
A Missing lemmas for the proof of Theorem 3.1529

Lemma A.1 (Daniely and Vardi [15]). For every predicate P : {0, 1}k → {0, 1} and x ∈ {0, 1}n,530

there is a DNF formula ψ over {0, 1}kn with at most 2k terms, such that for every hyperedge S we531

have Px(z
S) = ψ(zS). Moreover, each term in ψ is a conjunction of positive literals.532

Proof. The following proof is from Daniely and Vardi [15], and we give it here for completeness.533

We denote by B ⊆ {0, 1}k the set of satisfying assignments of P . Note that the size of B is at most534

2k. Consider the following DNF formula over {0, 1}kn:535

ψ(z) =
∨
b∈B

∧
j∈[k]

∧
{l:xl ̸=bj}

zj,l .

For a hyperedge S = (i1, . . . , ik), we have536

ψ(zS) = 1 ⇐⇒ ∃b ∈ B ∀j ∈ [k] ∀xl ̸= bj , z
S
j,l = 1

⇐⇒ ∃b ∈ B ∀j ∈ [k] ∀xl ̸= bj , ij ̸= l

⇐⇒ ∃b ∈ B ∀j ∈ [k], xij = bj

⇐⇒ ∃b ∈ B, xS = b

⇐⇒ P (xS) = 1

⇐⇒ Px(z
S) = 1 .

537

Lemma A.2. Let x ∈ {0, 1}n. There exists an affine layer with at most 2k outputs, weights bounded538

by a constant and bias terms bounded by n log(n) (for a sufficiently large n), such that given an input539

zS ∈ {0, 1}kn for some hyperedge S, it satisfies the following: For S with Px(z
S) = 0 all outputs540

are at most −1, and for S with Px(z
S) = 1 there exists an output greater or equal to 2.541

Proof. By Lemma A.1, there exists a DNF formula φx over {0, 1}kn with at most 2k terms, such542

that φx(z
S) = Px(z

S). Thus, if Px(z
S) = 0 then all terms in φx are not satisfied for the input zS ,543

and if Px(z
S) = 1 then there is at least one term in φx which is satisfied for the input zS . Therefore,544

it suffices to construct an affine layer such that for an input zS , the j-th output will be at most −1 if545

the j-th term of φx is not satisfied, and at least 2 otherwise. Each term Cj in φx is a conjunction of546

positive literals. Let Ij ⊆ [kn] be the indices of these literals. The j-th output of the affine layer will547

be548 ∑
l∈Ij

3zSl

− 3|Ij |+ 2 .

Note that if the conjunction Cj holds, then this expression is exactly 3|Ij | − 3|Ij | + 2 = 2, and549

otherwise it is at most 3(|Ij | − 1)− 3|Ij |+ 2 = −1. Finally, note that all weights are bounded by 3550

and all bias terms are bounded by n log(n) (for large enough n).551

Lemma A.3. Let x ∈ {0, 1}n. There exists a depth-2 neural network N1 with input dimension kn,552

2kn hidden neurons, at most 2k output neurons, and parameter magnitudes bounded by n3 (for a553

sufficiently large n), which satisfies the following. We denote the set of output neurons of N1 by E1.554

Let z′ ∈ Rkn be such that Ψ(z′) = zS for some hyperedge S, and assume that for every i ∈ [kn] we555

have z′i ̸∈
(
c, c+ 1

n2

)
. Then, for S with Px(z

S) = 0 the inputs to all neurons E1 are at most −1, and556

for S with Px(z
S) = 1 there exists a neuron in E1 with input at least 2. Moreover, only the second557

layer of N1 depends on x.558

Proof. First, we construct a depth-2 neural network NΨ : Rkn → [0, 1]kn with a single layer of non-559

linearity, such that for every z′ ∈ Rkn with z′i ̸∈ (c, c+ 1
n2) for every i ∈ [kn], we have NΨ(z

′) =560

Ψ(z′). The network NΨ has 2kn hidden neurons, and computes NΨ(z
′) = (f(z′1), . . . , f(z

′
kn)),561

where f : R→ [0, 1] is such that562

f(t) = n2 ·

(
[t− c]+ −

[
t−

(
c+

1

n2

)]
+

)
.

13

Note that if t ≤ c then f(t) = 0, if t ≥ c+ 1
n2 then f(t) = 1, and if c < t < c+ 1

n2 then f(t) ∈ (0, 1).563

Also, note that all weights and bias terms can be bounded by n2 (for large enough n). Moreover, the564

network NΨ does not depend on x.565

Let z′ ∈ Rkn such that Ψ(z′) = zS for some hyperedge S, and assume that for every i ∈ [kn] we566

have z′i ̸∈
(
c, c+ 1

n2

)
. For such z′, we have NΨ(z

′) = Ψ(z′) = zS . Hence, it suffices to show that567

we can construct an affine layer with at most 2k outputs, weights bounded by a constant and bias568

terms bounded by n3, such that given an input zS it satisfies the following: For S with Px(z
S) = 0569

all outputs are at most −1, and for S with Px(z
S) = 1 there exists an output greater or equal to 2.570

We construct such an affine layer in Lemma A.2.571

Lemma A.4. There exists an affine layer with 2k + n outputs, weights bounded by a constant and572

bias terms bounded by n log(n) (for a sufficiently large n), such that given an input z ∈ {0, 1}kn, if573

it is an encoding of a hyperedge then all outputs are at most −1, and otherwise there exists an output574

greater or equal to 2.575

Proof. Note that z ∈ {0, 1}kn is not an encoding of a hyperedge iff at least one of the following576

holds:577

1. At least one of the k size-n slices in z contains 0 more than once.578

2. At least one of the k size-n slices in z does not contain 0.579

3. There are two size-n slices in z that encode the same index.580

We define the outputs of our affine layer as follows. First, we have k outputs that correspond581

to (1). In order to check whether slice i ∈ [k] contains 0 more than once, the output will be582

3n− 4− (
∑

j∈[n] 3zi,j). Second, we have k outputs that correspond to (2): in order to check whether583

slice i ∈ [k] does not contain 0, the output will be (
∑

j∈[n] 3zi,j) − 3n + 2. Finally, we have n584

outputs that correspond to (3): in order to check whether there are two slices that encode the same585

index j ∈ [n], the output will be 3k− 4− (
∑

i∈[k] 3zi,j). Note that all weights are bounded by 3 and586

all bias terms are bounded by n log(n) for large enought n.587

Lemma A.5. There exists a depth-2 neural network N2 with input dimension kn, at most 2kn hidden588

neurons, 2k + n output neurons, and parameter magnitudes bounded by n3 (for a sufficiently large589

n), which satisfies the following. We denote the set of output neurons of N2 by E2. Let z′ ∈ Rkn be590

such that for every i ∈ [kn] we have z′i ̸∈
(
c, c+ 1

n2

)
. If Ψ(z′) is an encoding of a hyperedge then591

the inputs to all neurons E2 are at most −1, and otherwise there exists a neuron in E2 with input at592

least 2.593

Proof. Let NΨ : Rkn → [0, 1]kn be the depth-2 neural network from the proof of Lemma A.3, with594

a single layer of non-linearity with 2kn hidden neurons, and parameter magnitudes bounded by n2,595

such that for every z′ ∈ Rkn with z′i ̸∈ (c, c+ 1
n2) for every i ∈ [kn], we have NΨ(z

