
Appendix: Energy-Based Cross Attention for Bayesian Context388

Update in Text-to-Image Diffusion Models389

A Proof of Theorem 1390

Theorem 1. For the energy functions391

E(Q;K) =
α

2
diag(KKT )−

N∑
i=1

logsumexp(QkT
i , β) (17)

and392

E(K) = log

N∑
i=1

exp(
1

2
kik

T
i ), (18)

the gradient of the log posterior is given by:393

∇K log p(K |Q) = softmax2
(
βKQT

)
Q−

(
αI +D

(
softmax

(1
2
diag(KKT )

)))
K,

(19)

Then, by using the chain rule the update rule of context vectors C is derived as follows:394

Cn+1 = Cn + γ

(
softmax2

(
βKQT

)
Q−

(
αI +D

(
softmax

(1
2
diag(KKT )

)))
K

)
W T

K ,

(20)
where γ > 0 is a step size, and D(·) is a vector-to-diagonal-matrix operator.395

Proof. Based on the Bayes’ theorem, the gradient of the log posterior is derived as:396

∇K log p(K |Q) = −
(
∇K E(Q;K) +∇K E(K)

)
. (21)

First, with definition (17),397

∇K E(Q;K) = αK −∇K

N∑
i=1

logsumexp(QkT
i , β), (22)

where ∀i ∈ {1, . . . , N},398

∇ki

N∑
i=1

logsumexp(QkT
i , β) =

1

β
∇ki

log

P 2
l∑

j=1

exp(βqjk
T
i )

=

P 2
l∑

j=1

exp(βqjk
T
i )∑P 2

l
n=1 exp(βqnk

T
i )

qj

= softmax(QkT
i )

TQ.

(23)

Then, by considering that ki is a i-th row vector of K,399

∇K

N∑
i=1

logsumexp(QkT
i , β) =

(
softmax1(βQKT )

)T
Q

= softmax2(βKQT )Q,

(24)
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where the last equality holds due to the definition of softmax1 in Section 2.2.400

Second, with definition (18),∇K E(K) = ∇K log
∑N

i=1 exp(
1
2kik

T
i ), where401

∇ki
log

N∑
i=1

exp(
1

2
kik

T
i ) =

exp( 12kik
T
i )∑N

j=1 exp(
1
2kjk

T
j )

ki

= softmax
(1
2
diag(KKT )

)
i
ki,

(25)

where softmax(·)i denotes i-th value of a softmax vector. Then,402

∇K log

N∑
i=1

exp(
1

2
kik

T
i ) = D

(
softmax

(1
2
diag(KKT )

))
K, (26)

where D(·) is a vector-to-diagonal-matrix operator that takes N -dimensional softmax vector as an403

input and returns a N ×N diagonal matrix with softmax values as main diagonal entries. Then, By404

combining (22), (24) and (26), one can finally obtain:405

∇K log p(K |Q) = softmax2
(
βKQT

)
Q−

(
αI +D

(
softmax

(1
2
diag(KKT )

)))
K.

(27)

By using the chain rule with K = CWK , the update rule of context vectors C is derived as in406

(20).407

We introduce vector-to-matrix operator D(·) to avoid confusion and fix the typo in the main paper.408

B Pseudo-code for BCU and CACAO409

This section provides the description of the pseudocode for the proposed Bayesian Context Update410

(BCU) and Compositional Averaging of Cross-Attention Output (CACAO). Algorithm 1 outlines411

the cascaded context propagation across cross-attention layers within the UNet model during the412

sampling step t. Note that the context is reinitialized at the beginning of each sampling step. On the413

other hand, Algorithm 2 details the BCU implemented in each cross-attention layer. Remark that414

D in line 5 denotes vector-to-diagonal-matrix operator. Specifically, the proposed BCU provides a415

significant computational efficiency by reusing the similarity QKT , which requires computational416

cost O(N2), to compute ∇KE(Q;K). Consequently, there is only a small amount of additional417

computational overhead associated with the proposed BCU.418

Algorithm 1 Context cascade at sampling step t

Require: Qt,Cclip,UNet
1: Ct ← Cclip // Re-initialize
2: for layer in UNet do
3: if layer is CrossAttention then
4: Qt,Ct ← layer(Qt,Ct) // Algorithm 2
5: else
6: Qt ← layer(Qt)
7: end if
8: end for
9: Qt+1 ← Qt

10: return Qt+1
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Algorithm 2 Bayesian Context Update (BCU)
Require: Q,C,W q,W k,W v, α, β, γattn, γreg
1: Q,K,V ← QW q,CW k,CW v

