
Appendices

Appendix A provides derivations supporting Section 3 in the main paper. In Appendix B, we explain
our experimental setup, including dataset preparation and model implementation, in more detail.
Finally, Appendix C provides additional results supporting our claims regarding the scalability of our
method, together with additional results from the experiments presented in Section 4.

A ST-DGMRF derivations

In this section we provide detailed derivations of the ST-DGMRF joint distribution, for both first-
order transition models (Section A.1) and higher-order transition models (Section A.2).

A.1 Joint distribution

The LDS (see Section 2.2 and 3.1 in the main paper) defines a joint distribution over system states
x0:K that factorizes as

p(x0:K) = N (x0 | µ0,Q
−1
0)

K∏
k=1

N (xk | Fkxk−1 + ck,Q
−1
k), (1)

with xk,µ0, ck ∈ RN and Fk,Qk ∈ RN×N . As a product of Gaussian distributions, p(x0:K) can be
written as a joint Gaussian N (µ,Ω−1) with mean µ ∈ R(K+1)N and precision (inverse covariance)
matrix Ω ∈ R(K+1)N×(K+1)N . Here, we derive expressions for µ and Ω in terms of µ0, ck,Fk,Qk.

First, note that Eq. (1) can be written as a set of linear equations

x0 = µ0 + ϵ0 ϵ0 ∼ N (0,Q−1
0)

x1 = F1x0 + c1 + ϵ1 ϵ1 ∼ N (0,Q−1
1)

x2 = F2x1 + c2 + ϵ2 ϵ2 ∼ N (0,Q−1
2)

. . .

xK = FKxK−1 + cK + ϵK ϵK ∼ N (0,Q−1
K).

Moving all xk-terms to the left-hand side, we can rewrite this as a matrix-vector multiplication
I

−F1 I
−F2 I

.
−FK I

︸ ︷︷ ︸

=F

·

x0

x1

x2

...
xK

︸ ︷︷ ︸

=x

=

µ0
c1
c2
...

cK

︸ ︷︷ ︸

=c

+

ϵ0
ϵ1
ϵ2
...

ϵK

︸ ︷︷ ︸

=ϵ

, (2)

with block-matrix F ∈ R(K+1)N×(K+1)N and vectorized x = vec(x0, . . . ,xK) ∈ R(K+1)N ,
c = vec(µ0, c1, . . . , cK) ∈ R(K+1)N and ϵ = vec(ϵ0, . . . , ϵK) ∈ R(K+1)N . Empty positions in F
represent zero-blocks.

Now, we can express x as an affine transformation of ϵ

x = F−1c+ F−1ϵ, (3)

where F−1 exists because det(F) = 1. Since ϵ is distributed as ϵ ∼ N (0,Q−1) with Q =
diag(Q0,Q1, . . . ,QK), and c is deterministic, we can use the affine property of Gaussian distribu-
tions to obtain the joint distribution

x ∼ N (F−1c,F−1Q−1F−T). (4)

Thus, the joint precision matrix Ω factorizes as

Ω = (F−1Q−1F−T)−1 = FTQF (5)

1

and has a block-tridiagonal structure

Ω =

Q0 + FT

1 Q1F1 −FT
1 Q1

−Q1F1 Q1 + FT
2 Q2F2 −FT

2 Q2

.
−QK−1FK−1 QK−1 + FT

KQKFT −FT
KQK

−QKFK QK

 .
(6)

Note that for matrix-vector multiplications of the form Ωx, the sparse structure of F and Q can be
leveraged by performing three consecutive matrix-vector multiplications, instead of first forming the
full precision matrix and then computing the matrix vector product. This reduces both computations
and memory requirements.

To compute the joint mean µ = F−1c without expensive matrix inversion, the components µk have
to be computed iteratively as

µk = Fkµk−1 + ck. (7)

In contrast, the information vector η = Ωµ can be expressed compactly as
η = FTQFF−1c = FTQc, (8)

which can be computed efficiently using sparse and parallel matrix-vector multiplications on a GPU.
We make use of this property in the DGMRF formulation and in the conjugate gradient method.

