A Missing lemmas for the proof of Theorem 3.1

Lemma $\mathbf{A . 1}$ (Daniely and Vardi [15]). For every predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$ and $\mathbf{x} \in\{0,1\}^{n}$, there is a DNF formula ψ over $\{0,1\}^{k n}$ with at most 2^{k} terms, such that for every hyperedge S we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=\psi\left(\mathbf{z}^{S}\right)$. Moreover, each term in ψ is a conjunction of positive literals.

Proof. The following proof is from Daniely and Vardi [15], and we give it here for completeness.
We denote by $\mathcal{B} \subseteq\{0,1\}^{k}$ the set of satisfying assignments of P. Note that the size of \mathcal{B} is at most 2^{k}. Consider the following DNF formula over $\{0,1\}^{k n}$:

$$
\psi(\mathbf{z})=\bigvee_{\mathbf{b} \in \mathcal{B}} \bigwedge_{j \in[k]} \bigwedge_{\left\{l: x_{l} \neq b_{j}\right\}} z_{j, l} .
$$

For a hyperedge $S=\left(i_{1}, \ldots, i_{k}\right)$, we have

$$
\begin{aligned}
\psi\left(\mathbf{z}^{S}\right)=1 & \Longleftrightarrow \exists \mathbf{b} \in \mathcal{B} \forall j \in[k] \forall x_{l} \neq b_{j}, z_{j, l}^{S}=1 \\
& \Longleftrightarrow \exists \mathbf{b} \in \mathcal{B} \forall j \in[k] \forall x_{l} \neq b_{j}, i_{j} \neq l \\
& \Longleftrightarrow \exists \mathbf{b} \in \mathcal{B} \forall j \in[k], x_{i_{j}}=b_{j} \\
& \Longleftrightarrow \exists \mathbf{b} \in \mathcal{B}, \mathbf{x}_{S}=\mathbf{b} \\
& \Longleftrightarrow P\left(\mathbf{x}_{S}\right)=1 \\
& \Longleftrightarrow P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1
\end{aligned}
$$

Lemma A.2. Let $\mathbf{x} \in\{0,1\}^{n}$. There exists an affine layer with at most 2^{k} outputs, weights bounded by a constant and bias terms bounded by $n \log (n)$ (for a sufficiently large n), such that given an input $\mathbf{z}^{S} \in\{0,1\}^{k n}$ for some hyperedge S, it satisfies the following: For S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=0$ all outputs are at most -1 , and for S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1$ there exists an output greater or equal to 2 .

Proof. By Lemma A.1, there exists a DNF formula $\varphi_{\mathbf{x}}$ over $\{0,1\}^{k n}$ with at most 2^{k} terms, such that $\varphi_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)$. Thus, if $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=0$ then all terms in $\varphi_{\mathbf{x}}$ are not satisfied for the input \mathbf{z}^{S}, and if $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1$ then there is at least one term in $\varphi_{\mathbf{x}}$ which is satisfied for the input \mathbf{z}^{S}. Therefore, it suffices to construct an affine layer such that for an input \mathbf{z}^{S}, the j-th output will be at most -1 if the j-th term of $\varphi_{\mathbf{x}}$ is not satisfied, and at least 2 otherwise. Each term C_{j} in $\varphi_{\mathbf{x}}$ is a conjunction of positive literals. Let $I_{j} \subseteq[k n]$ be the indices of these literals. The j-th output of the affine layer will be

$$
\left(\sum_{l \in I_{j}} 3 z_{l}^{S}\right)-3\left|I_{j}\right|+2
$$

Note that if the conjunction C_{j} holds, then this expression is exactly $3\left|I_{j}\right|-3\left|I_{j}\right|+2=2$, and otherwise it is at most $3\left(\left|I_{j}\right|-1\right)-3\left|I_{j}\right|+2=-1$. Finally, note that all weights are bounded by 3 and all bias terms are bounded by $n \log (n)$ (for large enough n).

Lemma A.3. Let $\mathbf{x} \in\{0,1\}^{n}$. There exists a depth-2 neural network N_{1} with input dimension $k n$, $2 k n$ hidden neurons, at most 2^{k} output neurons, and parameter magnitudes bounded by n^{3} (for a sufficiently large n), which satisfies the following. We denote the set of output neurons of N_{1} by \mathcal{E}_{1}. Let $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ be such that $\Psi\left(\mathbf{z}^{\prime}\right)=\mathbf{z}^{S}$ for some hyperedge S, and assume that for every $i \in[k n]$ we have $z_{i}^{\prime} \notin\left(c, c+\frac{1}{n^{2}}\right)$. Then, for S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=0$ the inputs to all neurons \mathcal{E}_{1} are at most -1 , and for S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1$ there exists a neuron in \mathcal{E}_{1} with input at least 2 . Moreover, only the second layer of N_{1} depends on \mathbf{x}.

Proof. First, we construct a depth-2 neural network $N_{\Psi}: \mathbb{R}^{k n} \rightarrow[0,1]^{k n}$ with a single layer of nonlinearity, such that for every $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ with $z_{i}^{\prime} \notin\left(c, c+\frac{1}{n^{2}}\right)$ for every $i \in[k n]$, we have $N_{\Psi}\left(\mathbf{z}^{\prime}\right)=$ $\Psi\left(\mathbf{z}^{\prime}\right)$. The network N_{Ψ} has $2 k n$ hidden neurons, and computes $N_{\Psi}\left(\mathbf{z}^{\prime}\right)=\left(f\left(z_{1}^{\prime}\right), \ldots, f\left(z_{k n}^{\prime}\right)\right)$, where $f: \mathbb{R} \rightarrow[0,1]$ is such that

$$
f(t)=n^{2} \cdot\left([t-c]_{+}-\left[t-\left(c+\frac{1}{n^{2}}\right)\right]_{+}\right)
$$

Note that if $t \leq c$ then $f(t)=0$, if $t \geq c+\frac{1}{n^{2}}$ then $f(t)=1$, and if $c<t<c+\frac{1}{n^{2}}$ then $f(t) \in(0,1)$. Also, note that all weights and bias terms can be bounded by n^{2} (for large enough n). Moreover, the network N_{Ψ} does not depend on \mathbf{x}.
Let $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ such that $\Psi\left(\mathbf{z}^{\prime}\right)=\mathbf{z}^{S}$ for some hyperedge S, and assume that for every $i \in[k n]$ we have $z_{i}^{\prime} \notin\left(c, c+\frac{1}{n^{2}}\right)$. For such \mathbf{z}^{\prime}, we have $N_{\Psi}\left(\mathbf{z}^{\prime}\right)=\Psi\left(\mathbf{z}^{\prime}\right)=\mathbf{z}^{S}$. Hence, it suffices to show that we can construct an affine layer with at most 2^{k} outputs, weights bounded by a constant and bias terms bounded by n^{3}, such that given an input \mathbf{z}^{S} it satisfies the following: For S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=0$ all outputs are at most -1 , and for S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1$ there exists an output greater or equal to 2 . We construct such an affine layer in Lemma A. 2 .

Lemma A.4. There exists an affine layer with $2 k+n$ outputs, weights bounded by a constant and bias terms bounded by $n \log (n)$ (for a sufficiently large n), such that given an input $\mathbf{z} \in\{0,1\}^{k n}$, if it is an encoding of a hyperedge then all outputs are at most -1 , and otherwise there exists an output greater or equal to 2 .

Proof. Note that $\mathbf{z} \in\{0,1\}^{k n}$ is not an encoding of a hyperedge iff at least one of the following holds:

1. At least one of the k size- n slices in z contains 0 more than once.
2. At least one of the k size- n slices in \mathbf{z} does not contain 0 .
3. There are two size- n slices in \mathbf{z} that encode the same index.

We define the outputs of our affine layer as follows. First, we have k outputs that correspond to (1). In order to check whether slice $i \in[k]$ contains 0 more than once, the output will be $3 n-4-\left(\sum_{j \in[n]} 3 z_{i, j}\right)$. Second, we have k outputs that correspond to (2): in order to check whether slice $i \in[k]$ does not contain 0 , the output will be $\left(\sum_{j \in[n]} 3 z_{i, j}\right)-3 n+2$. Finally, we have n outputs that correspond to (3): in order to check whether there are two slices that encode the same index $j \in[n]$, the output will be $3 k-4-\left(\sum_{i \in[k]} 3 z_{i, j}\right)$. Note that all weights are bounded by 3 and all bias terms are bounded by $n \log (n)$ for large enought n.

Lemma A.5. There exists a depth-2 neural network N_{2} with input dimension $k n$, at most $2 k n$ hidden neurons, $2 k+n$ output neurons, and parameter magnitudes bounded by n^{3} (for a sufficiently large $n)$, which satisfies the following. We denote the set of output neurons of N_{2} by \mathcal{E}_{2}. Let $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ be such that for every $i \in[k n]$ we have $z_{i}^{\prime} \notin\left(c, c+\frac{1}{n^{2}}\right)$. If $\Psi\left(\mathbf{z}^{\prime}\right)$ is an encoding of a hyperedge then the inputs to all neurons \mathcal{E}_{2} are at most -1 , and otherwise there exists a neuron in \mathcal{E}_{2} with input at least 2 .

Proof. Let $N_{\Psi}: \mathbb{R}^{k n} \rightarrow[0,1]^{k n}$ be the depth-2 neural network from the proof of Lemma A.3 with a single layer of non-linearity with $2 k n$ hidden neurons, and parameter magnitudes bounded by n^{2}, such that for every $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ with $z_{i}^{\prime} \notin\left(c, c+\frac{1}{n^{2}}\right)$ for every $i \in[k n]$, we have $N_{\Psi}\left(\mathbf{z}^{\prime}\right)=\Psi\left(\mathbf{z}^{\prime}\right)$.