′) = Ψ(z′).596

Let z′ ∈ Rkn be such that for every i ∈ [kn] we have z′i ̸∈
(
c, c+ 1

n2

)
. For such z′ we have597

NΨ(z
′) = Ψ(z′). Hence, it suffices to show that we can construct an affine layer with 2k+n outputs,598

weights bounded by a constant and bias terms bounded by n3, such that given an input z ∈ {0, 1}kn,599

if it is an encoding of a hyperedge then all outputs are at most −1, and otherwise there exists an600

output greater or equal to 2. We construct such an affine layer in Lemma A.4.601

Lemma A.6. There exists a depth-2 neural network N3 with input dimension kn, at most n log(n)602

hidden neurons, kn ≤ n log(n) output neurons, and parameter magnitudes bounded by n3 (for a603

sufficiently large n), which satisfies the following. We denote the set of output neurons of N3 by E3.604

Let z′ ∈ Rkn. If there exists i ∈ [kn] such that z′i ∈
(
c, c+ 1

n2

)
then there exists a neuron in E3 with605

input at least 2. If for all i ∈ [kn] we have z′i ̸∈
(
c− 1

n2 , c+
2
n2

)
then the inputs to all neurons in E3606

are at most −1.607

Proof. It suffices to construct a univariate depth-2 network f : R→ R with one non-linear layer and608

a constant number of hidden neurons, such that for every input z′i ∈ (c, c+ 1
n2) we have f(z′i) = 2,609

and for every z′i ̸∈ (c− 1
n2 , c+

2
n2) we have f(z′i) = −1.610

14

We construct f as follows:611

f(z′i) =(3n2)

([
z′i −

(
c− 1

n2

)]
+

− [z′i − c]+

)
−

(3n2)

([
z′i −

(
c+

1

n2

)]
+

−
[
z′i −

(
c+

2

n2

)]
+

)
− 1 .

Note that all weights and bias terms are bounded by n3 (for large enough n).612

Lemma A.7. Let q = poly(n) and r = poly(n). Then, there exists τ = 1
poly(n) such that for613

a sufficiently large n, with probability at least 1 − exp(−n/2) a vector ξ ∼ N (0, τ2Ir) satisfies614

∥ξ∥ ≤ 1
q .615

Proof. Let τ = 1
q
√
2rn

. Every component ξi in ξ has the distribution N (0, τ2). By a standard616

tail bound of the Gaussian distribution, we have for every i ∈ [r] and t ≥ 0 that Pr[ξi ≥ t] ≤617

2 exp
(
− t2

2τ2

)
. Hence, for t = 1

q
√
r

, we get618

Pr

[
ξi ≥

1

q
√
r

]
≤ 2 exp

(
− 1

2τ2q2r

)
= 2 exp

(
−2rnq2

2q2r

)
= 2 exp (−n) .

By the union bound, with probability at least 1− r · 2e−n, we have619

∥ξ∥2 ≤ r · 1

rq2
=

1

q2
.

Thus, for a sufficiently large n, with probability at least 1− exp(−n/2) we have ∥ξ∥ ≤ 1
q .620

Lemma A.8. If S is pseudorandom then with probability at least 39
40 (over ξ ∼ N (0, τ2Ip) and the621

i.i.d. inputs z̃i ∼ D) the examples (z̃1, ỹ1), . . . , (z̃m(n)+n3 , ỹm(n)+n3) returned by the oracle are622

realized by N̂ .623

Proof. By our choice of τ , with probability at least 1− 1
n over ξ ∼ N (0, τ2Ip), we have |ξj | ≤ 1

10624

for all j ∈ [p], and for every z̃ with ∥z̃∥ ≤ 2n the inputs to the neurons E1, E2, E3 in the computation625

N̂(z̃) satisfy Properties (P1) through (P3). We first show that with probability at least 1 − 1
n all626

examples z̃1, . . . , z̃m(n)+n3 satisfy ∥z̃i∥ ≤ 2n. Hence, with probability at least 1− 2
n , Properties (P1)627

through (P3) hold for the computations N̂(z̃i) for all i ∈ [m(n) + n3].628

Note that ∥z̃i∥2 has the Chi-squared distribution. Since z̃i is of dimension n2, a concentration bound629

by Laurent and Massart [31, Lemma 1] implies that for all t > 0 we have630

Pr
[
∥z̃i∥2 − n2 ≥ 2n

√
t+ 2t

]
≤ e−t .

Plugging-in t = n2

4 , we get631

Pr
[
∥z̃i∥2 ≥ 4n2

]
= Pr

[
∥z̃i∥2 − n2 ≥ 3n2

]
≤ Pr

[
∥z̃i∥2 − n2 ≥

3n2

2

]
= Pr

[
∥z̃i∥2 − n2 ≥ 2n

√
n2

4
+ 2 · n

2

4

]

≤ exp

(
−n

2

4

)
.

Thus, we have Pr [∥z̃i∥ ≥ 2n] ≤ exp
(
−n2

4

)
. By the union bound, with probability at least632

1−
(
m(n) + n3

)
exp

(
−n

2

4

)
≥ 1− 1

n

15

(for a sufficiently large n), all examples (z̃i, ỹi) satisfy ∥z̃i∥ ≤ 2n.633

Thus, we showed that with probability at least 1 − 2
n ≥

39
40 (for a sufficiently large n), we have634

|ξj | ≤ 1
10 for all j ∈ [p], and Properties (P1) through (P3) hold for the computations N̂(z̃i)635

for all i ∈ [m(n) + n3]. It remains to show that if these properties hold, then the examples636

(z̃1, ỹ1), . . . , (z̃m(n)+n3 , ỹm(n)+n3) are realized by N̂ .637

Let i ∈ [m(n) + n3]. For brevity, we denote z̃ = z̃i, ỹ = ỹi, and z′ = z̃[kn]. Since |ξj | ≤ 1
10 for all638

j ∈ [p], and all incoming weights to the output neuron in Ñ are −1, then in N̂ all incoming weights639

to the output neuron are in
[
− 11

10 ,−
9
10

]
, and the bias term in the output neuron, denoted by b̂, is in640 [

9
10 ,

11
10

]
. Consider the following cases:641

• If Ψ(z′) is not an encoding of a hyperedge then ỹ = 0, and N̂(z̃) satisfies:642

