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Abstract

Web-scale search systems learn an encoder to embed a given query which is then1

hooked into an approximate nearest neighbor search (ANNS) pipeline to retrieve2

similar data points. To accurately capture tail queries and data points, learned3

representations typically are rigid, high-dimensional vectors that are generally4

used as-is in the entire ANNS pipeline and can lead to computationally expensive5

retrieval. In this paper, we argue that instead of rigid representations, different6

stages of ANNS can leverage adaptive representations of varying capacities to7

achieve significantly better accuracy-compute trade-offs, i.e., stages of ANNS that8

can get away with more approximate computation should use a lower-capacity rep-9

resentation of the same data point. To this end, we introduce AdANNS , a novel10

ANNS design framework that explicitly leverages the flexibility of Matryoshka11

Representations [30]. We demonstrate state-of-the-art accuracy-compute trade-offs12

using novel AdANNS-based key ANNS building blocks like search data structures13

(AdANNS-IVF) and quantization (AdANNS-OPQ). For example on ImageNet14

retrieval, AdANNS-IVF is up to 1.5% more accurate than the rigid representations-15

based IVF [46] at the same compute budget; and matches accuracy while being up16

to 90× faster in wall-clock time. For Natural Questions, 32-byte AdANNS-OPQ17

matches the accuracy of the 64-byte OPQ baseline [12] constructed using rigid18

representations – same accuracy at half the cost! We further show that the gains19

from AdANNS translate to modern-day composite ANNS indices that combine20

search structures and quantization. Finally, we demonstrate that AdANNS can21

enable inference-time adaptivity for compute-aware search on ANNS indices built22

non-adaptively on matryoshka representations. Code will be open-sourced.23

1 Introduction24

Semantic search [23] on learned representations [38, 39, 48] is a major component in retrieval25

pipelines [4, 9]. In its simplest form, semantic search methods learn a neural network to embed26

queries as well as a large number (N ) of data points in a d-dimensional vector space. For a given query,27

the nearest (in embedding space) point is retrieved using either an exact search or using approximate28

nearest neighbor search (ANNS) [20] which is now indispensable for real-time large-scale retrieval.29

Existing semantic search methods learn fixed or rigid representations (RRs) which are used as is in30

all the stages of ANNS. That is, while ANNS indices allow a variety of parameters for searching31

the design space to optimize the accuracy-compute trade-off, the provided data dimensionality is32

typically assumed to be an immutable parameter. To make it concrete, let us consider inverted file33

index (IVF) [46], a popular web-scale ANNS technique [15]. IVF has two stages (Section 3) during34

inference: (a) cluster mapping: mapping the query to a cluster of data points [35], and (b) linear35

scan: distance computation w.r.t all points in the retrieved cluster to find the nearest neighbor (NN).36

Standard IVF utilizes the same high-dimensional RR for both phases, which can be sub-optimal.37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



0.05 0.5 1 10
Search Latency/Query (ms)

69.0

69.5

70.0

70.5

To
p-

1 
Ac

cu
ra

cy
 (%

)

~1.5% gain

~90× real-world speed-up

AdANNS-IVF
Rigid-IVF

(a) Image retrieval on ImageNet-1K.
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(b) Passage retrieval on Natural Questions.

Figure 1: AdANNS helps design search data structures and quantization methods with better
accuracy-compute trade-offs than the existing solutions. In particular, (a) AdANNS-IVF improves on
standard IVF by up to 1.5% in accuracy while being 90× faster in deployment and (b) AdANNS-OPQ
is as accurate as the baseline at half the cost! Rigid-IVF and Rigid-OPQ are standard techniques that
are built on rigid representations (RRs) while AdANNS uses matryoshka representations (MRs) [30].

Why the sub-optimality? Imagine one needs to partition a dataset into k clusters for IVF and the38

dimensionality of the data is d – IVF uses full d representation to partition into k clusters. However,39

suppose we have an alternate approach that somehow projects the data in d/2 dimensions and learns40

2k clusters. Note that the storage and computation to find the nearest cluster remains the same in both41

cases, i.e., when we have k clusters of d dimensions or 2k clusters of d/2 dimensions. 2k clusters42

can provide significantly more refined partitioning, but the distances computed between queries and43

clusters could be significantly more inaccurate after projection to d/2 dimensions.44

So, if we can find a mechanism to obtain a d/2-dimensional representation of points that can accurately45

approximate the topology/distances of d-dimensional representation, then we can potentially build46

significantly better ANNS structure that utilizes different capacity representations for the cluster47

mapping and linear scan phases of IVF. But how do we find such adaptive representations? These48

desired adaptive representations should be cheap to obtain and still ensure distance preservation49

across dimensionality. Post-hoc dimensionality reduction techniques like SVD [13] and random50

projections [24] on high-dimensional RRs are potential candidates, but our experiments indicate that51

in practice they are highly inaccurate and do not preserve distances well enough (Figure 2).52

Instead, we identify that the recently proposed Matryoshka Representations (MRs) [30] satisfy53

the specifications for adaptive representations. Matryoshka representations pack information in a54

hierarchical nested manner, i.e., the first m-dimensions of the d-dimensional MR form an accurate55

low-dimensional representation while being aware of the information in the higher dimensions.56

This allows us to deploy MRs in two major and novel ways as part of ANNS: (a) low-dimensional57

representations for accuracy-compute optimal clustering and quantization, and (b) high-dimensional58

representations for precise re-ranking when feasible.59

To this effort, we introduce AdANNS , a novel design framework for semantic search that uses60

matryoshka representation-based adaptive representations across different stages of ANNS to ensure61

significantly better accuracy-compute trade-off than the state-of-the-art baselines.62

Typical ANNS systems have two key components: (a) search data structure to store datapoints, (b)63

distance computation to map a given query to points in the data structure. Through AdANNS, we64

address both these components and significantly improve their performance. In particular, we first65

propose AdANNS-IVF (Section 4.1) which tackles the first component of ANNS systems. AdANNS-66

IVF uses standard full-precision computations but uses adaptive representations for different IVF67

stages. On ImageNet 1-NN image retrieval (Figure 1a), AdANNS-IVF is up to 1.5% more accurate68

for the compute budget and 90× cheaper in deployment for the same accuracy as IVF.69

We then propose AdANNS-OPQ (Section 4.2) which addresses the second component by using70

AdANNS-based quantization (OPQ [12]) – here we use exhaustive search overall points. AdANNS-71

OPQ is as accurate as the baseline OPQ on RRs while being at least 2× faster on Natural Ques-72

tions [31] 1-NN passage retrieval (Figure 1b). Finally, we combine the two techniques to obtain73
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AdANNS-IVFOPQ (Section 4.3) which is more accurate while being much cheaper – up to 8×74

– than the traditional IVFOPQ [23] index. To demonstrate generality of our technique, we adapt75

AdANNS to DiskANN [21] which provides interesting accuracy-compute tradeoff; see Table 1.76

While MR already has multi-granular representations, careful integration with ANNS building blocks77

is critical to obtain a practical method and is our main contribution. In fact, Kusupati et al. [30]78

proposed a simple adaptive retrieval setup that uses smaller-dimensional MR for shortlisting in re-79

trieval followed by precise re-ranking with a higher-dimensional MR. Such techniques, unfortunately,80

cannot be scaled to industrial systems as they require forming a new index for every shortlisting81

provided by low-dimensional MR. Ensuring that the method aligns well with the modern-day82

ANNS pipelines is important as they already have mechanisms to handle real-world constraints like83

load-balancing [15] and random access from disk [21]. So, AdANNS is a step towards making the84

abstraction of adaptive search and retrieval feasible at the web-scale.85

Through extensive experimentation, we also show that AdANNS generalizes across search data86

structures, distance approximations, modalities (text & image), and encoders (CNNs & Transformers)87

while still translating the theoretical gains to latency reductions in deployment. While we have mainly88

focused on IVF and OPQ-based ANNS in this work, AdANNS also blends well with other ANNS89

pipelines. We also show that AdANNS can enable compute-aware elastic search on prebuilt indices90

without making any modifications (Section 5.1); note that this is in contrast to AdANNS-IVF that91

builds the index explicitly utilizing “adaptivity” in representations. Finally, we provide an extensive92

analysis on the alignment of matryoshka representation for better semantic search (Section 5.2).93

