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Abstract

Low-rank matrix factorization (LRMF) is a canonical problem in non-convex
optimization, the objective function to be minimized is non-convex and even
non-smooth, which makes the global convergence guarantee of gradient-based
algorithm quite challenging. Recent work made a breakthrough on proving that
standard gradient descent converges to the ε-global minima after O(dκ

2

τ2 lndσd

τ +
dκ2

τ2 lnσd

ε ) iterations from small initialization with a very small learning rate (both
are related to the small constant τ ). While the dependence of the convergence on
the condition number κ and small learning rate makes it not practical especially
for ill-conditioned LRMF problem.
In this paper, we show that precondition helps in accelerating the convergence and
prove that the scaled gradient descent (ScaledGD) and its variant, alternating scaled
gradient descent (AltScaledGD) converge to an ε-global minima afterO(lndδ +lndε )
iterations from general random initialization. Meanwhile, for small initialization as
in gradient descent, both ScaledGD and AltScaledGD converge to ε-global minima
after only O(lndε ) iterations. Furthermore, we prove that as a proximity to the
alternating minimization, AltScaledGD converges faster than ScaledGD, its global
convergence does not rely on small learning rate and small initialization, which
certificates the advantages of AltScaledGD in LRMF.

1 Introduction

Low-rank matrix factorization aims to approximate a given rank d matrixM ∈ Rm×n by the product
of two factor matrices U ∈ Rm×d,V ∈ Rn×d, which plays a fundamental and essential role in
low-rank matrix recovery such as matrix completion Jain et al. [2013], Ge et al. [2016], Sun and
Luo [2016], matrix sensing Chi et al. [2019], Zhao et al. [2015], Charisopoulos et al. [2021], robust
principal component analysis Candès et al. [2011], Cai et al. [2021], and the theoretical analysis
of deep neural network Du et al. [2018]. Meanwhile, low-rank matrix factorization is also viewed
as a canonical problem in non-convex optimization as the objective function to be minimized is
non-convex and even non-smooth. Mathematically, we are to solve

min
U∈Rm×d,V ∈Rn×d

f(U ,V ) :=
1

2
‖UV > −M‖2F , (1)

∗Corresponding author.
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where d� min(m,n). Though problem (1) is not difficult to solve, the study of this problem has
great significance to the gradient-based algorithm for low-rank matrix recovery Hou et al. [2020], Li
et al. [2019b], Chen et al. [2019], Tong et al. [2021], as it is exactly the population loss of low-rank
matrix recovery models. Meanwhile, from the perspective of non-convex optimization, problem
(1) is an ideal test bed for the theoretical analysis of the asymptotic convergence of gradient-based
algorithm for non-convex optimization.

The theoretical guarantee for the global convergence of gradient-based algorithm for problem (1) is
challenging, which is due to the following reasons: 1) the problem is non-convex with respect to the
variables U and V , and there are infinitely many local minima and saddle points. Specifically, if U∗
and V ∗ is an optimal solution of problem (1), then U∗Q and V ∗Q−> is also an optimal solution for
any invertible matrixQ; 2) the problem is non-smooth with respect to the variables U and V and is
not coercive due to f(αU 1

αV
>) = f(UV >) where the scalar α can be arbitrarily large or small. In

theory, gradient-based algorithm is only able to find critical points, while practically, gradient descent
algorithm has been verified to converge to the global minima of problem (1) efficiently.

To close the gap between theory and practice, Li et al. [2019a], Ge et al. [2017], Chi et al. [2019]
proved that even-though the loss in Eq. (1) is non-convex its loss landscape has some nice property:
all local minima are global optima and all the saddle points are strict saddles. Therefore gradient
descent algorithms can be guarantee to converge to the global minima. To help escape the strict
saddles, Jin et al. [2017] proposed perturbed gradient descent by adding isotropic noise to the gradient
at each iteration, they prove that with high probability, perturbed gradient descent converges to the
global minima from random initialization at a linear rate. While as analyzed in Ye and Du [2021] and
verified by experiments that the gradient perturbation is not really necessary for problem (1) .
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Figure 1: Illustration of the global con-
vergence of GD and AltScaledGD from
random initialization.

