Appendix A and in our GitHub repository4.

3.2 ICC regularizer vs. contrastive loss

Figure 1: The contour figures for (a) GE2E loss and (b) ICC regularizer value of intra- and inter-class
variance. To explore the gradient trend of GE2E loss and ICC regularizer, some starting points (red
dots) are selected, then the maximum gradient descent path (red dashed lines) of value is calculated
and plotted. (c) The contour figure for SVM classification error rate on simulation data per intra- and
inter-class variance.

The ICC regularizer and contrastive loss have similarities in their optimization criteria: both aim
to minimize the intra-class variance and maximize the inter-class variance. However, they exhibit
different tradeoffs between the two variances. We use a Monte Carlo simulation to study the
similarities and differences of the ICC regularizer and contrastive loss on the intra-class and inter-
class variance. We use the GE2E loss [54] as a representative contrastive loss in simulation5.

Simulation setup: In simulation, we vary the intra- and inter-class variances to generate samples
as follows: (1) the intra-class variance, i.e., the variance of simulated embeddings within one class,
varies from 0.02 to 2.0 with a step size of 0.02; (2) the inter-class variance, i.e., the variance of
class centroids, varies from 0.01 to 0.60 with a step size of 0.01. For a pair of configurations (e.g.
inter-class, intra-class pair), we draw 400 samples from an 8-dimensional, 4-class Gaussian mixture
such that the class-conditional mean and variance yield the desired inter-class, intra-class variance pair.
We calculate the ICC regularizer value and GE2E loss value for these random samples. We repeat the
Monte Carlo simulation 100 times and plot the loss values in Figure 1 for the ICC regularizer and
GE2E loss as a function of the inter-class and intra-class variance. To explore their landscapes, we
select several starting points, then trace the path of maximum gradient descent.

Discussion: The ICC regularizer and GE2E loss have very different contours. They both have a
low value when the inter-class variance is high and the intra-class variance is low. However, when
embeddings are normalized (see Equation 1), the normalization places an upper limit on the total
variance of embeddings and limits how large the inter-class variance can be (the inter-class variance
cannot go to infinity). So, a regularizer that places a greater emphasis on minimizing the intra-class
variance for a bounded inter-class variance will naturally lead to embeddings with higher repeatability
compared to a loss that focuses on simultaneously maximizing both variances.

The GE2E loss tries to optimize both intra-class and inter-class variances simultaneously: the
maximum gradient descent direction of the GE2E loss overall is from the lower-right corner to the
upper-left corner. This loss continues to decrease as the inter-class variance increases, even after the
intra-class variance is small enough (the descent path of point 1 in Figure 1(a)). We note that the

4https://github.com/vigor-jzhang/icc-regularizer/
5We implement the GE2E loss with ’softmax’ type, i.e., using Equation 6 in their paper. The GE2E loss

use two learnable parameters w, b for their similarity metric calculation S = w · cos(·) + b, but we fixed
w = 10, b = −5 as initial values suggested in their paper for simulation.
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embeddings of different classes are already clustered well under this scenario. Therefore, further
increasing the inter-class variance does not improve the separability between the embeddings as they
are already separated. It is difficult for the GE2E loss to further minimize the intra-class variance
without increasing the inter-class variance based on the contours of the loss. Our simulation explains
findings from several studies showing that contrastive losses, including the GE2E, do not perform
well in reducing intra-class variance [30, 55].

In contrast, the ICC regularizer focuses on decreasing the intra-class variance and places less emphasis
on the inter-class variance, thereby enhancing repeatability of the learned embeddings. The minimum
for the ICC regularizer occurs when the embeddings’ intra-class variance is approximately equal to
0, or the inter-class variance reaches a relatively large value compared to the intra-class variance.
The ICC regularizer pushes the embeddings towards lower intra-class variance and not towards
larger inter-class variance once the inter-class variance exceeds the intra-class variance (ensuring the
embeddings are clustered well) as shown in Figure 1 (b). This naturally leads to embeddings with
better repeatability compared to the GE2E loss.