We make the following key contributions:94

• We introduce AdANNS , a novel framework for semantic search that leverages matryoshka95

representations for designing ANNS systems with better accuracy-compute trade-offs.96

• AdANNS powered search data structure (AdANNS-IVF) and quantization (AdANNS-OPQ)97

show a significant improvement in accuracy-compute tradeoff compared to existing solutions.98

• AdANNS generalizes to modern-day composite ANNS indices and can also enable compute-aware99

elastic search during inference with no modifications.100

2 Related Work101

Approximate nearest neighbour search (ANNS) is a paradigm to come as close as possible [7] to102

retrieving the “true” nearest neighbor (NN) without the exorbitant search costs associated with103

exhaustive search [20, 50]. The “approximate” nature comes from data pruning as well as the cheaper104

distance computation that enable real-time web-scale search. In its naive form, NN-search has a105

complexity of O(dN); d is the data dimensionality used for distance computation and N is the size106

of the database. ANNS employs each of these approximations to reduce the linear dependence on the107

dimensionality (cheaper distance computation) and data points visited during search (data pruning).108

Cheaper distance computation. From a bird’s eye view, cheaper distance computation is always109

obtained through dimensionality reduction (quantization included). PCA and SVD [13, 25] can110

reduce dimensionality and preserve distances only to a limited extent without sacrificing accuracy.111

On the other hand, quantization-based techniques [6, 14] like (optimized) product quantization112

((O)PQ) [12, 22] have proved extremely crucial for relatively accurate yet cheap distance computation113

and simultaneously reduce the memory overhead significantly. Another naive solution is to indepen-114

dently train the representation function with varying low-dimensional information bottlenecks [30]115

which is rarely used due to the costs of maintaining multiple models and databases.116

Data pruning. Enabled by various data structures, data pruning reduces the number of data points117

visited as part of the search. This is often achieved through hashing [8, 44], trees [3, 11, 15, 46]118

and graphs [21, 37]. More recently there have been efforts towards end-to-end learning of the119

search data structures [16, 28, 29]. However, web-scale ANNS indices are often constructed on rigid120

d-dimensional real vectors using the aforementioned data structures that assist with the real-time121

search. For a more comprehensive review of ANNS structures please refer to [5, 33, 49].122

Composite indices. ANNS pipelines often benefit from the complementary nature of various building123

blocks [23, 40]. In practice, often the data structures (coarse-quantizer) like IVF [46] and HNSW [36]124

are combined with cheaper distance alternatives like PQ [22] (fine-quantizer) for massive speed-ups125

in web-scale search. While the data structures are built on d-dimensional real vectors, past works126
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consistently show that PQ can be safely used for distance computation during search time. As127

evident in modern web-scale ANNS systems like DiskANN [21], the data structures are built on128

d-dimensional real vectors but work with PQ vectors (32− 64-byte) for fast distance computations.129

ANNS benchmark datasets. Despite the Herculean advances in representation learning [18, 40],130

ANNS progress is often only benchmarked on fixed representation vectors provided for about a131

dozen million to billion scale datasets [1, 45] with limited access to the raw data. This resulted in132

the improvement of algorithmic design for rigid representations (RRs) that are often not specifically133

designed for search. All the existing ANNS methods work with the assumption of using the provided134

d-dimensional representation which might not be Pareto-optimal for the accuracy-compute trade-135

off in the first place. Note that the lack of raw-image and text-based benchmarks led us to using136

ImageNet-1K [43] (1.3M images, 50K queries) and Natural Questions [31] (21M passages, 3.6K137

queries) for experimentation. While not billion-scale, the results observed on ImageNet often translate138

to real-world progress [27], and Natural Questions is one of the largest question answering datasets139

benchmarked for dense passage retrieval [26], making our results generalizable and widely applicable.140

In this paper, we investigate the utility of adaptive representations – embeddings of different dimen-141

sionalities having similar semantic information – in improving the design of ANNS algorithms. This142

helps in transitioning out of restricted construction and inference on rigid representations for ANNS.143

To this end, we extensively use Matryoshka Representations (MRs) [30] which have desired adaptive144

properties in-built. To the best of our knowledge, this is the first work that improves accuracy-compute145

trade-off in ANNS by leveraging adaptive representations on different phases of construction and146

inference for ANNS data structures.147

3 Problem Setup, Notation, and Preliminaries148

The problem setup of approximate nearest neighbor search (ANNS) [20] consists of a database of N149

data points, [x1, x2, . . . , xN ], and a query, q, where the goal is to “approximately” retrieve the nearest150

data point to the query. Both the database and query are embedded to Rd using a representation151

function φ : X → Rd, often a neural network that can be learned through various representation152

learning paradigms [2, 18, 19, 38, 40].153

Matryoshka Representations (MRs). The d-dimensional representations from φ can have a nested154

structure like Matryoshka Representations (MRs) [30] in-built – φMR(d). Matryoshka Representation155

Learning (MRL) learns these nested representations with a simple strategy of optimizing the same156

training objective at varying dimensionalities. These granularities are ordered such that the lowest157

representation size forms a prefix for the higher-dimensional representations. So, high-dimensional158

MR inherently contains low-dimensional representations of varying granularities that can be accessed159

for free – first m-dimensions (m ∈ [d]) ie., φMR(d)[1 : m] from the d-dimensional MR form an160

m-dimensional representation which is as accurate as its independently trained rigid representation161

(RR) counterpart – φRR(m). Training an encoder with MRL does not involve any overhead or162

hyperparameter tuning and works seamlessly across modalities, training objectives, and architectures.163

Inverted File Index (IVF). IVF [46] is an ANNS data structure used in web-scale search sys-164

tems [15] owing to its simplicity, minimal compute overhead, and high accuracy. IVF construction165

involves clustering (coarse quantization through k-means) [35] on d-dimensional representation that166

results in an inverted file list [51] of all the data points in each cluster. During search, d-dimensional167

query representation is assigned to the most relevant cluster (Ci; i ∈ [k]) by finding the closest cen-168

troid (µi) using an appropriate distance metric (L2 or cosine). This is followed by an exhaustive linear169

search across all data points in the cluster which gives the closest NN (see Figure 5 in Appendix A170

for IVF overview). Lastly, IVF can scale to web-scale by utilizing a hierarchical IVF structure within171

each cluster [15]. Table 2 in Appendix A describes the retrieval formula for multiple variants of IVF.172

Optimized Product Quantization (OPQ). Product Quantization (PQ) [22] works by splitting a173

d-dimensional real vector into m sub-vectors and quantizing each sub-vector with an independent 2b174

length codebook across the database. After PQ, each d-dimensional vector can be represented by a175

compact m× b bit vector; we make each vector m bytes long by fixing b = 8. During search time,176

distance computation between the query vector and PQ database is extremely efficient with only m177

codebook lookups. The generality of PQ encompasses scalar/vector quantization [14, 35] as special178
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cases. However, PQ can be further improved by rotating the d-dimensional space appropriately to179

maximize distance preservation after PQ. Optimized Product Quantization (OPQ) [12] achieves this180

by learning an orthonormal projection matrix R that rotates the d-dimensional space to be more181

amenable to PQ. OPQ shows consistent gains over PQ across a variety of ANNS tasks and has182

become the default choice in standard composite indices [21, 23].183

Datasets. We evaluate the ANNS algorithms while changing the representations used for the search184

thus making it impossible to evaluate on the usual benchmarks [1]. Hence we experiment with two185

public datasets: (a) ImageNet-1K [43] dataset on the task of image retrieval – where the goal is to186

retrieve images from a database (1.3M image train set) belonging to the same class as the query187

image (50K image validation set) and (b) Natural Questions (NQ) [31] dataset on the task of question188

answering through dense passage retrieval – where the goal is to retrieve the relevant passage from a189

database (21M Wikipedia passages) for a query (3.6K questions).190

Metrics Performance of ANNS is often measured using recall score [21], k-recall@N – recall of191

the exact NN across search complexities which denotes the recall of k “true” NN when N data points192

are retrieved. However, the presence of labels allows us to compute 1-NN (top-1) accuracy. Top-1193

accuracy is a harder and more fine-grained metric that correlates well with typical retrieval metrics194

like recall and mean average precision (mAP@k). Even though we report top-1 accuracy by default195

during experimentation, we discuss other metrics in Appendix C. Finally, we measure the compute196

overhead of ANNS using MFLOPS/query and also provide wall-clock times (see Appendix E.4).197