2: S = QKT

3: Q← softmax2(βS)V
4: ∇KE(Q;K) = softmax2(βS

T )Q
5: ∇KE(K) = −(αI +D(softmax( 1

2
diag(KKT ))))K

6: ∆C = (γattn∇KE(Q;K) + γreg∇KE(K))W T
k

7: C ← C +∆C
8: return Q,C

Algorithm 3 outlines the pseudocode for the CACAO implemented for M given contexts. For the419

simplicity, we exclude the BCU from the algorithm. Nontheless, the BCU and the CACAO could be420

leveraged together.421

Algorithm 3 Compositional Averaging of Cross-Attention Output (CACAO)
Require: Q,C = {C1, ...,CM},W q,W k,W v, αs, β

1: Q← QW q

2: for s in [1, ...,M ] do
3: Ks,V s ← CsW k,CsW v

4: Ss = QKT
s

5: end for
6: Q← 1

M

∑M
s=1 αssoftmax2(βSs)V s

7: return Q

C Experimental setups422

In this section, we describe detailed experimental setups for three applications including baseline423

method, hyper-parameter of the proposed method, and dataset if it is the case. Code: https:424

//github.com/EnergyAttention/Energy-Based-CrossAttention.425

C.1 Common experimental setup426

We mainly leverage pre-trained Stable Diffusion v1-5 (except Table 1: v1-4) which is provided by427

diffusers, a Python library that offers various Stable Diffusion pipelines with pre-trained models.428

All images are sampled for 50 steps via PNDM sampler [20] using NVIDIA RTX 2080Ti. In every429

experiment, we set the parameter α in Equation (18) to zero, focusing solely on controlling the values430

of γattn and γreg . BCU is applied to every task, and CACAO is additionally employed in C.4.431

Different learning rate for each token It is worth noting that the γattn and γreg could be expressed432

as vectors. In other words, if the context C ∈ RN×dc is given, γattn and γreg are N -dimensional433

vectors. Hence, we have the flexibility to adjust the learning rate γ{·}, allowing us to increase or434

decrease the impact of certain tokens based on the user’s intent. Unless otherwise noted, γattn and435

γreg is set to a constant for each text token.436

Learning rate scheduling Since the proposed BCU is leveraged for the diffusion model, one can437

readily introduce scheduling strategies for γattn and γreg along the sampling step t. We implement438

multiple variants such as ‘constant’, ‘step’, and ‘exponential decay’ as follows.439

[constant] γ(t) = γ0
[step] γ(t) = γ0 · ReLu(t− τ)

[exp-decay] γ(t) = γ0 · λt

(28)

where γ0 is the initial value, ReLu(x) = 0 if x ≤ 0, otherwise 1, τ denotes the temporal threshold,440

and λ denotes the decay ratio. Unless stated otherwise, the scheduling strategy is set to the ‘constant’.441
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C.2 Multi-concept image generation442

We compared the performance of the proposed method with Structured Diffusion [11] which does not443

require additional training as our method. We leveraged the open-sourced official implementation 1.444

For the proposed method, we set the γattn and γreg differently for each sample within [1e-2, 1.5e-2,445

2e-2]. As shown in the following ablation studies E, large γattn tends to generate saturated images446

while large γreg results in mixed/vanished contents.447

We found that using different learning rates for each context token is useful for multi-concept448

generation, especially when a single concept tends to dominate with a constant learning rate. For449

example, given the main prompt "A cat wearing a shirt", we set the γattn for the "shirt" to450

3e-2, while γattn is set to 1.5e-2 for other tokens. We have observed that doubling the γattn for a text451

token to be emphasized is sufficient to achieve balanced multi-concept image generation for most452

cases.453

C.3 Text-guided image inpainting454

Additionally, we conducted a performance comparison between our proposed method and two455

alternative approaches: (a) Stable Inpaint2, which fine-tunes the weights of Stable Diffusion through456

inpainting training, and (b) Stable Repaint3, which leverages the work of Lugmayr et al. [22] on the457

latent space of Stable Diffusion for the inpainting task. In the case of Stable Repaint, the mask is458

downsized and transferred into the latent space. We applied the Bayesian Context Update (BCU)459

technique to both methods, resulting in improved results compared to their respective baselines.460

Masked BCU. To further enhance the performance for the inpainting task, we introduce the concept461

of masked Bayesian Context Update (masked BCU). Specifically, let M ∈ RP 2
l ×P 2

l represent a462

diagonal matrix where the main diagonal values are derived from the downsampled inpainting mask463

for the l-th cross-attention layer, with an output spatial size of P 2
l . In Equation (29), we modify the464

attention term (12) by incorporating the downsampled mask, effectively covering the query matrix as465

follows:466

Cn+1 = Cn+γ

(
softmax2

(
βKQT

)
MQ−

(
αI+D

(
softmax

(1
2
diag(KKT )

)))
K

)
W T

K .