A.2 Extension to higher-order Markov processes

We can easily adjust the joint distribution to accommodate higher-order processes with dependencies
on multiple past time steps.

For a p-th order Markov process, the dynamics are defined by equations
x0 = µ0 + ϵ0 ϵ0 ∼ N (0,Q−1

0)

x1 = F1,1x0 + c1 + ϵ1 ϵ1 ∼ N (0,Q−1
1)

. . .

xk = Fk,1xk−1 + Fk,2xk−2 + · · ·+ Fk,pxk−p + ck + ϵk ϵk ∼ N (0,Q−1
k)

. . .

xK = FK,1xK−1 + FK,2xK−2 + · · ·+ FK,pxK−p + cK + ϵK ϵK ∼ N (0,Q−1
K).

Following the same steps as before, this results in a linear system

I
−F1,1 I
−F2,2 −F2,1 I
.

−Fp,p −Fp,p−1 . . . −Fp,1 I
.

−FK,p . . . −FK,2 −FK,1 I

︸ ︷︷ ︸

=F

·

x0

x1

x2

...
xK

︸ ︷︷ ︸

=x

=

µ0
c1
c2
...

cK

︸ ︷︷ ︸

=c

+

ϵ0
ϵ1
ϵ2
...

ϵK

︸ ︷︷ ︸

=ϵ

.

(9)
This means that the matrix F is extended by adding the higher-order transition matrices
(Fτ,τ , . . . ,FK,τ) to the τ -th lower block diagonal of F for all τ = 1, . . . , p. The expressions for
Ω,µ and η remain the same (using the extended F), resulting in a block p-diagonal precision matrix.

B Experimental details

B.1 Advection-diffusion process

The advection-diffusion dataset is a random sample from a ST-DGMRF for which the transition
matrices are defined according to an advection-diffusion process

∂ρ(t, s)

∂t
= D∇2ρ(t, s)−∇ · (vρ(t, s)) (10)

2

with constant diffusion coefficient D and velocity vector v = [u, v]
T . The process is discretized on

a 30 × 30 lattice with grid cell size ∆x = ∆y = 1 and periodic boundary conditions. The spatial
discretization results in a system of ordinary differential equations

∂ρ(t)

∂t
= Mρ(t), (11)

where ρ(t) is a vector containing the system states of all grid cells. Using a finite difference
discretization, matrix M is defined as

Mij =

D − 1

2n
T
ijv if d(i, j) = 1

−4D if i = j

0 otherwise,
(12)

where d(i, j) denotes the distance between cell i and j, and nij denotes the unit vector pointing
from lattice cell i to its neighbor j. For example, for cell i = (sx, sy) and cell j = (sx, sy − 1) it is
nij = [0,−1]

T , and thus nT
ijv = −v.

Eq. 11 is converted into a discrete-time dynamical system by approximating

ρt+∆t = exp(∆t ·M)ρt ≈

(
3∑

k=0

1

k!
(∆t)

k
(M)

k

)
ρt = Fadv-diffρt (13)

using a third-order Taylor series expansion. For simplicity, we use time resolution ∆t = 1 resulting in

Fadv-diff = I+M+
1

2
M2 +

1

6
M3. (14)

B.1.1 Process simulation

We sample the initial state ρ0 from a GMRF with µ0 = 0 and precision matrix Q0 = ST
0 S0 with

S0 = (D − A), where A is the adjacency matrix of the 4-nearest neighbour graph Glattice, and
D = 4 · I is the corresponding degree matrix. This corresponds to a 1-layer DGMRF with parameters
α = 1, β = −1, γ = 1 and b = 0.

Starting from ρ0, we iteratively sample the next system state according to

ρk = Fkρk−1 + ϵk ϵt ∼ N (0,Q−1
k) (15)

with time-invariant transition matrix Fk = (Fadv-diff)
4, where Fadv-diff is defined according to Eq. (14).