Encoders. For ImageNet, we encode both the database and query set using a ResNet50 (φI ) [18]198

trained on ImageNet-1K. For NQ, we encode both the passages in the database and the questions in199

the query set using a BERT-Base (φN ) [10] model fine-tuned on NQ for dense passage retrieval [26].200

We use the trained ResNet50 models with varying representation sizes (d = [8, 16, . . . , 2048]; default201

being 2048) as suggested by Kusupati et al. [30] alongside the MRL-ResNet50 models trained with202

MRL for the same dimensionalities. The RR and MR models are trained to ensure the supervised203

one-vs-all classification accuracy across all data dimensionalities is nearly the same – 1-NN accuracy204

of 2048-d RR and MR models are 71.19% and 70.97% respectively on ImageNet-1K. Independently205

trained models, φRR(d)
I , output d = [8, 16 . . . , 2048] dimensional RRs while a single MRL-ResNet50206

model, φMR(d)
I , outputs a d = 2048-dimensional MR that contains all the 9 granularities.207

We also train BERT-Base models in a similar vein as the aforementioned ResNet50 models. The208

key difference is that we take a pre-trained BERT-Base model and fine-tune on NQ as suggested209

by Karpukhin et al. [26] with varying (5) representation sizes (bottlenecks) (d = [48, 96, . . . , 768];210

default being 768) to obtain φRR(d)
N that creates RRs for the NQ dataset. To get the MRL-BERT-211

Base model, we fine-tune a pre-trained BERT-Base encoder on the NQ train dataset using the MRL212

objective with the same granularities as RRs to obtain φMR(d)
N which contains all five granularities.213

Akin to ResNet50 models, the RR and MR BERT-Base models on NQ are built to have similar 1-NN214

accuracy for 768-d of 52.2% and 51.5% respectively. More implementation details can be found in215

Appendix B and additional experiment-specific information is provided at the appropriate places.216

4 AdANNS – Adaptive ANNS217

In this section, we present our proposed AdANNS framework that exploits the inherent flexibility218

of matryoshka representations to improve the accuracy-compute trade-off for semantic search com-219

ponents. Standard ANNS pipeline can be split into two key components: (a) search data structure220

that indexes and stores data points, (b) query-point computation method that outputs (approximate)221

distance between a given query and data point. For example, standard IVFOPQ [23] method uses222

an IVF structure to index points on full-precision vectors and then relies on OPQ for more efficient223

distance computation between the query and the data points during the linear scan.224

Below, we show that AdANNS can be applied to both the above-mentioned ANNS components225

and provides significant gains on the computation-accuracy tradeoff curve. In particular, we present226

AdANNS-IVF which is AdANNS version of the standard IVF index structure [46], and the closely227

related ScaNN structure [15]. We also present AdANNS-OPQ which introduces representation adap-228

tivity in the OPQ, an industry-default quantization. Then, in Section 4.3 we further demonstrate the229
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combination of the two techniques to get AdANNS-IVFOPQ – an AdANNS version of IVFOPQ [23]230

– and AdANNS-DiskANN, a similar variant of DiskANN [21]. Overall, our experiments show that231

AdANNS-IVF is significantly more accuracy-compute optimal compared to the IVF indices built on232

RRs and AdANNS-OPQ is as accurate as the OPQ on RRs while being significantly cheaper.233

4.1 AdANNS-IVF234
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Figure 2: 1-NN accuracy on ImageNet retrieval shows
that AdANNS-IVF achieves near-optimal accuracy-compute
trade-off compared across various rigid and adaptive base-
lines. Both adaptive variants of MR and RR significantly
outperform their rigid counterparts (IVF-XX) while post-hoc
compression on RR using SVD for adaptivity falls short.

Recall from Section 1 that IVF has235

a clustering and a linear scan phase,236

where both phase use same dimen-237

sional rigid representation. Now,238

AdANNS-IVF allows the clustering239

phase to use the first dc dimensions240

of the given matryoshka represen-241

tation (MR). Similarly, the linear242

scan within each cluster uses ds di-243

mensions, where again ds represents244

top ds coordinates from MR. Note245

that setting dc = ds results in non-246

adaptive regular IVF. Intuitively, we247

would set dc � ds, so that instead248

of clustering with a high-dimensional249

representation, we can approximate it250

accurately with a low-dimensional em-251

bedding of size dc followed by a lin-252

ear scan with a higher ds-dimensional253

representation. Intuitively, this helps254

in the smooth search of design space255

for state-of-the-art accuracy-compute256

trade-off. Furthermore, this can provide a precise operating point on accuracy-compute tradeoff curve257

which is critical in several practical settings.258

Our experiments on regular IVF with MRs and RRs (IVF-MR & IVF-RR) of varying dimensionali-259

ties and IVF configurations (# clusters, # probes) show that (Figure 2) matryoshka representations260

result in a significantly better accuracy-compute trade-off. We further studied and found that learned261

lower-dimensional representations offer better accuracy-compute trade-offs for IVF than higher-262

dimensional embeddings (see Appendix E for more results).263

AdANNS utilizes d-dimensional matryoshka representation to get accurate dc and ds dimensional264

vectors at no extra compute cost. The resulting AdANNS-IVF provides a much better accuracy-265

compute trade-off (Figure 2) on ImageNet-1K retrieval compared to IVF-MR, IVF-RR, and MG-266

IVF-RR – multi-granular IVF with rigid representations (akin to AdANNS without MR) – a strong267

baseline that uses dc and ds dimensional RRs. Finally, we exhaustively search the design space of268

IVF by varying dc, ds ∈ [8, 16, . . . , 2048] and the number of clusters k ∈ [8, 16, . . . , 2048]. Please269

see Appendix F for more details. For IVF experiments on the NQ dataset, please refer to Appendix H.270

Empirical results. Figure 2 shows that AdANNS-IVF outperforms the baselines across all271

accuracy-compute settings for ImageNet-1K retrieval. AdANNS-IVF results in 10× lower compute272

for the best accuracy of the extremely expensive MG-IVF-RR and non-adaptive IVF-MR. Specifi-273

cally, as shown in Figure 1a, AdANNS-IVF is up to 1.5% more accurate for the same compute and274

has up to 100× lesser FLOPS/query (90× real-world speed-up!) than the status quo ANNS on rigid275

representations (IVF-RR). We filter out points for the sake of presentation and encourage the reader276

to check out Figure 10 in Appendix F for an expansive plot of all the configurations searched.277

The advantage of AdANNS for construction of search structures is evident from the improvements278

in IVF (AdANNS-IVF) and can be easily extended to other ANNS structures like ScaNN [15] and279

HNSW [37]. For example, HNSW consists of multiple layers with graphs of NSW graphs [36] of280

increasing complexity. AdANNS can be adopted to HNSW, where the construction of each level can281

be powered by appropriate dimensionalities for an optimal accuracy-compute trade-off. In general,282

AdANNS provides fine-grained control over compute overhead (storage, working memory, inference,283

and construction cost) during construction and inference while providing the best possible accuracy.284
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4.2 AdANNS-OPQ285