A simple analysis of gradients explains this observation. The gradient of the ICC regularizer with
respect to the two variance terms is

∂RICC

∂MSB
= − M ×MSW

(MSB + (M − 1)×MSW )2
, (7)

∂RICC

∂MSW
=

M ×MSB

(MSB + (M − 1)×MSW )2
. (8)

When the intra-class variance (MSW ) is already small, the derivative of the ICC regularizer with
respect to the inter-class variance (MSB) is small in absolute value; therefore, the gradient descent
step along the inter-class variance dimension is small. When the inter-class variance is relatively
large, the derivative of the ICC regularizer with respect to the intra-class variance is larger, which
means the gradient descent step along the intra-class variance dimension is relatively large. This is
clear from Figure 1 (b) where the points that begin with a small intra-class variance (e.g. point 2 in
Figure 1 (b)) do not focus on further increasing the inter-class variance to improve the ICC as it is
unnecessary. In contrast, the trajectory of point 1 in 1 (a) goes towards increasing the inter-class
variance, even when the intra-class variance is small and the clusters are already well separated.

The ICC regularizer is also better aligned with classification error rate. We use the same simulation
data and train a SVM for each intra- and inter-class variance pair to generate the contour figure
for SVM classification error rate. As we show in Figure 1 (c), the classification error rate has a
similar contour when compared with the ICC regularizer values: the lower ICC regularizer (higher
the repeatability), the lower the classification error rate. This result supports our hypothesis that
embeddings with improved repeatability will benefit downstream applications.

In summary, given the constraints on the total variance of the embeddings, it is beneficial to focus
on the intra-class variance for increasing representation repeatability. Although the optimization
objectives of contrastive loss and ICC regularizer are similar, the contrastive loss focuses on optimiz-
ing intra-class and inter-class variance simultaneously whereas the ICC regularizer places greater
emphasis on minimizing intra-class variance.

The ICC is not a replacement for contrastive loss: The ICC is computed for each dimension of the
embedding independently, while contrastive loss is calculated for the entire embedding vector. It’s
important to note that high separability in each embedding dimension doesn’t necessarily translate
into good separability in the overall embedding space and can lead to learned embedding dimensions
that are highly correlated; this can have a negative impact on downstream model performance [51].
Relatedly, the cosine similarity score is commonly used to evaluated the fidelity of learned embeddings.
A high ICC value per dimension does not necessarily imply a high cosine similarity. For these reasons,
we propose to use the ICC as a regularizer rather than a stand-alone loss.

The ICC regularizer requires hyperparameter fine-tuning: As with other regularizers, a linear
combination of contrastive loss and the ICC regularizer, represented by the equation Lcontr+λRICC ,
requires selection of the hyperparameter λ. In our experiments, we used a grid search to determine
the optimal λ. For visualizations of the loss contour (similar to those in Figure 1) of the combined
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contrastive+ICC loss, we refer the reader to the Appendix B where we have included the combined
loss contour with varying λ values.

4 Experimental Results

In this section, we regularize deep-learning models with the ICC to improve the embeddings’
repeatability in three different speech tasks: (1) speaker embeddings for text-independent speaker
verification, where the ICC regularizer ensures the embeddings are repeatable for the same person and
the contrastive loss aims to separate embeddings of different speakers; (2) speaker embeddings for
zero-shot voice style conversion, where using embeddings with better quality results in higher-quality
conversion; (3) voice feature embeddings for dysphonic voice detection, where the ICC regularizer
ensures the embeddings do not change from day to day for the healthy group and a contrastive loss
forces maximum separability between dysphonic and healthy speech.

4.1 Task 1: text-independent speaker verification

Text-independent speaker verification (TI-SV) systems verify the speaker’s identification using a
speech signal input without any constraints on the speech content. Many previous methods use
speaker embeddings for the TI-SV task [54, 24, 48, 26]. For TI-SV, the speaker embeddings should
only capture the difference in the speaker identities and be invariant to all other confounding factors,
including utterance content and length. Herein we include our proposed ICC regularizer when
learning speaker embeddings to improve their repeatability.

