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Abstract

Despite the remarkable performance of text-to-image diffusion models in image
generation tasks, recent studies have raised the issue that generated images some-
times cannot capture the intended semantic contents of the text prompts, which
phenomenon is often called semantic misalignment. To address this, here we
present a novel energy-based model (EBM) framework for adaptive context con-
trol by modeling the posterior of context vectors. Specifically, we first formulate
EBMs of latent image representations and text embeddings in each cross-attention
layer of the denoising autoencoder. Then, we obtain the gradient of the log pos-
terior of context vectors, which can be updated and transferred to the subsequent
cross-attention layer, thereby implicitly minimizing a nested hierarchy of energy
functions. Our latent EBMs further allow zero-shot compositional generation as
a linear combination of cross-attention outputs from different contexts. Using
extensive experiments, we demonstrate that the proposed method is highly effective
in handling various image generation tasks, including multi-concept generation,
text-guided image inpainting, and real and synthetic image editing. Code: https:
//github.com/EnergyAttention/Energy-Based-CrossAttention.

1 Introduction

Diffusion models (DMs) have made significant advances in controllable multi-modal generation tasks
[37], including text-to-image synthesis. The recent success of text-to-image diffusion models, e.g.,
Stable Diffusion [31], Imagen [33], etc., is mainly attributed to the combination of high-fidelity DMs
with high-performance large language models (LMs).

Although text-to-image DMs have shown revolutionary progress, recent studies have shown that
the current state-of-the-art models often suffer from semantic misalignment problems, where the
generated images do not accurately represent the intended semantic contents of the text prompts. For
example, [4] discovered the catastrophic neglect problem, where one or more of the concepts of the
prompt are neglected in generated images. Moreover, for a multi-modal inpainting task with text and
mask guidance, [41] found that the text-to-image DMs may often fail to fill in the masked region
precisely following the text prompt.

Therefore, this work focuses on obtaining a harmonized pair of latent image representations and text
embeddings, i.e., context vectors, to generate semantically aligned images. In order to mitigate the
misalignment, instead of leveraging fixed context vectors, we aim to establish an adaptive context by
modeling the posterior of the context, i.e. p(context | representations). Note that this is a significant
departure from the previous methods which only model p(representations | context) with frozen
context vectors encoded by the pretrained textual encoder.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/EnergyAttention/Energy-Based-CrossAttention
https://github.com/EnergyAttention/Energy-Based-CrossAttention


Stable-Diffusion Ours

(C) Synthetic Image Editing(B) Inpainting(A) Multi-concept
“A monkey wearing a kimono” Masked Input

St
ab

le
-D

iff
us

io
n

O
ur

s

“A horse and a dog”

“A teddy bear”

“A castle next to a river”“A corgi wearing a bow tie and a birthday hat” (+) Monet, Boat

“A photo of an woman” (+) smile (-) curls
(D) Real Image Editing

Original Image “colorful cat” “pink cat” “dog” “fox” “wearing sunglasses”

Figure 1: The energy-based cross-attention improves the semantic alignment between given text and
the generated sample. The proposed method could be leveraged for multiple applications without
additional training.

Specifically, we introduce a novel energy-based Bayesian framework, namely energy-based cross-
attention (EBCA), which approximates maximum a posteriori probability (MAP) estimates of context
vectors given observed latent representations. Specifically, to model p(context | representations), we
first consider analogous p(Kl|Qt,l) in the latent space of the intermediate cross-attention layer of a
denoising auto-encoder, i.e., cross-attention space. Here, Kl and Qt,l correspond to the key and query
in l-th layer at time t that encode the context from the text and the image representation, respectively.
Inspired by the energy-based perspective of attention mechanism [30], we then formulate energy
functions E(Kl;Qt,l) in each cross-attention space to model the posterior. Finally, we create a
correspondence between the context and representation by minimizing these parameterized energy
functions. More specifically, by obtaining the gradient of the log posterior of context vectors, a nested
hierarchy of energy functions can be implicitly minimized by cascading the updated contexts to the
subsequent cross-attention layer (Figure 2) .

Moreover, our energy-based perspective of cross-attention also allows zero-shot compositional
generation due to the inherent compositionality of Energy-Based Models (EBMs). This involves the
convenient integration of multiple distributions, each defined by the energy function of a specific
text embedding. In practical terms, this amalgamation can be executed as a straightforward linear
combination of cross-attention outputs that correspond to all selected editing prompts.

We demonstrate the effectiveness of the proposed EBM framework in various text-to-image generative
scenarios, including multi-concept generation, text-guided inpainting, and compositional generation.
The proposed method is training-free, easy to implement, and can potentially be integrated into most
of the existing text-to-image DMs.

2 Preliminaries

2.1 Diffusion Model

Diffusion models [36, 13, 37, 18, 16] aims to generate samples from the Gaussian noise by iterative
denoising processes. Given clean data x0 ∼ pdata(x0), diffusion models define the forward sampling
from p(xt|x0) as xt =

√
ᾱtx0 +

√
1− ᾱtzt, where zt ∼ N (0, I), t ∈ [0, 1]. Here, for the

Denoising Diffusion Probabilistic Model (DDPM) [13], the noise schedule βt is an increasing
sequence of t, with ᾱt :=

∏t
i=1 αt, αt := 1− βt. The goal of diffusion model training is to obtain a

neural network ϵθ∗ that satisfies

θ∗ = argmin
θ

Ext∼p(xt|x0),x0∼pdata(x0),ϵ∼N (0,I)

[
∥ϵθ(xt, t)− ϵ∥22

]
, (1)
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Figure 2: Comparison between the Stable-Diffusion and the proposed method. (A) The Stable-
Diffusion uses fixed context embedding encoded by pre-trained CLIP. (B) The proposed method
allows adaptive context embedding through energy-based context update (EBCU) and energy-based
composition of queries (EBCQ).

so that the reverse sampling from q(xt−1|xt,xθ∗(xt, t)) is achieved by

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ∗(xt, t)
)
+ σtzt, (2)

where zt ∼ N (0, I) and σ2 is variance which is set as β in DDPM. With iterative process, we can
sample the image x0 from initial sample xT ∼ N (0, I).

Since diffusion models require the iterative sampling on high dimensional space, they are com-
putationally expansive and time consuming. To mitigate this limitation, Latent Diffusion Model
(LDM) [31] has proposed diffusion processes on the compressed latent space using pre-trained
auto-encoder. Furthermore, by introducing language model-based cross-attention to diffusion model’s
U-Net neural backbone [32], LDM enables token-based conditioning method such as text-to-image.

2.2 Energy-based Perspective of Attention Mechanism

Definition. Given an N -dimensional vector v, its logsumexp and softmax are defined as

logsumexp(v, β) := β−1 log(
∑N

i=1 exp(vi)), softmax(v) := exp(v − logsumexp(v, 1)).

where vi denotes the i-th element of v. For a given a matrix A, its logsumexpi(A) and softmaxi(A)
are understood as taking the corresponding operation along the i-th dimension of A. So, for instance,
i = 1, softmaxi(A) consist of column vectors that sum to 1.

Energy model. Following the success of the attention mechanism, several studies have focused on
establishing its theoretical foundation. One promising avenue is interpreting the attention mechanism
using the Energy-Based Model (EBM) framework. This line of research begins with recent research
on modern Hopfield networks [30, 14], which gradually builds up to the self-attention mechanism of
the Transformer model.