Standard Product Quantization (PQ) essentially performs block-wise vector quantization via cluster-286

ing. For example, suppose we need 32-byte PQ compressed vectors from the given 2048 dimensional287

representations. Then, we can chunk the representations in 32 equal blocks/sub-vectors of 64-d each,288

and each sub-vector space is clustered into 28 = 256 partitions. That is, the representation of each289

point is essentially cluster-id for each block. Optimized PQ (OPQ) [12] further refines this idea, by290

first rotating the representations using a learned orthogonal matrix, and then applying PQ on top of291

the rotated representations. In ANNS, OPQ is used extensively to compress vectors and improves292

approximate distance computation primarily due to significantly lower memory overhead than storing293

full-precision data points IVF.294

AdANNS-OPQ utilizes MR representations to apply OPQ on lower-dimensional representations.295

That is, for a given quantization budget, AdANNS allows using top ds � d dimensions from MR and296

then computing clusters with ds/B-dimensional blocks where B is the number of blocks. Depending297

on ds and B, we have further flexibility of trading-off dimensionality/capacity for increasing the298

number of clusters to meet the given quantization budget. AdANNS-OPQ tries multiple ds, B, and299

number of clusters for a fixed quantization budget to obtain the best performing configuration.300

We experimented with 8− 128 byte OPQ budgets for both ImageNet and Natural Questions retrieval301

with an exhaustive search on the quantized vectors. We compare AdANNS-OPQ which uses MRs of302

varying granularities to the baseline OPQ built on the highest dimensional RRs. We also evaluate303

OPQ vectors obtained projection using SVD [13] on top of the highest-dimensional RRs.304

Empirical results. Figures 3 and 1b show that AdANNS-OPQ significantly outperforms – up to305

4% accuracy gain – the baselines (OPQ on RRs) across compute budgets on both ImageNet and NQ.306

In particular, AdANNS-OPQ tends to match the accuracy of a 64-byte (a typical choice in ANNS)307

OPQ baseline with only a 32-byte budget. This results in a 2× reduction in both storage and compute308

FLOPS which translates to significant gains in real-world web-scale deployment (see Appendix D).309

We only report the best AdANNS-OPQ for each budget typically obtained through a much lower-310

dimensional MR (128 & 192; much faster to build as well) than the highest-dimensional MR (2048311

& 768) for ImageNet and NQ respectively (see Appendix H for more details). At the same time, we312

note that building compressed OPQ vectors on projected RRs using SVD to the smaller dimensions313

(or using low-dimensional RRs, see Appendix D) as the optimal AdANNS-OPQ does not help in314

improving the accuracy. The significant gains we observe in AdANNS-OPQ are purely due to better315

information packing in MRs – we hypothesize that packing the most important information in the316

initial coordinates results in a better PQ quantization than RRs where the information is uniformly317

distributed across all the dimensions [30, 47]. See Appendix D for more details and experiments.318
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Figure 3: AdANNS-OPQ matches the accuracy
of 64-byte OPQ on RR using only 32-bytes for
ImageNet retrieval. AdANNS provides large
gains at lower compute budgets and saturates to
baseline performance for larger budgets.
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IVFOPQ is 8× cheaper for the same accuracy
and provides 1 - 4% gains over IVFOPQ on RRs.
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4.3 AdANNS for Composite Indices319

We now extend AdANNS to composite indices [23] which put together two main ANNS building320

blocks – search structures and quantization – together to obtain efficient web-scale ANNS indices321

used in practice. A simple instantiation of a composite index would be the combination of IVF and322

OPQ – IVFOPQ – where the clustering in IVF happens with full-precision real vectors but the linear323

scan within each cluster is approximated using OPQ-compressed variants of the representation –324

since often the full-precision vectors of the database cannot fit in RAM. Contemporary ANNS indices325

like DiskANN [21] make this a default choice where they build the search graph with a full-precision326

vector and approximate the distance computations during search with an OPQ-compressed vector to327

obtain a very small shortlist of retrieved datapoints. In DiskANN, the shortlist of data points is then328

re-ranked to form the final list using their full-precision vectors fetched from the disk. AdANNS is329

naturally suited to this shortlist-rerank framework: we use a low-dMR for forming index, where we330

could tune AdANNS parameters according to the accuracy-compute trade-off of the graph and OPQ331

vectors. We then use a high-dMR for re-ranking.332

Table 1: AdANNS-DiskANN using a 16-dMR+ re-ranking
with the 2048-dMR outperforms DiskANN built on 2048-d
RR at half the compute cost on ImageNet retrieval.

RR-2048 AdANNS

PQ Budget (Bytes) 32 16
Top-1 Accuracy (%) 70.37 70.56
mAP@10 (%) 62.46 64.70
Precision@40 (%) 65.65 68.25

Empirical results. Figure 4 shows333

that AdANNS-IVFOPQ is 1 − 4%334

better than the baseline at all the335

PQ compute budgets. Furthermore,336

AdANNS-IVFOPQ has the same ac-337

curacy as the baselines at 8× lower338

overhead. With DiskANN, AdANNS339

accelerates shortlist generation by us-340

ing low-dimensional representations341

and recoups the accuracy by re-342

ranking with the highest-dimensional343

MR at negligible cost. Table 1 shows that AdANNS-DiskANN is more accurate than the baseline for344

both 1-NN and ranking performance at only half the cost. Using low-dimensional representations345

further speeds up inference in AdANNS-DiskANN (see Appendix G).346

These results show the generality of AdANNS and its broad applicability across a variety of ANNS347

indices built on top of the base building blocks. Currently, AdANNS piggybacks on typical ANNS348

pipelines for their inherent accounting of the real-world system constraints [15, 21, 24]. However,349

we believe that AdANNS’s flexibility and significantly better accuracy-compute trade-off can be350

further informed by real-world deployment constraints. We leave this high-potential line of work that351

requires extensive study to future research.352

5 Further Analysis and Discussion353

5.1 Compute-aware Elastic Search During Inference354

AdANNS search structures cater to many specific large-scale use scenarios that need to satisfy precise355

resource constraints during construction as well as inference. However, in many cases, construction356

and storage of the indices are not the bottlenecks or the user is unable to search the design space.357

In these settings, AdANNS-D enables adaptive inference through accurate yet cheaper distance358

computation using the low-dimensional prefix of matryoshka representation. Akin to composite359

indices (Section 4.3) that use PQ vectors for cheaper distance computation, we can use the low-360

dimensional MR for faster distance computation on ANNS structure built non-adaptively with a361

high-dimensional MR without any modifications to the existing index.362

Empirical results. Figure 2 shows that for a given compute budget using IVF on ImageNet-1K363

retrieval, AdANNS-IVF is better than AdANNS-IVF-D due to the explicit control during the building364

of the ANNS structure which is expected. However, the interesting observation is that AdANNS-D365

matches or outperforms the IVF indices built with MRs of varying capacities for ImageNet retrieval.366

However, these methods are applicable in specific scenarios of deployment. Obtaining optimal367

AdANNS search structure (highly accurate) or even the best IVF-MR index relies on a relatively368

expensive design search but delivers indices that fit the storage, memory, compute, and accuracy369

constraints all at once. On the other hand AdANNS-D does not require a precisely built ANNS index370

but can enable compute-aware search during inference. AdANNS-D is a great choice for setups that371
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can afford only one single database/index but need to cater to varying deployment constraints, e.g.,372

one task requires 70% accuracy while another task has a compute budget of 1 MFLOPS/query.373

5.2 Why MRs over RRs?374

Quite a few of the gains from AdANNS are owing to the quality and capabilities of matryoshka375

representations. So, we conducted extensive analysis to understand why matryoshka representations376

seem to be more aligned for semantic search than the status-quo rigid representations.377

Difficulty of NN search. Relative contrast (Cr) [17] is inversely proportional to the difficulty of378

nearest neighbor search on a given database. On ImageNet-1K, Figure 13 shows that MRs have379

better Cr than RRs across dimensionalities, further supporting that matryoshka representations are380

more aligned (easier) for NN search than existing rigid representations for the same accuracy. More381

details and analysis about this experiment can be found in Appendix I.2.382

Clustering distributions. We also investigate the potential deviation in clustering distributions383

for MRs across dimensionalities compared to RRs. Unlike the RRs where the information is384

uniformly diffused across dimensions [47], MRs have hierarchical information packing. Figure 9 in385