This effectively aggregates four simulation steps into one, i.e. ∆tk = (tk+1 − tk) = 4, resulting in
larger differences between consecutive system states. For the noise terms ϵk, we use a time-invariant
precision matrix Qk = ST

k Sk where Sk = (10 · I−A). This corresponds to a 1-layer DGMRF with
parameters α = 10

4 , β = −1, γ = 1 and b = 0.

We simulate forK = 20 time steps, usingD = 0.01 and v = [−0.3, 0.3]
T , and generate observations

by masking out grid cells within a square of width w ∈ {6, . . . , 12} for 10 consecutive time steps
and applying white noise with standard deviation σ = 0.01.

Figure 1: Advection-diffusion dataset with ground truth system states (bottom) and corresponding
observations using masks of width w = 9 (top).

B.1.2 ST-DGMRF parameterization

We consider two ST-DGMRF variants that capture different amounts of prior knowledge. In both
cases, spatial and temporal layers are defined based on Glattice, and temporal bias terms are, similar to
spatial bias terms, defined as b(l)

f = b
(l)
f 1.

3

Variant 1 If prior knowledge is available in the form of a parameterized transition model, the ST-
DGMRF transition matrices can be parameterized accordingly. Here, we consider temporal layers F(l)

k
that are a simplified first-order approximation to the true transition matrix Fadv-diff used to generate the
data (see Eq. (14)), i.e. F(l)

k = I+M(l), with time-invariant learnable diffusion coefficients D(l) and
velocity vectors v(l). To ensure that the diffusion coefficient is non-negative, we model it as D(l) =

(d(l))2. This leaves us with four learnable parameters d(l), u(l), v(l) and b(l)f per temporal layer.

Variant 2 If only partial knowledge about the underlying dynamics is available, the unknown parts
can, for example, be replaced by a small neural network. Here, we consider temporal layers of the
form F

(l)
k = I+M(l) with

M
(l)
ij =

(d(l))2 + ϕ

(l)
ij,1 if j ∈ n(i)

−4(d(l))2 +
∑

j∈n(i) ϕ
(l)
ij,2 if i = j

0 otherwise,
(16)

where we define ϕ(l)ij,1, ϕ
(l)
ij,2 = f

(l)
MLP (nij) where f (l)MLP : R2 → R2 is a multilayer perceptron

(MLP) with one hidden layer of width 16 with ReLU non-linearity, and Tanh output non-linearity.
Again, we define the transition model to be time-invariant and share MLP parameters across time and
space. This amounts to 83 learnable parameters per temporal layer.

Log-determinant computations In our experiments, the spatial base graph Glattice is small enough
to pre-compute eigenvalues exactly and use the eigenvalue method for log-determinant computations
proposed in [4].

Variational distribution For the variational distribution, we also consider two variants, one without
temporal dependencies (equivalent to the DGMRF baseline) and one with a single temporal layer
with time-invariant diffusion transition matrices F̃k = λI + ω(A −D). Note that for ω = 0, this
reduces to a simple auto-regressive process.

Observation model All ST-DGMRF variants assume a temporally and spatially invariant observa-
tion noise level of σ = 0.01. The observation matrices Hk are defined as selection matrices matching
the training masks during the learning phase and the training plus validation masks during the testing
phase.

B.2 Air quality data

The air quality dataset is based on hourly PM2.5 measurements obtained from [7]. We consider
246 sensors within the metropolitan area of Beijing, China, for which we extracted time series of
K = 400 hours between 13 March 2015 at 12pm and 30 March 2015 at 3am. Relevant weather
covariates (surface temperature, as well as u and v wind components at 10 meters above ground level)
were extracted from the ERA5 reanalysis dataset [3].