Let $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ be such that for every $i \in[k n]$ we have $z_{i}^{\prime} \notin\left(c, c+\frac{1}{n^{2}}\right)$. For such \mathbf{z}^{\prime} we have $N_{\Psi}\left(\mathbf{z}^{\prime}\right)=\Psi\left(\mathbf{z}^{\prime}\right)$. Hence, it suffices to show that we can construct an affine layer with $2 k+n$ outputs, weights bounded by a constant and bias terms bounded by n^{3}, such that given an input $\mathbf{z} \in\{0,1\}^{\mathrm{kn}}$, if it is an encoding of a hyperedge then all outputs are at most -1 , and otherwise there exists an output greater or equal to 2 . We construct such an affine layer in Lemma A. 4.
Lemma A.6. There exists a depth-2 neural network N_{3} with input dimension $k n$, at most $n \log (n)$ hidden neurons, $k n \leq n \log (n)$ output neurons, and parameter magnitudes bounded by n^{3} (for a sufficiently large n), which satisfies the following. We denote the set of output neurons of N_{3} by \mathcal{E}_{3}. Let $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$. If there exists $i \in[k n]$ such that $z_{i}^{\prime} \in\left(c, c+\frac{1}{n^{2}}\right)$ then there exists a neuron in \mathcal{E}_{3} with input at least 2 . If for all $i \in[k n]$ we have $z_{i}^{\prime} \notin\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)$ then the inputs to all neurons in \mathcal{E}_{3} are at most -1 .

Proof. It suffices to construct a univariate depth-2 network $f: \mathbb{R} \rightarrow \mathbb{R}$ with one non-linear layer and a constant number of hidden neurons, such that for every input $z_{i}^{\prime} \in\left(c, c+\frac{1}{n^{2}}\right)$ we have $f\left(z_{i}^{\prime}\right)=2$, and for every $z_{i}^{\prime} \notin\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)$ we have $f\left(z_{i}^{\prime}\right)=-1$.
.

We construct f as follows:

$$
\begin{aligned}
f\left(z_{i}^{\prime}\right)=\left(3 n^{2}\right) & \left(\left[z_{i}^{\prime}-\left(c-\frac{1}{n^{2}}\right)\right]_{+}-\left[z_{i}^{\prime}-c\right]_{+}\right)- \\
\left(3 n^{2}\right) & \left(\left[z_{i}^{\prime}-\left(c+\frac{1}{n^{2}}\right)\right]_{+}-\left[z_{i}^{\prime}-\left(c+\frac{2}{n^{2}}\right)\right]_{+}\right)-1 .
\end{aligned}
$$

Note that all weights and bias terms are bounded by n^{3} (for large enough n).
Lemma A.7. Let $q=\operatorname{poly}(n)$ and $r=\operatorname{poly}(n)$. Then, there exists $\tau=\frac{1}{\operatorname{poly}(n)}$ such that for a sufficiently large n, with probability at least $1-\exp (-n / 2)$ a vector $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{r}\right)$ satisfies $\|\boldsymbol{\xi}\| \leq \frac{1}{q}$.

Proof. Let $\tau=\frac{1}{q \sqrt{2 r n}}$. Every component ξ_{i} in $\boldsymbol{\xi}$ has the distribution $\mathcal{N}\left(0, \tau^{2}\right)$. By a standard tail bound of the Gaussian distribution, we have for every $i \in[r]$ and $t \geq 0$ that $\operatorname{Pr}\left[\xi_{i} \geq t\right] \leq$ $2 \exp \left(-\frac{t^{2}}{2 \tau^{2}}\right)$. Hence, for $t=\frac{1}{q \sqrt{r}}$, we get

$$
\operatorname{Pr}\left[\xi_{i} \geq \frac{1}{q \sqrt{r}}\right] \leq 2 \exp \left(-\frac{1}{2 \tau^{2} q^{2} r}\right)=2 \exp \left(-\frac{2 r n q^{2}}{2 q^{2} r}\right)=2 \exp (-n)
$$

By the union bound, with probability at least $1-r \cdot 2 e^{-n}$, we have

$$
\|\boldsymbol{\xi}\|^{2} \leq r \cdot \frac{1}{r q^{2}}=\frac{1}{q^{2}}
$$

Thus, for a sufficiently large n, with probability at least $1-\exp (-n / 2)$ we have $\|\boldsymbol{\xi}\| \leq \frac{1}{q}$.
Lemma A.8. If \mathcal{S} is pseudorandom then with probability at least $\frac{39}{40}$ (over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$ and the i.i.d. inputs $\left.\tilde{\mathbf{z}}_{i} \sim \mathcal{D}\right)$ the examples $\left(\tilde{\mathbf{z}}_{1}, \tilde{y}_{1}\right), \ldots,\left(\tilde{\mathbf{z}}_{m(n)+n^{3}}, \tilde{y}_{m(n)+n^{3}}\right)$ returned by the oracle are realized by \hat{N}.

Proof. By our choice of τ, with probability at least $1-\frac{1}{n}$ over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$, we have $\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$, and for every $\tilde{\mathbf{z}}$ with $\|\tilde{\mathbf{z}}\| \leq 2 n$ the inputs to the neurons $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}$ in the computation $\hat{N}(\tilde{\mathbf{z}})$ satisfy Properties (P1) through (P3). We first show that with probability at least $1-\frac{1}{n}$ all examples $\tilde{\mathbf{z}}_{1}, \ldots, \tilde{\mathbf{z}}_{m(n)+n^{3}}$ satisfy $\left\|\tilde{\mathbf{z}}_{i}\right\| \leq 2 n$. Hence, with probability at least $1-\frac{2}{n}$, Properties (P1) through (P3) hold for the computations $\hat{N}\left(\tilde{\mathbf{z}}_{i}\right)$ for all $i \in\left[m(n)+n^{3}\right]$.

Note that $\left\|\tilde{\mathbf{z}}_{i}\right\|^{2}$ has the Chi-squared distribution. Since $\tilde{\mathbf{z}}_{i}$ is of dimension n^{2}, a concentration bound by Laurent and Massart [31, Lemma 1] implies that for all $t>0$ we have

$$
\operatorname{Pr}\left[\left\|\tilde{\mathbf{z}}_{i}\right\|^{2}-n^{2} \geq 2 n \sqrt{t}+2 t\right] \leq e^{-t}
$$

631 Plugging-in $t=\frac{n^{2}}{4}$, we get

$$
\begin{aligned}
\operatorname{Pr}\left[\left\|\tilde{\mathbf{z}}_{i}\right\|^{2} \geq 4 n^{2}\right] & =\operatorname{Pr}\left[\left\|\tilde{\mathbf{z}}_{i}\right\|^{2}-n^{2} \geq 3 n^{2}\right] \\
& \leq \operatorname{Pr}\left[\left\|\tilde{\mathbf{z}}_{i}\right\|^{2}-n^{2} \geq \frac{3 n^{2}}{2}\right] \\
& =\operatorname{Pr}\left[\left\|\tilde{\mathbf{z}}_{i}\right\|^{2}-n^{2} \geq 2 n \sqrt{\frac{n^{2}}{4}}+2 \cdot \frac{n^{2}}{4}\right] \\
& \leq \exp \left(-\frac{n^{2}}{4}\right) .
\end{aligned}
$$

632 Thus, we have $\operatorname{Pr}\left[\left\|\tilde{\mathbf{z}}_{i}\right\| \geq 2 n\right] \leq \exp \left(-\frac{n^{2}}{4}\right)$. By the union bound, with probability at least

$$
1-\left(m(n)+n^{3}\right) \exp \left(-\frac{n^{2}}{4}\right) \geq 1-\frac{1}{n}
$$

(for a sufficiently large n), all examples $\left(\tilde{\mathbf{z}}_{i}, \tilde{y}_{i}\right)$ satisfy $\left\|\tilde{\mathbf{z}}_{i}\right\| \leq 2 n$.
Thus, we showed that with probability at least $1-\frac{2}{n} \geq \frac{39}{40}$ (for a sufficiently large n), we have $\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$, and Properties (P1) through (P3) hold for the computations $\hat{N}\left(\tilde{\mathbf{z}}_{i}\right)$ for all $i \in\left[m(n)+n^{3}\right]$. It remains to show that if these properties hold, then the examples $\left(\tilde{\mathbf{z}}_{1}, \tilde{y}_{1}\right), \ldots,\left(\tilde{\mathbf{z}}_{m(n)+n^{3}}, \tilde{y}_{m(n)+n^{3}}\right)$ are realized by \hat{N}.
Let $i \in\left[m(n)+n^{3}\right]$. For brevity, we denote $\tilde{\mathbf{z}}=\tilde{\mathbf{z}}_{i}, \tilde{y}=\tilde{y}_{i}$, and $\mathbf{z}^{\prime}=\tilde{\mathbf{z}}_{[k n]}$. Since $\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$, and all incoming weights to the output neuron in \tilde{N} are -1 , then in \hat{N} all incoming weights to the output neuron are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and the bias term in the output neuron, denoted by \hat{b}, is in $\left[\frac{9}{10}, \frac{11}{10}\right]$. Consider the following cases:

- If $\Psi\left(\mathbf{z}^{\prime}\right)$ is not an encoding of a hyperedge then $\tilde{y}=0$, and $\hat{N}(\tilde{\mathbf{z}})$ satisfies:

1. If \mathbf{z}^{\prime} does not have components in $\left(c, c+\frac{1}{n}\right)$, then there exists a neuron in \mathcal{E}_{2} with output at least $\frac{3}{2}$ (by Property (P2)).
2. If \mathbf{z}^{\prime} has a component in $\left(c, c+\frac{1}{n}\right)$, then there exists a neuron in \mathcal{E}_{3} with output at least $\frac{3}{2}$ (by Property (P3).

In both cases, since all incoming weights to the output neuron in \hat{N} are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and $\hat{b} \in\left[\frac{9}{10}, \frac{11}{10}\right]$, then the input to the output neuron (including the bias term) is at most $\frac{11}{10}-\frac{3}{2} \cdot \frac{9}{10}<0$, and thus its output is 0 .