1. If z′ does not have components in
(
c, c+ 1

n

)
, then there exists a neuron in E2 with643

output at least 3
2 (by Property (P2)).644

2. If z′ has a component in
(
c, c+ 1

n

)
, then there exists a neuron in E3 with output at least645

3
2 (by Property (P3)).646

In both cases, since all incoming weights to the output neuron in N̂ are in
[
− 11

10 ,−
9
10

]
,647

and b̂ ∈
[

9
10 ,

11
10

]
, then the input to the output neuron (including the bias term) is at most648

11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.649

• If Ψ(z′) is an encoding of a hyperedge S, then by the definition of the examples oracle we650

have S = Si. Hence:651

– If z′ does not have components in
(
c− 1

n2 , c+
2
n2

)
, then:652

* If yi = 0 then the oracle sets ỹ = b̂. Since S is pseudorandom, we have Px(z
S) =653

Px(z
Si) = yi = 0. Hence, in the computation N̂(z̃) the inputs to all neurons in654

E1, E2, E3 are at most − 1
2 (by Properties (P1), (P2) and (P3)), and thus their outputs655

are 0. Therefore, N̂(z̃) = b̂.656

* If yi = 1 then the oracle sets ỹ = 0. Since S is pseudorandom, we have Px(z
S) =657

Px(z
Si) = yi = 1. Hence, in the computation N̂(z̃) there exists a neuron in E1658

with output at least 3
2 (by Property (P1)). Since all incoming weights to the output659

neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to output neuron660

(including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.661

– If z′ has a component in
(
c, c+ 1

n2

)
, then ỹ = 0. Also, in the computation N̂(z̃) there662

exists a neuron in E3 with output at least 3
2 (by Property (P3)). Since all incoming663

weights to the output neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input664

to output neuron (including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its665

output is 0.666

– If z′ does not have components in the interval (c, c+ 1
n2), but has a component in the667

interval (c− 1
n2 , c+

2
n2), then:668

* If yi = 1 the oracle sets ỹ = 0. Since S is pseudorandom, we have Px(z
S) =669

Px(z
Si) = yi = 1. Hence, in the computation N̂(z̃) there exists a neuron in E1670

with output at least 3
2 (by Property (P1)). Since all incoming weights to the output671

neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to output neuron672

(including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.673

* If yi = 0 the oracle sets ỹ = [b̂ − N̂3(z̃)]+. Since S is pseudorandom, we have674

Px(z
S) = Px(z

Si) = yi = 0. Therefore, in the computation N̂(z̃) all neurons in675

E1, E2 have output 0 (by Properties (P1) and (P2)), and hence their contribution to676

the output of N̂ is 0. Thus, by the definition of N̂3, we have N̂(z̃) = [b̂− N̂3(z̃)]+.677

678

16

Lemma A.9. If S is pseudorandom, then for a sufficiently large n, with probability greater than 2
3679

we have680

ℓI(h
′) ≤ 2

n
.

Proof. By Lemma A.8, if S is pseudorandom then with probability at least 39
40 (over ξ ∼ N (0, τ2Ip)681

and the i.i.d. inputs z̃i ∼ D) the examples (z̃1, ỹ1), . . . , (z̃m(n), ỹm(n)) returned by the oracle682

are realized by N̂ . Recall that the algorithm L is such that with probability at least 3
4 (over ξ ∼683

N (0, τ2Ip), the i.i.d. inputs z̃i ∼ D, and possibly its internal randomness), given a size-m(n)684

dataset labeled by N̂ , it returns a hypothesis h such that Ez̃∼D

[
(h(z̃)− N̂(z̃))2

]
≤ 1

n . Hence, with685

probability at least 3
4 −

1
40 the algorithm L returns such a good hypothesis h, given m(n) examples686

labeled by our examples oracle. Indeed, note that L can return a bad hypothesis only if the random687

choices are either bad for L (when used with realizable examples) or bad for the realizability of the688

examples returned by our oracle. By the definition of h′ and the construction of N̂ , if h has small689

error then h′ also has small error, namely,690

E
z̃∼D

[
(h′(z̃)− N̂(z̃))2

]
≤ E

z̃∼D

[
(h(z̃)− N̂(z̃))2

]
≤ 1

n
.

Let ℓ̂I(h′) = 1
|I|
∑

i∈I(h
′(z̃i)− N̂(z̃i))

2. Recall that by our choice of τ we have Pr[b̂ > 11
10] ≤

1
n .691

Since, (h′(z̃)− N̂(z̃))2 ∈ [0, b̂2] for all z̃ ∈ Rn2

, by Hoeffding’s inequality, we have for a sufficiently692

large n that693

Pr

[∣∣∣∣ℓ̂I(h′)− Ẽ
SI

ℓ̂I(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓ̂I(h′)− Ẽ
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓ̂I(h′)− Ẽ
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

40
.

Moreover, by Lemma A.8,694

Pr
[
ℓI(h

′) ̸= ℓ̂I(h
′)
]
≤ Pr

[
∃i ∈ I s.t. ỹi ̸= N̂(z̃i)

]
≤ 1

40
.

Overall, by the union bound we have with probability at least 1 −
(
1
4 + 1

40 + 1
40 + 1

40

)
> 2

3 for695

sufficiently large n that:696

• ES̃I
ℓ̂I(h

′) = Ez̃∼D

[
(h′(z̃)− N̂(z̃))2

]
≤ 1

n .697

•
∣∣∣ℓ̂I(h′)− ES̃I

ℓ̂I(h
′)
∣∣∣ ≤ 1

n .698

• ℓI(h′)− ℓ̂I(h′) = 0.699

Combining the above, we get that if S is pseudorandom, then with probability greater than 2
3 we have700

ℓI(h
′) =

(
ℓI(h

′)− ℓ̂I(h′)
)
+

(
ℓ̂I(h

′)− Ẽ
SI

ℓ̂I(h
′)

)
+ Ẽ

SI

ℓ̂I(h
′) ≤ 0 +

1

n
+

1

n
=

2

n
.

701

Lemma A.10. Let z ∈ {0, 1}kn be a random vector whose components are drawn i.i.d. from a702

Bernoulli distribution, which takes the value 0 with probability 1
n . Then, for a sufficiently large n, the703

vector z is an encoding of a hyperedge with probability at least 1
log(n) .704

17

Proof. The vector z represents a hyperedge iff in each of the k size-n slices in z there is exactly one705

0-bit and each two of the k slices in z encode different indices. Hence,706

Pr [z represents a hyperedge] = n · (n− 1) · . . . · (n− k + 1) ·
(
1

n

)k (
n− 1

n

)nk−k

≥
(
n− k
n

)k (
n− 1

n

)k(n−1)

=

(
1− k

n

)k (
1− 1

n

)k(n−1)

.