B.2.1 Data preprocessing

We define both the spatial and the temporal base graph based on the Delaunay triangulation of sensor
locations, GDelaunay, where we disregard edges between sensors that are more than 160 kilometers
apart. Edge weights are defined as the inverse distance between sensors, normalized to range between
0 and 1. The raw PM2.5 measurements are log-transformed and standardized to zero mean and unit
variance. Finally, we remove clear outliers where the transformed values jump up and down by more
than a threshold of δ = 2.0 within three consecutive time steps. The ERA5 covariates are normalized
to range between -1 and 1.

To mimic a realistic setting of repeatedly occurring partial network failures, we define our test set by
masking out all measurements within a predefined spatial block (containing 50% of all sensors) within
10 randomly placed windows of 20 time steps (see Figure 2). Note that these windows may overlap,
resulting in fewer periods of missing data with variable length. The masked out measurements are
used for the final model evaluation.

4

Figure 2: Left: air quality sensor network. Ca. 50% of the nodes are masked out (purple nodes within
the gray box) during 10 randomly placed (partially overlapping) windows of 20 time steps. Right:
associated log-transformed and normalized PM2.5 measurements for two sensors falling within the
masked area. Time points that have either missing data or fall within a masked time window are
shaded in gray.

B.2.2 ST-DGMRF parameterization

As with the advection-diffusion dataset, we consider two ST-DGMRF variants with different types
of temporal layers. In both cases, spatial and temporal layers are defined based on the Delaunay
triangulation described in Section B.2.1, and temporal bias terms bf are defined in terms of a neural
network mapping local weather covariates to temporally and spatially varying biases. We use a simple
MLP with one hidden layer of width 16 with ReLU activations and no output non-linearity. The MLP
parameters are shared over both space and time.

Variant 1 This variant accounts for directional transport processes, adopting a transition model
similar to the neural network model used in the advection-diffusion experiments. In particular, we
consider temporal layers of the form F

(l)
k = I+M

(l)
k with

(
M

(l)
k

)
ij
=

(d(l))2 + ϕ

(l)
k,ij if j ∈ n(i)

−4(d(l))2 +
∑

j∈n(i) ψ
(l)
k,ij if i = j

0 otherwise,

(17)

where we define ϕ(l)k,ij , ψ
(l)
k,ij = f

(l)
MLP (nij , wij , (uk)i) where f (l)MLP : R6 → R2 is a MLP with one

hidden layer of width 16 with ReLU activations, and Tanh output non-linearity. wij are the edge
weights of the base graph (see Section B.2.1), and (uk)i is the vector of weather covariates for node i
at time k. Since we use these time-dependent covariates as input to the MLP, the resulting transition
model is not time-invariant anymore. However, the parameters of the MLP remain shared across time
and space. As before, diffusion parameter d(l) is assumed to be spatially and temporally invariant.

Variant 2 The second variant uses highly simplified diffusion temporal layers of the form F
(l)
k =

λ(l)I+ ω(l)(A−D) with spatially and temporally invariant parameters λ(l) and ω(l).

Log-determinant computations Again, the spatial base graph GDelaunay is small enough to pre-
compute eigenvalues exactly and use the eigenvalue method for log-determinant computations [4].

Variational distribution As with the advection-diffusion dataset, we consider two variants for the
variational distribution, one without temporal dependencies and one with a single temporal diffusion
layer.

Observation model All ST-DGMRF variants assume a temporally and spatially invariant observa-
tion noise level of σ = 0.01. The observation matrices Hk are defined as selection matrices matching
the training masks during the learning phase and the training plus validation masks during the testing
phase.

5

B.3 Baseline models

B.3.1 DGMRF

We apply the DGMRF for general graphs introduced by [4] to each time frame of the time series,
not accounting for temporal dependencies. The DGMRF parameters are not shared across time,
allowing for dynamically changing spatial covariance patterns. We use one spatial layer in the
variational distribution, as proposed in [4], and run a hyperparameter search over Lspatial ∈ {1, 2, 3}
with Lspatial = 2 performing best.