- If $\Psi\left(\mathbf{z}^{\prime}\right)$ is an encoding of a hyperedge S, then by the definition of the examples oracle we have $S=S_{i}$. Hence:
- If \mathbf{z}^{\prime} does not have components in $\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)$, then:
* If $y_{i}=0$ then the oracle sets $\tilde{y}=\hat{b}$. Since \mathcal{S} is pseudorandom, we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=$ $P_{\mathbf{x}}\left(\mathbf{z}^{S_{i}}\right)=y_{i}=0$. Hence, in the computation $\hat{N}(\tilde{\mathbf{z}})$ the inputs to all neurons in $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}$ are at most $-\frac{1}{2}$ (by Properties (P1) (P2) and (P3)), and thus their outputs are 0 . Therefore, $\hat{N}(\tilde{\mathbf{z}})=\hat{b}$.
* If $y_{i}=1$ then the oracle sets $\tilde{y}=0$. Since \mathcal{S} is pseudorandom, we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=$ $P_{\mathbf{x}}\left(\mathbf{z}^{S_{i}}\right)=y_{i}=1$. Hence, in the computation $\hat{N}(\tilde{\mathbf{z}})$ there exists a neuron in \mathcal{E}_{1} with output at least $\frac{3}{2}$ (by Property (P1)). Since all incoming weights to the output neuron in \hat{N} are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and $\hat{b} \in\left[\frac{9}{10}, \frac{11}{10}\right]$, then the input to output neuron (including the bias term) is at most $\frac{11}{10}-\frac{3}{2} \cdot \frac{9}{10}<0$, and thus its output is 0 .
- If \mathbf{z}^{\prime} has a component in $\left(c, c+\frac{1}{n^{2}}\right)$, then $\tilde{y}=0$. Also, in the computation $\hat{N}(\tilde{\mathbf{z}})$ there exists a neuron in \mathcal{E}_{3} with output at least $\frac{3}{2}$ (by Property (P3). Since all incoming weights to the output neuron in \hat{N} are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and $b \in\left[\frac{9}{10}, \frac{11}{10}\right]$, then the input to output neuron (including the bias term) is at most $\frac{11}{10}-\frac{3}{2} \cdot \frac{9}{10}<0$, and thus its output is 0 .
- If \mathbf{z}^{\prime} does not have components in the interval $\left(c, c+\frac{1}{n^{2}}\right)$, but has a component in the interval $\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)$, then:
* If $y_{i}=1$ the oracle sets $\tilde{y}=0$. Since \mathcal{S} is pseudorandom, we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=$ $P_{\mathbf{x}}\left(\mathbf{z}^{S_{i}}\right)=y_{i}=1$. Hence, in the computation $\hat{N}(\tilde{\mathbf{z}})$ there exists a neuron in \mathcal{E}_{1} with output at least $\frac{3}{2}$ (by Property (P1) . Since all incoming weights to the output neuron in \hat{N} are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and $\hat{b} \in\left[\frac{9}{10}, \frac{11}{10}\right]$, then the input to output neuron (including the bias term) is at most $\frac{11}{10}-\frac{3}{2} \cdot \frac{9}{10}<0$, and thus its output is 0 .
* If $y_{i}=0$ the oracle sets $\tilde{y}=\left[\hat{b}-\hat{N}_{3}(\tilde{\mathbf{z}})\right]_{+}$. Since \mathcal{S} is pseudorandom, we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=P_{\mathbf{x}}\left(\mathbf{z}^{S_{i}}\right)=y_{i}=0$. Therefore, in the computation $\hat{N}(\tilde{\mathbf{z}})$ all neurons in $\mathcal{E}_{1}, \mathcal{E}_{2}$ have output 0 (by Properties (P1) and (P2), and hence their contribution to the output of \hat{N} is 0 . Thus, by the definition of \hat{N}_{3}, we have $\hat{N}(\tilde{\mathbf{z}})=\left[\hat{b}-\hat{N}_{3}(\tilde{\mathbf{z}})\right]_{+}$.

Lemma A.9. If \mathcal{S} is pseudorandom, then for a sufficiently large n, with probability greater than $\frac{2}{3}$ we have

$$
\ell_{I}\left(h^{\prime}\right) \leq \frac{2}{n}
$$

Proof. By Lemma A.8, if \mathcal{S} is pseudorandom then with probability at least $\frac{39}{40}$ (over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$ and the i.i.d. inputs $\left.\mathbf{z}_{i} \sim \mathcal{D}\right)$ the examples $\left(\tilde{\mathbf{z}}_{1}, \tilde{y}_{1}\right), \ldots,\left(\tilde{\mathbf{z}}_{m(n)}, \tilde{y}_{m(n)}\right)$ returned by the oracle are realized by \hat{N}. Recall that the algorithm \mathcal{L} is such that with probability at least $\frac{3}{4}$ (over $\boldsymbol{\xi} \sim$ $\mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$, the i.i.d. inputs $\tilde{\mathbf{z}}_{i} \sim \mathcal{D}$, and possibly its internal randomness), given a size- $m(n)$ dataset labeled by \hat{N}, it returns a hypothesis h such that $\mathbb{E}_{\tilde{\mathbf{z}} \sim \mathcal{D}}\left[(h(\tilde{\mathbf{z}})-\hat{N}(\tilde{\mathbf{z}}))^{2}\right] \leq \frac{1}{n}$. Hence, with probability at least $\frac{3}{4}-\frac{1}{40}$ the algorithm \mathcal{L} returns such a good hypothesis h, given $m(n)$ examples labeled by our examples oracle. Indeed, note that \mathcal{L} can return a bad hypothesis only if the random choices are either bad for \mathcal{L} (when used with realizable examples) or bad for the realizability of the examples returned by our oracle. By the definition of h^{\prime} and the construction of \hat{N}, if h has small error then h^{\prime} also has small error, namely,

$$
\underset{\tilde{\mathbf{z}} \sim \mathcal{D}}{\mathbb{E}}\left[\left(h^{\prime}(\tilde{\mathbf{z}})-\hat{N}(\tilde{\mathbf{z}})\right)^{2}\right] \leq \underset{\tilde{\mathbf{z}} \sim \mathcal{D}}{\mathbb{E}}\left[(h(\tilde{\mathbf{z}})-\hat{N}(\tilde{\mathbf{z}}))^{2}\right] \leq \frac{1}{n} .
$$

Let $\hat{\ell}_{I}\left(h^{\prime}\right)=\frac{1}{|I|} \sum_{i \in I}\left(h^{\prime}\left(\tilde{\mathbf{z}}_{i}\right)-\hat{N}\left(\tilde{\mathbf{z}}_{i}\right)\right)^{2}$. Recall that by our choice of τ we have $\operatorname{Pr}\left[\hat{b}>\frac{11}{10}\right] \leq \frac{1}{n}$. Since, $\left(h^{\prime}(\tilde{\mathbf{z}})-\hat{N}(\tilde{\mathbf{z}})\right)^{2} \in\left[0, \hat{b}^{2}\right]$ for all $\tilde{\mathbf{z}} \in \mathbb{R}^{n^{2}}$, by Hoeffding's inequality, we have for a sufficiently large n that

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n}\right]= & \operatorname{Pr}\left[\left.\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b} \leq \frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b} \leq \frac{11}{10}\right] \\
& +\operatorname{Pr}\left[\left.\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b}>\frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b}>\frac{11}{10}\right] \\
& \leq 2 \exp \left(-\frac{2 n^{3}}{n^{2}(11 / 10)^{4}}\right) \cdot 1+1 \cdot \frac{1}{n} \\
\leq & \frac{1}{40} .
\end{aligned}
$$

Moreover, by Lemma A. 8

$$
\operatorname{Pr}\left[\ell_{I}\left(h^{\prime}\right) \neq \hat{\ell}_{I}\left(h^{\prime}\right)\right] \leq \operatorname{Pr}\left[\exists i \in I \text { s.t. } \tilde{y}_{i} \neq \hat{N}\left(\tilde{\mathbf{z}}_{i}\right)\right] \leq \frac{1}{40} .
$$

Overall, by the union bound we have with probability at least $1-\left(\frac{1}{4}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}\right)>\frac{2}{3}$ for sufficiently large n that:

- $\mathbb{E}_{\tilde{\mathcal{S}}_{I}} \hat{\ell}_{I}\left(h^{\prime}\right)=\mathbb{E}_{\tilde{\mathbf{z}} \sim \mathcal{D}}\left[\left(h^{\prime}(\tilde{\mathbf{z}})-\hat{N}(\tilde{\mathbf{z}})\right)^{2}\right] \leq \frac{1}{n}$.
- $\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\mathbb{E}_{\tilde{\mathcal{S}}_{I}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \leq \frac{1}{n}$.
- $\ell_{I}\left(h^{\prime}\right)-\hat{\ell}_{I}\left(h^{\prime}\right)=0$.

Combining the above, we get that if \mathcal{S} is pseudorandom, then with probability greater than $\frac{2}{3}$ we have

$$
\ell_{I}\left(h^{\prime}\right)=\left(\ell_{I}\left(h^{\prime}\right)-\hat{\ell}_{I}\left(h^{\prime}\right)\right)+\left(\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right)+\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right) \leq 0+\frac{1}{n}+\frac{1}{n}=\frac{2}{n}
$$

Lemma A.10. Let $\mathbf{z} \in\{0,1\}^{k n}$ be a random vector whose components are drawn i.i.d. from a Bernoulli distribution, which takes the value 0 with probability $\frac{1}{n}$. Then, for a sufficiently large n, the vector \mathbf{z} is an encoding of a hyperedge with probability at least $\frac{1}{\log (n)}$.