Since for every x ∈ (0, 1) we have e−x < 1− x
2 , then for a sufficiently large n the above is at least707

exp

(
−2k2

n

)
· exp

(
−2k(n− 1)

n

)
≥ exp (−1) · exp (−2k) ≥ 1

log(n)
.

708

Lemma A.11. Let z̃ ∈ Rn2

be the vector returned by the oracle. We have709

Pr
[
z̃ ∈ Z̃

]
≥ 1

2 log(n)
.

Proof. Let z′ = z̃[kn]. We have710

Pr
[
z̃ ̸∈ Z̃

]
≤ Pr

[
∃j ∈ [kn] s.t. z′j ∈

(
c− 1

n2
, c+

2

n2

)]
+ Pr [Ψ(z′) does not represent a hyperedge] . (1)

We now bound the terms in the above RHS. First, since z′ has the Gaussian distribution, then its711

components are drawn i.i.d. from a density function bounded by 1
2π . Hence, for a sufficiently large n712

we have713

Pr

[
∃j ∈ [kn] s.t. z′j ∈

(
c− 1

n2
, c+

2

n2

)]
≤ kn · 1

2π
· 3

n2
=

3k

2πn
≤ log(n)

n
. (2)

Let z = Ψ(z′). Note that z is a random vector whose components are drawn i.i.d. from a Bernoulli714

distribution, where the probability to get 0 is 1
n . By Lemma A.10, z is an encoding of a hyperedge715

with probability at least 1
log(n) . Combining it with Eq. (1) and (2), , we get for a sufficiently large n716

that717

Pr
[
z̃ ̸∈ Z̃

]
≤ log(n)

n
+

(
1− 1

log(n)

)
≤ 1− 1

2 log(n)
,

as required.718

Lemma A.12. If S is random, then for a sufficiently large n with probability larger than 2
3 we have719

ℓI(h
′) >

2

n
.

Proof. Let Z̃ ⊆ Rn2

be such that z̃ ∈ Z̃ iff z̃[kn] does not have components in the interval720

(c − 1
n2 , c +

2
n2), and Ψ(z̃[kn]) = zS for a hyperedge S. If S is random, then by the definition of721

our examples oracle, for every i ∈ [m(n) + n3] such that z̃i ∈ Z̃ , we have ỹi = b̂ with probability 1
2722

and ỹi = 0 otherwise. Also, by the definition of the oracle, ỹi is independent of Si and independent723

of the choice of the vector z̃i that corresponds to zSi . If b̂ ≥ 9
10 then for a sufficiently large n the724

18

hypothesis h′ satisfies for each random example (z̃i, ỹi) ∈ S̃I the following725

Pr
(z̃i,ỹi)

[
(h′(z̃i)− ỹi)2 ≥

1

5

]
≥ Pr

(z̃i,ỹi)

[
(h′(z̃i)− ỹi)2 ≥

1

5

∣∣∣∣ z̃i ∈ Z̃] · Prz̃i

[
z̃i ∈ Z̃

]
≥ Pr

(z̃i,ỹi)

 (h′(z̃i)− ỹi)2 ≥ (b̂
2

)2
∣∣∣∣∣∣ z̃i ∈ Z̃

 · Pr
z̃i

[
z̃i ∈ Z̃

]
≥ 1

2
· Pr
z̃i

[
z̃i ∈ Z̃

]
.

In Lemma A.11, we show that Prz̃i

[
z̃i ∈ Z̃

]
≥ 1

2 log(n) . Hence,726

Pr
(z̃i,ỹi)

[
(h′(z̃i)− ỹi)2 ≥

1

5

]
≥ 1

2
· 1

2 log(n)
≥ 1

4 log(n)
.

Thus, if b̂ ≥ 9
10 then we have727

Ẽ
SI

[ℓI(h
′)] ≥ 1

5
· 1

4 log(n)
=

1

20 log(n)
.

Therefore, for large n we have728

Pr

[
Ẽ
SI

[ℓI(h
′)] ≥ 1

20 log(n)

]
≥ 1− 1

n
≥ 7

8
.

Since, (h′(z̃) − ỹ)2 ∈ [0, b̂2] for all z̃, ỹ returned by the examples oracle, and the examples z̃i for729

i ∈ I are i.i.d., then by Hoeffding’s inequality, we have for a sufficiently large n that730

Pr

[∣∣∣∣ℓI(h′)− Ẽ
SI

ℓI(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓI(h′)− Ẽ
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓI(h′)− Ẽ
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

8
.

Hence, for large enough n, with probability at least 1− 1
8 −

1
8 = 3

4 >
2
3 we have both ES̃I

[ℓI(h
′)] ≥731

1
20 log(n) and

∣∣ℓI(h′)− ES̃I
ℓI(h

′)
∣∣ ≤ 1

n , and thus732

ℓI(h
′) ≥ 1

20 log(n)
− 1

n
>

2

n
.

733

B Proof of Corollary 3.1734

By the proof of Theorem 3.1, under Assumption 2.1, there is no poly(d)-time algorithm Ls that735

satisfies the following: Let θ ∈ Rp be B-bounded parameters of a depth-3 network Nθ : Rd → R,736

and let τ, ϵ > 0. Assume that p,B, 1/ϵ, 1/τ ≤ poly(d), and that the widths of the hidden layers in737

Nθ are d (i.e., the weight matrices are square). Let ξ ∈ N (0, τ2Ip) and let θ̂ = θ + ξ. Then, with738

probability at least 3
4 −

1
1000 , given access to an examples oracle for Nθ̂, the algorithm Ls returns a739

hypothesis h with Ex

[
(h(x)−Nθ̂)

2
]
≤ ϵ.740

Note that in the above, the requirements from Ls are somewhat weaker than in our original definition741

of learning with smoothed parameters. Indeed, we assume that the widths of the hidden layers are742

d and the required success probability is only 3
4 −

1
1000 (rather than 3

4). We now explain why the743

hardness result holds already under these conditions:744

19

• Note that if we change the assumption on the learning algorithm in proof of Theorem 3.1745

such that it succeeds with probability at least 3
4 −

1
1000 (rather than 3

4), then in the case746

where S is pseudorandom we get that the algorithm A returns 1 with probability at least747