The Hopfield network is a dense associative memory model that aims to associate an input with its
most similar pattern. Specifically, it constructs an energy function to model an energy landscape
that contains basins of attraction around desired patterns. Recently, modern Hopfield networks
[30, 6, 19] has introduced a new family of energy functions, which aim to improve its pattern
storage capacity or make it compatible with continuous embeddings. To this end, [30] proposed the
following energy function of a state pattern (query) ζ ∈ Rd parameterized by N -stored (key) patterns
X = [x1 . . . ,xN ] ∈ Rd×N and β > 0:

E(ζ;X) =
1

2
ζT ζ − logsumexp(XT ζ, β). (3)

Intuitively, the first term ensures the query remains finite, while the second term measures the
individual alignment of the query with every stored pattern. Based on the Concave-Convex-Procedure
(CCCP) [43], [30] derives the update rule for a state pattern E and time t as follows:
Proposition 1 ([30]). Define the update rule f : Rd → Rd as follows:

ζnew = f(ζ) = X softmax(βXT ζ) (4)

Then, the update rule decreases the loss (3) and converges globally. In another word, for ζ(t+1) =

f(ζ(t)), the energy E(ζ(t))→ E(ζ∗) for t→∞ and a fixed point ζ∗.
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Note that (4) is equivalent to a gradient descent update to minimize (3) with a step size η = 1:

ζ ← ζ − η∇ζ E(ζ;X) = ζ − η(ζ −X softmax(βXT ζ)). (5)

Connection to the attention of the transformer. Remarkably, this implicit energy minimization
is closely related to the attention mechanism as shown in [30]. To see this, suppose that yi, ri ∈
Rd is given as stored (key) and state (query) patterns, respectively. Let WK ,WQ ∈ Rd×dH

represent linear maps for yi and ri, respectively. Then, we introduce xi = W T
Kyi ∈ RdH and

ζi = W T
Qri ∈ RdH . Let Y = (y1, . . . ,yN )T ∈ RN×d, and R = (r1, . . . , rS)

T ∈ RS×d. We
define XT = K = Y WK ∈ RN×dH , and Q = RWQ ∈ RS×dH . By plugging XT = K and
ζ = qi into (4) for all i, we obtain that: QT = KT softmax1(βKQT ) ∈ RdH×S . By taking the
transpose, we obtain Q = softmax2(βQKT )K. Let V ∈ RN×dV denote the value matrix as
V = Y WKW V = KW V , which will replace the K outside of softmax2. Then, we finally obtain

Qnew = softmax2(βQKT )V , (6)

which is exactly the transformer attention with β = 1/
√
dH . This connection affords us the insightful

theoretical ground of the attention mechanism: the update step of the attention mechanism in a
Transformer layer acts as an inner-loop optimization step, minimizing an implicit energy function
that is determined by queries, keys, and values.

3 Energy-based Cross-Attention

Recall that our objective is to generate semantically correct images by harmonizing latent (U-Net)
representations and context vectors within the denoising autoencoder. To achieve this, we propose a
simple but effective Bayesian framework, namely energy-based cross-attention (EBCA). Specifically,
we perform test-time optimization of context vectors within the cross-attention spaces of a denoising
autoencoder to implicitly minimize a specially designed energy function. Note that this is a significant
departure from the conventional text-guided diffusion models which have leveraged fixed context
vectors embedded by pre-trained CLIP [29] to all cross-attention layers.

3.1 Energy-based Bayesian Context Update

Energy function. Our focus is on the cross-attention space of a time-dependent denoising auto-
encoder, utilizing the conventional U-Net neural architecture. Here, we refer to latent representations
as the representations of intermediate layers in U-Net unless otherwise specified. Let L be the number
of cross-attention layers. For each l-th layer at time t, we define the queries matrix Qt,l ∈ RP 2

l ×dl ,
and the keys and values matrices Kl ∈ RN×dl and V l ∈ RN×dl , respectively. Here, Pl represents
the spatial dimension of latent representations in the l-th layer. Given context vectors C ∈ RN×dc ,
we map Kl and V l with WK,l,W V,l ∈ Rdc×dl , such that Kl = CWK,l and V l = CW V,l. In
the following, time t and layer index l are omitted in notations Qt,l and Kl for simplicity.

The main goal is to obtain a maximum a posteriori probability (MAP) estimate of context vectors C
given a set of observed latent representations of queries Qt,l. First, based on the energy functions
(8) and (9), the posterior distribution of K can be defined by using Bayes’ rule: p(K | Q) =
p(Q |K)p(K)/p(Q), where (8) and (9) are leveraged to model the distribution p(Q |K) and p(Q),
respectively. Then, in order to obtain a MAP estimation of C, we approximate the posterior inference
using the gradient of the log posterior. The gradient can be estimated as follows:

∇K log p(K |Q) = ∇K log p(Q |K) +∇K log p(K) = −
(
∇K E(Q;K) +∇K E(K)

)
. (7)

Motivated by the energy function in (3), we first introduce a new conditional energy function w.r.t K
as follows:

E(Q;K) =
α

2
diag(KKT )−

N∑
i=1

logsumexp(QkT
i , β), (8)

where ki denotes the i-th row vector of K, α ≥ 0, and diag(A) =
∑N

i=1 Ai,i for a given A ∈
RN×N . Intuitively, logsumexp(QkT

i , β) term takes a smooth maximum alignment between latent
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representations qj , j = 1, · · · , P 2 and a given text embedding ki. Let j∗ = argmaxj qjk
T
i . Then,

the implicit minimization of − logsumexp term encourages each ki to be semantically well-aligned
with a corresponding spatial token representation qj∗ . In turn, this facilitates the retrieval and
incorporation of semantic information encoded by ki into the spatial region of qj∗ .

The diag(KKT ) term in (8) serves as a regularizer that constrains the energy of each context vector
ki, preventing it from exploding during the maximization of logsumexp(QkT

i , β), thereby ensuring
that no single context vector excessively dominates the forward attention path. In this regard, we also
propose a new Q-independent prior energy function E(K) given by:

E(K) = logsumexp
(1
2
diag(KKT ), 1

)
= log

N∑
i=1

exp
(1
2
kik

T
i

)
. (9)

Instead of penalizing each norm uniformly, it primarily regularizes the smooth maximum of ∥ki∥
which improves the stability in implicit energy minimization. We empirically observed that the
proposed prior energy E(K) serves as a better regularizer compared to the original diag(KKT )
term (related analysis in (12) and appendix E).

Although our energy function is built based on the energy function, in contrast to (3), the proposed
one is explicitly formulated for implicit energy minimization w.r.t keys K and the associated context
vectors C, which is different from the theoretical settings in Section 2.2 w.r.t Q [30]. It is worth
noting that the two energy functions are designed to serve different purposes and are orthogonal in
their application.

MAP estimation. Based on the proposed energy functions, we derive the update rule of key K and
context C following (7):
Theorem 1. For the energy functions (8) and (9), the gradient of the log posterior is given by:

∇K log p(K |Q) = softmax2
(
βKQT

)
Q−

(
αI +D

(
softmax

(1
2
diag(KKT )

)))
K,

(10)

where D(·) is a vector-to-diagonal-matrix operator.

Then, by using the chain rule the update rule of context vectors C is derived as follows:

Cn+1 = Cn + γ

(
softmax2

(
βKQT

)
Q−

(
αI +D

(
softmax

(1
2
diag(KKT )

)))
K

)
W T

K ,

(11)
where γ > 0 is a step size.