Proof. The vector \mathbf{z} represents a hyperedge iff in each of the k size- n slices in \mathbf{z} there is exactly one 0 -bit and each two of the k slices in \mathbf{z} encode different indices. Hence,

$$
\begin{aligned}
\operatorname{Pr}[\mathbf{z} \text { represents a hyperedge }] & =n \cdot(n-1) \cdot \ldots \cdot(n-k+1) \cdot\left(\frac{1}{n}\right)^{k}\left(\frac{n-1}{n}\right)^{n k-k} \\
& \geq\left(\frac{n-k}{n}\right)^{k}\left(\frac{n-1}{n}\right)^{k(n-1)} \\
& =\left(1-\frac{k}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{k(n-1)}
\end{aligned}
$$

Proof. Let $\mathbf{z}^{\prime}=\tilde{\mathbf{z}}_{[k n]}$. We have

$$
\begin{align*}
\operatorname{Pr}[\tilde{\mathbf{z}} \notin \tilde{\mathcal{Z}}] \leq & \operatorname{Pr}\left[\exists j \in[k n] \text { s.t. } z_{j}^{\prime} \in\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)\right] \\
& +\operatorname{Pr}\left[\Psi\left(\mathbf{z}^{\prime}\right) \text { does not represent a hyperedge }\right] \tag{1}
\end{align*}
$$

We now bound the terms in the above RHS. First, since \mathbf{z}^{\prime} has the Gaussian distribution, then its components are drawn i.i.d. from a density function bounded by $\frac{1}{2 \pi}$. Hence, for a sufficiently large n we have

$$
\begin{equation*}
\operatorname{Pr}\left[\exists j \in[k n] \text { s.t. } z_{j}^{\prime} \in\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)\right] \leq k n \cdot \frac{1}{2 \pi} \cdot \frac{3}{n^{2}}=\frac{3 k}{2 \pi n} \leq \frac{\log (n)}{n} . \tag{2}
\end{equation*}
$$

Let $\mathbf{z}=\Psi\left(\mathbf{z}^{\prime}\right)$. Note that \mathbf{z} is a random vector whose components are drawn i.i.d. from a Bernoulli distribution, where the probability to get 0 is $\frac{1}{n}$. By Lemma A.10, \mathbf{z} is an encoding of a hyperedge with probability at least $\frac{1}{\log (n)}$. Combining it with Eq. $\{1$ and 42 , we get for a sufficiently large n that

$$
\operatorname{Pr}[\tilde{\mathbf{z}} \notin \tilde{\mathcal{Z}}] \leq \frac{\log (n)}{n}+\left(1-\frac{1}{\log (n)}\right) \leq 1-\frac{1}{2 \log (n)},
$$

as required.
Lemma A.12. If \mathcal{S} is random, then for a sufficiently large n with probability larger than $\frac{2}{3}$ we have

$$
\ell_{I}\left(h^{\prime}\right)>\frac{2}{n} .
$$

Proof. Let $\tilde{\mathcal{Z}} \subseteq \mathbb{R}^{n^{2}}$ be such that $\tilde{\mathbf{z}} \in \tilde{\mathcal{Z}}$ iff $\tilde{\mathbf{z}}_{[k n]}$ does not have components in the interval $\left(c-\frac{1}{n^{2}}, c+\frac{2}{n^{2}}\right)$, and $\Psi\left(\tilde{\mathbf{z}}_{[k n]}\right)=\mathbf{z}^{S}$ for a hyperedge S. If \mathcal{S} is random, then by the definition of our examples oracle, for every $i \in\left[m(n)+n^{3}\right]$ such that $\tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}$, we have $\tilde{y}_{i}=\hat{b}$ with probability $\frac{1}{2}$ and $\tilde{y}_{i}=0$ otherwise. Also, by the definition of the oracle, \tilde{y}_{i} is independent of S_{i} and independent of the choice of the vector $\tilde{\mathbf{z}}_{i}$ that corresponds to $\mathbf{z}^{S_{i}}$. If $\hat{b} \geq \frac{9}{10}$ then for a sufficiently large n the
hypothesis h^{\prime} satisfies for each random example $\left(\tilde{\mathbf{z}}_{i}, \tilde{y}_{i}\right) \in \tilde{\mathcal{S}}_{I}$ the following

$$
\begin{aligned}
\operatorname{Pr}_{\left(\tilde{\mathbf{z}}_{i}, \tilde{y}_{i}\right)} & {\left[\left(h^{\prime}\left(\tilde{\mathbf{z}}_{i}\right)-\tilde{y}_{i}\right)^{2} \geq \frac{1}{5}\right] } \\
& \geq \operatorname{Pr}_{\left(\tilde{\mathbf{z}}_{i}, \tilde{y}_{i}\right)}\left[\left.\left(h^{\prime}\left(\tilde{\mathbf{z}}_{i}\right)-\tilde{y}_{i}\right)^{2} \geq \frac{1}{5} \right\rvert\, \tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}\right] \cdot \operatorname{Pr}_{\tilde{\mathbf{z}}_{i}}^{\operatorname{Pr}}\left[\tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}\right] \\
& \geq \operatorname{Pr}_{\left(\tilde{\mathbf{z}}_{i}, \tilde{y}_{i}\right)}\left[\left.\left(h^{\prime}\left(\tilde{\mathbf{z}}_{i}\right)-\tilde{y}_{i}\right)^{2} \geq\left(\frac{\hat{b}}{2}\right)^{2} \right\rvert\, \tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}\right] \cdot{\underset{\tilde{\mathbf{z}}}{i}}^{\operatorname{Pr}}\left[\tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}\right] \\
& \geq \frac{1}{2} \cdot \operatorname{Pr}_{\tilde{\mathbf{z}}_{i}}^{\operatorname{Pr}}\left[\tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}\right] .
\end{aligned}
$$

In Lemma A.11, we show that $\operatorname{Pr}_{\tilde{\mathbf{z}}_{i}}\left[\tilde{\mathbf{z}}_{i} \in \tilde{\mathcal{Z}}\right] \geq \frac{1}{2 \log (n)}$. Hence,

$$
\operatorname{Pr}_{\left(\tilde{\mathbf{z}}_{i}, \tilde{y}_{i}\right)}\left[\left(h^{\prime}\left(\tilde{\mathbf{z}}_{i}\right)-\tilde{y}_{i}\right)^{2} \geq \frac{1}{5}\right] \geq \frac{1}{2} \cdot \frac{1}{2 \log (n)} \geq \frac{1}{4 \log (n)}
$$

Thus, if $\hat{b} \geq \frac{9}{10}$ then we have

$$
\left.\underset{{\underset{\mathcal{S}}{I}}^{\mathbb{E}}}{\underset{\mathbb{E}_{I}}{ }}\left[\ell_{I}\right)\right] \geq \frac{1}{5} \cdot \frac{1}{4 \log (n)}=\frac{1}{20 \log (n)}
$$

Therefore, for large n we have

$$
\operatorname{Pr}\left[\underset{\mathcal{S}_{I}}{\mathbb{E}}\left[\ell_{I}\left(h^{\prime}\right)\right] \geq \frac{1}{20 \log (n)}\right] \geq 1-\frac{1}{n} \geq \frac{7}{8}
$$

Since, $\left(h^{\prime}(\tilde{\mathbf{z}})-\tilde{y}\right)^{2} \in\left[0, \hat{b}^{2}\right]$ for all $\tilde{\mathbf{z}}, \tilde{y}$ returned by the examples oracle, and the examples $\tilde{\mathbf{z}}_{i}$ for $i \in I$ are i.i.d., then by Hoeffding's inequality, we have for a sufficiently large n that

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\ell_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \ell_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n}\right]= & \operatorname{Pr}\left[\left.\left|\ell_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \ell_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b} \leq \frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b} \leq \frac{11}{10}\right] \\
& +\operatorname{Pr}\left[\left.\left|\ell_{I}\left(h^{\prime}\right)-\underset{\tilde{\mathcal{S}}_{I}}{\mathbb{E}} \ell_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b}>\frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b}>\frac{11}{10}\right] \\
& \leq 2 \exp \left(-\frac{2 n^{3}}{n^{2}(11 / 10)^{4}}\right) \cdot 1+1 \cdot \frac{1}{n} \\
\leq & \frac{1}{8} .
\end{aligned}
$$

Hence, for large enough n, with probability at least $1-\frac{1}{8}-\frac{1}{8}=\frac{3}{4}>\frac{2}{3}$ we have both $\mathbb{E}_{\tilde{\mathcal{S}}_{I}}\left[\ell_{I}\left(h^{\prime}\right)\right] \geq$ $\frac{1}{20 \log (n)}$ and $\left|\ell_{I}\left(h^{\prime}\right)-\mathbb{E}_{\tilde{\mathcal{S}}_{I}} \ell_{I}\left(h^{\prime}\right)\right| \leq \frac{1}{n}$, and thus

$$
\ell_{I}\left(h^{\prime}\right) \geq \frac{1}{20 \log (n)}-\frac{1}{n}>\frac{2}{n} .
$$

B Proof of Corollary 3.1

By the proof of Theorem 3.1, under Assumption 2.1, there is no poly (d)-time algorithm \mathcal{L}_{s} that satisfies the following: Let $\boldsymbol{\theta} \in \mathbb{R}^{p}$ be B-bounded parameters of a depth-3 network $N_{\boldsymbol{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and let $\tau, \epsilon>0$. Assume that $p, B, 1 / \epsilon, 1 / \tau \leq \operatorname{poly}(d)$, and that the widths of the hidden layers in $\mathcal{N}_{\boldsymbol{\theta}}$ are d (i.e., the weight matrices are square). Let $\boldsymbol{\xi} \in \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$ and let $\hat{\boldsymbol{\theta}}=\boldsymbol{\theta}+\boldsymbol{\xi}$. Then, with probability at least $\frac{3}{4}-\frac{1}{1000}$, given access to an examples oracle for $\mathcal{N}_{\hat{\boldsymbol{\theta}}}$, the algorithm \mathcal{L}_{s} returns a hypothesis h with $\mathbb{E}_{\mathbf{x}}\left[\left(h(\mathbf{x})-N_{\hat{\boldsymbol{\theta}}}\right)^{2}\right] \leq \epsilon$.
Note that in the above, the requirements from \mathcal{L}_{s} are somewhat weaker than in our original definition of learning with smoothed parameters. Indeed, we assume that the widths of the hidden layers are d and the required success probability is only $\frac{3}{4}-\frac{1}{1000}$ (rather than $\frac{3}{4}$). We now explain why the hardness result holds already under these conditions:

- Note that if we change the assumption on the learning algorithm in proof of Theorem 3.1 such that it succeeds with probability at least $\frac{3}{4}-\frac{1}{1000}$ (rather than $\frac{3}{4}$), then in the case where \mathcal{S} is pseudorandom we get that the algorithm \mathcal{A} returns 1 with probability at least $1-\left(\frac{1}{4}+\frac{1}{1000}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}\right)$ (see the proof of Lemma A.9), which is still greater than $\frac{2}{3}$. Also, the analysis of the case where \mathcal{S} is random does not change, and thus in this case \mathcal{A} returns 0 with probability greater than $\frac{2}{3}$. Consequently, we still get distinguishing advantage greater than $\frac{1}{3}$.
- Regarding the requirement on the widths, we note that in the proof of Theorem 3.1 the layers satisfy the following. The input dimension is $d=n^{2}$, the width of the first hidden layer is at most $3 n \log (n) \leq d$, and the width of the second hidden layer is at most $\log (n)+2 n+n \log (n) \leq d$ (all bounds are for a sufficiently large d). In order to get a network where all layers are of width d, we add new neurons to the hidden layers, with incoming weights 0 , outgoing weights 0 , and bias terms -1 . Then, for an appropriate choice of $\tau=1 / \operatorname{poly}(n)$, even in the perturbed network the outputs of these new neurons will be 0 w.h.p. for every input $\tilde{\mathbf{z}}_{1}, \ldots, \tilde{\mathbf{z}}_{m(n)+n^{3}}$, and thus they will not affect the network's output. Thus, using the same argument as in the proof of Theorem 3.1 we conclude that the hardness results holds already for network with square weight matrices.