1−
(
1
4 + 1

1000 + 1
40 + 1

40 + 1
40

)
(see the proof of Lemma A.9), which is still greater than 2

3 .748

Also, the analysis of the case where S is random does not change, and thus in this case A749

returns 0 with probability greater than 2
3 . Consequently, we still get distinguishing advantage750

greater than 1
3 .751

• Regarding the requirement on the widths, we note that in the proof of Theorem 3.1 the752

layers satisfy the following. The input dimension is d = n2, the width of the first hidden753

layer is at most 3n log(n) ≤ d, and the width of the second hidden layer is at most754

log(n) + 2n + n log(n) ≤ d (all bounds are for a sufficiently large d). In order to get a755

network where all layers are of width d, we add new neurons to the hidden layers, with756

incoming weights 0, outgoing weights 0, and bias terms−1. Then, for an appropriate choice757

of τ = 1/ poly(n), even in the perturbed network the outputs of these new neurons will758

be 0 w.h.p. for every input z̃1, . . . , z̃m(n)+n3 , and thus they will not affect the network’s759

output. Thus, using the same argument as in the proof of Theorem 3.1, we conclude that the760

hardness results holds already for network with square weight matrices.761

Suppose that there exists an efficient algorithm Lp that learns in the standard PAC framework depth-3762

neural networks where the minimal singular value of each weight matrix is lower bounded by 1/q(d)763

for any polynomial q(d). We will use Lp to obtain an efficient algorithm Ls that learns depth-3764

networks with smoothed parameters as described above, and thus reach a contradiction.765

Let θ ∈ Rp be B-bounded parameters of a depth-3 network Nθ : Rd → R, and let τ, ϵ > 0. Assume766

that p,B, 1/ϵ, 1/τ ≤ poly(d), and that the widths of the hidden layers in Nθ are d. For random767

ξ ∼ N (0, τ2Ip) and θ̂ = θ + ξ, the algorithm Ls has access to examples labeled by Nθ̂. Using768

Lemma B.1 below with t = τ
d and the union bound over the two weight matrices in Nθ, we get that769

with probability at least 1− 2·2.35√
d
≥ 1− 1

1000 (for large enough d), the minimal singular values of all770

weight matrices in θ̂ are at least τ
d ≥

1
q(d) for some sufficiently large polynomial q(d). Our algorithm771

Ls will simply run Lp. Given that the minimal singular values of the weight matrices are at least 1
q(d) ,772

the algorithm Lp runs in time poly(d) and returns with probability at least 3
4 a hypothesis h with773

Ex

[
(h(x)−Nθ̂(x))

2
]
≤ ϵ. Overall, the algorithm Ls runs in poly(d) time, and with probability at774

least 3
4 −

1
1000 (over both ξ and the internal randomness) returns a hypothesis h with loss at most ϵ.775

Lemma B.1 (Sankar et al. [35], Theorem 3.3). Let W be an arbitrary square matrix in Rd×d, and776

let P ∈ Rd×d be a random matrix, where each entry is drawn i.i.d. from N (0, τ2) for some τ > 0.777

Let σd be the minimal singular value of the matrix W + P . Then, for every t > 0 we have778

Pr
P

[σd ≤ t] ≤ 2.35 · t
√
d

τ
.

C Proof of Theorem 3.2779

The proof follows similar ideas to the proof of Theorem 3.1. The main difference is that we need to780

handle here a smoothed discrete input distribution rather than the standard Gaussian distribution.781

For a sufficiently large n, let D be a distribution on {0, 1}n2

, where each component is drawn i.i.d.782

from a Bernoulli distribution which takes the value 0 with probability 1
n . Assume that there is a783

poly(n)-time algorithm L that learns depth-3 neural networks with at most n2 hidden neurons and784

parameter magnitudes bounded by n3, with smoothed parameters and inputs, under the distribution785

D, with ϵ = 1
n and τ, ω = 1/poly(n) that we will specify later. Let m(n) ≤ poly(n) be the sample786

complexity of L, namely, L uses a sample of size at most m(n) and returns with probability at least787

3
4 a hypothesis h with Ez∼D̂

[(
h(z)−Nθ̂(z)

)2] ≤ ϵ = 1
n . Note that D̂ is the distribution D after788

smoothing with parameter ω, and the vector θ̂ is the parameters of the target network after smoothing789

with parameter τ . Let s > 1 be a constant such that ns ≥ m(n) + n3 for every sufficiently large n.790

By Assumption 2.1, there exists a constant k and a predicate P : {0, 1}k → {0, 1}, such that FP,n,ns791

20

is 1
3 -PRG. We will show an efficient algorithm A with distinguishing advantage greater than 1

3 and792

thus reach a contradiction.793

Throughout this proof, we will use some notations from the proof of Theorem 3.1. We repeat it794

here for convenience. For a hyperedge S = (i1, . . . , ik) we denote by zS ∈ {0, 1}kn the following795

encoding of S: the vector zS is a concatenation of k vectors in {0, 1}n, such that the j-th vector796

has 0 in the ij-th coordinate and 1 elsewhere. Thus, zS consists of k size-n slices, each encoding797

a member of S. For z ∈ {0, 1}kn, i ∈ [k] and j ∈ [n], we denote zi,j = z(i−1)n+j . That is, zi,j is798

the j-th component in the i-th slice in z. For x ∈ {0, 1}n, let Px : {0, 1}kn → {0, 1} be such that799

for every hyperedge S we have Px(z
S) = P (xS). For z̃ ∈ Rn2

we denote z̃[kn] = (z̃1, . . . , z̃kn),800

namely, the first kn components of z̃ (assuming n2 ≥ kn).801

C.1 Defining the target network for L802

Since our goal is to use the algorithm L for breaking PRGs, in this subsection we define a neural803

network Ñ : Rn2 → R that we will later use as a target network for L. The network Ñ contains the804

subnetworks N1, N2 that we define below.805

Let N1 be a depth-1 neural network (i.e., one layer, with activations in the output neurons) with input806

dimension kn, at most log(n) output neurons, and parameter magnitudes bounded by n3 (all bounds807

are for a sufficiently large n), which satisfies the following. We denote the set of output neurons of808

N1 by E1. Let z′ ∈ {0, 1}kn be an input to N1 such that z′ = zS for some hyperedge S. Thus, even809

thoughN1 takes inputs in Rkn, we consider now its behavior for an input z′ with discrete components810

in {0, 1}. Fix some x ∈ {0, 1}n. Then, for S with Px(z
S) = 0 the inputs to all output neurons E1811

are at most −1, and for S with Px(z
S) = 1 there exists a neuron in E1 with input at least 2. Recall812

that our definition of a neuron’s input includes the addition of the bias term. The construction of the813

network N1 is given in Lemma A.2. Note that the network N1 depends on x. Let N ′
1 : Rkn → R814

be a depth-2 neural network with no activation function in the output neuron, obtained from N1 by815

summing the outputs from all neurons E1.816

Let N2 be a depth-1 neural network (i.e., one layer, with activations in the output neurons) with817

input dimension kn, at most 2n output neurons, and parameter magnitudes bounded by n3 (for a818

sufficiently large n), which satisfies the following. We denote the set of output neurons of N2 by E2.819