In contrast to the perturbed gradient descent, Du et al.
[2018] studied the naive gradient descent for problem (1),
they exploited the balancedness of the two factors ‖U‖2F−
‖V ‖2F maintained by gradient flow and proved polynomial
convergence rate of gradient descent for problem (1) when
d = 1. Furthermore, Ye and Du [2021] improved the
results of Du et al. [2018] to rank d case, they proved that
gradient descent converges to the ε-global minima of prob-
lem (1) after O(dκ

2

τ2 lndσd

τ + dκ2

τ2 lnσd

ε ) iterations. Ye and
Du [2021] divided the convergence process into two stages:
warm-up phase which takes O(dκ

2

τ2 lndσd

τ ) iterations and
local convergence phase which takes O(dκ

2

τ2 lnσd

ε ) itera-
tions. The warm-up phase in Ye and Du [2021] is actually
the saddle avoid phase after which the gradient descent
escapes all the saddle regions as shown in Fig. 1.

It can be seen from Fig. 1 and proved by Ye and Du [2021]
that both the saddle avoid phase and local convergence
phase of gradient descent highly rely on the condition number κ of the matrixM . If the condition
number κ is large, then gradient descent takes long time to escape the saddle regions and also
converges slowly. It is therefore very important to know can we improve the gradient-based algorithm
such that the global convergence is independent of the condition number? Besides, the global
convergence of both Du et al. [2018] and Ye and Du [2021] require very small learning rate (related
to the small constant τ ), which seriously limits the application of gradient descent algorithm for
ill-conditioned LRMF problem.

Recently, the scaled gradient descent algorithm (ScaledGD) Apuroop [2012], Mishra and Sepulchre
[2016], Tanner and Wei [2016], has been proved by Tong et al. [2021], Tong [2022] to converge very
fast from specialized initialization (spectral initialization) to the global minima of problem (1) and the
convergence rate is independent of the condition number (Theorem 5 in Tong et al. [2021]). Yet the
convergence result provided by Tong et al. [2021] is only local, whether the scaled gradient algorithm
can escape saddle regions efficiently for the non-convex problem (1) is still not clear.

In this paper, we are the first to prove that ScaledGD as well as AltScaledGD converge to the global
minima of problem (1) from general random Gaussian initialization, and the convergence rate is
independent of the condition number of the matrixM . Moreover, we show that the global convergence

2



results of ScaledGD and AltScaledGD do not rely on small initialization, the global convergence of
AltScaledGD does not even require a small learning rate, which significantly improves the result of
Ye and Du [2021]. To sum up, the contributions of this paper are three-fold:

1. We provide a very simple proof framework for the convergence of ScaledGD and
AltScaledGD from general random initialization. Specifically, we divide the optimiza-
tion process into three phases: initial phase, saddle avoid phase and linear convergence
phase. We prove that the loss decreases at rate (1 − η)2k in the initial phase, and fur-
ther decreases linearly as (1− χk)k in the saddle avoid phase and the linear convergence
phase, where η and χk are independent of the condition number κ and χk is monotonically
increasing from η2

(2−η)2 to η;

2. We prove that if the scale of the random initialization is smaller than a given constant (small
initialization), then the loss decrease linearly as (1− η)k from such small initialization to
the global minima for both ScaledGD and AltScaledGD.

3. We show that AltScaledGD is a significant improvement of the ScaledGD in that it converges
fast with large learning rate up to 1. While in contrast the learning rate of ScaledGD should
be smaller than a constant cη that is much smaller than 1.

The organization of this paper is as follow. In Section 2, we introduce the related works on ScaledGD
and AltScaledGD. In Section 3, we present our main results, then we give more detailed theoretical
analysis on the proof sketch in Section 4. Finally, we conclude this work in Section 5.

2 Related work

In this section, we introduce the ScaledGD and the AltScaledGD as specified in Apuroop [2012],
Mishra and Sepulchre [2016], Tanner and Wei [2016], Tong et al. [2021]. We show that our work is a
significant improvement to these existing works on the global convergence analysis.

2.1 Scaled gradient descent

Different to the gradient descent algorithm which takes the negative gradient direction as the descent
direction, scaled gradient descent is designed to accelerate the convergence process by scaled the
gradient with a preconditioning matrix. Specifically, the ScaledGD updates the variables Uk, Vk as{

Uk+1 = Uk − η∇Uk
f(Uk,Vk)

(
V >k Vk

)−1
Vk+1 = Vk − η∇Vk

f(Uk,Vk)
(
U>k Uk

)−1 (2)

where η is the learning rate, U>k Uk and V >k Vk are matrices of d× d, and d� min(m,n) therefore
the computation of ScaledGD is comparable to that of gradient descent. The inverse matrices(
V >k Vk

)−1
and

(
U>k Uk

)−1
is the preconditioning for the gradient descent. If we denote X =

(U ,V ), then Eq. (2) corresponds to

Xk+1 = Xk − η∇fXk
(Xk)Hk (3)

whereHk =

[(
V >k Vk

)−1
0

0
(
U>k Uk

)−1
]

.