In practice, we empirically observed that the nonzero α in (8) often leads to an over-penalization
of contexts, which can ultimately cause some contexts to vanish. To address this, we set α = 0.
Moreover, we found it beneficial to assign distinct step sizes γattn and γreg as follows:

Cn+1 = Cn + γattn softmax2
(
βKQT

)
QW T

K︸ ︷︷ ︸
Attention

−γreg D
(
softmax

(1
2
diag(KKT )

))
KW T

K︸ ︷︷ ︸
Regularization

,

(12)
where the first and second terms are named as attention and regularization term, respectively.

Our theoretical observations offer valuable insights into implicit energy minimization by modifying
the forward path of cross-attention. Inspired by these observations, we have transplanted the energy-
based cross-attention layers to pre-trained text-to-image diffusion models. We first illustrate the
challenges associated with adopting EBCA in a deep denoising auto-encoder and subsequently
demonstrate how to overcome them in practice.

If a single recurrent Transformer block were available, a single energy function would be minimized
for a given cross-attention layer by recurrently passing the updated context Cn+1. However, in
practical applications, there are multiple layer- and time-dependent energy functions in conventional
deep denoising auto-encoder, which makes it infeasible to minimize each energy function individually.
To address this challenge, we implicitly minimize a nested hierarchy of energy functions in a single
forward pass based on our theoretical observations. More details are followed.
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Algorithms. At a given time step t, we initialize the context vectors C1,t with text embeddings
CCLIP obtained from a pre-trained CLIP. Then, within the n-th cross-attention layer with Cn,t

(1 ≤ n ≤ L), we compute the updated context vectors Cn+1,t using the gradients in Theorem 1 and
(12). We then cascade Cn+1,t to the next (n+ 1)-th cross-attention layer. We do not forward the
final context CL+1,t at time t to time t+ 1, as the distributions of Qt and Qt+1 can be significantly
different due to the reverse step of the diffusion model. Instead, we reinitialize C1,t+1 with CCLIP .
The pseudo-code for the proposed framework is provided in appendix B.

The sequence of energy-based cross-attention layers is designed to minimize nested energy functions.
While a single-layer update in a single step may not lead to optimal convergence, the proposed layer-
cascade context optimization can synergistically improve the quality of context vectors. Notably, our
proposed method does not incur additional computational costs in practice since the gradient term in
Theorem 1 relies on the existing keys, queries, and attention maps in the cross-attention layer, which
can be obtained for free in the forward path.

3.2 Energy-based Composition of Queries

In addition to the above key advantages, the cross-attention space EBMs shed new light on the
zero-shot compositional generation. Recent studies [8, 10] have demonstrated that the underlying
distributions of EBMs can be combined to represent different compositions of concepts. For example,
given a data point x and independent concept vectors c1, . . . , cn, the posterior likelihood of x given
a conjunction of specific concepts is equivalent to the product of the likelihood of each individual
concept as follows:

p(x | c1, . . . , cn) =
∏
i

p(x | ci) ∝ e−
∑

i E(x | ci), (13)

where each E(x | ci) represent independently trained EBM with concept code ci. While it is an
appealing solution to the controllable generation, it is notoriously difficult to train EBMs [9, 27] in a
way to make themselves scalable to high-resolution image generation. Instead of directly training
EBMs in pixel space, we leverage the cross-attention space EBMs and the generative power of
state-of-the-art pre-trained DMs to achieve high-fidelity compositional generations.

More specifically, assume that we have main context vectors C1 embedded from a main prompt,
e.g. "a castle next to a river", and a set of independent editing context vectors, C =
{C2, . . . ,CM}, each embedded from different editorial prompt, e.g. "monet style", "boat on a
river", etc. Then, we define the keys Kl,s for context s within a cross-attention layer of index l as
Kl,s = CsWK,l,∀s ∈ {1, 2, . . . ,M}. The index l will be omitted for notational simplicity. Then,
for a given key Ks, we consider the energy function in cross-attention space w.r.t queries Q:

E(Q;Ks) =
1

2
diag(QQT )−

P 2∑
i=1

logsumexp(Ksq
T
i , β), (14)

which is directly motivated by (3). We then introduce the compositional energy function Ê, for the
concept conjunction of C as in (13) and the updated rule as done in (6):

Ê(Q; {Ks}Ms=1) =
1

M

M∑
s=1

E(Q;Ks)

=
1

2
diag(QQT )− 1

M

M∑
s=1

P 2∑
i=1

logsumexp(Ksq
T
i , β),

(15)

Qnew
TF =

1

M

M∑
s=1

αs softmax2
(
βQTFK

T
TF,s

)
V TF , (16)

where QTF , KTF,s and V TF directly follows the definition in (6) and the degree and direction of
s-th composition can be controlled for each concept individually by setting the scalar αs, with αs < 0
for concept negation [8]. Note that this is exactly a linear combination of transformer cross-attention
outputs from different contexts with β = 1/

√
dH . We refer to this process as the Energy-based

Composition of Queries (EBCQ).
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Figure 3: Energy analysis for multi-concept image generation. The right graph displays E(Q;K)
across 16 cross-attention layers within each sampling step. The red and green lines correspond to the
Stable Diffusion and ours, respectively. Mean and standard deviation are calculated and displayed.
The bottom plot shows the cumulative sum of the posterior energy difference between Stable Diffusion
and the proposed method, and intermediate denoised estimates are displayed together.

This update rule implies that the compositional energy can be minimized implicitly through modifica-
tions to the forward path of EBCA, thereby guiding the integration of semantic information conveyed
by editorial prompts. Notably, this is a significant departure from the existing energy-based composi-
tional methods [8, 26, 9]. Specifically, no training or fine-tuning is required. Instead, cross-attention
outputs of the main and editorial prompts are simply obtained in parallel, averaged, and propagated
to the next layer. Moreover, the introduction of EBMs in cross-attention space is orthogonal to [22],
which conducts compositional generation by treating a pre-trained diffusion model ϵθ∗ itself as an
implicitly parameterized EBM.

4 Experimental Results

To verify our claim of energy minimization via modified cross-attention, we conduct various experi-
ments in text-guided image generation to verify semantic alignment, namely (1) multi-concept gener-
ation [22, 11], (2) text-guided image inpainting [23, 41], and (3) compositional generation [12, 1, 28]
which includes real and synthetic image editing. In this work, while the first and third applications
address similar challenges, we categorize them separately based on the implementation derived from
the energy-based interpretation. Specifically, the Energy-based Bayesian Context Update (EBCU) is
applied to every task, and the Energy-based Composition of Queries (EBCQ) is additionally leveraged
in the third task. Note that all applications have been done without additional training.

Setup. The proposed framework can be widely mounted into many state-of-the-art text-to-image DMs
due to its unique functionality of context updates and cross-attention map compositions. Here, we
verify the effectiveness of energy-based cross-attention with Stable Diffusion (SD) [31]. The SD is an
LDM that is pre-trained on a subset of the large-scale image-language pair dataset, LAION-5B [34]
followed by the subsequent fine-tuning on the LAION-aesthetic dataset. For the text embedding,
we use a pre-trained CLIP [29] model following the Imagen [33]. The pre-trained SD is under the
creativeML OpenRAIL license. Detailed experimental settings are provided in the appendix.