Including covariates In our experiments on the air quality dataset, for which we have access to
relevant covariates, we follow [6] and add linear effects to the measurement model. Note that the
vector of coefficients if shared across both space and time.

B.3.2 ARMA

We implemented ARMA(p, q) models with p = 1 and q = 1 for the advection-diffusion data, and
with p = 2 and q = 2 for the air quality data, using the Python statsmodels package. For each
node in the test set, maximum likelihood parameter estimation is performed based on the observed
time points. Given the estimated model coefficients, we obtain posterior mean and variance estimates
using the standard Kalman smoother [5]. As the maximum likelihood estimates are deterministic, we
do not provide standard deviations of the evaluation metrics for these models.

B.3.3 ST-AR

The spatiotemporal autoregressive (ST-AR) model takes the form xk = α · xk−1 + ϵk, with initial
state x0 ∼ N (µ0,Σ0) and unconstrained spatial error terms ϵk ∼ N (0,Q−1). We fix Σ0 = 10 · I
to encode high uncertainty about the initial state x0, and fit α,µ0 and Q−1 to the data using closed-
form EM updates. The EM algorithm is initialized with α = 1,µ0 = 0 and Q−1 = diag(q) where
elements qi are drawn randomly from the interval [5, 6]. After convergence of the EM-algorithm, the
final state estimates are obtained with the Kalman smoother [5].

B.3.4 EnKS

We consider an Ensemble Kalman Smoother (EnKS) variant for which the transition model matches
the true data-generating process of the advection-diffusion dataset, as well as an EnKS variant for
which we use a state augmentation approach to estimate unknown parameters v and d =

√
D jointly

with the system states. For both variants, we use 104 ensemble members (the maximum feasible on
our machine). We fix the initial state distribution to x0 ∼ N (0, 10 · I), and sample transition noise
terms as ϵk ∼ N (0, 0.1 · I).
For the state augmentation approach, we define the initial distribution over velocities v as N (µv, 0.1 ·
I), where µv is randomly drawn from [−1, 1] for each repeated run of the EnKS. Similarly, the initial
distribution for diffusion parameter d is defined as N (µd, 0.01) where µd is randomly drawn from
[0, 0.2] for each repeated run of the EnKS. Finally, the transition noise terms for parameters v and d
are sampled from N (0, 0.01 · I).

B.3.5 MLP

For the air quality dataset, the MLP baseline maps local weather covariates (uk)i ∈ R3 to log-
transformed PM2.5 measurements. We use one hidden layer of width 16 with ReLU activations and
no output non-linearity. The MLP parameters are shared over both space and time.

B.4 Regularized Conjugate Gradients

We use a regularized variant of the conjugate gradient (CG) method [1] to avoid slow convergence in
the case of ill-conditioned matrices. Instead of directly solving a potentially ill-conditioned linear
system Ax = b, the idea is to iteratively solve a sequence of regularized (i.e. well conditioned)
linear systems

(νI+A)x = νx(i) + b. (18)

6

At each iteration, the solution from the previous iteration x(i) is used to obtain the next solution x(i+1).
Eventually, this sequence will converge towards the true solution x∗ of the original system Ax = b.

We start with ν = 10 and decrease it every 10 iterations by factor 10. In each iteration, the standard
CG method is employed to iteratively solve the regularized linear system until the residual norm
drops below a threshold of 10−7 or a maximum of 200 inner CG iterations is reached. This inner
loop is repeated until the norm of the residuals

r(i) =
(
(νI+A)x(i)

)
−
(
νx(i) + b

)
(19)

drops below a threshold of 10−7 or a maximum of 100 outer iterations is reached. The initial guess
x(0) is given by the mean of the variational distribution qϕ(x).

C Additional results

In this section, we present additional results regarding the scalability of our approach (Section C.1),
and provide more detailed results for the experiments in Section 4 of the main paper (Section C.2
and C.3). Finally, in Section C.4 we provide estimates of the total computation time required for our
experiments.