Suppose that there exists an efficient algorithm \mathcal{L}_{p} that learns in the standard PAC framework depth-3 neural networks where the minimal singular value of each weight matrix is lower bounded by $1 / q(d)$ for any polynomial $q(d)$. We will use \mathcal{L}_{p} to obtain an efficient algorithm \mathcal{L}_{s} that learns depth-3 networks with smoothed parameters as described above, and thus reach a contradiction.
Let $\boldsymbol{\theta} \in \mathbb{R}^{p}$ be B-bounded parameters of a depth-3 network $N_{\boldsymbol{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and let $\tau, \epsilon>0$. Assume that $p, B, 1 / \epsilon, 1 / \tau \leq \operatorname{poly}(d)$, and that the widths of the hidden layers in $\mathcal{N}_{\boldsymbol{\theta}}$ are d. For random $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$ and $\hat{\boldsymbol{\theta}}=\boldsymbol{\theta}+\boldsymbol{\xi}$, the algorithm \mathcal{L}_{s} has access to examples labeled by $N_{\hat{\boldsymbol{\theta}}}$. Using Lemma B.1 below with $t=\frac{\tau}{d}$ and the union bound over the two weight matrices in $N_{\boldsymbol{\theta}}$, we get that with probability at least $1-\frac{2 \cdot 2 \cdot 35}{\sqrt{d}} \geq 1-\frac{1}{1000}$ (for large enough d), the minimal singular values of all weight matrices in $\hat{\boldsymbol{\theta}}$ are at least $\frac{\tau}{d} \geq \frac{1}{q(d)}$ for some sufficiently large polynomial $q(d)$. Our algorithm \mathcal{L}_{s} will simply run \mathcal{L}_{p}. Given that the minimal singular values of the weight matrices are at least $\frac{1}{q(d)}$, the algorithm \mathcal{L}_{p} runs in time poly (d) and returns with probability at least $\frac{3}{4}$ a hypothesis h with $\mathbb{E}_{\mathbf{x}}\left[\left(h(\mathbf{x})-N_{\hat{\boldsymbol{\theta}}}(\mathbf{x})\right)^{2}\right] \leq \epsilon$. Overall, the algorithm \mathcal{L}_{s} runs in poly (d) time, and with probability at least $\frac{3}{4}-\frac{1}{1000}$ (over both $\boldsymbol{\xi}$ and the internal randomness) returns a hypothesis h with loss at most ϵ.
Lemma B. 1 (Sankar et al. [35], Theorem 3.3). Let W be an arbitrary square matrix in $\mathbb{R}^{d \times d}$, and let $P \in \mathbb{R}^{d \times d}$ be a random matrix, where each entry is drawn i.i.d. from $\mathcal{N}\left(0, \tau^{2}\right)$ for some $\tau>0$. Let σ_{d} be the minimal singular value of the matrix $W+P$. Then, for every $t>0$ we have

$$
\operatorname{Pr}_{P}\left[\sigma_{d} \leq t\right] \leq 2.35 \cdot \frac{t \sqrt{d}}{\tau} .
$$

C Proof of Theorem 3.2

The proof follows similar ideas to the proof of Theorem 3.1. The main difference is that we need to handle here a smoothed discrete input distribution rather than the standard Gaussian distribution.

For a sufficiently large n, let \mathcal{D} be a distribution on $\{0,1\}^{n^{2}}$, where each component is drawn i.i.d. from a Bernoulli distribution which takes the value 0 with probability $\frac{1}{n}$. Assume that there is a poly (n)-time algorithm \mathcal{L} that learns depth-3 neural networks with at most n^{2} hidden neurons and parameter magnitudes bounded by n^{3}, with smoothed parameters and inputs, under the distribution \mathcal{D}, with $\epsilon=\frac{1}{n}$ and $\tau, \omega=1 / \operatorname{poly}(n)$ that we will specify later. Let $m(n) \leq \operatorname{poly}(n)$ be the sample complexity of \mathcal{L}, namely, \mathcal{L} uses a sample of size at most $m(n)$ and returns with probability at least $\frac{3}{4}$ a hypothesis h with $\mathbb{E}_{\mathbf{z} \sim \hat{\mathcal{D}}}\left[\left(h(\mathbf{z})-N_{\hat{\boldsymbol{\theta}}}(\mathbf{z})\right)^{2}\right] \leq \epsilon=\frac{1}{n}$. Note that $\hat{\mathcal{D}}$ is the distribution \mathcal{D} after smoothing with parameter ω, and the vector $\hat{\boldsymbol{\theta}}$ is the parameters of the target network after smoothing with parameter τ. Let $s>1$ be a constant such that $n^{s} \geq m(n)+n^{3}$ for every sufficiently large n. By Assumption 2.1, there exists a constant k and a predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$, such that $\mathcal{F}_{P, n, n^{s}}$
is $\frac{1}{3}$-PRG. We will show an efficient algorithm \mathcal{A} with distinguishing advantage greater than $\frac{1}{3}$ and thus reach a contradiction.

Throughout this proof, we will use some notations from the proof of Theorem 3.1. We repeat it here for convenience. For a hyperedge $S=\left(i_{1}, \ldots, i_{k}\right)$ we denote by $\mathbf{z}^{S} \in\{0,1\}^{k n}$ the following encoding of S : the vector \mathbf{z}^{S} is a concatenation of k vectors in $\{0,1\}^{n}$, such that the j-th vector has 0 in the i_{j}-th coordinate and 1 elsewhere. Thus, \mathbf{z}^{S} consists of k size- n slices, each encoding a member of S. For $\mathbf{z} \in\{0,1\}^{k n}, i \in[k]$ and $j \in[n]$, we denote $z_{i, j}=z_{(i-1) n+j}$. That is, $z_{i, j}$ is the j-th component in the i-th slice in \mathbf{z}. For $\mathbf{x} \in\{0,1\}^{n}$, let $P_{\mathbf{x}}:\{0,1\}^{k n} \rightarrow\{0,1\}$ be such that for every hyperedge S we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=P\left(\mathbf{x}_{S}\right)$. For $\tilde{\mathbf{z}} \in \mathbb{R}^{n^{2}}$ we denote $\tilde{\mathbf{z}}_{[k n]}=\left(\tilde{z}_{1}, \ldots, \tilde{z}_{k n}\right)$, namely, the first $k n$ components of $\tilde{\mathbf{z}}$ (assuming $n^{2} \geq k n$).

C. 1 Defining the target network for \mathcal{L}

Since our goal is to use the algorithm \mathcal{L} for breaking PRGs, in this subsection we define a neural network $\tilde{N}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ that we will later use as a target network for \mathcal{L}. The network \tilde{N} contains the subnetworks N_{1}, N_{2} that we define below.

Let N_{1} be a depth-1 neural network (i.e., one layer, with activations in the output neurons) with input dimension $k n$, at most $\log (n)$ output neurons, and parameter magnitudes bounded by n^{3} (all bounds are for a sufficiently large n), which satisfies the following. We denote the set of output neurons of N_{1} by \mathcal{E}_{1}. Let $\mathbf{z}^{\prime} \in\{0,1\}^{k n}$ be an input to N_{1} such that $\mathbf{z}^{\prime}=\mathbf{z}^{S}$ for some hyperedge S. Thus, even though N_{1} takes inputs in $\mathbb{R}^{k n}$, we consider now its behavior for an input \mathbf{z}^{\prime} with discrete components in $\{0,1\}$. Fix some $\mathbf{x} \in\{0,1\}^{n}$. Then, for S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=0$ the inputs to all output neurons \mathcal{E}_{1} are at most -1 , and for S with $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1$ there exists a neuron in \mathcal{E}_{1} with input at least 2 . Recall that our definition of a neuron's input includes the addition of the bias term. The construction of the network N_{1} is given in Lemma A.2. Note that the network N_{1} depends on \mathbf{x}. Let $N_{1}^{\prime}: \mathbb{R}^{k n} \rightarrow \mathbb{R}$ be a depth- 2 neural network with no activation function in the output neuron, obtained from N_{1} by summing the outputs from all neurons \mathcal{E}_{1}.
Let N_{2} be a depth-1 neural network (i.e., one layer, with activations in the output neurons) with input dimension $k n$, at most $2 n$ output neurons, and parameter magnitudes bounded by n^{3} (for a sufficiently large n), which satisfies the following. We denote the set of output neurons of N_{2} by \mathcal{E}_{2}. Let $\mathbf{z}^{\prime} \in\{0,1\}^{k n}$ be an input to N_{2} (note that it has components only in $\{0,1\}$). If \mathbf{z}^{\prime} is an encoding of a hyperedge then the inputs to all output neurons \mathcal{E}_{2} are at most -1 , and otherwise there exists a neuron in \mathcal{E}_{2} with input at least 2 . The construction of the network N_{2} is given in Lemma A. 4 Let $N_{2}^{\prime}: \mathbb{R}^{k n} \rightarrow \mathbb{R}$ be a depth-2 neural network with no activation function in the output neuron, obtained from N_{2} by summing the outputs from all neurons \mathcal{E}_{2}.
Let $N^{\prime}: \mathbb{R}^{k n} \rightarrow \mathbb{R}$ be a depth-2 network obtained from $N_{1}^{\prime}, N_{2}^{\prime}$ as follows. For $\mathbf{z}^{\prime} \in \mathbb{R}^{k n}$ we have $N^{\prime}\left(\mathbf{z}^{\prime}\right)=\left[1-N_{1}^{\prime}\left(\mathbf{z}^{\prime}\right)-N_{2}^{\prime}\left(\mathbf{z}^{\prime}\right)\right]_{+}$. The network N^{\prime} has at most n^{2} neurons, and parameter magnitudes bounded by n^{3} (all bounds are for a sufficiently large n). Finally, let $\tilde{N}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ be a depth-2 neural network such that $\tilde{N}(\tilde{\mathbf{z}})=N^{\prime}\left(\tilde{\mathbf{z}}_{[k n]}\right)$.