Appendix E.3 shows that matryoshka representations result in clusters similar (measured by total386

variation distance [32]) to that of rigid representations and do not result in any unusual artifacts.387

Robustness. Figure 7 in Appendix E shows that MRs continue to be better than RRs even for out-388

of-distribution (OOD) image queries (ImageNetV2 [42]) using ANNS. It also shows that the highest389

data dimensionality need not always be the most robust which is further supported by the higher390

recall using lower dimensions. Further details about this experiment can be found in Appendix E.1.391

Generality across encoders. IVF-MR consistently has higher accuracy than IVF-RR across dimen-392

sionalities despite having similar accuracies with exact NN search (for ResNet50 on ImageNet and393

BERT-Base on NQ). We find that our observations on better alignment of MRs for NN search hold394

across neural network architectures, ResNet18/34/101 [18] and ConvNeXt-Tiny [34]. Appendix I.3395

delves deep into the experimentation done using various neural architectures on ImageNet-1K.396

Recall score analysis. Analysis of recall score (see Appendix C) in Appendix I.1 shows that for397

a similar top-1 accuracy, lower-dimensional representations have better 1-Recall@1 across search398

complexities for IVF and HNSW on ImageNet-1K. Across the board, MRs have higher recall399

scores and top-1 accuracy pointing to easier “searchability” and thus suitability of matryoshka400

representations for ANNS. Larger-scale experiments and further analysis can be found in Appendix I.401

Through these analyses, we argue that matryoshka representations are better suited for semantic402

search than rigid representations, thus making them an ideal choice for AdANNS.403

5.3 Limitations404

AdANNS’s core focus is to improve the design of the existing ANNS pipelines. To use AdANNS405

on a corpus, we need to back-fill [41] the MRs of the data – a significant yet a one-time overhead.406

We also notice that high-dimensional MRs start to degrade in performance when optimizing also for407

an extremely low-dimensional granularity (e.g., < 24-d for NQ) – otherwise is it quite easy to have408

comparable accuracies with both RRs and MRs. Lastly, the existing dense representations can only409

in theory be converted to MRs with an auto-encoder-style non-linear transformation. We believe410

most of these limitations form excellent future work to improve AdANNS further.411

6 Conclusions412

We proposed a novel framework, AdANNS , that leverages adaptive representations for different413

phases of ANNS pipelines to improve the accuracy-compute tradeoff. AdANNS utilizes the inherent414

flexibility of matryoshka representations [30] to design better ANNS building blocks than the standard415

ones which use the rigid representation in each phase. AdANNS achieves SOTA accuracy-compute416

trade-off for the two main ANNS building blocks: search data structures (AdANNS-IVF) and417

quantization (AdANNS-OPQ). Finally, the combination of AdANNS-based building blocks leads to418

the construction of better real-world composite ANNS indices – with as much as 8× reduction in419

cost at the same accuracy as strong baselines – while also enabling compute-aware elastic search.420
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A AdANNS Framework551

Algorithm 1 AdANNS-IVF Psuedocode

# Index database to construct clusters and build inverted file system

def adannsConstruction(database, d_cluster, num_clusters):
# Slice database with cluster construction dim (d_cluster)
xb = database[:d_cluster]
cluster_centroids = constructClusters(xb, num_clusters)

return cluster_centroids

def adannsInference(queries, centroids, d_shortlist, d_search, num_probes,
k):
# Slice queries and centroids with cluster shortlist dim (d_shortlist)
xq = queries[:d_shortlist]
xc = centroids[:d_shortlist]

for q in queries:
# compute distance of query from each cluster centroid
candidate_distances = computeDistances(q, xc)
# sort cluster candidates by distance and choose small number to

probe
cluster_candidates = sortAscending(candidate_distances)[:num_probes]
database_candidates = getClusterMembers(cluster_candidates)
# Linear Scan all shortlisted clusters with search dim (d_search)
k_nearest_neighbors[q] = linearScan(q, database_candidates, d_search,

k)

return k_nearest_neighbors

Query
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µi
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𝑋 𝜖 Ck

Linear	
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Figure 5: The schematic of inverted file index (IVF) outlaying the construction and inference phases.
Adaptive representations can be utilized effectively in the decoupled components of clustering and
searching for a better accuracy-compute trade-off (AdANNS-IVF).
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Table 2: Mathematical formulae of the retrieval phase across various methods built on IVF. See
Section 3 for notations.

Method Retrieval Formula during Inference

IVF-RR argminj∈Ch(q)
‖φRR(d)(q)− φRR(d)(xj)‖, s.t. h(q) = argminh ‖φRR(d)(q)− µRR(d)

h ‖
IVF-MR argminj∈Ch(q)

‖φMR(d)(q)− φMR(d)(xj)‖, s.t. h(q) = argminh ‖φMR(d)(q)− µMR(d)
h ‖

AdANNS-IVF argminj∈Ch(q)
‖φMR(ds)(q)− φMR(ds)(xj)‖, s.t. h(q) = argminh ‖φMR(dc)(q)− µMR(dc)

h ‖
MG-IVF-RR argminj∈Ch(q)

‖φRR(ds)(q)− φRR(ds)(xj)‖, s.t. h(q) = argminh ‖φRR(dc)(q)− µRR(dc)
h ‖

AdANNS-IVF-D argminj∈Ch(q)
‖φMR(d)(q)[1 : d̂]− φMR(d)(xj)[1 : d̂]‖, s.t. h(q) = argminh ‖φMR(d)(q)[1 : d̂]− µMR(d)

h [1 : d̂]‖
IVFOPQ argminj∈Ch(q)

‖φPQ(m,b)(q)− φPQ(m,b)(xj)‖, s.t. h(q) = argminh ‖φ(q)− µh‖

B Training and Compute Costs552

A bulk of our ANNS experimentation was written with Faiss [23], a library for efficient similarity553

search and clustering. AdANNS was implemented from scratch due to difficulty in decoupling554

clustering and linear scan with Faiss, with code available at [redacted for double blind]. We also555

provide a version of AdANNS with Faiss optimizations with the restriction that Dc ≥ Ds as a556

limitation of the current implementation. All ANNS experiments (AdANNS-IVF, MG-IVF-RR,557

IVF-MR, IVF-RR, HNSW, HNSWOPQ, IVFOPQ) were run on an Intel Xeon 2.20GHz CPU with558

12 cores. Exact Search (Flat L2, PQ, OPQ) and DiskANN experiments were run with CUDA 11.0 on559

a A100-SXM4 NVIDIA GPU with 40G RAM. The wall-clock inference times quoted in Figure 1a560

and Table 3 are reported on CPU with Faiss optimizations, and are averaged over three inference runs561

for ImageNet-1K retrieval.562

Table 3: Comparison of AdANNS-IVF and Rigid-IVF wall-clock inference times for ImageNet-1K
retrieval. AdANNS-IVF has up to ∼ 1.5% gain over Rigid-IVF for a fixed search latency per query.