(29)

As evident in Equation (12), the attention term updates the context vectors, aligning ki towards467

qj , j = 1, . . . , P 2
l , while considering the alignment strength between each qj and ki. However,468

in the inpainting task, we have prior knowledge that the context vectors should be most aligned469

with the semantically relevant masked regions. Therefore, we mask out unrelated background470

spatial representations, allowing for the context vectors to be updated with a specific focus on the471

masked regions. This approach facilitates the incorporation of semantic information encoded by ki472

specifically into the spatial mask regions.473

In our proposed method, we set different values for γattn and γreg for each sample, selected from the474

set [1e-2, 1.5e-2, 2e-2, 2.5e-2], to account for variations in the input samples.475

C.4 Image editing via compositional generation476

We present empirical evidence demonstrating the effectiveness of our energy-based framework for477

compositional synthetic and real-image editing. The Bayesian Context Update (BCU) technique can478

be readily applied to both the main context vector (C1 in Section 3.2, s = 1) and editorial context479

vectors (Cs>1). Each BCU operation influences the attention maps used in Compositional Averaging480

of Cross-Attention Output (CACAO), enhancing the conveyance of semantic information associated481

with each context. Note that αs in (16) represents the degree of influence of the s-th concept in the482

composition. In practice, we fix α1 = 1 for the main context, while αs>1 is tuned within the range of483

(0.5, 1.0).484

1https://github.com/weixi-feng/Structured-Diffusion-Guidance
2https://huggingface.co/runwayml/stable-diffusion-inpainting
3https://github.com/huggingface/diffusers/tree/main/examples/community#

stable-diffusion-repaint
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Let γattn,s and γreg,s denote the step sizes for BCU of the s-th context vector. If the editing process485

involves changing the identity of the original image (e.g., transforming a "cat" into a "dog"), we set486

both γattn,1 and γreg,1 to zero. Otherwise, if the editing maintains the original identity, we choose487

values for γattn,1 and γreg,1 from the range of (5e-4, 1e-3), similar to γattn,(s>1) and γreg,(s>1). All488

hyperparameters, including αs and γs, are fixed during the quantitative evaluation process (more489

details in Section D and Table 2).490

To ensure consistent results, we maintained a fixed random seed for both real and synthetic image491

editing. For real image editing, we employed null-text pivotal inversion [24] to obtain the initial noise492

vector.493

During the reverse diffusion process in Sections C.2 and C.3, we kept γ fixed as a constant value.494

However, for compositional generation, we utilized step scheduling (Equation 28) for γs and αs.495

After converting the initial noise vector for real images or using a fixed random seed for synthetic496

images, BCU and CACAO are applied after a threshold time τs > 0 for the s-th editorial context.497

This scheduling strategy helps to preserve the overall structure of generated images during the498

editing process. In our observations, a value of τs ∈ [10, 25] generally produces satisfactory results,499

considering a total number of reverse steps set to 50. However, one can increase or decrease τs for500

more aggressive or conservative editing, respectively.501

The exemplary real images presented in Figures 5 and 6 of the main paper were sampled from datasets502

such as FFHQ [16], AFHQ [5], and ImageNet [7]. For a detailed quantitative analysis, please refer to503

Section D.504

D Quantitative Comparison505

In this section, we conducted a comparative analysis of the proposed framework against several506

state-of-the-art diffusion-based image editing methods [23, 12, 24, 27], following the experimental507

setup of [27]. To ensure a fair comparison, all methods utilize the pre-trained Stable Diffusion v1-4,508

employ the PNDM sampler with an equal number of sampling steps, and adopt the same classifier-free509

guidance scale.510

D.1 Baseline Methods511

In addition to the Plug-and-Play method discussed in the main paper, we include the following512

baselines for comprehensive quantitative comparison:513

SDEdit [23] + word swap. This method introduces the Gaussian noise of an intermediate timestep514

and progressively denoises images using a new textual prompt, where the source word (e.g., Cat) is515

replaced with the target word (e.g., Dog).516

Prompt-to-prompt (P2P) [12]. P2P edits generated images by leveraging explicit attention maps517

from a source image. The source attention maps Mt are used to inject, re-weight, or override the518

target maps based on the desired editing operation. These original maps act as hard constraints for519

the edited images.520

DDIM + word swap [24]. This method applies null-text inversion to real input images, achieving521