C. 2 Defining the noise magnitudes τ, ω and analyzing the perturbed network under perturbed inputs

In order to use the algorithm \mathcal{L} w.r.t. some neural network with parameters $\boldsymbol{\theta}$ and a certain input distribution, we need to implement an examples oracle, such that the examples are drawn from a smoothed input distribution, and labeled according to a neural network with parameters $\boldsymbol{\theta}+\boldsymbol{\xi}$, where $\boldsymbol{\xi}$ is a random perturbation. Specifically, we use \mathcal{L} with an examples oracle where the input distribution $\hat{\mathcal{D}}$ is obtained from \mathcal{D} by smoothing, and the labels correspond to a network $\hat{N}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ obtained from \tilde{N} (w.r.t. an appropriate $\mathrm{x} \in\{0,1\}^{n}$ in the construction of N_{1}) by adding a small perturbation to the parameters. The smoothing magnitudes ω, τ of the inputs and the network's parameters (respectively) are such that the following hold.
We first choose the parameter $\tau=1 / \operatorname{poly}(n)$ as follows. Let $f_{\boldsymbol{\theta}}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ be any depth- 2 neural network parameterized by $\boldsymbol{\theta} \in \mathbb{R}^{r}$ for some $r>0$ with at most n^{2} neurons, and parameter magnitudes bounded by n^{3} (note that r is polynomial in n). Then, τ is such that with probability at least $1-\frac{1}{n}$ over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{r}\right)$, we have $\left|\xi_{i}\right| \leq \frac{1}{10}$ for all $i \in[r]$, and the network $f_{\boldsymbol{\theta}+\boldsymbol{\xi}}$ is such that
for every input $\tilde{\mathbf{z}} \in \mathbb{R}^{n^{2}}$ with $\|\tilde{\mathbf{z}}\| \leq n$ and every neuron we have: Let a, b be the inputs to the neuron in the computations $f_{\boldsymbol{\theta}}(\tilde{\mathbf{z}})$ and $f_{\boldsymbol{\theta}+\boldsymbol{\xi}}(\tilde{\mathbf{z}})$ (respectively), then $|a-b| \leq \frac{1}{4}$. Thus, τ is sufficiently small, such that w.h.p. adding i.i.d. noise $\mathcal{N}\left(0, \tau^{2}\right)$ to each parameter does not change the inputs to the neurons by more than $\frac{1}{4}$. Note that such an inverse-polynomial τ exists, since when the network size, parameter magnitudes, and input size are bounded by some poly (n), then the input to each neuron in $f_{\boldsymbol{\theta}}(\tilde{\mathbf{z}})$ is poly (n)-Lipschitz as a function of $\boldsymbol{\theta}$, and thus it suffices to choose τ that implies with probability at least $1-\frac{1}{n}$ that $\|\boldsymbol{\xi}\| \leq \frac{1}{q(n)}$ for a sufficiently large polynomial $q(n)$ (see Lemma A. 7 for details).

Next, we choose the parameter $\omega=1 / \operatorname{poly}(n)$ as follows. Let $f_{\boldsymbol{\theta}}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ be any depth- 2 neural network parameterized by $\boldsymbol{\theta}$ with at most n^{2} neurons, and parameter magnitudes bounded by $n^{3}+\frac{1}{10}$. Then, ω is such that for every $\mathbf{z} \in\{0,1\}^{n^{2}}$, with probability at least $1-\exp (-n / 2)$ over $\zeta \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ the following holds for every neuron in the $f_{\boldsymbol{\theta}}$: Let a, b be the inputs to the neuron in the computations $f_{\boldsymbol{\theta}}(\mathbf{z})$ and $f_{\boldsymbol{\theta}}(\mathbf{z}+\boldsymbol{\zeta})$ (respectively), then $|a-b| \leq \frac{1}{4}$. Thus, ω is sufficiently small, such that w.h.p. adding noise $\mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ to the input \mathbf{z} does not change the inputs to the neurons by more than $\frac{1}{4}$. Note that such an inverse-polynomial ω exists, since when the network size and parameter magnitudes are bounded by some poly (n), then the input to each neuron in $f_{\boldsymbol{\theta}}(\mathbf{z})$ is poly (n)-Lipschitz as a function of \mathbf{z}, and thus it suffices to choose ω that implies with probability at least $1-\exp (-n / 2)$ that $\|\boldsymbol{\zeta}\| \leq \frac{1}{q(n)}$ for a sufficiently large polynomial $q(n)$ (see Lemma A. 7 for details).

Let $\tilde{\boldsymbol{\theta}} \in \mathbb{R}^{p}$ be the parameters of the network \tilde{N}. Recall that the parameters vector $\tilde{\boldsymbol{\theta}}$ is the concatenation of all weight matrices and bias terms. Let $\hat{\boldsymbol{\theta}} \in \mathbb{R}^{p}$ be the parameters of \hat{N}, namely, $\hat{\boldsymbol{\theta}}=\tilde{\boldsymbol{\theta}}+\boldsymbol{\xi}$ where $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$. By our choice of τ and the construction of the networks N_{1}, N_{2}, with probability at least $1-\frac{1}{n}$ over $\boldsymbol{\xi}$, for every $\mathbf{z} \in\{0,1\}^{n^{2}}$ the following holds: Let $\boldsymbol{\zeta} \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ and let $\hat{\mathbf{z}}=\mathbf{z}+\boldsymbol{\zeta}$. Then with probability at least $1-\exp (-n / 2)$ over $\boldsymbol{\zeta}$ the differences between inputs to all neurons in the computations $\hat{N}(\hat{\mathbf{z}})$ and $\tilde{N}(\mathbf{z})$ are at most $\frac{1}{2}$. Indeed, w.h.p. for all $\mathbf{z} \in\{0,1\}^{n^{2}}$ the computations $\tilde{N}(\mathbf{z})$ and $\hat{N}(\mathbf{z})$ are roughly similar (up to change of $1 / 4$ in the input to each neuron), and w.h.p. the computations $\hat{N}(\mathbf{z})$ and $\hat{N}(\hat{\mathbf{z}})$ are roughly similar (up to change of $1 / 4$ in the input to each neuron). Thus, with probability at least $1-\frac{1}{n}$ over $\boldsymbol{\xi}$, the network \hat{N} is such that for every $\mathbf{z} \in\{0,1\}^{n^{2}}$, we have with probability at least $1-\exp (-n / 2)$ over ζ that the computation $\hat{N}(\hat{\mathbf{z}})$ satisfies the following properties, where $\mathbf{z}^{\prime}:=\mathbf{z}_{[k n]}$:
(Q1) If $\mathbf{z}^{\prime}=\mathbf{z}^{S}$ for some hyperedge S, then the inputs to \mathcal{E}_{1} satisfy:

- If $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=0$ the inputs to all neurons in \mathcal{E}_{1} are at most $-\frac{1}{2}$.
- If $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=1$ there exists a neuron in \mathcal{E}_{1} with input at least $\frac{3}{2}$.
(Q2) The inputs to \mathcal{E}_{2} satisfy:
- If \mathbf{z}^{\prime} is an encoding of a hyperedge then the inputs to all neurons \mathcal{E}_{2} are at most $-\frac{1}{2}$.
- Otherwise, there exists a neuron in \mathcal{E}_{2} with input at least $\frac{3}{2}$.

C. 3 Stating the algorithm \mathcal{A}

Given a sequence $\left(S_{1}, y_{1}\right), \ldots,\left(S_{n^{s}}, y_{n^{s}}\right)$, where $S_{1}, \ldots, S_{n^{s}}$ are i.i.d. random hyperedges, the algorithm \mathcal{A} needs to distinguish whether $\mathbf{y}=\left(y_{1}, \ldots, y_{n^{s}}\right)$ is random or that $\mathbf{y}=$ $\left(P\left(\mathbf{x}_{S_{1}}\right), \ldots, P\left(\mathbf{x}_{S_{n} s}\right)\right)=\left(P_{\mathbf{x}}\left(\mathbf{z}^{S_{1}}\right), \ldots, P_{\mathbf{x}}\left(\mathbf{z}^{S_{n} s}\right)\right)$ for a random $\mathbf{x} \in\{0,1\}^{n}$. Let $\mathcal{S}=$ $\left(\left(\mathbf{z}^{S_{1}}, y_{1}\right), \ldots,\left(\mathbf{z}^{S_{n} s}, y_{n^{s}}\right)\right)$.
We use the efficient algorithm \mathcal{L} in order to obtain distinguishing advantage greater than $\frac{1}{3}$ as follows. Let $\boldsymbol{\xi}$ be a random perturbation, and let \hat{N} be the perturbed network as defined above, w.r.t. the unknown $\mathbf{x} \in\{0,1\}^{n}$. Note that given a perturbation $\boldsymbol{\xi}$, only the weights in the second layer of the subnetwork N_{1} in \hat{N} are unknown, since all other parameters do not depend on \mathbf{x}. The algorithm \mathcal{A} runs \mathcal{L} with the following examples oracle. In the i-th call, the oracle first draws $\mathbf{z}^{\prime} \in\{0,1\}^{k n}$ such that each component is drawn i.i.d. from a Bernoulli distribution which takes the value 0 with probability $\frac{1}{n}$. If \mathbf{z}^{\prime} is an encoding of a hyperedge then the oracle replaces \mathbf{z}^{\prime} with $\mathbf{z}^{S_{i}}$. Let $\mathbf{z} \in\{0,1\}^{n^{2}}$ be such that $\mathbf{z}_{[k n]}=\mathbf{z}^{\prime}$, and the other $n^{2}-k n$ components of \mathbf{z} are drawn i.i.d. from
a Bernoulli distribution which takes the value 0 with probability $\frac{1}{n}$. Note that the vector \mathbf{z} has the distribution \mathcal{D}, since replacing an encoding of a random hyperedge by an encoding of another random hyperedge does not change the distribution of \mathbf{z}^{\prime}. Let $\hat{\mathbf{z}}=\mathbf{z}+\boldsymbol{\zeta}$, where $\boldsymbol{\zeta} \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$. Note that $\hat{\mathbf{z}}$ has the distribution $\hat{\mathcal{D}}$. Let $\hat{b} \in \mathbb{R}$ be the bias term of the output neuron of \hat{N}. The oracle returns $(\hat{\mathbf{z}}, \hat{y})$, where the labels \hat{y} are chosen as follows:

- If \mathbf{z}^{\prime} is not an encoding of a hyperedge, then $\hat{y}=0$.
- If \mathbf{z}^{\prime} is an encoding of a hyperedge:
- If $y_{i}=0$ we set $\hat{y}=\hat{b}$.
- If $y_{i}=1$ we set $\hat{y}=0$.