AdANNS-IVF Rigid-IVF

Top-1 Search Latency/Query (ms) Top-1 Search Latency/Query (ms)

70.02 0.03 68.51 0.02
70.08 0.06 68.54 0.05
70.19 0.06 68.74 0.08
70.36 0.88 69.20 0.86
70.60 5.57 70.13 5.67

DPR [26] on NQ [31]. We follow the setup on the DPR repo1: the Wikipedia corpus has 21 million563

passages and Natural Questions dataset for open-domain QA settings. The training set contains564

79,168 question and answer pairs, the dev set has 8,757 pairs and the test set has 3,610 pairs.565

C Evaluation Metrics566

In this work, we primarily use top-1 accuracy (i.e. 1-Nearest Neighbor), recall@k, corrected mean567

average precision (mAP@k) [29] and k-Recall@N (recall score), which are defined over all queries568

Q over indexed database of size ND as:569

top-1 =

∑
Q correct_pred@1

|Q|

Recall@k =

∑
Q correct_pred@k

|Q|
∗ num_classes

|ND|

where correct_pred@k is the number of k-NN with correctly predicted labels for a given query. As570

noted in Section 3, k-Recall@N is the overlap between k exact search nearest neighbors (considered571

1https://github.com/facebookresearch/DPR
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as ground truth) and the top N retrieved documents. As Faiss [23] supports a maximum of 2048-572

NN while searching the indexed database, we report 40-Recall@2048 in Figure 12. Also note573

that for ImageNet-1K, which constitutes a bulk of the experimentation in this work, |Q| = 50000,574

|ND| = 1281167 and num_classes = 1000. For ImageNetv2 [42], |Q| = 10000 and num_classes575

= 1000, and for ImageNet-4K [30], |Q| = 210100, |ND| = 4202000 and num_classes = 4202. For576

NQ [31], |Q| = 3610 and |ND| = 21015324. As NQ consists of question-answer pairs (instance-577

level), num_classes = 3610 for the test set.578

D AdANNS-OPQ579

In this section, we take a deeper dive into the quantization characteristics of MR. In this work, we580

restrict our focus to optimized product quantization (OPQ) [12], which adds a learned space rotation581

and dimensionality permutation to PQ’s sub-vector quantization to learn more optimal PQ codes. We582

compare OPQ to vanilla PQ on ImageNet in Table 4, and observe large gains at larger embedding583

dimensionalities, which agrees with the findings of Jayaram Subramanya et al. [21].

Table 4: Comparison of PQ-MR with OPQ-MR for exact search on ImageNet-1K across embedding
dimensionality d ∈ {8, 16, ..., 2048} quantized to m ∈ {8, 16, 32, 64} bytes. OPQ shows large gains
over vanilla PQ at larger embedding dimensionalities d ≥ 128. Entries where OPQ outperforms PQ
on top-1 accuracy are bolded.

Config PQ OPQ

d m Top-1 mAP@10 P@100 Top-1 mAP@10 P@100

8 8 62.18 56.71 61.23 62.22 56.70 61.23

16 8 67.91 62.85 67.21 67.88 62.96 67.21
16 67.85 62.95 67.21 67.96 62.94 67.21

32
8 68.80 63.62 67.86 68.91 63.63 67.86

16 69.57 64.22 68.12 69.47 64.20 68.12
32 69.44 64.20 68.12 69.47 64.23 68.12

64

8 68.39 63.40 67.47 68.38 63.42 67.60
16 69.77 64.43 68.25 69.95 64.55 68.38
32 70.13 64.67 68.38 70.05 64.65 68.38
64 70.12 64.69 68.42 70.18 64.70 68.38

128

8 67.27 61.99 65.78 68.40 63.11 67.34
16 69.51 64.32 68.12 69.78 64.56 68.38
32 70.27 64.72 68.51 70.60 64.97 68.51
64 70.61 64.93 68.49 70.65 64.98 68.51

256

8 66.06 60.44 64.09 67.90 62.69 66.95
16 68.56 63.33 66.95 69.92 64.71 68.51
32 70.08 64.83 68.38 70.59 65.15 68.64
64 70.48 64.98 68.55 70.69 65.09 68.64

512

8 65.09 59.03 62.53 67.51 62.12 66.56
16 67.68 62.11 65.39 69.67 64.53 68.38
32 69.51 64.01 67.34 70.44 65.11 68.64
64 70.53 65.02 68.52 70.72 65.17 68.64

1024

8 64.58 58.26 61.75 67.26 62.07 66.56
16 66.84 61.07 64.09 69.34 64.23 68.12
32 68.71 62.92 66.04 70.43 65.03 68.64
64 69.88 64.35 67.68 70.81 65.19 68.64

2048

8 62.19 56.11 59.80 66.89 61.69 66.30
16 65.99 60.27 63.18 69.25 64.09 67.99
32 67.99 62.04 64.74 70.39 64.97 68.51
64 69.20 63.46 66.40 70.57 65.15 68.51
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Figure 6: Top-1 Accuracy of AdANNS composite indices with OPQ distance computation compared
to MR and Rigid baselines models on ImageNet-1K and Natural Questions.

We perform an exhaustive study of compression across embedding dimensionalities d for composite584

OPQ m × b indices on ImageNet-1K (where b = 8, i.e. 1 Byte), i.e. Exact Search with OPQ,585

IVF+OPQ, HNSW+OPQ, and DiskANN+OPQ, as seen in Figure 6. It is evident from these results586

that:587

1. Learning OPQ codebooks with AdANNS (Figure 6a) provides a 1-5% gain in top-1 accuracy588

over rigid representations at low compute budgets (≤ 32 Bytes). AdANNS-OPQ saturates to589

Rigid-OPQ performance at low compression (≥ 64 Bytes).590

2. For IVF, learning clusters with MRs instead of RRs (Figure 6b) provides substantial gains (1-591

4%). In contrast to Exact-OPQ, using AdANNS for learning OPQ codebooks does not provide592
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substantial top-1 accuracy gains over MR with d = 2048 (highest), though it is still slightly better593

or equal to MR-2048 at all compute budgets. This further supports that IVF performance generally594

scales with embedding dimensionality, which is consistent with our findings on ImageNet across595

robustness variants and encoders (See Figures 7 and 14 respectively).596

3. Note that in contrast to Exact, IVF, and HNSW coarse quantizers, DiskANN inherently re-ranks597

the retrieved shortlist with high-precision embeddings (d = 2048), which is reflected in its high598

top-1 accuracy. We find that AdANNS with 8-byte OPQ (Figure 6c) matches the top-1 accuracy599

of rigid representations using 32-byte OPQ, for a 4× cost reduction for the same accuracy. Also600

note that using AdANNS provides large gains over using MR-2048 at high compression (1.5%),601

highlighting the necessity of AdANNS’s flexibility for high-precision retrieval at low compute602

budgets.603

4. Our findings on the HNSW-OPQ composite index (Figure 6d) are consistent with all other indices,604

i.e. HNSW graphs constructed with AdANNS OPQ codebooks provide significant gains over RR605

and MR, especially at high compression (≤ 32 Bytes).606

OPQ on NQ dataset607

Our observations on ImageNet with ResNet-50 MR across search structures also extend to the Natural608

Questions dataset with Dense Passage Retriever (DPR with BERT-Base MR embeddings). We note609

that AdANNS provides gains over RR-768 embeddings for both Exact Search and IVF with OPQ.610

We find that similar to ImageNet (Figure 14) IVF performance on Natural Questions generally scales611

with dimensionality. AdANNS thus reduces to MR-768 performance for M ≥ 16. See Appendix H612

for a more in-depth discussion of AdANNS with DPR on Natural Questions. .613

E IVF614

Inverted file index (IVF) [46] is a simple yet powerful ANNS data structure used in web-scale search615

systems [15]. IVF construction involves clustering (coarse quantization often through k-means) [35]616

on d-dimensional representation that results in an inverted file list [51] of all the data points in each617

cluster. During search, the d-dimensional query representation is first assigned to the closest clusters618

