
A Proof of Theorem 1.2363

We now provide a rigorous proof of the result that was sketched in Section 2. This proof is essentially364

identical to [Deshpande et al., 2015, Lemma 4.4]. Recall the iterates (30) given by s0 = x0−µ0⊙x⋆365
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and x⋆ = (x⋆i )i∈[N ] is a vector with independent coordinates distributed according to P0. By368

Lemma 2.4, for each a ∈ [q], and any pseudo-Lipschitz function ϕ : R → R 7→ R we have that369

almost surely370

lim
N→∞

1

|CN
a |

∑
i∈CN

a

ϕ(sti, x
⋆
i ) = Ex⋆

0 ,Z
ϕ(σt

aZ, x
⋆
0) (44)

where371

(σt+1
b )2 :=

q∑
a=1

ca

∆̃ab

EZ

[
(f bt (Z

t
b))

2
]
.

as was defined in (18). For any pseudo-Lipschitz function ψ : R → R, we have ϕ(x, y) = ϕ(x−µt
ay)372

is also pseudo-Lipschitz, so (44) implies that373
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almost surely.374

Now let xt be the iterates from the spiked AMP iteration for the inhomogeneous Wigner matrix (24)375

we derived in (26)376
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It now suffices to show that for fixed t and all a ∈ [q] that377
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finish the proof of Theorem 1.2 by (45).379
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a |. Therefore, to prove (47) it suffices to382

prove that for all t ≥ 0,383
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Clearly, if we initialize x0, s0 at zero then (48) and (49) are satisfied by our state evolution equations384

(5). Notice that (49) follows directly from (45) applied to the square function. We use here that we385

assumed that the second moment of x⋆ is finite.386

We now focus on proving (48) through strong induction. By definition of the iterates (43) and (46),387

(sta + µt
ax

⋆
a − xt

a)

=

[(
1√

N
√
∆

⊙A

)
ft−1

(
st−1 + µt−1 ⊙ x⋆

)
−
(

1√
N
√
∆

⊙A

)
ft−1(x

t−1)

+ µt ⊙ x⋆ −
(

1

N∆
⊙ x⋆(x⋆)T

)
ft−1(x

t−1)

+ bx
t−1 ⊙ ft−2(x

t−2)− bs
t−1 ⊙ ft−2

(
st−2 + µt−2 ⊙ x⋆

) ]
i∈CN

a

where [·]i corresponds to the ith row of a vector and bx
t−1 and bs

t are the Onsager terms defined388

in (14) with respect to xt−1 and st−1 respectively. The Cauchy–Schwarz inequality and Jensen’s389

inequality imply that there exists some universal constant C such that390
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We now control each term separately.391

1. To control the first term, notice that the matrix 1
N

[
1√
∆

⊙A

]
has iid entries within blocks392

and the sizes of the blocks diverge with the dimension, so we can control the sums of the393

squares of within each block using standard operator norm bounds Anderson et al. [2010].394

The first term vanishes in the limit because f is pseudo-Lipschitz so we can apply the395

induction hypothesis bound which controls (48) at time t− 1.396

2. To control the second term, notice that for i ∈ CN
a by Lemma 2.4 applied to the pseudo-397

Lipschitz function yft−1(x) that398 [
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almost surely. This implies that the average of such terms vanishes since we assumed that399

the second moment E[x⋆0]2 is finite.400

3. To control the third and fourth terms, we can expand the definition of the Onsager terms401

and use the assumption that f ′ is pseudo-Lipschitz and almost surely bounded. Both terms402

vanish because our strong induction hypothesis gives us control of (48) at time t− 2.403

Since all terms vanish in the limit, we have proven (48) for all a ∈ [q], which finishes the proof of404

statement (47) and the proof of Theorem 1.2.405

B Comparison with a naive PCA spectral method406

In this appendix, we wish to show how the spectral method we propose differs, in practice, from a407

naive PCA. We provide an example of the spectrums of Y and Ỹ before and after the transition at408
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Figure 3: Illustration of the spectrum of Y ∈ R2500×2500 evaluated at noise profiles with snr
λ(∆) = 0.7 (left, before the transition) and on the left and 1.8 on the right (after the transition).
There is no outlying eigenvalue in contrast to the transformed matrix: the transition for a naive
spectral method is sub-optimal.

Figure 4: Illustration of the spectrum of Ỹ ∈ R2500×2500 evaluated at noise profiles with snr
λ(∆) = 0.7 (left, before the transition) and on the left and 1.8 on the right (after the transition),
with the outlying eigenvector correlated with the spike arises at eigenvalue one. This is at variance
with the results of the naive method in Fig.3

SNR(∆) = 1. In Figure 3 there is no clear separation of the extremal eigenvalue of Y from the bulk409

around this transition. This is in contrast to Figure 4 where there is an extremal eigenvalue of Ỹ410

appearing at value one.411
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