high-fidelity reconstruction. DDIM sampling is then performed using inverted noise vectors and an522

edited prompt generated by swapping the source word with the target.523

pix2pix-zero [27]. pix2pix-zero first derives a text embedding direction vector△cedit from the source524

to the target by using a large bank of diverse sentences generated from a state-of-the-art sentence525

generator, such as GPT-3 [2]. Inverted noise vectors are denoised with the edited text embedding,526

c+△cedit, and cross-attention guidance to preserve consensus.527

D.2 Dataset528

For our quantitative evaluations, we focus on three image-to-image translation tasks: (1) translating529

cats to dogs (cat→ dog), (2) translating horses to zebras (horse→ zebra), and (3) adding glasses530

to cat input images (cat → cat with glasses). Following the data collection protocol of [27], we531

retrieve 250 relevant cat images and 213 horse images from the LAION 5B dataset [33] using CLIP532
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embeddings of the source text description. We select images with a high CLIP similarity to the source533

word for each task.534

D.3 Metrics535

Motivated by [38, 27], we measure CLIP Accuracy and DINO-ViT structure distance. Specifically,536

(a) CLIP Acc represents whether the targeted semantic contents are well reflected in the generated537

images. It calculates the percentage of instances where the edited image has a higher similarity to538

the target text, as measured by CLIP, than to the original source text [27]. On the other hand, (b)539

structure distance [38, 37] measures whether the overall structure of the input image is well preserved.540

It is defined as the difference in self-similarity of the keys extracted from the attention module at the541

deepest DINO-ViT [3] layer.542

D.4 Details543

The main context vector Cmain is encoded given a main prompt automatically generated by BLIP544

[19]. In addition, the editorial context vectors Csrc and Ctgt are encoded given the text descriptions545

of the source and target concept, i.e. source and target prompt. For example, for a cat→ dog task (cat546

→ cat w/ glasses), the source prompt is "cat" ("cat wearing glasses"), and the target prompt547

is "dog" ("without glasses"). Then we apply BCU and CACAO based on the obtained context548

vectors. Please refer to Table 2 for the hyperparameter configurations.549

D.5 Results550

Table 1 shows that the proposed energy-based framework gets a high CLIP-Acc while having551

low Structure Dist. It implies that the proposed framework can perform the best edit while still552

retaining the structure of the original input image. This is a remarkable result considering that the553

proposed framework is not specially designed for the real-image editing task. Moreover, the proposed554

framework does not rely on the large bank of prompts and editing vector△cedit [27] which can be555

easily incorporated into our method.556

While DDIM + word swap records remarkably high CLIP-Acc in horse→ zebra task, Figure 7 and557

12 show that such improvements are based on unintended changes in the overall structure. Table 2558

summarizes the hyperparameter settings for each task. Examples of results are presented in Figure 13559

and 12.560

Table 1: Comparison to state-of-the-art diffusion-based editing methods. Dist for DINO-ViT Structure
distance. Baseline results are from [27].

Method (a) Cat→ Dog (b) Horse→ Zebra (c) Cat→ Cat w/ glasses
CLIP Acc (↑) Dist (↓) CLIP Acc (↑) Dist (↓) CLIP Acc (↑) Dist (↓)

SDEdit [23] + word swap 71.2% 0.081 92.2% 0.105 34.0% 0.082
DDIM + word swap 72.0% 0.087 94.0% 0.123 37.6% 0.085

prompt-to-prompt [12] 66.0% 0.080 18.4% 0.095 69.6% 0.081
pix2pix-zero [27] 92.4% 0.044 75.2% 0.066 71.2% 0.028

Stable Diffusion + ours 93.7% 0.040 90.4% 0.061 81.1% 0.052

Table 2: Hyperparameter configurations for each editing task. Each task index comes from Table 1.
γattn,main = 0 and γreg,main = 0 as mentioned in section C.4. Note that αsrc < 0 for the concept
negation (related ablation study in Figure 9). τs denotes the warm-up period for step scheduling in
(28) and Section C.4.

Task αsrc αtgt γ·,main γattn,src γreg,src γattn,tgt γreg,tgt τs

(a) -0.65 0.75 0 5e-4 5e-4 6e-4 6e-4 25
(b) -0.5 0.6 0 4e-4 4e-4 5e-4 5e-4 15
(c) -0.6 0.7 0 1e-3 1e-3 1e-3 1e-3 17
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Real Image DDIM inversion Ours
DDIM inversion

+ word swap

Figure 7: Image editing comparison with DDIM-inversion. Generated samples by DDIM-inversion
with word swap readily deviate the original data contents, while the proposed method avoids undesired
changes.