Apuroop [2012], Mishra and Sepulchre [2016] proved that ScaledGD is derived by imposing a new
metric on the tangent space of the Riemannian manifold. They verified empirically that ScaledGD
converges much faster than gradient descent while there is no rigious convergence rate analysis.
Recently, Tong et al. [2021] is the first to prove the linear convergence property of Eq. (2) for
problem (1), while their proof relies on specialized initialization that dist(X0,X∗) ≤ 0.1σd(M),
whereX∗ = (U∗,V ∗) and U∗V ∗> = M (Theorem 5 Tong et al. [2021]). The local convergence
guarantee is far from satisfactory to understand the convergence of ScaledGD for the non-convex
optimization problem (1).
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2.2 Alternating scaled gradient descent
The Gaussian-Seidel version of ScaledGD is the following alternating scaled gradient descent which
writes {

Uk+1 = Uk − η∇Uk
f(Uk,Vk)(V >k Vk)−1

Vk+1 = Vk − η∇Vk
f(Uk+1,Vk)(U>k+1Uk+1)−1

(4)

Eq. (4) was studied as scaled alternating steepest descent algorithm in Tanner and Wei [2016], and it is
also closely related to the alternating minimization algorithm for the minimization problem (1) when
η = 1, and other matrix recovery problem as Wen et al. [2012], Jain et al. [2013], Chandrasekher et al.
[2022]. Different to alternating minimization, the AltScaledGD presented in Eq. (4) can be broadly
used in lots of low-rank matrix recovery problem where alternating minimization is computationally
prohibitive, such as matrix completion Zilber and Nadler [2022], Sun and Luo [2016], matrix sensing
Ma et al. [2021]. Existing works for Eq. (4) only proved convergence to critical point as Wen et al.
[2012], Tanner and Wei [2016], yet global convergence analysis of AltScaledGD is still vague.

In this paper, we provide rigorous proofs for the global convergence of ScaledGD Eq. (2) and
AltScaledGD Eq. (4), and we show that both ScaledGD and AltScaledGD converge linearly for
random Gaussian initialization after saddle avoid phase. Meanwhile, we show that AltScaledGD is
robust to the learning rate η which can be set as large as 1, while large η can seriously deteriorates
the convergence property of ScaledGD as illustrated by Fig. 6, which sheds light on the superiority
of AltScaledGD Eq. (4) over ScaledGD Eq. (2) on problem (1) as well as more low-rank matrix
recovery problem.

3 Main results
In this section, we present our main theorems on the convergence of ScaledGD and AltScaledGD for
two different random initialization: general random initialization and small initialization. These two
initializations are both random Gaussian initialization with zero mean but different variances. Small
initialization is widely used in the convergence analysis of low rank matrix factorization problem
Stöger and Soltanolkotabi [2021], Ye and Du [2021], Ma and Fattahi [2022], while small initialization
is skin to spectral initialization which does not help us fully understand the global convergence of
the non-convex problem. In this paper, we provide both the global convergence analysis of general
random initialization and small initialization.

3.1 Global convergence of ScaledGD

If the matrix M is rank one, i.e., d in Eq. (1) is 1, then Eq. (2) is exactly gradient descent with
adaptive step-size. We show that such specialized gradient descent for d ≥ 1 converges linearly to
the global minima after an initial decreasing phase and the convergence rate is independent of the
singular value ofM .
Theorem 1 (General random initialization). Let U0 ∈ Rm×d and V0 ∈ Rn×d be random Gaussian
that follow N (0, σ) for σ > cinit (cinit is a positive constant), and Uk, Vk are updated by Eq. (2).
If η ≤ cη < 1 for small constant cη, we have that the objective function of problem (1) decreases
linearly after T1 = O

(
ln d

δ

)
iterations, namely

‖Uk+T1V
>
k+T1

−M‖F ≤ α1 (1− χk+T1)
k ‖M‖F ,∀k ≥ 0 (5)

where χk+T1
is monotonically increasing from η2

(2−η)2 to η, δ is a sufficiently small constant, α1 is a
constant.