Experiment setup: We select three well-known contrastive losses as baselines: (1) GE2E [54],
(2) Angular Prototypical (AngleProto) [12], and (3) SupCon [25]. Then we use these contrastive
losses with and without the ICC regularizer to train two encoders, VGG-M-40 and FastResNet-
34 which is described in Chung et al. paper [12], and compare the performance and quality of
these speaker embeddings. We use the VoxCeleb 1 & 2 development dataset for training, and
VoxCeleb 1 testing dataset for TI-SV performance evaluation [37, 11]. For training VGG-M-40,
each batch contains N = 8 speakers and M = 30 utterances per speaker, and the loss formula
L(e) = 1.0 × Lcontr(e) + 0.06 × RICC(e), where the e is the embeddings of speakers’ in one
batch. For training FastResNet-34, each batch contains N = 100 speakers and M = 2 utterances per
speaker, and the loss formula L(e) = 1.0× Lcontr(e) + 0.25×RICC(e). During training, we use
the Adam optimizer, maintaining a static learning rate of 0.001 without implementing any learning
rate schedule. The dropout rate is set to 0.2 for all dropout layers. As for data augmentation: (1) we
use variation in input audio length by randomly fixing the audio duration within a range of 1.5 to 3.0
seconds, and (2) we add Gaussian noise with a SNR randomly selected between 15 to 60 dB. No
other augmentation methods are used. The hyper-parameter is tuned on the development dataset. The
EER for subjects in the development dataset are used to determine the optimized hyperparamter. We
use the EER and minDCF to evaluate the performance of TI-SV, ICC (Equation 5) to evaluate the
repeatability of embeddings.

Table 1: TI-SV task EER and ICC results for contrastive losses with and without ICC regularizer.

VGG-M-40 FastResNet-34
EER minDCF ICC EER minDCF ICC

GE2E [54] 4.39% 0.2925 0.4494 2.49% 0.2133 0.7215
GE2E + ICC 3.96% 0.2778 0.5487 2.39% 0.2012 0.7366

AngleProto [12] 4.36% 0.2809 0.4399 2.28% 0.1960 0.7501
AngleProto + ICC 4.02% 0.2790 0.5455 2.17% 0.1871 0.7627

SupCon [25] 3.91% 0.2791 0.5693 2.30% 0.1956 0.7500
SupCon + ICC 3.78% 0.2597 0.6661 2.16% 0.1867 0.7615

Results: Table 1 presents the results of the TI-SV evaluation for contrastive losses, both with
and without the ICC regularizer. When using VGG-M-40 and FastResNet-34 models, the GE2E
achieves EER of 4.39% and 2.49% on the VoxCeleb 1 test set, respectively. Incorporating the
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ICC regularizer improves the GE2E’s performance, reducing EER to 3.96% for VGG-M-40 and
2.39% for FastResNet-34. This represents a approximately 10% enhancement in performance for the
VGG-M-40 model. The repeatability of speaker embeddings also improves with the ICC regularizer
as the ICC score is increased from 0.4494 to 0.5487 and from 0.7215 to 0.7366 for VGG-M-40 and
FastResNet-34, respectively. In addition, the benefits of the ICC regularizer are also observed with
two other contrastive loss methods. For the AngleProto method, introducing the ICC regularization
achieves a 7.8% and 4.8% improvement over baseline models without ICC regularizer. Meanwhile,
the SupCon method, records a 3.3% and 6.08% improvement over SupCon without ICC regularizer,
also resulting in more repeatable embeddings.

The experimental results of the TI-SV task demonstrate that the proposed ICC regularizer can improve
the repeatability of embeddings learned to be sensitive to speaker identities. The speaker embeddings
with higher repeatability achieve improved performance on the TI-SV task.