(# probes, typically set to 1) and then an exhaustive linear scan happens within each cluster to obtain619

the nearest neighbors. As seen in Figure 7, IVF top-1 accuracy scales logarithmically with increasing620

representation dimensionality d on ImageNet-1K/V2/4K. The learned low-d representations thus621

provide better accuracy-compute trade-offs compared to high-d representations, thus furthering the622

case for usage of AdANNS with IVF (Section F).623

E.1 Robustness624

As shown in Figure 7, we examined the clustering capabilities of MRs on both in-distribution (ID)625

queries via ImageNet-1K and out-of-distribution (OOD) queries via ImageNetV2 [42], as well as626

on larger-scale ImageNet-4K [30]. For ID queries on ImageNet-1K (Figure 7a), IVF-MR is at least627

as accurate as Exact-RR for d ≤ 256 with a single search probe, demonstrating the quality of in-628

distribution low-d clustering with MR. On OOD queries (Figure 7b), we observe that IVF-MR is on629

average 2% more robust than IVF-RR across all cluster construction and linear scan dimensionalities630

d. It is also notable that clustering with MRs followed by linear scan with # probes = 1 is more robust631
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Figure 7: Top-1 Accuracy variation of IVF-MR of ImageNet 1K, ImageNetV2 and ImageNet-4K.
RR baselines are omitted on ImageNet-4K due to high compute cost.
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Table 5: Top-1 Accuracy of AdANNS-IVF-D on out-of-distribution queries from ImageNetV2
compared to both IVF and Exact Search with MR and RR embeddings. Note that for AdANNS-
IVF-D, the dimensionality used to build clusters dc = 2048.

d AdANNS-IVF-D IVF-MR Exact-MR IVF-RR Exact-RR

8 53.51 50.44 50.41 49.03 48.79
16 57.32 56.35 56.64 55.04 55.08
32 57.32 57.64 57.96 56.06 56.69
64 57.85 58.01 58.94 56.84 57.37

128 58.02 58.09 59.13 56.14 57.17
256 58.01 58.33 59.18 55.60 57.09
512 58.03 57.84 59.40 55.46 57.12

1024 57.66 57.58 59.11 54.80 57.53
2048 58.04 58.04 59.63 56.17 57.84

than exact search with RR embeddings across all d ≤ 2048, indicating the adaptability of MRs to632

distribution shifts during inference. As seen in Table 5, on ImageNetV2 AdANNS-IVF-D is the best633

configuration for d ≤ 16, and is similarly accurate to IVF-MR at all other d. AdANNS-IVF-D with634

d = 128 is able to match its own accuracy with d = 2048, a 16× compute gain during inference.635

This demonstrates the potential of AdANNS to adaptively search pre-indexed clustering structures.636

On 4-million scale ImageNet-4K (Figure 7c), we observe similar accuracy trends of IVF-MR637

compared to Exact-MR as in ImageNet-1K (Figure 7a) and ImageNetV2 (Figure 7b). We omit638

baseline IVF-RR and Exact-RR experiments due to high compute cost at larger scale.639

E.2 Ablations640

As seen in Figure 8a, IVF-MR can match the accuracy of Exact Search on ImageNet-4K with641

∼ 100× less compute. We also explored the capability of MRs at retrieving cluster centroids with642

low-d compared to a ground truth of 2048-d with k-Recall@N, as seen in Figure 8b. MRs were able643

to saturate to near-perfect 1-Recall@N for d ≥ 32 and N ≥ 4, indicating the potential of AdANNS644

at matching exact search performance with less than 10 search probes np.645

E.3 Clustering Distribution646

We examined the distribution of learnt clusters across embedding dimensionalities d for both MR
and RR models, as seen in Figure 9. We observe IVF-MR to have less variance than IVF-RR at
d ∈ {8, 16}, and slightly higher variance for d ≥ 32, while IVF-MR outperforms IVF-RR in top-1
across all d (Figure 7a). This indicates that although MR learns clusters that are less uniformly
distributed than RR at high d, the quality of learnt clustering is superior to RR across all d. Note that a
uniform distribution is N/k data points per cluster, i.e. ∼ 1250 for ImageNet-1K with k = 1024. We
quantitatively evaluate the proximity of the MR and RR clustering distributions with Total Variation
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Figure 9: Clustering distributions for IVF-MR and IVF-RR across embedding dimensionality d on
ImageNet-1K. An IVF-MR and IVF-RR clustered with d = 16 embeddings is denoted by MR-16
and RR-16 respectively.

Distance [32], which is defined over two discrete probability distributions p, q over [n] as follows:

dTV (p, q) =
1

2

∑
i∈[n]

|pi − qi|

We also compute dTV,2048(MR-d) = dTV (MR-d,RR-2048), which evaluates the total variation dis-647

tance of a given low-d MR from high-d RR-2048. We observe a monotonically decreasing dTV,2048648

with increasing d, which demonstrates that MR clustering distributions get closer to RR-2048 as we649

increase the embedding dimensionality d. We observe in Figure 9 that dTV (MR-d,RR-d) ∼ 7e− 4650

for d ∈ {8, 256, . . . , 2048} and ∼ 3e− 4 for d ∈ {16, 32, 64}. These findings agree with the top-1651

improvement of MR over RR as shown in Figure 7a, where there are smaller improvements for652

d ∈ {16, 32, 64} (smaller dTV ) and larger improvements for d ∈ {8, 256, . . . , 2048} (larger dTV ).653

These results demonstrate a correlation between top-1 performance of IVF-MR and the quality of654

clusters learnt with MR.655

E.4 Inference Compute Cost656

We evaluate inference compute costs for IVF in MegaFLOPS per query (MFLOPS/query) as shown
in Figures 2, 8a, and 10 as follows:

C = dsk +
npdsND

k
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Figure 10: Top-1 accuracy vs. compute cost per query of AdANNS-IVF compared to IVF-MR,
IVF-RR and MG-IVF-RR baselines on ImageNet-1K.

where dc is the cluster construction embedding dimensionality, ds is the embedding dim used for657

linear scan within each probed cluster, which is controlled by # of search probes np. Finally, k658

is the number of clusters |Ci| indexed over database of size ND. The default setting in this work,659

unless otherwise stated, is np = 1, k = 1024, ND = 1281167 (ImageNet-1K trainset). Vanilla IVF660

supports only dc = ds, while AdANNS-IVF provides flexibility via decoupling clustering and search661

(Section 4). AdANNS-IVF-D is a special case of AdANNS-IVF with the flexibility restricted to662

inference, i.e., dc is a fixed high-dimensional MR.663

F AdANNS-IVF664

Our proposed adaptive variant of IVF, AdANNS-IVF, decouples the clustering, with dc dimensions,665

and the linear scan within each cluster, with ds dimensions – setting dc = ds results in non-666

adaptive vanilla IVF. This helps in the smooth search of design space for the optimal accuracy-667

compute trade-off. A naive instantiation yet strong baseline would be to use explicitly trained668

dc and ds dimensional rigid representations (called MG-IVF-RR, for multi-granular IVF with669

rigid representations). We also examine the setting of adaptively choosing low-dimensional MR670

to linear scan the shortlisted clusters built with high-dimensional MR, i.e. AdANNS-IVF-D, as671

seen in Table 5. As seen in Figure 10, AdANNS-IVF provides pareto-optimal accuracy-compute672

tradeoff across inference compute. This figure is a more exhaustive indication of AdANNS-IVF673

behavior compared to baselines than Figures 1a and 2. AdANNS-IVF is evaluated for all possible674

tuples of dc, ds, k = |C| ∈ {8, 16, . . . , 2048}. AdANNS-IVF-D is evaluated for a pre-built IVF675

index with dc = 2048 and ds ∈ {8, . . . , 2048}. MG-IVF-RR configurations are evaluated for676

dc ∈ {8, . . . , ds}, ds ∈ {32, . . . , 2048} and k = 1024 clusters. A study over additional k values677

is omitted due to high compute cost. Finally, IVF-MR and IVF-RR configurations are evaluated678

for dc = ds ∈ {8, 16, . . . , 2048} and k ∈ {256, . . . , 8192}. Note that for a fair comparison, we use679

np = 1 across all configurations. We discuss the inference compute for these settings in Appendix E.4.680

G AdANNS-DiskANN681

DiskANN is a state-of-the-art graph-based ANNS index capable of serving queries from both RAM682

and SSD. DiskANN builds a greedy best-first graph with OPQ distance computation, with compressed683

vectors stored in memory. The index and full-precision vectors are stored on the SSD. During search,684

when a query’s neighbor shortlist is fetched from the SSD, its full-precision vector is also fetched685

in a single disk read. This enables efficient and fast distance computation with PQ on a large initial686

shortlist of candidate nearest neighbors in RAM followed by a high-precision re-ranking with full-687
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Table 6: Wall clock search latency (µs) of AdANNS-DiskANN across graph construction dimension-
ality d ∈ {8, 16, . . . , 2048} and compute budget in terms of OPQ budget M ∈ {8, 16, 32, 48, 64}.
Search latency is fairly consistent across fixed embedding dimensionality D.