E Ablation study and more results561
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Figure 8: Ablation results for γattn and γreg . All samples are generated from the same random noise.
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Figure 9: Ablation study results. The first row shows multi-concept generation examples with varying
γattn and γreg, while the second row shows real image editing examples with varying the usage of
BCU and CACAO. The last row shows the effect of negative prompt for the image editing application.

Attention and regularization terms. To access the degree of performance improvement attained562

by the proposed BCU, we conducted an ablation study for the attention and the regularization terms563

by regulating γattn and γreg for the text-guided image inpainting (Figure 8) and the multi-concept564

image generation (Figure 9). From the Figure 8, we can observe that the desired content is generated565

when proper range of γattn and γreg are given. Specifically, once γreg is set to a valid value, the BCU566

consistently generate a "teddy bear" with various γattn, otherwise it generates background or567

imperfect objects. This result emphasizes the role of the introduced prior energy E(K). Furthermore,568

the γattn also affects to the context alignment of the generated sample (for instance γattn = 0.025569

and γreg = 0.02), which highlights the importance of the introduced conditional energy function570

E(Q;K). The same evidences could be found in the first row in Figure 9 which are the multi-concept571

image generation examples.572

Synergy between BCU and CACAO. While both BCU and CACAO are designed from the common573

energy-based perspective, each operation is originated from different energy functions E(K;Q) and574

Ê(Q; {Ks}Ms=1), respectively. This fact suggests the synergistic energy minimization by combining575

the BCU and CACAO, which could further improve the text-conditional image generation. To inves-576

tigate this further, we conducted an ablation study using a real image editing application. Specifically,577

we compared the editing performance when solely utilizing CACAO and when combining BCU with578

CACAO. The second row in Figure 9 is the result of the ablation study that shows fully-compatibility579

of the BCU and CACAO. Importantly, the incorporation of the BCU improves the quality of the580

generated images. While the CACAO alone effectively captures the context of the given editing581

concept, the addition of BCU enhances the fine-grained details in the generated outputs.582

Importance of concept negation. Remark that a negative αs in (16) denotes the negation of given583

editing prompt. We empirically observed that the concept negation may significantly contribute to584

the performance of compositional generation. Specifically, for the image-to-image translation task in585

Table 1, we apply both positive and negative guidance with the target (e.g. Dog) and source (e.g. Cat)586

concepts, respectively, following the degree of guidance denoted in Table 2. The third row in Figure 9587

shows the impacts of source concept negation in the image-to-image translation task. While the588

positive guidance alone may fail to remove the source-concept-related features, e.g. eyes of the Cat,589

the negative guidance removes such conflicting existing attributes. This implies that the proposed590

framework enables useful arithmetic of multiple concepts for both real and synthetic image editing.591

Prior energy and α. While α
2 diag(KKT ) in (7) penalizes norm of each context vectors uniformly,592

the proposed prior energy function E(K) adaptively regularizes the smooth maximum of ∥ki∥.593

Intuitively, adaptive penalization prevents the excessive suppression of context vectors, potentially594
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resulting in images that are more semantically aligned with a given context. To demonstrate the595

effectiveness of adaptive penalization in the prior energy function, we conducted a multi-concept596

image generation task with varying α in (20) from 0 to 1, while fixing other hyperparameters.597

Figure 10 illustrates the gradual disappearance of salient contextual elements in the generated images598

depending on the change of α. Specifically, the crown is the first to diminish, followed by subsequent599

context elements, with the lion being the last to vanish with α = 1. This result highlights the validity600

of the adaptive penalization for the context vectors which stems from the prior energy function.601

𝛼=0.0 𝛼=1.0𝛼=0.5

Figure 10: Generated samples with varying α values. As α increases, the generated images progres-
sively deviate from the intended context, "A lion and a crown".
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Figure 11: Further results for multi-concept image generation. Best views are displayed.
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Real Image
DDIM inversion

+ word swap Pix2Pix-zero Ours Real Image
DDIM inversion

+ word swap Pix2Pix-zero Ours

Figure 12: Further results for real image editing: horse to zebra.
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Real Image
DDIM inversion

+ word swap Pix2Pix-zero Ours Real Image
DDIM inversion

+ word swap Pix2Pix-zero Ours

Figure 13: Further results for real image editing: cat to dog.
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Real Image “Rat” “Cat” “Dog” “Tiger”

Synthetic Image “Fall” “Winter” “Monet” “Watercolor”

Figure 14: Further results for image editing with varying text prompts. Best views are displayed.
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