4.2 Task 2: zero-shot voice style conversion

One important application of speaker embeddings is voice style conversion, i.e., modifying the speech
of a source speaker to sound like that produced by another target speaker without changing the
linguistic information [40, 21, 58]. In the previous section, we used the ICC regularizer together
with a contrastive loss during training to obtain speaker embeddings with higher repeatability. The
embeddings with high repeatability should benefit downstream applications. While in the previous
section we demonstrated that they benefit the TI-SV task for several different contrastive losses,
in this section, we use a zero-shot voice conversion model, AutoVC [40], and evaluate it with two
different speaker embeddings generated from the previous section: (1) GE2E loss trained speaker
embeddings which are less repeatable, and (2) GE2E + ICC regularizer trained speaker embeddings
which are more repeatable. We choose the most challenging voice style conversion task, the zero-shot
voice style conversion (unseen speaker to unseen speaker), to compare the downstream performance
of these two embeddings with different repeatability.

Experiment setup: We use exactly same training procedure described in Qian et al. [40] to train
the two models. For evaluating the conversion quality perspectively, we conduct AB preference
test to compare the generated samples: we randomly select 10 unseen source and 10 unseen target
speakers from the VCTK corpus [52], to generate a total of 100 source-target speaker pairs6. For
each listening test, 15 pairs are randomly selected from the 100 pairs. The order of presentation is
randomized. A total of 18 listeners participated in this AB preference test. They were instructed to
select the sample that better matched the target speaker without knowing what method was used to
generate the samples. We also evaluate two methods objectively by using objective scores based on
the word error rate (WER) and character error rate (CER). We use an opensource speaker encoder7 to
calculate the speaker similarity score between target speaker’s audio and transformed output. And we
then use Wav2Vec28 to do ASR on the transformed output, and calculate the WER and CER by using
jiwer module9.

Table 2: AB preference result for zero-shot voice style conversion.

GE2E Loss GE2E Loss + ICC Regularizer
Selection Ratio 38.10% 61.90%

Table 3: Objective evaluation result for zero-shot voice style conversion.

Speaker Similarity Score WER CER
GE2E Loss 0.2231 0.5810 0.3817

GE2E Loss + ICC 0.2309 0.5109 0.3324

Results: The AB preference result is shown in Table 2. On average, 61.90% of samples generated by
the model trained with the more repeatable speaker embeddings were preferred over those trained

6We provide several examples on our project page: https://vigor-jzhang.github.io/icc-reg-project-page/.
7huggingface.co/speechbrain/spkrec-ecapa-voxceleb
8huggingface.co/docs/transformers/model_doc/wav2vec2
9pypi.org/project/jiwer/2.5.1/
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using the original GE2E loss speaker embeddings. The objective evaluation results are shown
in Table 3. The objective evaluation metrics demonstrate that speaker embeddings with higher
repeatability also result in better performance across all these metrics for voice style conversion.
All these results demonstrate that speaker embeddings with higher repeatability also result in better
performance for voice style conversion task.

4.3 Task 3: assessment of vocal quality for dysphonic voice detection

Dysphonia is a term that refers to difficulty producing clear voicing during speech production.
Automatic dysphonic voice detection by deep learning has attracted academic and clinical interest.
To develop reliable clinical models, it is important to use highly repeatable voice features and
embeddings [45]. Zhang et al. proposed voice feature embeddings sensitive to vocal quality and
robust across different corpora [62]. However, in their work there is no constraint on the voice feature
embeddings’ repeatability.

We rebuild the Zhang et al. network and implement the ICC regularizer to enhance the repeatability
of embeddings. We follow the procedure described in [62] for training the voice feature embeddings.
To enforce repeatability using the ICC regularizer, we use the recordings of healthy subjects from the
mPower corpus [5] to ensure the embeddings do not change daily for the healthy person.

Model structure: We use the same encoder and MLP classifier from the Zhang et al. paper. A
two-branch structure is used for optimizing the dysphonic sensitivity and repeatability of voice feature
embeddings simultaneously. All three embeddings have a dimension of 256. For more information
about our model structures, we refer the reader to the Appendix C.

Training loss: We use the following formula for training: L = 0.5×RICC + 1.0× Lcontr + 1.0×
Lclass, where the RICC is the ICC regularizer on repeat-constrained embeddings, Lcontr is the
contrastive loss on the voice feature embeddings, and Lclass is the classification loss.