C.1 Scalability

To empirically demonstrate the scalability of our method, we generate additional advection-diffusion
datasets with varying lattice size and compare the runtime of our ST-DGMRF approach to a naive
Kalman smoother (KS) [5] approach. To this end, we consider a model with advection-diffusion
transition matrix using Ltemporal = 2 temporal and Lspatial = 2 spatial layers. To avoid additional
matrix inversions in the KS approach, we set the spatial and temporal bias terms bs,bf to zero,
resulting in µ0 = 0 and ck = 0. We train the model for 1 000 iterations and measure the average
wall clock time per iteration. In addition, we measure the wall clock time needed to perform inference
with the trained model.

ST-DGMRF For the ST-DGMRF approach, we proceed as before using a variational distribution
with one temporal diffusion layer during training. For better comparability, we employed the standard
(non-regularized) CG method (with a tolerance of 10−7) to compute the posterior mean and marginal
variances (based on 100 CG samples) and provide measurements of the average time per CG iteration
instead of the total time needed to perform inference. Multiplying this with the average number of
CG iterations needed until convergence results in an estimate of the average total time for inference.

Kalman smoother For the KS approach, instead of approximating the true posterior with a
variational distribution and estimating the ELBO based on Monte-Carlo samples, we use the KS to
obtain exact marginal posterior estimates, which are used to compute expectations in closed form.
The marginal covariance and transition matrices required for the KS equations are extracted from the
ST-DGMRF model in every iteration. The associated parameters are then optimized via a form of
Generalized EM-algorithm [2], where in each iteration a single gradient ascent step is taken.

Results Figure 3 shows how ST-DGMRF and KS training and inference scale as the number of
nodes N in the system increases. Clearly, the time per training iteration increases super-linearly when
the KS is used to obtain exact marginal posterior distributions, while the variational ST-DGMRF
training time increases only marginally and remains below the fastest KS iteration for all tested N . In
addition, KS memory requirements (due to storing K dense N ×N covariance matrices) exceeded
the available GPU memory for N > 1024, making this approach infeasible for larger systems. In
contrast, the ST-DGMRF exploits the sparsity of spatial and temporal graph-structured layers and
thereby avoids storing dense matrices, remaining feasible for N ≫ 1024.

For the tested systems, ST-DGMRF posterior inference with the CG method is slower than exact
KS inference. However, the memory requirements of the KS approach again limit its feasibility to
N ≤ 1024, while the CG method only requires storing vectors of size O(N) making it feasible for
N ≫ 1024. Moreover, Figure 3 confirms that computations per CG iteration scale linearly in N .
And since the number of CG iterations required for convergence remains approximately constant, the

7

Figure 3: Comparison of ST-DGMRF and KS computation time in seconds for training (per iteration)
and inference. For ST-DGMRF inference, the time per CG iteration is plotted together with the
average number of CG iterations needed to converge (in gray). All quantities are plotted as mean ±
std based on 5 runs with different random seeds. The vertical dotted lines indicate the maximum N
for which the KS approach was applicable.

total computation time for CG inference also scales linearly in N . In contrast, KS inference again
scales super-linearly. This means that even if the KS approach would remain feasible in terms of
memory requirements, its computation time will quickly approach, and eventually exceed, the time
needed for CG inference.

C.2 Advection-diffusion experiments

Table 1 summarizes all results for the advection-diffusion dataset with mask size w = 9, including
standard deviations for all metrics based on 5 runs with different random seeds. As discussed in the
main paper, the ST-DGMRF variants provide more accurate posterior estimates than the baselines
relying on simplified spatiotemporal dependency structures.