4.1 Analysis on Energy during the sampling

We perform a comprehensive analysis on (8) and (9) during the forward path through the modified
cross-attention, which offers insights into the energy behavior for real applications. Specifically, we
examine the energy dynamics involved in the multi-concept image generation that is straightforward
and could be readily applied to other applications with minimal effort. We record computed energy
values along layers and sampling steps 30 times with a fixed text prompt and then display them in
Figure 3 with the generated samples, where red and green lines denote the energy involved with the
Stable-Diffusion (SD) and the proposed method, respectively. For each sampling step block that is
alternately shaded, the energy values are plotted through 16 cross-attention layers.

Across all layers and sampling steps, the energy associated with the proposed method remains
consistently lower than that of the SD. This is in line with the semantic alignment between intermediate
denoised estimates and the given text prompt. In both cases of the SD and the proposed method,
E(Q;K) decreases over sampling steps. This implies that the iterative refinement of the updated
query carried over to subsequent sampling steps, resulting in a better match to the given context. Note
that the proposed method even achieves lower energy with the EBCU. More analyses are provided in
the appendix E including the ablation study.
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Figure 5: Text-guided inpainting comparison. The masked region is conditionally generated by given
text-prompt positioned on the left-end of each row.

4.2 Multi-Concept Generation

We empirically demonstrate that the proposed framework alleviates the catastrophic neglect and
attribute binding problems defined in the existing literature [4]. As shown in Figures 3 and 4, the
EBCU effectively mitigates these problems by promoting attention to all relevant concepts in the
prompt. Specifically, the regularization term introduced by the prior energy prevents a single context
from dominating the attention, while the attention term updates the context vectors in the direction of
input queries, improving semantic alignment and facilitating the retrieval of related information.

4.3 Text-guided Image Inpainting

In addition, we have evaluated the efficacy of the proposed energy-based EBCU on a text-guided
inpainting task. Although existing state-of-the-art DMs such as DALLE and SD can be employed for
inpainting by exploiting the ground-truth unmasked area [23], they usually require computationally
expensive fine-tuning and tailored data augmentation strategies [23, 41]. In contrast, as shown in
Figure 5, our proposed energy-based framework significantly enhances the quality of inpainting
without any fine-tuning. Specifically, we incorporate the energy-based cross-attention into the Stable-
Repaint (SR) and Stable-Inpaint (SI) models, which can struggle to inpaint multiple objects (e.g.,
birthday hat and bow tie) or unlikely combinations of foreground and background objects (e.g.,
Teddy bear on the Starry Night painting). In contrast, the proposed approach accurately fills in
semantically relevant objects within the target mask region.

4.4 Compositional Generation

We demonstrate that the proposed framework improves the controllability and compositionality of
DMs, which is a significant challenge for generative models. To assess this, we split the task into
synthetic and real image editing.
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Real Image “baby” “girl” “woman” “old woman” “old man”

Real Image “bear” “lion” “horse” “oil pastel” “white wolf”

Figure 7: Real image editing with multiple editing prompts. Given a real image at the left-end of
each row, the proposed method allows robust image editing with different prompts over each sample.

Synthetic image editing. Text-to-image DMs provide impressive results, but it is difficult to generate
images perfectly aligned with user intentions [1]. Although modifying prompts can guide generation,
it can also introduce unintended changes in the generated content. Our results, shown in Figure 5,
demonstrate that the proposed method can edit image contents while maintaining the original-prompt-
related identity of the generated images thanks to the EBCU, which continuously harmonizes the
latent representations and text prompts. While composable-diff [22] can generate compositions, they
often fail to preserve the original properties of images, such as the color in the second row, or fail to
compose the desired concept, such as the boat in the first row.

Real image editing. We demonstrate that the proposed framework can also edit real images, which
is especially challenging as existing methods often dramatically alter input content or introduce
unexpected variations. To do this, we integrate our framework with DDIM inversion [35, 25], which
inverts images with meaningful text prompts into the domain of pre-trained diffusion models. First,
we use the image captioning network BLIP [20] to automatically caption the interested image,
following [28]. Next, we obtain the inverted noise latents of the input image using Diffusion Pivotal
Inversion [25]. Then, we apply EBCQ and EBCU while denoising the inverted latents. The optimized
unconditional textual embedding vector is also targeted for additional EBCUs. The results in Figure
6 demonstrate that our method achieves better editing performance by avoiding undesired changes.
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Quantitative comparisons. We further conducted a comparative analysis of the proposed framework
against several state-of-the-art diffusion-based image editing methods [24, 12, 25, 28]. For our
evaluations, we focus on two image-to-image translation tasks. The first one is an animal transition
task, which translates (1) cat→ dog, (2) horse→ zebra, and (3) adding glasses to cat input images
(cat→ cat with glasses). The second one is a human transition task, which translates (1) woman→
man, (2) woman→ woman with glasses, and (3) woman→ man with glasses. Source images are
retrieved from the LAION 5B dataset [34] and CelebA-HQ [15]. Motivated by [39, 28], we measure
CLIP Accuracy and DINO-ViT structure distance. Experimental details are provided in the appendix
E including explanations of baselines, datasets, metrics, and hyperparameter configurations.

Table 1: (Animal transition) Comparison to state-of-the-art diffusion-based editing methods. Dist for
DINO-ViT Structure distance. Baseline results are from [28].

Method (a) Cat→ Dog (b) Horse→ Zebra (c) Cat→ Cat w/ glasses
CLIP Acc (↑) Dist (↓) CLIP Acc (↑) Dist (↓) CLIP Acc (↑) Dist (↓)

SDEdit [24] + word swap 71.2% 0.081 92.2% 0.105 34.0% 0.082
DDIM + word swap 72.0% 0.087 94.0% 0.123 37.6% 0.085

prompt-to-prompt [12] 66.0% 0.080 18.4% 0.095 69.6% 0.081
pix2pix-zero [28] 92.4% 0.044 75.2% 0.066 71.2% 0.028

Stable Diffusion + ours 93.7% 0.040 90.4% 0.061 81.1% 0.052

Figure 8: Real image editing on (a) animal transition and (b) human transition tasks.

Table 1 and 2 in the appendix show that the proposed energy-based framework gets a high CLIP-Acc
while having low Structure Dist. It implies that the proposed framework can perform the best edit
while still retaining the structure of the original input image. While DDIM + word swap records
remarkably high CLIP-Acc in horse→ zebra task, Figure 8 shows that such improvements are based
on unintended changes in the overall structure. More visualizations are provided in the appendix E.

5 Conclusion, Limitations and Societal Impacts

Conclusion. In this work, we formulated the cross-attention with an energy perspective and proposed
the EBCU, a modified cross-attention that could implicitly minimize the energy in the latent space.
Furthermore, we proposed EBCQ which is inspired by energy-based formulation of multiple text
composition. The proposed method is versatile as shown by multiple applications, theory-grounded,
easy to implement, and computationally almost free.

Limitations and Societal Impacts. The framework presented in this study generates images based
on user intentions, which raises concerns regarding potential misuse for creating deepfakes or other
forms of disinformation. It is crucial to ensure that these methods are implemented ethically and
regulated appropriately. Additionally, while the framework performs well across various tasks, it
requires pre-trained deep models, rendering it challenging to apply to out-of-domain datasets, such as
medical images.
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G. K. Sandve, et al. Hopfield networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

[31] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[32] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer,
2015.

[33] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes,
B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models with deep language
understanding. Advances in Neural Information Processing Systems, 35:36479–36494, 2022.

12



[34] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta,
C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation
image-text models. arXiv preprint arXiv:2210.08402, 2022.