Let h be the hypothesis returned by \mathcal{L}. Recall that \mathcal{L} uses at most $m(n)$ examples, and hence \mathcal{S} contains at least n^{3} examples that \mathcal{L} cannot view. We denote the indices of these examples by $I=\left\{m(n)+1, \ldots, m(n)+n^{3}\right\}$, and the examples by $\mathcal{S}_{I}=\left\{\left(\mathbf{z}^{S_{i}}, y_{i}\right)\right\}_{i \in I}$. By n^{3} additional calls to the oracle, the algorithm \mathcal{A} obtains the examples $\hat{\mathcal{S}}_{I}=\left\{\left(\hat{\mathbf{z}}_{i}, \hat{y}_{i}\right)\right\}_{i \in I}$ that correspond to \mathcal{S}_{I}. Let h^{\prime} be a hypothesis such that for all $\tilde{\mathbf{z}} \in \mathbb{R}^{n^{2}}$ we have $h^{\prime}(\tilde{\mathbf{z}})=\max \{0, \min \{\hat{b}, h(\tilde{\mathbf{z}})\}\}$, thus, for $\hat{b} \geq 0$ the hypothesis h^{\prime} is obtained from h by clipping the output to the interval $[0, \hat{b}]$. Let $\ell_{I}\left(h^{\prime}\right)=\frac{1}{|I|} \sum_{i \in I}\left(h^{\prime}\left(\hat{\mathbf{z}}_{i}\right)-\hat{y}_{i}\right)^{2}$. Now, if $\ell_{I}\left(h^{\prime}\right) \leq \frac{2}{n}$, then \mathcal{A} returns 1 , and otherwise it returns 0 . We remark that the decision of our algorithm is based on h^{\prime} (rather than h) since we need the outputs to be bounded, in order to allow using Hoeffding's inequality in our analysis, which we discuss in the next subsection.

C. 4 Analyzing the algorithm \mathcal{A}

Note that the algorithm \mathcal{A} runs in poly (n) time. We now show that if \mathcal{S} is pseudorandom then \mathcal{A} returns 1 with probability greater than $\frac{2}{3}$, and if \mathcal{S} is random then \mathcal{A} returns 1 with probability less than $\frac{1}{3}$. To that end, we use similar arguments to the proof of Theorem 3.1

In Lemma C.1, we show that if \mathcal{S} is pseudorandom then with probability at least $\frac{39}{40}$ (over $\boldsymbol{\xi} \sim$ $\mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$ and $\boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ for all $\left.i \in[m(n)]\right)$ the examples $\left(\hat{\mathbf{z}}_{1}, \hat{y}_{1}\right), \ldots,\left(\hat{\mathbf{z}}_{m(n)}, \hat{y}_{m(n)}\right)$ returned by the oracle are realized by \hat{N}. Recall that the algorithm \mathcal{L} is such that with probability at least $\frac{3}{4}$ (over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$, the i.i.d. inputs $\hat{\mathbf{z}}_{i} \sim \hat{\mathcal{D}}$, and possibly its internal randomness), given a size-m (n) dataset labeled by \hat{N}, it returns a hypothesis h such that $\mathbb{E}_{\hat{\mathbf{z}} \sim \hat{\mathcal{D}}}\left[(h(\hat{\mathbf{z}})-\hat{N}(\hat{\mathbf{z}}))^{2}\right] \leq \frac{1}{n}$. Hence, with probability at least $\frac{3}{4}-\frac{1}{40}$ the algorithm \mathcal{L} returns such a good hypothesis h, given $m(n)$ examples labeled by our examples oracle. Indeed, note that \mathcal{L} can return a bad hypothesis only if the random choices are either bad for \mathcal{L} (when used with realizable examples) or bad for the realizability of the examples returned by our oracle. By the definition of h^{\prime} and the construction of \hat{N}, if h has small error then h^{\prime} also has small error, namely,

$$
\underset{\hat{\mathbf{z}} \sim \hat{\mathcal{D}}}{\mathbb{E}}\left[\left(h^{\prime}(\hat{\mathbf{z}})-\hat{N}(\hat{\mathbf{z}})\right)^{2}\right] \leq \underset{\tilde{\mathbf{z}} \sim \hat{\mathcal{D}}}{\mathbb{E}}\left[(h(\hat{\mathbf{z}})-\hat{N}(\hat{\mathbf{z}}))^{2}\right] \leq \frac{1}{n} .
$$

Let $\hat{\ell}_{I}\left(h^{\prime}\right)=\frac{1}{|I|} \sum_{i \in I}\left(h^{\prime}\left(\hat{\mathbf{z}}_{i}\right)-\hat{N}\left(\hat{\mathbf{z}}_{i}\right)\right)^{2}$. Recall that by our choice of τ we have $\operatorname{Pr}\left[\hat{b}>\frac{11}{10}\right] \leq \frac{1}{n}$. Since, $\left(h^{\prime}(\hat{\mathbf{z}})-\hat{N}(\hat{\mathbf{z}})\right)^{2} \in\left[0, \hat{b}^{2}\right]$ for all $\hat{\mathbf{z}} \in \mathbb{R}^{n^{2}}$, by Hoeffding's inequality, we have for a sufficiently large n that

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n}\right]= & \operatorname{Pr}\left[\left.\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b} \leq \frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b} \leq \frac{11}{10}\right] \\
& +\operatorname{Pr}\left[\left.\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b}>\frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b}>\frac{11}{10}\right] \\
\leq & 2 \exp \left(-\frac{2 n^{3}}{n^{2}(11 / 10)^{4}}\right) \cdot 1+1 \cdot \frac{1}{n} \\
\leq & \frac{1}{40} .
\end{aligned}
$$ $\hat{\mathbf{z}}_{i}$.

$$
\operatorname{Pr}\left[\ell_{I}\left(h^{\prime}\right) \neq \hat{\ell}_{I}\left(h^{\prime}\right)\right] \leq \operatorname{Pr}\left[\exists i \in I \text { s.t. } \hat{y}_{i} \neq \hat{N}\left(\hat{\mathbf{z}}_{i}\right)\right] \leq \frac{1}{40} .
$$

Overall, by the union bound we have with probability at least $1-\left(\frac{1}{4}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}\right)>\frac{2}{3}$ for sufficiently large n that:

- $\mathbb{E}_{\hat{\mathcal{S}}_{I}} \hat{\ell}_{I}\left(h^{\prime}\right)=\mathbb{E}_{\hat{\mathbf{z}} \sim \hat{\mathcal{D}}}\left[\left(h^{\prime}(\hat{\mathbf{z}})-\hat{N}(\hat{\mathbf{z}})\right)^{2}\right] \leq \frac{1}{n}$.
- $\left|\hat{\ell}_{I}\left(h^{\prime}\right)-\mathbb{E}_{\hat{\mathcal{S}}_{I}} \hat{\ell}_{I}\left(h^{\prime}\right)\right| \leq \frac{1}{n}$.
- $\ell_{I}\left(h^{\prime}\right)-\hat{\ell}_{I}\left(h^{\prime}\right)=0$.

Combining the above, we get that if \mathcal{S} is pseudorandom, then with probability greater than $\frac{2}{3}$ we have

$$
\ell_{I}\left(h^{\prime}\right)=\left(\ell_{I}\left(h^{\prime}\right)-\hat{\ell}_{I}\left(h^{\prime}\right)\right)+\left(\hat{\ell}_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right)\right)+\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \hat{\ell}_{I}\left(h^{\prime}\right) \leq 0+\frac{1}{n}+\frac{1}{n}=\frac{2}{n}
$$

We now consider the case where \mathcal{S} is random. For an example $\hat{\mathbf{z}}_{i}=\mathbf{z}_{i}+\boldsymbol{\zeta}_{i}$ returned by the oracle, we denote $\mathbf{z}_{i}^{\prime}=\left(\mathbf{z}_{i}\right)_{[k n]} \in\{0,1\}^{k n}$. Thus, \mathbf{z}_{i}^{\prime} is the input that the oracle used before adding the $n^{2}-k n$ additional components and adding noise $\boldsymbol{\zeta}_{i}$. Let $\mathcal{Z}^{\prime} \subseteq\{0,1\}^{k n}$ be such that $\mathbf{z}^{\prime} \in \mathcal{Z}^{\prime}$ iff $\mathbf{z}^{\prime}=\mathbf{z}^{S}$ for some hyperedge S. If \mathcal{S} is random, then by the definition of our examples oracle, for every $i \in\left[m(n)+n^{3}\right]$ such that $\mathbf{z}_{i}^{\prime} \in \mathcal{Z}^{\prime}$, we have $\hat{y}_{i}=\hat{b}$ with probability $\frac{1}{2}$ and $\hat{y}_{i}=0$ otherwise. Also, by the definition of the oracle, \hat{y}_{i} is independent of S_{i}, independent of the $n^{2}-k n$ additional components that where added, and independent of the noise $\boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ that corresponds to