Ablation results Table 1 contains additional results for the ST-DGMRF variants using different
settings for the variational distribution (see Section B.1.2) For this dataset, we do not find a significant
effect of introducing temporal dependencies in the variational distribution. Further, Figure 4 shows
additional results for the ST-DGMRF variants when varying the number of temporal layers Ltemporal.
For all metrics, the performance improves significantly as we start adding temporal layers and
stabilizes around Ltemporal = 3. Note that around the same point, both ST-DGMRF variants converge
towards the EnKS using the true data-generating dynamics, in terms of the RMSEµ, and even drop
below it in terms of the CRPS. Only in terms of RMSEσ , the ST-DGMRF models remain inferior to
both EnKS variants. We hypothesize that increasing the expressivity (i.e. Lspatial) of the noise terms
can further reduce this gap.

Table 1: Model performance for the advection-diffusion dataset with w = 9, reported as mean ± std
over 5 runs with different random seeds. All ST-DGMRF variants use Lspatial = 2 and Ltemporal = 4.

VI dynamics RMSEµ ↓ RMSEσ ↓ CRPS ↓
ARMA − 2.3054 − 0.6812 − 1.7064 −
ST-AR − 1.4595±0.0098 1.9216±1.0392 0.9707±0.0163

DGMRF − 0.5901±0.0037 0.3808±0.0010 0.3495±0.0022

EnKS
true dynamics − 0.0661±0.0030 0.0046±0.0000 0.1027±0.0035

estimated dynamics − 0.1654±0.2031 0.0039±0.0005 0.1434±0.0902

ST-DGMRF (ours)
advection-diffusion none 0.0526±0.0001 0.1148±0.0003 0.0726±0.0001

advection-diffusion diffusion 0.0526±0.0001 0.1146±0.0005 0.0726±0.0000

neural network none 0.0839±0.0022 0.1334±0.0089 0.0833±0.0008

neural network diffusion 0.0854±0.0027 0.1402±0.0061 0.0839±0.0008

8

Figure 4: RMSEµ, RMSEσ and CRPS as a function of the number of temporal layers Ltemporal for
the advection-diffusion dataset with w = 9, plotted as mean ± std over 5 runs with different random
seeds. Both ST-DGMRF variants are trained with a variational distribution using one temporal
diffusion layer. Note that Ltemporal = 0 corresponds to the spatial-only DGMRF baseline.

C.3 Air quality experiments

Table 2 summarizes all results for the air quality dataset. It contains additional results for the ST-
DGMRF variants using different settings for the variational distribution (see Section B.2.2), and
provides standard deviations for all metrics based on 5 runs with different random seeds.

Ablation results We find that, in contrast to our experiments on the advection-diffusion data,
accounting for temporal dependencies in the variational distribution is clearly beneficial in the real
world setting. Especially for the ST-DGMRF with neural network based transitions, adding the
temporal diffusion layer results in significantly improved posterior estimates, and at the same time
reduces the variability across different runs. Further, we find that at least two temporal layers are
needed to achieve good posterior estimates that improve on the baselines (see Figure 5).

Example model outputs Figure 6 shows state estimates and associated uncertainties together with
sensor measurements for two example sensors within the masked out area of the network, for ST-
DGMRF, DGMRF and ARMA respectively. For all three models, state estimates are obtained by
conditioning on the input data points (used for training), resulting in low errors and uncertainties for
observed time points and higher errors and uncertainties for masked out time points. Moreover, for
both ST-DGMRF and DGMRF, higher uncertainties coincide with larger errors and larger fluctuations
in the measurements (top), while more accurate state estimates come with smaller uncertainties
(bottom). Finally, Figure 7 visualizes how spatial and temporal ST-DGMRF layers transform samples
from the estimated posterior over system states into (approximately) independent Gaussian noise, as
derived in Section 3.1.2 and visualized in Figure 1. Clearly, temporal layers remove daily patterns
and overall trends, while spatial layers remove dependencies between close-by sensors and increase
temporal fluctuations.

Figure 5: RMSE and CRPS for increasing Ltemporal (mean ± std over 5 runs). Both models use p = 2.
As before, Ltemporal = 0 corresponds to the spatial-only DGMRF baseline.