The Theorem 1 indicates that the global convergence of ScaledGD can be divided into three phases:
the initial phase that lasts T1 iterations, the saddle avoid phase in which χk+T1 increases from
η/2

1−η/2 to η and the final linear convergence phase with convergence rate 1− η. While if the scale
of the initialization U0 and V0 are very small (with small σ), then the following theorem shows that
the ScaledGD converges linearly without entering the saddle regions.
Theorem 2 (Small initialization). Let U0 ∈ Rm×d and V0 ∈ Rn×d be random Gaussian that follow
N (0, σ), with σ ≤ cinit and Uk, Vk are updated by Eq. (2). If η ≤ cη < 1 for small constant cη , we
have that the objective function of problem (1) decreases linearly, namely

‖UkV >k −M‖F ≤ α2 (1− η)
k ‖M‖F (6)
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where cinit is a small constant and α2 is a constant.

3.2 Global convergence of AltScaledGD

We now present the main convergence results of AltScaledGD.

Theorem 3 (General random initialization). Let U0 ∈ Rm×d and V0 ∈ Rn×d be random Gaussian
that follow N (0, σ) for σ > cinit, Uk, Vk are updated by Eq. (4), we have that the objective function
of problem (1) decreases linearly after T1 = O(ln d

δ ) iterations, namely

‖Uk+T1
V >k+T1

−M‖F ≤ α1 (1− χk+T1
)
k ‖M‖F (7)

where χk+T1
is monotonically increasing from η2

(2−η)2 to η, 0 < η ≤ 1 and α1 is a constant.

Theorem 4 (Small initialization). Let U0 ∈ Rm×d and V0 ∈ Rn×d be random Gaussian that follow
N (0, ρ), with σ ≤ cinit, Uk, Vk are updated by Eq. (4) then we have that the objective function of
problem (1) decreases linearly, namely

‖UkV >k −M‖F ≤ α2 (1− η)
k ‖M‖F (8)

where 0 < η ≤ 1 is the step size, α2 is a constant and cinit is a small constant.

The convergence results of ScaledGD and AltScaledGD are almost the same with differences in that
for ScaledGD the learning η should be smaller than a constant cη which is much less than 1. The
small constant cη greatly restricts the convergence rate of ScaledGD. While for AltScaledGD the
learning rate η can be as large as 1, which indicates the superiority of AltScaledGD over ScaledGD
in convergence as η is crucial to the convergence rate. From the above theorems, it can be easily
deduced that both ScaledGD and AltScaledGD converge to an ε-global minima after O(ln d

δ + ln d
ε )

iterations from general random initialization. While for small initialization, these two algorithms
only need O(ln d

ε ) iterations to converge to an ε-global minima. More detailed analysis and proofs
are provided in Section 4 the proof sketch part and the supplementary materials.

3.3 Why does preconditioning help?

In previous works, preconditioning has been used to improve the condition of the optimization
problem Saad [2003], Zhang et al. [2021]. In this paper, we analyze how does the preconditioning
help improving the convergence by analyzing the effect of condition number κ on the learning rate η
as the convergence rate highly depends on the learning rate. For simplicity, we take one step of the
AltScaledGD as example to analyze the effect of the preconditioning. Since f(U ,V ) is quadratic on
U , then it can be verified

f(Uk+1,Vk) ≤ f(Uk,Vk) + 〈∇fU ,∆〉+
1

2
‖∆‖2Ak

(9)

where ∆ = Uk+1 −Uk and ‖ · ‖Ak
is a local norm defined by ‖∆‖Ak

=
〈
∆V >k Vk,∆

〉
.

For gradient descent, we take ∆ = −η∇fU (Uk,Vk), then Eq. (9) becomes

f(Uk+1,Vk) ≤ f(Uk,Vk)− η‖∇fU (Uk,Vk)‖2F +
η2σ2

1(Vk)

2
‖∇fU (Uk,Vk)‖2F

≤ f(Uk,Vk)− 2ησ2
d(Vk)f(Uk,Vk) + η2σ4

1(Vk)f(Uk,Vk)

≤
(
1− (2ησ2

d(Vk)− η2σ4
1(Vk))

)
f(Uk,Vk)

(10)

Similarly, it holds

f(Uk+1,Vk+1) ≤
(
1− (2ησ2

d(Uk+1)− η2σ4
1(Uk+1))

)
f(Uk+1,Vk) (11)

Therefore, we have

f(Uk+1,Vk+1) ≤
(
1− (2ησ2

d(Uk+1)− η2σ4
1(Uk+1))

) (
1− (2ησ2

d(Vk)− η2σ4
1(Vk))

)
f(Uk,Vk)

(12)

5



0 50 100 150 200 250
Iteration count

10-10

10-5

100

105

R
el

at
iv

e 
er

ro
r

General random initialization

0 50 100 150 200
Iteration count

10-10

10-5

100

105

R
el

at
iv

e 
er

ro
r

Small initialization

Figure 2: Illustration of convergence of ScaledGD and AltScaledGD under different condition κ and
different initialization.