Let z′ ∈ {0, 1}kn be an input to N2 (note that it has components only in {0, 1}) . If z′ is an encoding820

of a hyperedge then the inputs to all output neurons E2 are at most −1, and otherwise there exists821

a neuron in E2 with input at least 2. The construction of the network N2 is given in Lemma A.4.822

Let N ′
2 : Rkn → R be a depth-2 neural network with no activation function in the output neuron,823

obtained from N2 by summing the outputs from all neurons E2.824

Let N ′ : Rkn → R be a depth-2 network obtained from N ′
1, N

′
2 as follows. For z′ ∈ Rkn we825

have N ′(z′) = [1−N ′
1(z

′)−N ′
2(z

′)]+. The network N ′ has at most n2 neurons, and parameter826

magnitudes bounded by n3 (all bounds are for a sufficiently large n). Finally, let Ñ : Rn2 → R be a827

depth-2 neural network such that Ñ(z̃) = N ′ (z̃[kn]).828

C.2 Defining the noise magnitudes τ, ω and analyzing the perturbed network under829

perturbed inputs830

In order to use the algorithm L w.r.t. some neural network with parameters θ and a certain input831

distribution, we need to implement an examples oracle, such that the examples are drawn from a832

smoothed input distribution, and labeled according to a neural network with parameters θ+ξ, where ξ833

is a random perturbation. Specifically, we use L with an examples oracle where the input distribution834

D̂ is obtained from D by smoothing, and the labels correspond to a network N̂ : Rn2 → R obtained835

from Ñ (w.r.t. an appropriate x ∈ {0, 1}n in the construction of N1) by adding a small perturbation836

to the parameters. The smoothing magnitudes ω, τ of the inputs and the network’s parameters837

(respectively) are such that the following hold.838

We first choose the parameter τ = 1/ poly(n) as follows. Let fθ : Rn2 → R be any depth-2839

neural network parameterized by θ ∈ Rr for some r > 0 with at most n2 neurons, and parameter840

magnitudes bounded by n3 (note that r is polynomial in n). Then, τ is such that with probability at841

least 1− 1
n over ξ ∼ N (0, τ2Ir), we have |ξi| ≤ 1

10 for all i ∈ [r], and the network fθ+ξ is such that842

21

for every input z̃ ∈ Rn2

with ∥z̃∥ ≤ n and every neuron we have: Let a, b be the inputs to the neuron843

in the computations fθ(z̃) and fθ+ξ(z̃) (respectively), then |a− b| ≤ 1
4 . Thus, τ is sufficiently small,844

such that w.h.p. adding i.i.d. noise N (0, τ2) to each parameter does not change the inputs to the845

neurons by more than 1
4 . Note that such an inverse-polynomial τ exists, since when the network size,846

parameter magnitudes, and input size are bounded by some poly(n), then the input to each neuron847

in fθ(z̃) is poly(n)-Lipschitz as a function of θ, and thus it suffices to choose τ that implies with848

probability at least 1− 1
n that ∥ξ∥ ≤ 1

q(n) for a sufficiently large polynomial q(n) (see Lemma A.7849

for details).850

Next, we choose the parameter ω = 1/poly(n) as follows. Let fθ : Rn2 → R be any depth-2851

neural network parameterized by θ with at most n2 neurons, and parameter magnitudes bounded by852

n3 + 1
10 . Then, ω is such that for every z ∈ {0, 1}n2

, with probability at least 1− exp(−n/2) over853

ζ ∼ N (0, ω2In2) the following holds for every neuron in the fθ: Let a, b be the inputs to the neuron854

in the computations fθ(z) and fθ(z + ζ) (respectively), then |a − b| ≤ 1
4 . Thus, ω is sufficiently855

small, such that w.h.p. adding noise N (0, ω2In2) to the input z does not change the inputs to the856

neurons by more than 1
4 . Note that such an inverse-polynomial ω exists, since when the network size857

and parameter magnitudes are bounded by some poly(n), then the input to each neuron in fθ(z) is858

poly(n)-Lipschitz as a function of z, and thus it suffices to choose ω that implies with probability at859

least 1− exp(−n/2) that ∥ζ∥ ≤ 1
q(n) for a sufficiently large polynomial q(n) (see Lemma A.7 for860

details).861

Let θ̃ ∈ Rp be the parameters of the network Ñ . Recall that the parameters vector θ̃ is the862

concatenation of all weight matrices and bias terms. Let θ̂ ∈ Rp be the parameters of N̂ , namely,863

θ̂ = θ̃ + ξ where ξ ∼ N (0, τ2Ip). By our choice of τ and the construction of the networks864

N1, N2, with probability at least 1 − 1
n over ξ, for every z ∈ {0, 1}n2

the following holds: Let865

ζ ∼ N (0, ω2In2) and let ẑ = z + ζ. Then with probability at least 1 − exp(−n/2) over ζ the866

differences between inputs to all neurons in the computations N̂(ẑ) and Ñ(z) are at most 1
2 . Indeed,867

w.h.p. for all z ∈ {0, 1}n2

the computations Ñ(z) and N̂(z) are roughly similar (up to change of868

1/4 in the input to each neuron), and w.h.p. the computations N̂(z) and N̂(ẑ) are roughly similar869

(up to change of 1/4 in the input to each neuron). Thus, with probability at least 1− 1
n over ξ, the870

network N̂ is such that for every z ∈ {0, 1}n2

, we have with probability at least 1− exp(−n/2) over871

ζ that the computation N̂(ẑ) satisfies the following properties, where z′ := z[kn]:872

(Q1) If z′ = zS for some hyperedge S, then the inputs to E1 satisfy:873

• If Px(z
S) = 0 the inputs to all neurons in E1 are at most − 1

2 .874

• If Px(z
S) = 1 there exists a neuron in E1 with input at least 3

2 .875

(Q2) The inputs to E2 satisfy:876

• If z′ is an encoding of a hyperedge then the inputs to all neurons E2 are at most − 1
2 .877

• Otherwise, there exists a neuron in E2 with input at least 3
2 .878

C.3 Stating the algorithm A879

Given a sequence (S1, y1), . . . , (Sns , yns), where S1, . . . , Sns are i.i.d. random hyperedges,880

the algorithm A needs to distinguish whether y = (y1, . . . , yns) is random or that y =881