[35] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020.

[36] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. Advances in
neural information processing systems, 32, 2019.

[37] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

[38] N. Tumanyan, O. Bar-Tal, S. Bagon, and T. Dekel. Splicing vit features for semantic appearance transfer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10748–
10757, 2022.

[39] N. Tumanyan, M. Geyer, S. Bagon, and T. Dekel. Plug-and-play diffusion features for text-driven image-
to-image translation. arXiv preprint arXiv:2211.12572, 2022.

[40] C. H. Wu and F. De la Torre. Unifying diffusion models’ latent space, with applications to cyclediffusion
and guidance. arXiv preprint arXiv:2210.05559, 2022.

[41] S. Xie, Z. Zhang, Z. Lin, T. Hinz, and K. Zhang. Smartbrush: Text and shape guided object inpainting
with diffusion model. arXiv preprint arXiv:2212.05034, 2022.

[42] J. C. Ye. Geometry of Deep Learning. Springer, 2022.

[43] A. L. Yuille and A. Rangarajan. The concave-convex procedure (cccp). Advances in neural information
processing systems, 14, 2001.

13



A Proof of Theorem 1

In computing a derivative of a scalar, vector, or matrix with respect to a scalar, vector, or matrix, we should be
consistent with the notation. In this paper, we follow the denominator layout convention as described in [42]. To
make the paper self-contained, we briefly introduce the denominator layout and associate calculus.

The main motivation for using the denominator layout is from the derivative with respect to the matrix. More
specifically, for a given scalar c and a matrix W ∈ Rm×n, according to the denominator layout, we have

∂c

∂W
=


∂c

∂w11
· · · ∂c

∂w1n

...
. . .

...
∂c

∂wm1
· · · ∂c

∂wmn

 ∈ Rm×n. (17)

Furthermore, this notation leads to the following familiar result:

∂a⊤x

∂x
=

∂x⊤a

∂x
= a. (18)

Accordingly, for a given scalar c and a matrix W ∈ Rm×n, we can show that

∂c

∂W
:= UNVEC

(
∂c

∂VEC(W )

)
∈ Rm×n, (19)

in order to be consistent with (17), where VEC() and UNVEC() refer to the vectorization operation and its
reverse, respectively. Under the denominator layout notation, for given vectors x ∈ Rm and y ∈ Rn, the
derivative of a vector with respect to a vector given by

∂y

∂x
=


∂y1
∂x1

· · · ∂yn
∂x1

...
. . .

...
∂y1
∂xm

· · · ∂yn
∂xm

 ∈ Rm×n. (20)

Then, the chain rule can be specified as follows:

∂c(g(u))

∂x
=

∂u

∂x

∂g(u)

∂u

∂c(g)

∂g
. (21)

Finally, the following property of the Kronecker delta product is useful throughout the paper [42]

VEC(ABC) = (CT ⊗A)VEC(B) (22)

(A⊗B)T = AT ⊗BT (23)

Using this, we first prove the following key lemmas.

Lemma 1. For a given column vector x ∈ RN , we have

∂ logsumexp(x, β)

∂x
= softmax(βx)

Proof.

∂ logsumexp(x, β)

∂x
= β−1

∂ log
∑N

j=1 exp(βxj)

∂x
=


exp(βx1)∑N

j=1 exp(βxj)

...
exp(βx

P2 )∑N
j=1 exp(βxj)


= softmax(βx)

Q.E.D.

Lemma 2. Let ki denote the i-th row vector of K ∈ RN×d. Then, we have

∂kik
T
i

∂K
= 2ei

N (ei
N )TK

where ei
N represents a N -dimensional column vector where only the i-th entry is 1, with all other entries set to

zero.
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Proof. First, note that the expression kT
i can be equivalently rewritten as KTei. Then, we have

kik
T
i = (ei

N )TKKTei
N

Furthermore, using (22), we have KTei
N = ((ei

N )T ⊗ Id)VEC(KT ) so that

∂KTei

∂VEC(KT )
= (ei

N ⊗ Id)

where Id denotes the d× d identity matrix. Using the chain rule, we have

∂kik
T
i

∂VEC(KT )
=

∂KTei

∂VEC(KT )

∂kik
T
i

∂KTei
= 2(ei

N ⊗ Id)K
Tei

N

Thus, we have

UNVEC

(
∂kik

T
i

∂VEC(KT )

)
= 2UNVEC

(
(ei

N ⊗ Id)K
Tei

N

)
= 2KTei

N (ei
N )T

where we again use (22). Therefore, by taking the transpose, we have

∂kik
T
i

∂K
= 2ei

N (ei
N )TK.

Q.E.D.

Lemma 3.

∇K logsumexp(QkT
i , β) = ei

N (softmax(βQkT
i ))

TQ (24)

Proof. Note that
QkT

i = QKTei
N = QKTei

N = ((ei
N )T ⊗Q)VEC(KT ).

Hence, using (18) we have

∂QKTei

∂VEC(KT )
= ei

N ⊗QT (25)

Furthermore, using Lemma 1 we have

∂ logsumexp(QkT
i , β)

∂VEC(KT )
=

∂QkT
i

∂VEC(KT )

∂ logsumexp(QkT
i , β)

∂QkT
i

= (ei
N ⊗QT ) softmax(βQkT

i )

leading to the following:

∂ logsumexp(QkT
i , β)

∂KT
= UNVEC

(
∂ logsumexp(QkT

i , β)

∂VEC(KT )

)
= UNVEC

(
(ei

N ⊗QT ) softmax(βQkT
i )

)
= QT softmax(βQkT

i )(e
i
N )T

where we again use (22). Now, by taking the transpose, we can prove (24). Q.E.D.

Lemma 4.

∂ diag(KKT )

∂K
= 2K (26)

∂ log
∑N

i=1 exp(
1
2
kik

T
i )

∂K
=

[softmax(x)]1 · · · 0
...

. . .
...

0 · · · [softmax(x)]N

K (27)

where diag(A) denotes the sum of the diagonal element, i.e. trace of A, and xi is a column matrix whose i-th
element is given by kik

T
i /2, and [·]i dentoes the i-th element.

Proof. First,

c = diag(KKT ) =
∑
i,j

K2
ij

15



where Kij denotes the (i, j)-th element. Therefore, using the denominator layout in (17), it is trivial to show that

∂c

∂K
= 2K.

Second, let us construct a column vector x whose i-th element is given by xi := kik
T
i /2. Then, using Lemmas 1

and 2 and the chain rule, we have

∂ log
∑N

i=1 exp(
1
2
kik

T
i )

∂K
=

∑
i

∂xi

∂K

∂ logsumexp(x, 1)

∂xi

=
∑
i

ei
N (ei

N )TK[softmax(x)]i

=
∑
i

ei
Nki[softmax(x)]i

=

[softmax(x)]1 · · · 0
...

. . .
...

0 · · · [softmax(x)]N

K

This concludes the proof.

Theorem 1. For the energy functions

E(Q;K) =
α

2
diag(KKT )−

N∑
i=1

logsumexp(QkT
i , β) (28)

and

E(K) = log

N∑
i=1

exp(
1

2
kik

T
i ), (29)

the gradient of the log posterior is given by:

∇K log p(K |Q) = softmax2

(
βKQT )Q− (

αI +D
(
softmax

(1
2
diag(KKT )

)))
K, (30)

Then, by using the chain rule the update rule of context vectors C is derived as follows:

Cn+1 = Cn + γ

(
softmax2

(
βKQT )Q− (

αI +D
(
softmax

(1
2
diag(KKT )

)))
K

)
W T

K , (31)

where γ > 0 is a step size, and D(·) is a vector-to-diagonal-matrix operator.