d M=8 M=16 M=32 M=48 M=64

8 495 - - - -
16 555 571 - - -
32 669 655 653 - -
64 864 855 843 844 848

128 1182 1311 1156 1161 2011
256 1923 1779 1744 2849 1818
512 2802 3272 3423 2780 3171

1024 5127 5456 5724 4683 5087
2048 9907 9833 10205 10183 9329

precision vectors fetched from the SSD on a much smaller shortlist. The experiments carried out in688

this work primarily utilize a DiskANN graph index built in-memory2 with OPQ distance computation.689
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Figure 11: DiskANN-MR with SSD indices for compute
budgetsMdisk =Mdc ∈ {32, 48, 64} across graph construc-
tion and OPQ dimensionalities d ∈ {32, . . . , 1024}. Note
that this does not use any re-ranking after obtaining OPQ
based shortlist.

As with IVF, DiskANN is also well690

suited to the flexibility provided by691

AdANNS as we demonstrate on both692

ImageNet and NQ that the optimal PQ693

codebook for a given compute budget694

is learnt with a smaller embedding di-695

mensionality d (see Figures 6c and696

6e). We demonstrate the capability697

of AdANNS-DiskANN with a com-698

pute budget of M ∈ {32, 64} in Ta-699

ble 1. We tabulate the search time700

latency of AdANNS-DiskANN in mi-701

croseconds (µs) in Table 6, which702

grows linearly with graph construc-703

tion dimensionality d. We also exam-704

ine DiskANN-MR with SSD graph in-705

dices across OPQ budgets for distance706

computation Mdc ∈ {32, 48, 64}, as707

seen in Figure 11. With SSD indices,708

we store PQ-compressed vectors on709

disk with Mdisk = Mdc, which es-710

sentially disables DiskANN’s implicit711

high-precision re-ranking. We ob-712

serve similar trends to other compos-713

ite ANNS indices on ImageNet, where the optimal dim for fixed OPQ budget is not the highest dim714

(d = 1024 with fp32 embeddings is current highest dim supported by DiskANN which stores vectors715

in 4KB sectors on disk). This provides further motivation for AdANNS-DiskANN, which leverages716

MRs to provide flexible access to the optimal dim for quantization and thus enables similar Top-1717

accuracy to Rigid DiskANN for up to 1/4 the cost (Figure 6c).718

H AdANNS on Natural Questions719

In addition to image retrieval on ImageNet, we also experiment with dense passage retrieval (DPR) on720

Natural Questions. As shown in Figure 6, MR representations are 1− 10% more accurate than their721

RR counterparts across PQ compute budgets with Exact Search + OPQ on NQ. We also demonstrate722

that IVF-MR is 1− 2.5% better than IVF-RR for Precision@k, k ∈ {1, 5, 20, 100, 200}. Note that723

on NQ, IVF loses ∼ 10% accuracy compared to exact search, even with the RR-768 baseline. We724

hypothesize the weak performance of IVF owing to poor clusterability of the BERT-Base embeddings725

2https://github.com/microsoft/DiskANN
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Figure 12: k-Recall@N of d-dimensional MR for IVF and HNSW with increasing search probes
np on ImageNet-1K and ImageNet-4K. On ImageNet-4K, we restrict our study to IVF-MR with
d ∈ {8, 64, 256, 2048}. Other embedding dimensionalities, HNSW-MR and RR baselines are
omitted due to high compute cost. We observe that trends from ImageNet-1K with increasing d and
np extend to ImageNet-4K, which is 4× larger.

fine-tuned on the NQ dataset. A more thorough exploration of AdANNS-IVF on NQ is an immediate726

future work and is in progress.727

I Ablations728

I.1 Recall Score Analysis729

In this section we also examine the variation of k-Recall@N with by probing a larger search space730

with IVF and HNSW indices. For IVF, search probes represent the number of clusters shortlisted for731

linear scan during inference. For HNSW, search quality is controlled by the efSearch parameter [37],732

which represents the closest neighbors to query q at level lc of the graph and is analogous to number733
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Figure 13: Relative contrast of varying capacity MRs and RRs on ImageNet-1K corroborating the
findings of He et al. [17].

of search probes in IVF. As seen in Figure 12, general trends show a) an intuitive increase in recall734

with increasing search probes np) for fixed search probes, b) a decrease in recall with increasing735

search dimensionality d c) similar trends in ImageNet-1K and 4× larger ImageNet-4K.736

I.2 Relative Contrast737

We utilize Relative Contrast [17] to capture the difficulty of nearest neighbors search with IVF-MR738

compared to IVF-RR. For a given database X = {xi ∈ Rd, i = 1, . . . , ND}, a query q ∈ Rd, and a739

distance metric D(., .) we compute relative contrast Cr as a measure of the difficulty in finding the740

1-nearest neighbor (1-NN) for a query q in database X as follows:741

1. Compute Dq
min = min

i=1...n
D(q, xi), i.e. the distance of query q to its nearest neighbor xqnn ∈ X742

2. Compute Dq
mean = Ex[D(q, x)] as the average distance of query q from all database points743

x ∈ X744

3. Relative Contrast of a given query Cq
r =

Dq
mean

Dq
min

, which is a measure of how separable the745

query’s nearest neighbor xqnn is from an average point in the database x746

4. Compute an expectation over all queries for Relative Contrast over the entire database as

Cr =
Eq[D

q
mean]

Eq[D
q
min]

It is evident that Cr captures the difficulty of Nearest Neighbor Search in database X , as a Cr ∼ 1747

indicates that for an average query, its nearest neighbor is almost equidistant from a random point in748

the database. As demonstrated in Figure 13, MRs have higher Rc than RR Embeddings for an Exact749

Search on ImageNet-1K for all d ≥ 16. This result implies that a portion of MR’s improvement750

over RR for 1-NN retrieval across all embedding dimensionalities d [30] is due to a higher average751

separability of the MR 1-NN from a random database point.752

I.3 Generality across Encoders753

We perform an ablation over the representation function φ : X → Rd learnt via a backbone neural754

network (primarily ResNet50 in this work), as detailed in Section 3. We also train MRL models [30]755

φMR(d) on ResNet18/34/101 [18] that are as accurate as their independently trained RR baseline756

models φRR(d), where d is the default max representation size of each architecture. We also train757

MRL with a ConvNeXt-Tiny backbone with [d] = {48, 96, 192, 384, 786}. MR-768 has a top-1758

accuracy of 79.45% compared to independently trained publicly available RR-768 baseline with759

top-1 accuracy 82.1% (Code and RR model available on the official repo3). We note that this training760

3https://github.com/facebookresearch/ConvNeXt
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had no hyperparameter tuning whatsoever, and this gap can be closed with additional model training761

effort. We then compare clustering the MRs via IVF-MR with k = 2048, np = 1 on ImageNet-1K to762

Exact-MR, which is shown in Figure 14. IVF-MR shows similar trends across backbones compared763

to Exact-MR, i.e. a maximum top-1 accuracy drop of∼ 1.6% for a single search probe. This suggests764

the clustering capabilities of MR extend beyond an inductive bias of φMR(d) ∈ ResNet50, though765

we leave a detailed exploration for future work.
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Figure 14: Top-1 Accuracy variation of IVF-MR on ImageNet-1K with different embedding rep-
resentation function φMR(d) (see Section 3), where φ ∈ {ResNet18/34/101, ConvNeXt-Tiny}. We
observe similar trends between IVF-MR and Exact-MR on ResNet18/34/101 when compared to
ResNet50 (Figure 7a) which is the default in all experiments in this work.
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