9

Figure 6: Model outputs for two air quality sensors falling within the masked area. Solid lines
represent posterior mean estimates, while shaded areas represent posterior std estimates. Time points
that have either missing data or fall within the masked time window are shaded in gray.

Table 2: Model performance for the air quality dataset, reported as mean ± std over 5 runs with
different random seeds. All ST-DGMRF variants use Lspatial = 2 and Ltemporal = 4.

p VI dynamics RMSE ↓ CRPS ↓
ARMA − − 0.6820 − 0.3625 −
ST-AR − − 0.7350±0.0006 0.4261±0.0003

DGMRF − − 0.7368±0.0135 0.3966±0.0032

MLP − − 0.8038±0.0245 −
ST-DGMRF (ours)

diffusion 1 none 0.6147±0.0082 0.3239±0.0058

diffusion 1 diffusion 0.6190±0.0073 0.3258±0.0043

diffusion 2 none 0.6020±0.0112 0.3214±0.0051

diffusion 2 diffusion 0.5928±0.0119 0.3161±0.0054

neural network 1 none 0.5995±0.0887 0.3147±0.0494

neural network 1 diffusion 0.5853±0.0457 0.3092±0.0257

neural network 2 none 0.5825±0.0626 0.3062±0.0353

neural network 2 diffusion 0.5565±0.0184 0.2925±0.0097

C.4 Total compute

Most computations were performed on a Nvidia Titan X GPU. On top of the final experiments, we
performed hyperparameter sweeps and additional test runs. Here, we provide estimates of the total
compute time grouped by experiment:

Advection-diffusion dataset:

• Performance comparison & ablations: ca. 50 GPU hours

• Varying mask size: ca. 30 GPU hours per w, resulting in ca. 210 GPU hours in total

• Scalability: ca. 15 GPU hours

Air quality dataset:

• Performance comparison & ablations: ca. 100 GPU hours

10

Figure 7: Effects of applying temporal (fθ) and spatial (sθ) ST-DGMRF layers to the predictive
posterior. Left column: The dark yellow line (top row) shows the estimated posterior mean for
an air quality sensor falling within the masked area. Light yellow lines represent corresponding
posterior samples. Similarly, green lines (center row) represent states after applying the temporal
transformation (fθ), and gray lines (bottom row) represent states after applying both temporal and
spatial layers (sθ ◦ fθ). As a reference, we also plot ground truth log-transformed and normalized
PM2.5 measurements (dashed black lines). Right column: corresponding (transformed) states for all
sensors at time k = 100.

References
[1] Z. Z. Bai and S. L. Zhang. A regularized conjugate gradient method for symmetric positive definite system

of linear equations. Journal of Computational Mathematics, pages 437–448, 2002.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

[3] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey,
R. Radu, D. Schepers, et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological
Society, 146(730):1999–2049, 2020.

[4] J. Oskarsson, P. Sidén, and F. Lindsten. Scalable deep Gaussian Markov random fields for general graphs.
In Proceedings of the 39th International Conference on Machine Learning, 2022.

[5] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems. AIAA
journal, 3(8):1445–1450, 1965.

[6] P. Sidén and F. Lindsten. Deep Gaussian Markov random fields. In International Conference on Machine
Learning. PMLR, 2020.

[7] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. Forecasting fine-grained air quality based on
big data. In Proceedings of the 21th SIGKDD Conference on Knowledge Discovery and Data Mining. KDD
2015, August 2015.

11

	ST-DGMRF derivations
	Joint distribution
	Extension to higher-order Markov processes

	Experimental details
	Advection-diffusion process
	Process simulation
	ST-DGMRF parameterization

	Air quality data
	Data preprocessing
	ST-DGMRF parameterization

	Baseline models
	DGMRF
	ARMA
	ST-AR
	EnKS
	MLP

	Regularized Conjugate Gradients

	Additional results
	Scalability
	Advection-diffusion experiments
	Air quality experiments
	Total compute