Proof. Based on the Bayes’ theorem, the gradient of the log posterior is derived as:

∇K log p(K |Q) = −
(
∇K E(Q;K) +∇K E(K)

)
. (32)

Using Lemmas 1,2,3 and 4, we have

∇K E(Q;K) = αK −
∑
i

ei
N (softmax(βQkT

i ))
TQ

= αK − softmax2(βQKT )Q (33)

Second, by noting that E(K) = log
∑N

i=1 exp(
1
2
kik

T
i ), Lemma 4 informs us

∇K E(K) =

[softmax(x)]1 · · · 0
...

. . .
...

0 · · · [softmax(x)]N

K

= D
(
softmax

(1
2
diag(KKT )

))
K

where D(·) is a vector-to-diagonal-matrix operator that takes N -dimensional softmax vector as an input and
returns a N × N diagonal matrix with softmax values as main diagonal entries. Therefore, one can finally
obtain:

∇K log p(K |Q) = softmax2

(
βKQT )Q− (

αI +D
(
softmax

(1
2
diag(KKT )

)))
K. (34)

By using the chain rule with K = CWK , the update rule of context vectors C is derived as in (11).
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B Pseudo-code for EBCU and EBCQ

This section provides the description of the pseudocode for the proposed Energy-based Bayesian Context
Update (EBCU) and Energy-based Composition of Queries (EBCQ). Algorithm 1 outlines the cascaded context
propagation across cross-attention layers within the UNet model during the sampling step t. Note that the
context is reinitialized at the beginning of each sampling step. On the other hand, Algorithm 2 details the
EBCU implemented in each cross-attention layer. Specifically, the proposed EBCU provides a significant
computational efficiency by reusing the similarity QKT , which requires computational costO(N2), to compute
∇KE(Q;K). Consequently, there is only a small amount of additional computational overhead associated
with the proposed EBCU.

Algorithm 1 Context cascade at sampling step t

Require: Qt,Cclip,UNet
1: Ct ← Cclip // Re-initialize
2: for layer in UNet do
3: if layer is CrossAttention then
4: Qt,Ct ← layer(Qt,Ct) // Algorithm 2
5: else
6: Qt ← layer(Qt)
7: end if
8: end for
9: Qt+1 ← Qt

10: return Qt+1

Algorithm 2 Energy-based Bayesian Context Update (EBCU)
Require: Q,C,W q,W k,W v, α, β, γattn, γreg
1: Q,K,V ← QW q,CW k,CW v

2: S = QKT

3: Q← softmax2(βS)V
4: ∇KE(Q;K) = softmax2(βS

T )Q
5: ∇KE(K) = −(αI +D(softmax( 1

2
diag(KKT ))))K

6: ∆C = (γattn∇KE(Q;K) + γreg∇KE(K))W T
k

7: C ← C +∆C
8: return Q,C

Algorithm 3 outlines the pseudocode for the EBCQ implemented for M given contexts. For the simplicity, we
exclude the EBCU from the algorithm. Nontheless, the EBCU and the EBCQ could be leveraged together.

Algorithm 3 Energy-based Composition of Queries (EBCQ)
Require: Q,C = {C1, ...,CM},W q,W k,W v, αs, β

1: Q← QW q

2: for s in [1, ...,M ] do
3: Ks,V s ← CsW k,CsW v

4: Ss = QKT
s

5: end for
6: Q← 1

M

∑M
s=1 αssoftmax2(βSs)V s

7: return Q

C Experimental setups

In this section, we describe detailed experimental setups for three applications including baseline method,
hyper-parameter of the proposed method, and dataset if it is the case. Code: https://github.com/
EnergyAttention/Energy-Based-CrossAttention.

C.1 Common experimental setup

We mainly leverage pre-trained Stable Diffusion v1-5 (except Table 1: v1-4) which is provided by diffusers, a
Python library that offers various Stable Diffusion pipelines with pre-trained models. All images are sampled for
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50 steps via PNDM sampler [21] using NVIDIA RTX 2080Ti. In every experiment, we set the parameter α in
Equation (9) to zero, focusing solely on controlling the values of γattn and γreg . EBCU is applied to every task,
and EBCQ is additionally employed in C.4.

Different learning rate for each token It is worth noting that the γattn and γreg could be expressed as vectors.
In other words, if the context C ∈ RN×dc is given, γattn and γreg are N -dimensional vectors. Hence, we have
the flexibility to adjust the learning rate γ{·}, allowing us to increase or decrease the impact of certain tokens
based on the user’s intent. Unless otherwise noted, γattn and γreg is set to a constant for each text token.

Learning rate scheduling Since the proposed EBCU is leveraged for the diffusion model, one can readily
introduce scheduling strategies for γattn and γreg along the sampling step t. We implement multiple variants
such as ‘constant’, ‘step’, and ‘exponential decay’ as follows.

[constant] γ(t) = γ0

[step] γ(t) = γ0 · ReLu(t− τ)

[exp-decay] γ(t) = γ0 · λt

(35)

where γ0 is the initial value, ReLu(x) = 0 if x ≤ 0, otherwise 1, τ denotes the temporal threshold, and λ
denotes the decay ratio. Unless stated otherwise, the scheduling strategy is set to the ‘constant’.

C.2 Multi-concept image generation

We compared the performance of the proposed method with Structured Diffusion [11] which does not require
additional training as our method. We leveraged the open-sourced official implementation 1.

For the proposed method, we set the γattn and γreg differently for each sample within [1e-2, 1.5e-2, 2e-2]. As
shown in the following ablation studies E, large γattn tends to generate saturated images while large γreg results
in mixed/vanished contents.

We found that using different learning rates for each context token is useful for multi-concept generation,
especially when a single concept tends to dominate with a constant learning rate. For example, given the main
prompt "A cat wearing a shirt", we set the γattn for the "shirt" to 3e-2, while γattn is set to 1.5e-2 for
other tokens. We have observed that doubling the γattn for a text token to be emphasized is sufficient to achieve
balanced multi-concept image generation for most cases.

C.3 Text-guided image inpainting

Additionally, we conducted a performance comparison between our proposed method and two alternative
approaches: (a) Stable Inpaint2, which fine-tunes the weights of Stable Diffusion through inpainting training,
and (b) Stable Repaint3, which leverages the work of Lugmayr et al. [23] on the latent space of Stable Diffusion
for the inpainting task. In the case of Stable Repaint, the mask is downsized and transferred into the latent
space. We applied the Energy-based Bayesian Context Update (EBCU) technique to both methods, resulting in
improved results compared to their respective baselines.

Masked EBCU. To further enhance the performance for the inpainting task, we introduce the concept of
masked Energy-based Bayesian Context Update (masked EBCU). Specifically, let M ∈ RP2

l ×P2
l represent a

diagonal matrix where the main diagonal values are derived from the downsampled inpainting mask for the l-th
cross-attention layer, with an output spatial size of P 2

l . In Equation (36), we modify the attention term (12) by
incorporating the downsampled mask, effectively covering the query matrix as follows:

Cn+1 = Cn + γ

(
softmax2

(
βKQT )MQ−

(
αI +D

(
softmax

(1
2
diag(KKT )

)))
K

)
W T

K . (36)

As evident in Equation (12), the attention term updates the context vectors, aligning ki towards qj , j =

1, . . . , P 2
l , while considering the alignment strength between each qj and ki. However, in the inpainting task,

we have prior knowledge that the context vectors should be most aligned with the semantically relevant masked
regions. Therefore, we mask out unrelated background spatial representations, allowing for the context vectors to
be updated with a specific focus on the masked regions. This approach facilitates the incorporation of semantic
information encoded by ki specifically into the spatial mask regions.