Training and evaluation datasets: We use the Saarbruecken Voice Database (SVD) [57] as the
training and in-corpus validation dataset for dysphonic voice detection, and the mPower corpus [5] is
used only for improving the repeatability of voice feature embeddings. The Massachusetts Eye and
Ear Infirmary (MEEI) database and Hospital Príncipe de Asturias (HUPA) [1] dataset are used for
cross-corpus testing datasets for dysphonic voice detection task, and the ALS [44] dataset is used for
repeatability evaluation. The MEEI, HUPA, and ALS are unseen during training for all methods. A
summary of these datasets are provided in Appendix D.

Training details: We perform cross-validation six times to characterize the variability in performance.
We fixed the random seed to 233. The SGD optimizer is used with a learning rate of 0.001 and other
default settings. We use one NVIDIA Titan Xp graphic card to train our models. We train the model
for 20k steps, which takes approximately 16 hours under our configurations.

Baseline methods: We compare against four baselines: (1) Zhang et al. [62]; (2) P. Harar et al. [18],
which is based on a recurrent convolutional neural network model; (3) L. Verde et al. [53], which
used a conventional features set with different classical machine learning classifiers; (4) M. Huckvale
et al. [22], which uses the ComPare feature set from the OpenSMILE toolkit with the SVM and
neural networks methods. All baseline methods are rebuilt and trained on our data using the same
procedures as they outlined in the original papers.

Evaluation metrics: We use balanced accuracy to evaluate the dysphonic voice classification
accuracy. We use the ICC (Equation 5) to evaluate the repeatability of our trained voice feature
embeddings and other baseline methods’ features. For a fair comparison, we evaluate the repeatability
by using ALS dataset [44], which is unseen to all methods during training.

Table 4: Dysphonic voice detection accuracy and features’ repeatability of our and baseline methods.

Dysphonic Voice Classification / [mean accuracy] (95% CI) Repeatability / ICC
SVD Train SVD Validation MEEI Testing HUPA Testing ALS

Proposed Method 0.7353 (0.004) 0.7289 (0.009) 0.8214 (0.004) 0.6894 (0.011) 0.5708
Zhang et al. (2022) 0.8003 (0.018) 0.7077 (0.011) 0.8209 (0.014) 0.6651 (0.008) 0.4368
Harar et al. (2017) 0.7742 (0.017) 0.6914 (0.009) 0.6614 (0.024) 0.4918 (0.008) 0.4743
Verde et al. (2018) 0.8910 (0.006) 0.6274 (0.009) 0.7042 (0.018) 0.5976 (0.015) 0.0182

Huckvale et al. (2021) 0.7290 (0.019) 0.6255 (0.012) 0.6978 (0.044) 0.5487 (0.014) 0.2914
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Results: Implementing the ICC regularizer significantly improves the repeatability of the voice
feature embeddings as shown in Table 4. Our proposed method achieves the highest ICC score of
0.5708, while the Zhang et al. model only achieves an ICC score of 0.4368, an improvement of
30.68%. Similarly, the repeatability of embeddings generated with the ICC regularizer regularizer
significantly exceeds that of all baseline methods.

Our experimental results demonstrate that the voice feature embeddings with higher repeatability
also achieve better classification accuracy and generalizability. Our proposed method achieves good
classification accuracy on SVD in-corpus validation 0.7289 (±0.009), MEEI cross-corpus testing
0.8214 (±0.004), and HUPA cross-corpus testing 0.6894 (±0.011). For a comparison, the original
HUPA publication achieved accuracy of 0.6962 (±0.047) with MFCC when trained and tested
in-corpus [1]. Our proposed method’s classification accuracy across the three corpora is quite good,
considering the differences between the corpora.

The experimental results of voice feature embeddings for dysphonic voice detection task demonstrate
that the ICC regularizer can improve the repeatability of embeddings and embeddings with higher
repeatability exhibit better accuracy and generalizability in dysphonic voice detection.