If $\hat{b} \geq \frac{9}{10}$ then for a sufficiently large n the hypothesis h^{\prime} satisfies for each random example $\left(\hat{\mathbf{z}}_{i}, \hat{y}_{i}\right) \in \hat{\mathcal{S}}_{I}$ the following:

$$
\begin{aligned}
\operatorname{Pr}_{\left(\hat{\mathbf{z}}_{i}, \hat{y}_{i}\right)} & {\left[\left(h^{\prime}\left(\hat{\mathbf{z}}_{i}\right)-\hat{y}_{i}\right)^{2} \geq \frac{1}{5}\right] } \\
& \geq \operatorname{Pr}_{\left(\hat{\mathbf{z}}_{i}, \hat{y}_{i}\right)}\left[\left.\left(h^{\prime}\left(\hat{\mathbf{z}}_{i}\right)-\hat{y}_{i}\right)^{2} \geq \frac{1}{5} \right\rvert\, \mathbf{z}_{i}^{\prime} \in \mathcal{Z}^{\prime}\right] \cdot \operatorname{Pr}\left[\mathbf{z}_{i}^{\prime} \in \mathcal{Z}^{\prime}\right] \\
& \geq \operatorname{Pr}_{\left(\hat{\mathbf{z}}_{i}, \hat{y}_{i}\right)}\left[\left.\left(h^{\prime}\left(\hat{\mathbf{z}}_{i}\right)-\hat{y}_{i}\right)^{2} \geq\left(\frac{\hat{b}}{2}\right)^{2} \right\rvert\, \mathbf{z}_{i}^{\prime} \in \mathcal{Z}^{\prime}\right] \cdot \operatorname{Pr}\left[\mathbf{z}_{i}^{\prime} \in \mathcal{Z}^{\prime}\right] \\
& \geq \frac{1}{2} \cdot \operatorname{Pr}\left[\mathbf{z}_{i}^{\prime} \in \mathcal{Z}^{\prime}\right] .
\end{aligned}
$$

Thus, if $\hat{b} \geq \frac{9}{10}$ then we have

$$
\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}}\left[\ell_{I}\left(h^{\prime}\right)\right] \geq \frac{1}{5} \cdot \frac{1}{2 \log (n)}=\frac{1}{10 \log (n)}
$$

947
Therefore, for large n we have

$$
\operatorname{Pr}\left[\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}}\left[\ell_{I}\left(h^{\prime}\right)\right] \geq \frac{1}{10 \log (n)}\right] \geq 1-\frac{1}{n} \geq \frac{7}{8}
$$

Since, $\left(h^{\prime}(\hat{\mathbf{z}})-\hat{y}\right)^{2} \in\left[0, \hat{b}^{2}\right]$ for all $\hat{\mathbf{z}}, \hat{y}$ returned by the examples oracle, and the examples $\hat{\mathbf{z}}_{i}$ for $i \in I$ are i.i.d., then by Hoeffding's inequality, we have for a sufficiently large n that

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\ell_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \ell_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n}\right]= & \operatorname{Pr}\left[\left.\left|\ell_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \ell_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b} \leq \frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b} \leq \frac{11}{10}\right] \\
& +\operatorname{Pr}\left[\left.\left|\ell_{I}\left(h^{\prime}\right)-\underset{\hat{\mathcal{S}}_{I}}{\mathbb{E}} \ell_{I}\left(h^{\prime}\right)\right| \geq \frac{1}{n} \right\rvert\, \hat{b}>\frac{11}{10}\right] \cdot \operatorname{Pr}\left[\hat{b}>\frac{11}{10}\right] \\
\leq & 2 \exp \left(-\frac{2 n^{3}}{n^{2}(11 / 10)^{4}}\right) \cdot 1+1 \cdot \frac{1}{n} \\
\leq & \frac{1}{8} .
\end{aligned}
$$

Hence, for large enough n, with probability at least $1-\frac{1}{8}-\frac{1}{8}=\frac{3}{4}>\frac{2}{3}$ we have both $\mathbb{E}_{\hat{\mathcal{S}}_{I}}\left[\ell_{I}\left(h^{\prime}\right)\right] \geq$ $\frac{1}{10 \log (n)}$ and $\left|\ell_{I}\left(h^{\prime}\right)-\mathbb{E}_{\hat{\mathcal{S}}_{I}} \ell_{I}\left(h^{\prime}\right)\right| \leq \frac{1}{n}$, and thus

$$
\ell_{I}\left(h^{\prime}\right) \geq \frac{1}{10 \log (n)}-\frac{1}{n}>\frac{2}{n} .
$$

Overall, if \mathcal{S} is pseudorandom then with probability greater than $\frac{2}{3}$ the algorithm \mathcal{A} returns 1 , and if \mathcal{S} is random then with probability greater than $\frac{2}{3}$ the algorithm \mathcal{A} returns 0 . Thus, the distinguishing advantage is greater than $\frac{1}{3}$. This concludes the proof of the theorem. It remains to prove the deffered lemma on the realizability of the examples returned by the examples oracle:
Lemma C.1. If \mathcal{S} is pseudorandom then with probability at least $\frac{39}{40}$ over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$ and $\boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ for $i \in\left[m(n)+n^{3}\right]$, the examples $\left(\hat{\mathbf{z}}_{1}, \hat{y}_{1}\right), \ldots,\left(\hat{\mathbf{z}}_{m(n)+n^{3}}, \hat{y}_{m(n)+n^{3}}\right)$ returned by the oracle are realized by \hat{N}.

Proof. By our choice of τ and ω and the construction of N_{1}, N_{2}, with probability at least $1-\frac{1}{n}$ over $\boldsymbol{\xi} \sim \mathcal{N}\left(\mathbf{0}, \tau^{2} I_{p}\right)$, we have $\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$, and for every $\mathbf{z} \in\{0,1\}^{n^{2}}$ the following holds: Let $\boldsymbol{\zeta} \sim \mathcal{N}\left(\mathbf{0}, \omega^{2} I_{n^{2}}\right)$ and let $\hat{\mathbf{z}}=\mathbf{z}+\boldsymbol{\zeta}$. Then with probability at least $1-\exp (-n / 2)$ over ζ the inputs to the neurons $\mathcal{E}_{1}, \mathcal{E}_{2}$ in the computation $\hat{N}(\hat{\mathbf{z}})$ satisfy Properties (Q1) and (Q2) Hence, with probability at least $1-\frac{1}{n}-\left(m(n)+n^{3}\right) \exp (-n / 2) \geq 1-\frac{2}{n}$ (for a sufficiently large $n),\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$, and Properties (Q1) and (Q2) hold for the computations $\hat{N}\left(\hat{\mathbf{z}}_{i}\right)$ for all $i \in\left[m(n)+n^{3}\right]$. It remains to show that if $\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$ and Properties (Q1) and (Q2) hold, then the examples $\left(\hat{\mathbf{z}}_{1}, \hat{y}_{1}\right), \ldots,\left(\hat{\mathbf{z}}_{m(n)+n^{3}}, \hat{y}_{m(n)+n^{3}}\right)$ are realized by \hat{N}.
Let $i \in\left[m(n)+n^{3}\right]$. We denote $\hat{\mathbf{z}}_{i}=\mathbf{z}_{i}+\boldsymbol{\zeta}_{i}$, namely, the i-th example returned by the oracle was obtained by adding noise $\boldsymbol{\zeta}_{i}$ to $\mathbf{z}_{i} \in\{0,1\}^{n^{2}}$. We also denote $\mathbf{z}_{i}^{\prime}=\left(\mathbf{z}_{i}\right)_{[k n]} \in\{0,1\}^{k n}$. Since $\left|\xi_{j}\right| \leq \frac{1}{10}$ for all $j \in[p]$, and all incoming weights to the output neuron in \tilde{N} are -1 , then in \hat{N} all incoming weights to the output neuron are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and the bias term in the output neuron, denoted by \hat{b}, is in $\left[\frac{9}{10}, \frac{11}{10}\right]$. Consider the following cases:

- If \mathbf{z}_{i}^{\prime} is not an encoding of a hyperedge then $\hat{y}_{i}=0$. Moreover, in the computation $\hat{N}\left(\hat{\mathbf{z}}_{i}\right)$, there exists a neuron in \mathcal{E}_{2} with output at least $\frac{3}{2}$ (by Property (Q2)). Since all incoming weights to the output neuron in \hat{N} are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and $\hat{b} \in\left[\frac{9}{10}, \frac{11}{10}\right]$, then the input to the output neuron (including the bias term) is at most $\frac{11}{10}-\frac{3}{2} \cdot \frac{9}{10}<0$, and thus its output is 0 .
- If \mathbf{z}^{\prime} is an encoding of a hyperedge S, then by the definition of the examples oracle we have $S=S_{i}$. Hence:
- If $y_{i}=0$ then the oracle sets $\hat{y}_{i}=\hat{b}$. Since \mathcal{S} is pseudorandom, we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=$ $P_{\mathbf{x}}\left(\mathbf{z}^{S_{i}}\right)=y_{i}=0$. Hence, in the computation $\hat{N}\left(\hat{\mathbf{z}}_{i}\right)$ the inputs to all neurons in $\mathcal{E}_{1}, \mathcal{E}_{2}$ are at most $-\frac{1}{2}$ (by Properties (Q1) and (Q2)), and thus their outputs are 0 . Therefore, $\hat{N}\left(\hat{\mathbf{z}}_{i}\right)=\hat{b}$.
- If $y_{i}=1$ then the oracle sets $\hat{y}_{i}=0$. Since \mathcal{S} is pseudorandom, we have $P_{\mathbf{x}}\left(\mathbf{z}^{S}\right)=$ $P_{\mathbf{x}}\left(\mathbf{z}^{S_{i}}\right)=y_{i}=1$. Hence, in the computation $\hat{N}\left(\hat{\mathbf{z}}_{i}\right)$ there exists a neuron in \mathcal{E}_{1} with output at least $\frac{3}{2}$ (by Property (Q1). Since all incoming weights to the output neuron in \hat{N} are in $\left[-\frac{11}{10},-\frac{9}{10}\right]$, and $\hat{b} \in\left[\frac{9}{10}, \frac{11}{10}\right]$, then the input to output neuron (including the bias term) is at most $\frac{11}{10}-\frac{3}{2} \cdot \frac{9}{10}<0$, and thus its output is 0 .