To guarantee the linear convergence of gradient descent, it is required that 2ησ2
r(Vk) ≥ η2σ4

1(Vk)
and 2ησ2

r(Uk+1) ≥ η2σ4
1(Uk+1) which implies η ≤ min{ 2

σ2
1(Vk)

κ(Vk)2, 2
σ2
1(Uk+1)

κ(Uk+1)2} 2. In

contrast, if we take ∆ = −η∇fU (Uk,Vk)(V >k Vk)−1, then

f(Uk+1,Vk) ≤ f(Uk,Vk)− (η − η2

2
)
〈
(UkV

>
k −M)VkV>k , (UkV >k −M)

〉
≤ f(Uk,Vk)− (η − η2

2
)σr
(
V>EVk

)
f(Uk,Vk)

=

(
1− (η − η2

2
)σr
(
V>EVk

))
f(Uk,Vk)

. (13)

and similarly

f(Uk+1,Vk+1) ≤ f(Uk+1,Vk)− (η − η2

2
)
〈
(VkU

>
k+1 −M>)Uk+1U>k+1, (Uk+1V

>
k −M)

〉
≤ f(Uk+1,Vk)− (η − η2

2
)σr
(
U>EUk+1

)
f(Uk+1,Vk)

=

(
1− (η − η2

2
)σr
(
U>EUk+1

))
f(Uk+1,Vk)

.

(14)
Thus

f(Uk+1,Vk+1) ≤
(

1− (η − η2

2
)σr
(
V>EVk

))(
1− (η − η2

2
)σr
(
U>EUk+1

))
f(Uk,Vk). (15)

To guarantee the linear convergence, we only need 0 < η < 2. σr
(
U>EUk+1

)
as well as σr

(
V>EVk

)
is strictly larger than 0 (VE is the orthogonal row subspace of UkV >k −M and Vk is the orthogonal
subspace of Vk), which indicates that the linear convergence rate is independent of the condition
number of matrixM .

We show in Fig. 2 that the convergence of ScaledGD and AltScaledGD are independent of the
condition number κ of the matrixM with general random initialization and small initialization. In
Fig. 2, we set the rank of the matrixM as 5, with condition number κ ranging from 10, 100, 200. It
can be seen from the left subfigure of Fig. 2 that for general random initialization, the error curves of
ScaledGD with different κ are the exactly the same, and the error curves of ScaledGD also coincide
with that of the AltScaledGD. These results are also true for small initialization as shown in the right
subfigure of Fig. 2. These observations certificate that preconditioning in Eq. (2) and Eq. (4) indeed
help accelerating the convergence such that the convergence rate is independent of the condition
number of the matrixM .

2Since UkV
>
k →M , k →∞ and the same analysis is applied on Eq. (10) with respect to V , we know that

η ≤ cκ.
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4 Theoretical analysis – proof sketch
In this section, we provide the proof sketch of our results in Section 3. For simplicity, we present
the theoretical analysis for rank one matrix factorization where U ∈ Rm×1 and V ∈ Rn×1. More
detailed proofs for the main theorems are provided in the supplementary material.

4.1 Convergence of ScaledGD

It can be deduced that the objective function of problem (1) is upper bounded by four terms as

‖Uk+1V
>
k+1 −M‖F ≤ (1− η)2‖UkV >k −M‖F︸ ︷︷ ︸

1©

+(1− η)η ‖M‖F ‖V>∗⊥Vk‖2︸ ︷︷ ︸
2©

+ η(1− η) ‖M‖F ‖U>∗⊥Uk‖2︸ ︷︷ ︸
3©

+η2 ‖M‖F
∣∣∣∣1− ‖M‖F cosθukcosθvk

‖UkV >k ‖F

∣∣∣∣︸ ︷︷ ︸
4©

(16)

where Uk and Vk correspond to the orthogonal basis of the column space of Uk and Vk, U∗⊥ and
V∗⊥ are the orthogonal complements of the left and right singular vector matrices ofM (i.e. U∗,V∗),
and cosθuk is cosine value of the angle between the vectors Uk and U∗, cosθvk is cosine value of the
angle between the vectors Vk and V∗. The upper-bound depicts the differences between Uk+1V

>
k+1

andM in two aspects

G The angle between the subspace of UkV >k andM : ‖U>∗⊥Uk‖2, ‖V>∗⊥Vk‖2;

G The difference of the length (norm) between UkV >k andM : ‖M‖F − ‖UkV >k ‖F .