5 Conclusion

This paper ports the concept of repeatability from measurement theory to representation learning. We
propose to use the ICC as an evaluation metric in representation learning and use the ICC regularizer
as a complementary component for contrastive loss to regularize deep-learned embeddings to be
more repeatable. We use an example and intuition to explain why the ICC regularizer has better
performance on minimizing intra-class variance than contrastive loss. We evaluate the ICC regularizer
on three speech tasks that use learned embeddings: speaker embeddings for TI-SV and zero-shot
voice style conversion, and voice feature embeddings for a clinical application. The experimental
results demonstrate that the ICC regularizer can improve the repeatability of learned embeddings,
and embeddings with higher repeatability exhibit better performance in downstream tasks. There
several directions for future works: (1) applying the ICC regularizer to other domains, including
computer vision and natural language processing; (2) extension to self-supervised methods that use
contrastive-style training; (3) a more thorough theoretical analysis of the ICC and its properties.

Potential Negative Societal Impact: Methods for learning new feature representations that focus on
separability between classes can amplify biases that exist in the data. This is a well-known problem
and it can occur when the data used to train the representation model is biased. This is especially
problematic in high-stakes applications like healthcare, where biased predictions or decisions can
lead to unequal treatment or access. Safe deployment of models based on the feature representations
proposed herein will require thorough validation to detect potential biases and mitigation strategies
for dealing with them.
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Appendix
A ICC Formulation for Imbalanced Classes

The proposed ICC and ICC regularizer in the main paper require equal class size, i.e., M is the same
for all classes. However, this is not typically the case in actual usage. In this section, we propose
an extended version of the ICC and ICC regularizer, which are capable of handling datasets with
unbalanced class sizes.

Assume there are N classes in the dataset or batch, and kj is the number of samples for j-th class,
the xji represents the i-th samples of the j-th class, eji represents the corresponding embedding
vector, and elji represents the l-th embedding dimension of the eji. The between-class variance can
be written as:

MSB(e
l) =

∑N
j=1 kj · (elj − el)

N − 1
, (9)

where elj represents the mean of l-th embedding dimension for the j-th class:

elj =

∑kj

i=1 e
l
ji

kj
, (10)

and el represents the overall mean of l-th embedding dimension,

el =
1

N

N∑
j=1

∑kj

i elji
kj

. (11)

Then ICC(el), the ICC score for l-th embedding dimension, can be calculated as follows:

ICC(el) =
MSB(e

l)− 1
N

∑N
j=1

∑kj
i=1 σ2

ji,l

kj−1

MSB(el) +
1
N

∑N
j=1

∑kj

i=1 σ
2
ji,l

, (12)

where σ2
ji,l = (elji − elj)

2 represents the within-class variance of l-th embedding dimension for i-th
sample of the j-th class. The Equation 12 computes the intra-class variance for each class individually,
taking into account the number of samples present in each class, denoted as kj . Thus, Equation 12
effectively addresses issues related to class size imbalance.

Then the ICC score and ICC regularizer still can be calculated by using

ICC(e) =
∑L

l ICC(el)

L
, (13)

RICC = 1− ICC(e), (14)

respectively, for the datasets with unbalanced class sizes.

B Hyperparamter Ablation for GE2E Loss with ICC Regularization

As described in the Section 3.2 of the main paper, the ICC regularizer cannot be used alone and
requires hyperparameter fine-tuning when combined with the contrastive loss. Therefore, based on
the simulation data in Section 3.2 in the paper, the simulation contour figures of the (1− λ)LGE2E +
λRICC function value of intra- and inter-class variance for different values hyperparameter λ are
provided in Figure B.1.
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Figure B.1: The simulation contour figures of the (1− λ)LGE2E + λRICC function value of intra-
and inter-class variance, where λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Referring to Figure B.1, it’s observed that the impact of the hyperparameter λ on the shape of the
(1 − λ)LGE2E + λRICC function’s contour lines is linear under the given simulation conditions.
As the value of this hyperparameter λ increases, the contour of (1 − λ)LGE2E + λRICC leans
more towards the ICC regularizer. This means it increasingly emphasizes on reducing the intra-class
variance.

