
A Proof of Proposition 2.2: additive expansion proposition392

We denote the embedding vector of a node vi by ei ≜ gi(Ĝ) = GNN(Ĝ)[i]. Without loss of393

generality, we drop the subscript for short. We can also define the density measure df as:394

pf (e) ≜
exp(−d(e))∫

G exp(−d(e))dg(G)
. (5)

For any subset of the embedding space E ⊂ g(X ), the local probability can be measured by395

pf (E) =
∫
E
pf (e)de. If we have a local optimal subset U ⊂ E with a confidence threshold396

of 1 − q, and its perturbation Uϵ, then the consistency at the boundary of the subset separation397

problem E → U,E \ U can be quantified by Cheeger constant. We introduce the continuous Cheeger398

inequality to elaborate the lower bound of the Cheeger constant under an amplified measure αf ,399

where α > 1 is a constant.400

We first define the restricted Cheeger constant in the link prediction task. Given the function f and401

any subset E, Cheeger constant is calculated by402

Cf (E) ≜ lim
ϵ→0+

inf
A⊂E

pf (Aϵ)− pf (A)

ϵmin{pf (A), pf (E \A)}
. (6)

According to the definition, the Cheeger constant is a lower bound of probability density in the403

neighborhood of the given set. It quantifies the chance of escaping the subset A under the probability404

measure f and reveals the consistency over the set cutting boundary.405

Then we prove that for the any subset E ⊂ g(G) with its local optimal subset U : {e ∈ E : pf (e) >406

1− q}, there exists α > 1 s.t. Cαf (E \ U) ≥ 1.407

As the measurable function for the link prediction is defined as f(e) = −eT ea. When e∗ = ea, f408

reaches the global minimal. For the embedding vectors outside the local minimal subset ey ∈ g(G)\U ,409

there exsits ϵ > 0 s.t.410

f(ey) ≥ f(e∗) + 2ϵ̂, (7)

where ϵ̂ = Cϵ. If we define E∗
ϵ = {e∗ϵ̂} ∩ g(G), where e∗ϵ̂ is the ϵ̂ neighbor of e∗, according to the411

Lipchitz condition of f , for e ∈ E∗
ϵ , we have:412

f(ex) ≤ f(e∗) + ϵ̂∥ex − e∗∥2 ≤ f(e∗) + ϵ̂. (8)

Combining Eq.8 and Eq.7 leads to f(ey)− f(ex) ≥ ϵ̂. Thus, for the amplified probability measure413

pαf , we have414

pαf (ex)/pαf (ey) ≥ exp(αϵ̂) (9)

According to the inequality property from [26] (formula 63), we have415

pαf (U)

pαf (g(G) \ U)
≥ exp

(
αϵ̂− 2log

(
2C2/ϵ̂

))
. (10)

As pαf (g(G) \ U) + pαf (U) = 1. If we select α large enough s.t. the RHS of Eq.10 is larger than416

1, pαf (g(G) \ U) ≤ 1
2 . Thus, according to [17] (Theorem 2.6), we have Cαf ≥ 1. It guarantees417

consistency around the perimeter of the U . As α > 1 and pf , pαf are bounded on any subsets of418

embedding space. It implies a probability margin η > 0 at the neighborhood of the local optimal419

between two measurable functions f, αf , where420

η = inf
ê∈Uϵ\U,e∈U

(pαf (ê)− pf (e)). (11)

which, according to [23], implies additive expansion property of the probability measure in the link421

prediction, as Proposition 2.2.422
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B Proof of Theorem 2.3: error analysis423

In [23], M(gϕ) is also assumed to satisfy additive-expansion (q, ϵ), where M(g) ≜ {y ∈ Y :424

g(y) ̸= y} is the set of mis-classified samples, and they give the error bound of the trained classifier425

s (Theorem B.2):426

Err(g) ≤ 2(q +A(g)). (12)

Here in link prediction task, M(gϕ) is mis-classified samples by the pseudo labeler (teacher model).427

It can be written by {yi : Yp[i] ̸= ET [i]}, which is intractable during the training. The probability428

threshold is 1 − q and a local optimal subset U for PL is constructed accordingly. We aim to let429

M(gϕ) ∩ U be close to ∅, so that g(G) \ U can cover M(gϕ) as much as possible. So we define the430

robust set S(g) as431

S(g) = {y : g (y) = g (ŷ) , ŷ ∈ {yϵ}} , (13)

where yϵ is the ϵ neighborhood of sample y. Then, according to Proposition 2.1, we have:432

pf ({y ∈ Y : gϕ(y) ̸= y, y ∈ S(gψ)}) ≤ pαf (g (G) \ U) ≤ q, (14)

which has similar form with [23] Lemma B.3 for link prediction task. Besides, the analysis of433

pf ({y ∈ Y : gϕ(y) = y, gψ(y) ̸= y, y ∈ S(gψ)}) and pf (S(gψ)) are the same. Thus, the434

assumption on M(gϕ) is satisfied. Then, we can draw the same conclusion with Eq.12, and the435

classifier is the student model gψ . The theorem is proofed.436

C Proof of convergence inequality437

The PL strategy T for the unlabeled data provides a Bayesian prior, from which we formalize the438

empirical loss defined in Eq.1 as439

L(t+1)
T =

1∣∣∣Ŷ (t)
o

∣∣∣+ k

[
CE

(
g
(t)
ψ , Ŷ (t)

o

)
+ CE

(
g
(t)
ψ , Y (t)

p

)]
. (15)