(P (xS1
), . . . , P (xSns)) = (Px(z

S1), . . . , Px(z
Sns)) for a random x ∈ {0, 1}n. Let S =882

((zS1 , y1), . . . , (z
Sns , yns)).883

We use the efficient algorithm L in order to obtain distinguishing advantage greater than 1
3 as follows.884

Let ξ be a random perturbation, and let N̂ be the perturbed network as defined above, w.r.t. the885

unknown x ∈ {0, 1}n. Note that given a perturbation ξ, only the weights in the second layer of the886

subnetwork N1 in N̂ are unknown, since all other parameters do not depend on x. The algorithm887

A runs L with the following examples oracle. In the i-th call, the oracle first draws z′ ∈ {0, 1}kn888

such that each component is drawn i.i.d. from a Bernoulli distribution which takes the value 0889

with probability 1
n . If z′ is an encoding of a hyperedge then the oracle replaces z′ with zSi . Let890

z ∈ {0, 1}n2

be such that z[kn] = z′, and the other n2 − kn components of z are drawn i.i.d. from891

22

a Bernoulli distribution which takes the value 0 with probability 1
n . Note that the vector z has the892

distributionD, since replacing an encoding of a random hyperedge by an encoding of another random893

hyperedge does not change the distribution of z′. Let ẑ = z+ ζ, where ζ ∼ N (0, ω2In2). Note that894

ẑ has the distribution D̂. Let b̂ ∈ R be the bias term of the output neuron of N̂ . The oracle returns895

(ẑ, ŷ), where the labels ŷ are chosen as follows:896

• If z′ is not an encoding of a hyperedge, then ŷ = 0.897

• If z′ is an encoding of a hyperedge:898

– If yi = 0 we set ŷ = b̂.899

– If yi = 1 we set ŷ = 0.900

Let h be the hypothesis returned by L. Recall that L uses at most m(n) examples, and hence S901

contains at least n3 examples that L cannot view. We denote the indices of these examples by902

I = {m(n) + 1, . . . ,m(n) + n3}, and the examples by SI = {(zSi , yi)}i∈I . By n3 additional903

calls to the oracle, the algorithm A obtains the examples ŜI = {(ẑi, ŷi)}i∈I that correspond to SI .904

Let h′ be a hypothesis such that for all z̃ ∈ Rn2

we have h′(z̃) = max{0,min{b̂, h(z̃)}}, thus,905

for b̂ ≥ 0 the hypothesis h′ is obtained from h by clipping the output to the interval [0, b̂]. Let906

ℓI(h
′) = 1

|I|
∑

i∈I(h
′(ẑi)− ŷi)2. Now, if ℓI(h′) ≤ 2

n , then A returns 1, and otherwise it returns 0.907

We remark that the decision of our algorithm is based on h′ (rather than h) since we need the outputs908

to be bounded, in order to allow using Hoeffding’s inequality in our analysis, which we discuss in the909

next subsection.910

C.4 Analyzing the algorithm A911

Note that the algorithm A runs in poly(n) time. We now show that if S is pseudorandom then A912

returns 1 with probability greater than 2
3 , and if S is random then A returns 1 with probability less913

than 1
3 . To that end, we use similar arguments to the proof of Theorem 3.1.914

In Lemma C.1, we show that if S is pseudorandom then with probability at least 39
40 (over ξ ∼915

N (0, τ2Ip) and ζi ∼ N (0, ω2In2) for all i ∈ [m(n)]) the examples (ẑ1, ŷ1), . . . , (ẑm(n), ŷm(n))916

returned by the oracle are realized by N̂ . Recall that the algorithm L is such that with probability at917

least 3
4 (over ξ ∼ N (0, τ2Ip), the i.i.d. inputs ẑi ∼ D̂, and possibly its internal randomness), given a918

size-m(n) dataset labeled by N̂ , it returns a hypothesis h such that Eẑ∼D̂

[
(h(ẑ)− N̂(ẑ))2

]
≤ 1

n .919

Hence, with probability at least 3
4 −

1
40 the algorithm L returns such a good hypothesis h, given m(n)920

examples labeled by our examples oracle. Indeed, note that L can return a bad hypothesis only if the921

random choices are either bad for L (when used with realizable examples) or bad for the realizability922

of the examples returned by our oracle. By the definition of h′ and the construction of N̂ , if h has923

small error then h′ also has small error, namely,924

E
ẑ∼D̂

[
(h′(ẑ)− N̂(ẑ))2

]
≤ E

z̃∼D̂

[
(h(ẑ)− N̂(ẑ))2

]
≤ 1

n
.

Let ℓ̂I(h′) = 1
|I|
∑

i∈I(h
′(ẑi)− N̂(ẑi))

2. Recall that by our choice of τ we have Pr[b̂ > 11
10] ≤

1
n .925

Since, (h′(ẑ)− N̂(ẑ))2 ∈ [0, b̂2] for all ẑ ∈ Rn2

, by Hoeffding’s inequality, we have for a sufficiently926

large n that927

Pr

[∣∣∣∣ℓ̂I(h′)− Ê
SI

ℓ̂I(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓ̂I(h′)− Ê
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓ̂I(h′)− Ê
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

40
.

23

Moreover, by Lemma C.1,928

Pr
[
ℓI(h

′) ̸= ℓ̂I(h
′)
]
≤ Pr

[
∃i ∈ I s.t. ŷi ̸= N̂(ẑi)

]
≤ 1

40
.

Overall, by the union bound we have with probability at least 1 −
(
1
4 + 1

40 + 1
40 + 1

40

)
> 2

3 for929

sufficiently large n that:930

• EŜI
ℓ̂I(h

′) = Eẑ∼D̂

[
(h′(ẑ)− N̂(ẑ))2

]
≤ 1

n .931

•
∣∣∣ℓ̂I(h′)− EŜI

ℓ̂I(h
′)
∣∣∣ ≤ 1

n .932

• ℓI(h′)− ℓ̂I(h′) = 0.933

Combining the above, we get that if S is pseudorandom, then with probability greater than 2
3 we have934

ℓI(h
′) =

(
ℓI(h

′)− ℓ̂I(h′)
)
+

(
ℓ̂I(h

′)− Ê
SI

ℓ̂I(h
′)

)
+ Ê

SI

ℓ̂I(h
′) ≤ 0 +

1

n
+

1

n
=

2

n
.