C Model and Training Details for Task 3: Dysphonic Voice Detection

We rebuild the Zhang et al. network [62] and implement the ICC regularizer to enhance the repeatabil-
ity of voice feature embeddings. We follow the procedure described in their work [62] for training the
voice feature embeddings. To enforce repeatability using the ICC regularizer, we use the recordings
of healthy subjects from the mPower corpus [5] to ensure the embeddings do not change daily for the
healthy person.

Model Structure: We use the same encoder and MLP classifier from the Zhang et al. paper [62]. A
two-branch structure is used for optimizing the dysphonic sensitivity and repeatability of voice feature
embeddings simultaneously as shown in Figure C.2, where the MLP networks is composed by three
linear layers and two Leaky-ReLU activation layers (negative slope is 0.4). All three embeddings
have a dimension of 256.

Training Loss: We use the following loss:
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Figure C.2: The diagram of training repeatability enhanced voice feature embeddings for dysphonic
voice detection.

L = 0.5×RICC + 1.0× Lcontr + 1.0× Lclass, (15)

where the RICC is the ICC regularizer on repeat-constrained embeddings, Lcontr is the contrastive
loss on the voice feature embeddings, and Lclass is the classification loss.

Training and Evaluation Datasets: We use the Saarbruecken Voice Database (SVD) [57] as
the training and in-corpus validation dataset for dysphonic voice detection task, and the mPower
corpus [5] is used only in training for improving the repeatability of voice feature embeddings. The
Massachusetts Eye and Ear Infirmary (MEEI) database and Hospital Príncipe de Asturias (HUPA) [1]
dataset are used for cross-corpus testing datasets for dysphonic voice detection task, and the ALS [44]
dataset is used for repeatability evaluation. The MEEI, HUPA, and ALS are unseen during training
for all methods.

Training Details: We perform cross-validation six times to characterize the variability in performance.
We fixed the random seed to 233. For each training batch, we randomly select 16 dysphonic and
16 healthy voice recordings of the same gender from the SVD dataset; 8 healthy subjects from the
mPower dataset, and 2 consecutive days’ voice recordings for each subject. The SGD optimizer is
used with a learning rate of 0.001 and other default settings. We use one NVIDIA Titan Xp graphic
card to train our models. We train the model for 20k steps, which takes approximately 16 hours under
our configurations.

Baseline Methods: We comapre against four baselines: (1) Zhang et al. [62]; (2) Harar et al. [18],
which is based on a recurrent convolutional neural network model; (3) Verde et al. [53], which used a
conventional features set with different classical machine learning classifiers; (4) Huckvale et al. [22],
which uses the ComPare feature set from the OpenSMILE toolkit with the SVM and neural networks
methods. All baseline methods are rebuilt and trained on our data using the same procedures as they
outlined.

Evaluation Metrics: We use balanced accuracy to evaluate the dysphonic voice classification
accuracy:

Balanced accuracy =
1

2
× (

TP

TP + FN
+

TN

TN+ FP
). (16)

We use the ICC to evaluate the repeatability of our trained voice feature embeddings and other
baseline methods’ features. For a fair comparison, we evaluate the repeatability by using ALS dataset,
which is unseen to all methods during training.
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C.1 Why use a two-branch structure?

We use a two-branch structure for optimizing the dysphonic sensitivity and repeatability of em-
beddings simultaneously: the top embeddings generated by the encoder are further transformed to
repeat-constrained embeddings and voice feature embeddings instead of directly using top embed-
dings for repeatability constraints and dysphonic voice detection.

We have tested three models with different structures in this experiment, including: (1) one-embedding
output, i.e., Zhang et al. networks structure without modification and there is only one embeddings
output can be optimized as shown in Figure C.3; (2) two-embedding output, i.e., add one MLP network
to transform the top embeddings to the voice feature embeddings and there are two embeddings
outputs can be optimized as shown in Figure C.4; (3) a two-branch structure (three-embedding
output).

Figure C.3: The diagram of one-embedding output model structure. This is not used for any results
in this paper.

Figure C.4: The diagram of two-embedding output model structure. This is not used for any results
in this paper.