In our proposed method, we set different values for γattn and γreg for each sample, selected from the set [1e-2,
1.5e-2, 2e-2, 2.5e-2], to account for variations in the input samples.

1https://github.com/weixi-feng/Structured-Diffusion-Guidance
2https://huggingface.co/runwayml/stable-diffusion-inpainting
3https://github.com/huggingface/diffusers/tree/main/examples/community#

stable-diffusion-repaint
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C.4 Image editing via compositional generation

We present empirical evidence demonstrating the effectiveness of our energy-based framework for compositional
synthetic and real-image editing. The Energy-based Bayesian Context Update (EBCU) technique can be readily
applied to both the main context vector (C1 in Section 3.2, s = 1) and editorial context vectors (Cs>1). Each
EBCU operation influences the attention maps used in the Energy-based Composition of Queries (EBCQ),
enhancing the conveyance of semantic information associated with each context. Note that αs in (16) represents
the degree of influence of the s-th concept in the composition. In practice, we fix α1 = 1 for the main context,
while αs>1 is tuned within the range of (0.5, 1.0).

Let γattn,s and γreg,s denote the step sizes for EBCU of the s-th context vector. If the editing process involves
changing the identity of the original image (e.g., transforming a "cat" into a "dog"), we set both γattn,1 and
γreg,1 to zero. Otherwise, if the editing maintains the original identity, we choose values for γattn,1 and γreg,1
from the range of (5e-4, 1e-3), similar to γattn,(s>1) and γreg,(s>1). All hyperparameters, including αs and γs,
are fixed during the quantitative evaluation process (more details in Section D and Table 3).

To ensure consistent results, we maintained a fixed random seed for both real and synthetic image editing. For
real image editing, we employed null-text pivotal inversion [25] to obtain the initial noise vector.

During the reverse diffusion process in Sections C.2 and C.3, we kept γ fixed as a constant value. However, for
compositional generation, we utilized step scheduling (Equation 35) for γs and αs. After converting the initial
noise vector for real images or using a fixed random seed for synthetic images, EBCU and EBCQ are applied
after a threshold time τs > 0 for the s-th editorial context. This scheduling strategy helps to preserve the overall
structure of generated images during the editing process. In our observations, a value of τs ∈ [10, 25] generally
produces satisfactory results, considering a total number of reverse steps set to 50. However, one can increase or
decrease τs for more aggressive or conservative editing, respectively.

The exemplary real images presented in Figures 5 and 6 of the main paper were sampled from datasets such as
FFHQ [17], AFHQ [5], and ImageNet [7]. For a detailed quantitative analysis, please refer to Section D.

D Quantitative Comparison

In this section, we conducted a comparative analysis of the proposed framework against several state-of-the-art
diffusion-based image editing methods [24, 12, 25, 28], following the experimental setup of [28]. To ensure a
fair comparison, all methods utilize the pre-trained Stable Diffusion v1-4, employ the PNDM sampler with an
equal number of sampling steps, and adopt the same classifier-free guidance scale.

D.1 Baseline Methods

In addition to the Plug-and-Play method discussed in the main paper, we include the following baselines for
comprehensive quantitative comparison:

SDEdit [24] + word swap. This method introduces the Gaussian noise of an intermediate timestep and
progressively denoises images using a new textual prompt, where the source word (e.g., Cat) is replaced with
the target word (e.g., Dog).

Prompt-to-prompt (P2P) [12]. P2P edits generated images by leveraging explicit attention maps from a source
image. The source attention maps Mt are used to inject, re-weight, or override the target maps based on the
desired editing operation. These original maps act as hard constraints for the edited images.

DDIM + word swap [25]. This method applies null-text inversion to real input images, achieving high-fidelity
reconstruction. DDIM sampling is then performed using inverted noise vectors and an edited prompt generated
by swapping the source word with the target.

pix2pix-zero [28]. pix2pix-zero first derives a text embedding direction vector△cedit from the source to the
target by using a large bank of diverse sentences generated from a state-of-the-art sentence generator, such as
GPT-3 [2]. Inverted noise vectors are denoised with the edited text embedding, c+△cedit, and cross-attention
guidance to preserve consensus.

Cycle-diffusion [40]. Cycle-diffusion reformulates diffusion models as deterministic mappings from a Gaussian
latent code to images. It presents a DPM-Encoder that allows for encoding images into this latent space.

D.2 Dataset

For the animal transition task, we focus on three image-to-image translation tasks: (1) translating cats to dogs
(cat→ dog), (2) translating horses to zebras (horse→ zebra), and (3) adding glasses to cat input images (cat→
cat with glasses). Following the data collection protocol of [28], we retrieve 250 relevant cat images and 213
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horse images from the LAION 5B dataset [34] using CLIP embeddings of the source text description. We select
images with a high CLIP similarity to the source word for each task.

For the human transition task, we focus on three image-to-image translation tasks: (1) woman → man, (2)
woman→ woman w/ glasses, and (3) woman→ man w/ glasses. For this, we select source images of women
without wearing glasses from CelebA-HQ. To ensure fair comparisons, all methods leverage the same version of
Stable Diffusion, sampler, sampling steps, etc.

D.3 Metrics

Motivated by [39, 28], we measure CLIP Accuracy and DINO-ViT structure distance. Specifically, (a) CLIP
Acc represents whether the targeted semantic contents are well reflected in the generated images. It calculates
the percentage of instances where the edited image has a higher similarity to the target text, as measured by
CLIP, than to the original source text [28]. On the other hand, (b) structure distance [39, 38] measures whether
the overall structure of the input image is well preserved. It is defined as the difference in self-similarity of the
keys extracted from the attention module at the deepest DINO-ViT [3] layer.

D.4 Details

The main context vector Cmain is encoded given a main prompt automatically generated by BLIP [20]. In
addition, the editorial context vectors Csrc and Ctgt are encoded given the text descriptions of the source and
target concept, i.e. source and target prompt. For example, for a cat→ dog task (cat→ cat w/ glasses), the source
prompt is "cat" ("cat wearing glasses"), and the target prompt is "dog" ("without glasses"). Then
we apply EBCU and EBCQ based on the obtained context vectors. Please refer to Table 3 for the hyperparameter
configurations.

D.5 Results

Table 1 and 2 show that the proposed energy-based framework gets a high CLIP-Acc while having low Structure
Dist. It implies that the proposed framework can perform the best edit while still retaining the structure of
the original input image. This is a remarkable result considering that the proposed framework is not specially
designed for the real-image editing task. Moreover, the proposed framework does not rely on the large bank of
prompts and editing vector△cedit [28] which can be easily incorporated into our method.

While DDIM + word swap records remarkably high CLIP-Acc in horse→ zebra task, Figure 9 and 16 show
that such improvements are based on unintended changes in the overall structure. Table 3 summarizes the
hyperparameter settings for each task. Examples of results are presented in Figure 17 and 16.

Table 2: (Human transition) Comparison to state-of-the-art diffusion-based editing methods. Dist for
DINO-ViT Structure distance.