We now consider the case where S is random. For an example ẑi = zi + ζi returned by the oracle,935

we denote z′i = (zi)[kn] ∈ {0, 1}kn. Thus, z′i is the input that the oracle used before adding the936

n2 − kn additional components and adding noise ζi. Let Z ′ ⊆ {0, 1}kn be such that z′ ∈ Z ′ iff937

z′ = zS for some hyperedge S. If S is random, then by the definition of our examples oracle, for938

every i ∈ [m(n) + n3] such that z′i ∈ Z ′, we have ŷi = b̂ with probability 1
2 and ŷi = 0 otherwise.939

Also, by the definition of the oracle, ŷi is independent of Si, independent of the n2 − kn additional940

components that where added, and independent of the noise ζi ∼ N (0, ω2In2) that corresponds to941

ẑi.942

If b̂ ≥ 9
10 then for a sufficiently large n the hypothesis h′ satisfies for each random example943

(ẑi, ŷi) ∈ ŜI the following:944

Pr
(ẑi,ŷi)

[
(h′(ẑi)− ŷi)2 ≥

1

5

]
≥ Pr

(ẑi,ŷi)

[
(h′(ẑi)− ŷi)2 ≥

1

5

∣∣∣∣ z′i ∈ Z ′
]
· Pr [z′i ∈ Z ′]

≥ Pr
(ẑi,ŷi)

 (h′(ẑi)− ŷi)2 ≥ (b̂
2

)2
∣∣∣∣∣∣ z′i ∈ Z ′

 · Pr [z′i ∈ Z ′]

≥ 1

2
· Pr [z′i ∈ Z ′] .

In Lemma A.10, we show that for a sufficiently large n we have Pr [z′i ∈ Z ′] ≥ 1
log(n) . Hence,945

Pr
(ẑi,ŷi)

[
(h′(ẑi)− ŷi)2 ≥

1

5

]
≥ 1

2
· 1

log(n)
≥ 1

2 log(n)
.

Thus, if b̂ ≥ 9
10 then we have946

Ê
SI

[ℓI(h
′)] ≥ 1

5
· 1

2 log(n)
=

1

10 log(n)
.

Therefore, for large n we have947

Pr

[
Ê
SI

[ℓI(h
′)] ≥ 1

10 log(n)

]
≥ 1− 1

n
≥ 7

8
.

24

Since, (h′(ẑ) − ŷ)2 ∈ [0, b̂2] for all ẑ, ŷ returned by the examples oracle, and the examples ẑi for948

i ∈ I are i.i.d., then by Hoeffding’s inequality, we have for a sufficiently large n that949

Pr

[∣∣∣∣ℓI(h′)− Ê
SI

ℓI(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓI(h′)− Ê
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓI(h′)− Ê
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

8
.

Hence, for large enough n, with probability at least 1− 1
8 −

1
8 = 3

4 >
2
3 we have both EŜI

[ℓI(h
′)] ≥950

1
10 log(n) and

∣∣∣ℓI(h′)− EŜI
ℓI(h

′)
∣∣∣ ≤ 1

n , and thus951

ℓI(h
′) ≥ 1

10 log(n)
− 1

n
>

2

n
.

Overall, if S is pseudorandom then with probability greater than 2
3 the algorithm A returns 1, and if952

S is random then with probability greater than 2
3 the algorithm A returns 0. Thus, the distinguishing953

advantage is greater than 1
3 . This concludes the proof of the theorem. It remains to prove the deffered954

lemma on the realizability of the examples returned by the examples oracle:955

Lemma C.1. If S is pseudorandom then with probability at least 39
40 over ξ ∼ N (0, τ2Ip) and956

ζi ∼ N (0, ω2In2) for i ∈ [m(n) + n3], the examples (ẑ1, ŷ1), . . . , (ẑm(n)+n3 , ŷm(n)+n3) returned957

by the oracle are realized by N̂ .958

Proof. By our choice of τ and ω and the construction of N1, N2, with probability at least 1 − 1
n959

over ξ ∼ N (0, τ2Ip), we have |ξj | ≤ 1
10 for all j ∈ [p], and for every z ∈ {0, 1}n2

the following960

holds: Let ζ ∼ N (0, ω2In2) and let ẑ = z + ζ. Then with probability at least 1 − exp(−n/2)961

over ζ the inputs to the neurons E1, E2 in the computation N̂(ẑ) satisfy Properties (Q1) and (Q2).962

Hence, with probability at least 1− 1
n − (m(n) + n3) exp(−n/2) ≥ 1− 2

n (for a sufficiently large963

n), |ξj | ≤ 1
10 for all j ∈ [p], and Properties (Q1) and (Q2) hold for the computations N̂(ẑi) for all964

i ∈ [m(n) + n3]. It remains to show that if |ξj | ≤ 1
10 for all j ∈ [p] and Properties (Q1) and (Q2)965

hold, then the examples (ẑ1, ŷ1), . . . , (ẑm(n)+n3 , ŷm(n)+n3) are realized by N̂ .966

Let i ∈ [m(n) + n3]. We denote ẑi = zi + ζi, namely, the i-th example returned by the oracle967

was obtained by adding noise ζi to zi ∈ {0, 1}n
2

. We also denote z′i = (zi)[kn] ∈ {0, 1}kn. Since968

|ξj | ≤ 1
10 for all j ∈ [p], and all incoming weights to the output neuron in Ñ are −1, then in N̂ all969

incoming weights to the output neuron are in
[
− 11

10 ,−
9
10

]
, and the bias term in the output neuron,970

denoted by b̂, is in
[

9
10 ,

11
10

]
. Consider the following cases:971

• If z′i is not an encoding of a hyperedge then ŷi = 0. Moreover, in the computation N̂(ẑi),972

there exists a neuron in E2 with output at least 3
2 (by Property (Q2)) . Since all incoming973

weights to the output neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to974

the output neuron (including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is975

0.976

• If z′ is an encoding of a hyperedge S, then by the definition of the examples oracle we have977

S = Si. Hence:978

– If yi = 0 then the oracle sets ŷi = b̂. Since S is pseudorandom, we have Px(z
S) =979

Px(z
Si) = yi = 0. Hence, in the computation N̂(ẑi) the inputs to all neurons in E1, E2980

are at most − 1
2 (by Properties (Q1) and (Q2)), and thus their outputs are 0. Therefore,981

N̂(ẑi) = b̂.982

25

– If yi = 1 then the oracle sets ŷi = 0. Since S is pseudorandom, we have Px(z
S) =983

Px(z
Si) = yi = 1. Hence, in the computation N̂(ẑi) there exists a neuron in E1 with984

output at least 3
2 (by Property (Q1)). Since all incoming weights to the output neuron985

in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to output neuron (including986

the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.987

988

26

	Missing lemmas for the proof of Theorem 3.1
	Proof of Corollary 3.1
	Proof of Theorem 3.2
	Defining the target network for L
	Defining the noise magnitudes , and analyzing the perturbed network under perturbed inputs
	Stating the algorithm A
	Analyzing the algorithm A