Convergence problems with the architecture from Figure C.3: During experiments, we noticed
that if the model has only one output, there is a conflict between the ICC regularizer for repeatability
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and contrastive loss for dysphonic voice detection, i.e., the model has difficulties converging. We
believe this problem is because the optimization objectives of the two components are so different.
The ICC regularizer focuses on the repeatability within the subject; however, the contrastive loss
focuses on the dysphonic sensitivity between the healthy and dysphonia groups. The inconsistent
range of these two objectives requires careful fine-tuning of the ratio between the ICC regularizer and
contrastive loss. We did not find a good loss ratio, so we abandon this structure.

Convergence problems with the architecture from Figure C.4: After the one-embedding output
structure failed, we considered letting the ICC regularizer and contrastive loss optimize two different
embeddings, and then we tested the two-embedding output structure (Figure C.4). The encoder’s
output is the top embeddings, and the MLP network is used to learn dysphonic voice feature
embeddings. Then the ICC regularizer regularizes the repeatability of top embeddings, and the
contrastive loss regularizes the dysphonic sensitivity of voice feature embeddings. The intuition is
that since the dysphonic voice feature embeddings are a function of the top embeddings, the voice
feature embeddings will also have the property of high repeatability. However, this structure failed
to converge. The two-embedding output structure did not solve the conflict between the two loss’s
optimization objectives.

Two-branch structure solves the convergence problems: After the one- and two-embedding
output structures failed, we designed the two-branch (three-embedding output) structure, solving
the convergence problem. The top embeddings generated by the encoder are further converted to
repeatable embeddings and dysphonic voice feature embeddings using two MLP networks. The ICC
regularizer regularizes the repeatability of repeatable embeddings, and the contrastive loss regularizes
the dysphonic sensitivity of voice feature embeddings. Due to the repeatable and dysphonic voice
feature embeddings being independently transformed from the top embeddings, the top embeddings
are endowed with both properties. These are the embeddings we used in the paper.

D Summary of Used Databases in Paper

VoxCeleb 1 [37]: A large-scale speaker recognition dataset consisting of short video clips from
YouTube. It includes over 100,000 utterances from more than 1,200 celebrities across various
professions and demographics.

VoxCeleb 2 [11]: An extension of VoxCeleb 1, VoxCeleb 2 is an even larger dataset featuring
approximately 1 million utterances from over 6,000 speakers. Together, VoxCeleb 1 and VoxCeleb 2
offer rich resources for training and evaluating speaker recognition models.

VCTK (The Voice Cloning Toolkit) [52]: VCTK is a speech dataset that includes recordings
of various English accents. With over 44 hours of speech from 109 speakers, each speaking in
their accent, VCTK provides a valuable resource for multi-accent speech synthesis and recognition
research.

MEEI (Massachusetts Eye and Ear Infirmary): Full name is Kay Elemetrics Corp., Disordered
Voice Database, Version 1.03 (CD-ROM), MEEI, Voice and Speech Lab, Boston, MA (October 1994).
The MEEI Voice Disorders Database is a collection of speech samples from individuals with and
without voice disorders. Participants are English speakers. It is often used in medical and clinical
research to study voice pathology and develop systems to detect and analyze voice disorders. The
MEEI database contains more than 1400 recordings of sustained phonations, which are collected
from 53 healthy speakers and 657 speakers diagnosed with different types of dysphonia.

SVD (Saarbrücken Voice Database) [57]: The Saarbrücken Voice Database is a collection of
voice recordings used for various phonetic and clinical studies. Participants are German speakers. It
provides a comprehensive set of voice samples, including those from individuals with different voice
disorders, aiding in the research of voice quality and characteristics. SVD database contains the voice
recordings from more than 2000 speakers (428 healthy females, 259 healthy males, 727 dysphonic
females, 629 dysphonic males).

HUPA (Hospital Príncipe de Asturias) [1]: Similar to MEEI and SVD, HUPA a collection of
speech samples from individuals with and without voice disorders. Participants are Spanish speakers.
HUPA contains /a/ sustained phonation recordings of 366 adult Spanish speakers (169 dysphonic and
197 healthy).
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