Method (a) Woman→Man (b) Woman→Woman w/ glasses (c) Woman→Man w/ glasses
CLIP Acc (↑) Dist (↓) CLIP Acc (↑) Dist (↓) CLIP Acc (↑) Dist (↓)

CycleDiffusion [40] 57.0% 0.156 74.0% 0.018 63.5% 0.237
Pix2pix-zero 93.0% 0.043 66.0% 0.024 93.9% 0.052

Stable Diffusion + ours 94.0% 0.035 99.0% 0.029 96.0% 0.037

Table 3: Hyperparameter configurations for each editing task. Each task index comes from Table 1.
γattn,main = 0 and γreg,main = 0 as mentioned in section C.4. Note that αsrc < 0 for the concept
negation (related ablation study in Figure 11). τs denotes the warm-up period for step scheduling in
(35) and Section C.4.

Task αsrc αtgt γ·,main γattn,src γreg,src γattn,tgt γreg,tgt τs

(a) -0.65 0.75 0 5e-4 5e-4 6e-4 6e-4 25
(b) -0.5 0.6 0 4e-4 4e-4 5e-4 5e-4 15
(c) -0.6 0.7 0 1e-3 1e-3 1e-3 1e-3 17
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Real Image DDIM inversion Ours
DDIM inversion

+ word swap

Figure 9: Image editing comparison with DDIM-inversion. Generated samples by DDIM-inversion
with word swap readily deviate the original data contents, while the proposed method avoids undesired
changes.

E Ablation study and more results
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Figure 10: Ablation results for γattn and γreg. All samples are generated from the same random
noise.
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Figure 11: Ablation study results. The first row shows multi-concept generation examples with
varying γattn and γreg, while the second row shows real image editing examples with varying the
usage of EBCU and EBCQ. The last row shows the effect of negative prompt for the image editing
application.

Attention and regularization terms. To access the degree of performance improvement attained by the proposed
EBCU, we conducted an ablation study for the attention and the regularization terms by regulating γattn and
γreg for the text-guided image inpainting (Figure 10) and the multi-concept image generation (Figure 11). From
the Figure 10, we can observe that the desired content is generated when proper range of γattn and γreg are
given. Specifically, once γreg is set to a valid value, the EBCU consistently generate a "teddy bear" with
various γattn, otherwise it generates background or imperfect objects. This result emphasizes the role of the
introduced prior energy E(K). Furthermore, the γattn also affects to the context alignment of the generated
sample (for instance γattn = 0.025 and γreg = 0.02), which highlights the importance of the introduced
conditional energy function E(Q;K). The same evidences could be found in the first row in Figure 11 which
are the multi-concept image generation examples.

Synergy between EBCU and EBCQ. While both EBCU and EBCQ are designed from the common energy-
based perspective, each operation is originated from different energy functions E(K;Q) and Ê(Q; {Ks}Ms=1),
respectively. This fact suggests the synergistic energy minimization by combining the EBCU and EBCQ, which
could further improve the text-conditional image generation. To investigate this further, we conducted an ablation
study using a real image editing application. Specifically, we compared the editing performance when solely
utilizing EBCQ and when combining EBCU with EBCQ. The second row in Figure 11 is the result of the
ablation study that shows fully-compatibility of the EBCU and EBCQ. Importantly, the incorporation of the
EBCU improves the quality of the generated images. While the EBCQ alone effectively captures the context of
the given editing concept, the addition of EBCU enhances the fine-grained details in the generated outputs.

Importance of concept negation. Remark that a negative αs in (16) denotes the negation of given editing
prompt. We empirically observed that the concept negation may significantly contribute to the performance
of compositional generation. Specifically, for the image-to-image translation task in Table 1, we apply both
positive and negative guidance with the target (e.g. Dog) and source (e.g. Cat) concepts, respectively, following
the degree of guidance denoted in Table 3. The third row in Figure 11 shows the impacts of source concept
negation in the image-to-image translation task. While the positive guidance alone may fail to remove the
source-concept-related features, e.g. eyes of the Cat, the negative guidance removes such conflicting existing
attributes. This implies that the proposed framework enables useful arithmetic of multiple concepts for both real
and synthetic image editing.

Prior energy and α. While α
2
diag(KKT ) in (8) penalizes norm of each context vectors uniformly, the

proposed prior energy function E(K) adaptively regularizes the smooth maximum of ∥ki∥. Intuitively, adaptive
penalization prevents the excessive suppression of context vectors, potentially resulting in images that are more
semantically aligned with a given context. To demonstrate the effectiveness of adaptive penalization in the prior
energy function, we conducted a multi-concept image generation task with varying α in (11) from 0 to 1, while
fixing other hyperparameters. Figure 12 illustrates the gradual disappearance of salient contextual elements in
the generated images depending on the change of α. Specifically, the crown is the first to diminish, followed by
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subsequent context elements, with the lion being the last to vanish with α = 1. This result highlights the validity
of the adaptive penalization for the context vectors which stems from the prior energy function.

Context shift analysis. Since the proposed framework updates the initial context vector, one may be concerned
that the optimized vector may be severely shifted from the original context so that it loses the intended semantic
meaning. Here, we emphasize that the change of context vector is adaptive, not an invalid shift, because the
proposed BCU allows an adaptive propagation of the context vector through UNet, resulting in a context vector
that is better aligned with Qt on cross-attention space.

To further support our claim, we use the updated CT (T for a number of sampling time steps) from the proposed
method as a fixed context vector instead of Cclip and perform multi-concept generation using the conventional
cross-attention operation. Since the energy functions are defined differently for each sampling time step, using
CT as a fixed context for each sampling time step may result in low-quality samples. However, this approach
allows us to evaluate whether the updated context contains the correct semantics of the given textual conditions,
in contrast to Cclip. Figure 13a demonstrates that the updated context vector does indeed capture the correct
semantics of the given textual conditions (e.g., both black horse and yellow room).

Multi-step update. In order to better understand the context update, we implement a multistep context update
for comparison while keeping the propagation of C to subsequent layers. For the multi-concept generation
and inpainting tasks, we observe that this multiple update of the context vector actually improves the quality
of generated images (Figure 13b). This is in the same line as our perspective that one forward path of context
vector is equivalent to one-step gradient descent for energy function. That being said, we also observe that the
multiple context update is relatively computationally expensive and a single-step update is usually sufficient for
improved performance. Therefore, we decide to use a single-step update with context propagation to subsequent
layers. We believe these results may lay down foundation for further research on understanding the alignment
between latent image representations and context embeddings.

𝛼=0.0 𝛼=1.0𝛼=0.5

Figure 12: Generated samples with varying α values. As α increases, the generated images progres-
sively deviate from the intended context, "A lion and a crown".

Figure 13: (a) Muti-concept generation results with fixed and adaptive context embeddings. For the
last column, updated context via the BCU at the final timestep is given as a fixed context embedding.
(b) Multi-concept image generation results in a different number of context updates. γattn and γreg
are reduced in proportion to the number of updates.

Figure 14: Further results for compositional real-image editing.
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Figure 15: Further results for multi-concept image generation. Best views are displayed.
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Figure 16: Further results for real image editing: horse to zebra.
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Figure 17: Further results for real image editing: cat to dog.

26



Real Image “Rat” “Cat” “Dog” “Tiger”

Synthetic Image “Fall” “Winter” “Monet” “Watercolor”

Figure 18: Further results for image editing with varying text prompts. Best views are displayed.
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