We can decompose the cross-entropy loss of the pseudo labeled samples by:440

CE (gψ, Yp) =
∑
Ŷu

ce (gψ, Y ) · T

=
∑
Ŷu

[ce (gψ, Y )− Y [ce (gψ, Y )]] · [T − Y T ]

+ Y T
∑
Ŷu

ce (gψ, Y ) + E [ce (gψ, Y )]
∑
Ŷu

T −
∣∣∣Ŷu∣∣∣Y T Y [ce (gψ, Y )]

(16)

.441

Thus, Eq.16 can be simplified to:442

CE (gψ, Yp) =
∣∣∣Ŷu∣∣∣Cov [ce (gψ, Y ) , T ] + ET ·

∣∣∣Ŷu∣∣∣E [ce (gψ, Y )]

+ E [ce (gψ, Y )] ·
∣∣∣Ŷu∣∣∣ET −

∣∣∣Ŷu∣∣∣ET E [ce (gψ, Y )]

=
∣∣∣Ŷu∣∣∣Cov [ce (gψ, Y ) , T ] +

∣∣∣Ŷu∣∣∣ET E [ce (gϕ, Y )]

=
∣∣∣Ŷu∣∣∣Cov [ce (gψ, Y ) , T ] + kE [ce (gϕ, Y )]

(17)

Note that T is the indicator-like function, where we have443

ET =
1∣∣∣Ŷu∣∣∣

∑
Ŷu

T =
k∣∣∣Ŷu∣∣∣ . (18)
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Table 6: Details of Node Information in the Case Study.

Node Group 1 Group 2
Node 2702 Node 5688 Node 8906 Node 3489 Node 7680

ID 17505908 11353631 30138652 23221074 12265137
Outlinks [6097297] [6097297] [244374, 6097297] [20901] []

Title Ubuntu Hacks Pungi (software) LinuxPAE64 Malware Bell Norton Confidential
Label Operating systems Operating systems Operating systems Computer security Computer security

Tokens "ubuntu", "hacks",
"ubuntu", "hacks",
"tips", "tools", "ex-
ploring", "using",
"tuning", "linux",
"book", "tips",
"ubuntu", "popular",
"linux", "distribu-
tion", "book", "pub-
lished", "o’reilly",
"media", "june",
"2006", "part",
"o’reilly", "hacks",
"series"

"pungi", "software",
"pungi", "pro-
gram", "making",
"spins", "fedora",
"linux","distribution",
"release", "7", "up-
wards"

"linuxpae64", "lin-
uxpae64", "port",
"linux", "kernel",
"running", "com-
patibility", "mode",
"x86-64", "pro-
cessor", "kernel",
"capable", "loading",
"i386", "modules",
"device", "drivers",
"supports", "64-bit",
"linux", "appli-
cations", "user",
"mode"

"malware", "bell",
"malware", "bell",
"malware", "pro-
gram", "made", "tai-
wan", "somewhere",
"2006", "2007",
"malware", "bell",
"tries", "install", "au-
tomatically", "upon",
"visiting", "website",
"promoting", "con-
taining", "malware"

"norton", "confi-
dential", "norton",
"confidential", "pro-
gram", "designed",
"encrypt", "pass-
words", "online",
"detect", "phishing",
"sites"

Based on the Eq.15 and Eq.17, we can rewrite L(t+1)
T as444

L(t+1)
T = βCov [ce (gψ, Y ) , T ] +

1∣∣∣Ŷ (t)
o

∣∣∣CE
(
g
(t)
ψ , Ŷ (t)

o

)
≤ βCov [ce (gψ, Y ) , T ] +

1∣∣∣Ŷ (t)
o

∣∣∣CE
(
g
(t)
ϕ , Ŷ (t)

o

)
= βCov [ce (gψ, Y ) , T ] + L(t)

T

(19)

where β = |Ŷu|/(|Ŷo|+ k. The inequality holds due to the assumption.445

D Case study of CPL on link prediction446

Error bound: In the case study, the recorded confidence threshold is 1− q = 0.98 for WikiCS. We447

adopt 5 views of dropout with the augmentation drop rate 0.05. And according to the error bound given448

by Theorem 2.3, given the confidence threshold, Eq.2 suggests that the higher prediction consistency449

should lead to a smaller error bound. The final prediction consistency is A(g) = 0.0358, thus, we450

can calculate error bound Err(g) = 0.1116. The AUC and AP are 95.56± 0.24%, 95.58± 0.29%451

which are bounded within Err(g).452

Knowledge discovery: In the 5 random experiments, we add 500 pseudo links in each iteration.453

Here we focus on the common PL links in the first iteration, which are considered the most confident454

samples. We look for the metadata of WikiCS whose node, feature, link and node label represent455

paper, token, reference relation and topic of the paper respectively. There are These 7 most confident456

links categorized into 2 groups. We take 3 out of 5 nodes in group1 and the 2 nodes in group2 for457

analysis, whose detailed information of these nodes is shown in AppendixD.458

For group1, 3 nodes are connected by the pseudo links, and they are all linked to a central node459

whose degree is 321. The metadata information of the nodes are all strongly relevant to "Linux"460

in the "operating systems" topic. Thus, the PL linked nodes are likely to have common neighbors461

discovered triangle relationship. In group2, node 3489 has no in/out degree and is pseudo linked to462

node 7680. Both papers focus on the "malware"/"phishing" under the topic "Computer security".463

Although they only have one common token, the CPL strategy successfully discovers the correlation464

and consistently add it to the training set. The detailed result of the case study is shown in Table 6.465
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