The term 2© and 3© are related to the angle between the subspace ofM and UkV >k , the term 4© is
related to the difference between the norm ofM and UkV >k , as given by the following lemma.

Lemma 1. If
〈
M ,UkV

>
k

〉
≥ ‖UkV >k ‖2F , then there is constant Cu ≥ 0 such that∣∣∣∣1− ‖M‖F cosθukcosθvk
‖UkV >k ‖F

∣∣∣∣ ≤ Cu (‖M‖F − ‖UkV >k ‖F ) (17)

According to Eq. (16), we know that the decrease of the objective function in problem (1) is decided
by the decrease of the distance between the subspace ( 2© and 3©) and the difference between the
norm of M and UkV >k ( 4©). The following lemma further reveals that the distance between the
subspace of UkV >k andM decreases.
Lemma 2. (Convergence of the distance between subspaces) For the ScaledGD (2), if
‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F , then the following holds

‖U>∗⊥Uk+1‖2 ≤ (1− η)‖U>∗⊥Uk‖2, ‖V>∗⊥Vk+1‖2 ≤ (1− η)‖V>∗⊥Vk‖2 (18)

The Lemma 2 indicates that the term 2© and 3© in Eq. (16) decrease linearly if the norm of ‖UkV >k ‖F
is smaller than norm of the projection ofM onto the column and row spaces of UkV >k . At the mean
time, the condition ‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F also guarantees the linear convergence of the
differences between the norm of UkV >k andM .
Theorem 5. (Convergence of the matrix norm) For the ScaledGD (2), if ‖M‖F cosθukcosθvk ≥
‖UkV >k ‖F for all k ≥ 0, then we have

‖M‖F − ‖Uk+1V
>
k+1‖F ≤ (1− η)2kkCα (19)

where Cα is a constant and η is the step length 0 ≤ η < 1.

Both Lemma 2 and Theorem 5 are built on the condition that ‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F for
all k ≥ 0, while this is not a trivial condition for ScaledGD. The following lemma guarantees that the
condition can be satisfied if the step length η is smaller than a constant.
Lemma 3. Let η ≤ cη < 1 with cη a small constant, if ‖M‖F cosθu0 cosθv0 ≥ ‖U0V

>
0 ‖F then the

following is true
‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F ,∀k > 0. (20)
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Figure 3: Global convergence of small
initialization and general random initial-
ization.

The above results guarantee the local linear convergence
of the term 2©, 3© and 4© on the condition that

‖M‖F cosθu0 cosθv0 ≥ ‖U0V
>
0 ‖F (21)

which is critical for our analysis on random Gaussian
initialization and small initialization.

4.1.1 Small initialization

In practice, the condition ‖M‖F cosθu0 cosθv0 ≥
‖U0V

>
0 ‖F can be easily satisfied by very small (near zero)

initialization. According to the random matrix theory The-
orem 2.7.5 in Tao [2012], for Gaussian initialization there
exists ν > 0 such that with high probability cosθu0 and
cosθv0 is lower bounded by constant 1/ν, therefore one
can simply set the norm of U0 and V0 to be sufficiently
small such that the inequality (21) holds. In consequence
small initialization can guarantee the global linear conver-
gence of ScaledGD, as shown in Fig. 3. While small initialization is very special. it can not helps
us fully understand the global convergence property of ScaledGD from arbitrary initialization for
the non-convex objective (1), even though small initialization has been widely used in the global
convergence analysis of gradient descent algorithms Stöger and Soltanolkotabi [2021], Ye and Du
[2021], Ma and Fattahi [2022] and ScaledGD for symmetric low rank matrix recovery problems Xu
et al. [2023], Zhang et al. [2021].

4.1.2 General random initialization

In order to understand the optimization path of ScaledGD for the non-convex objective (1), we
present the theoretical analysis of ScaledGD from random Gaussian initialization that may not
satisfy the condition in Eq. (21). As shown in Fig. 3, when initialized with σ = 1 ScaledGD
iterations are also attracted by the saddle point thus enter the saddle region (zoomed region marked
by red rectangle), while it can escape saddle region very fast. To rigorously characterize the
saddle avoid phase, we first show and prove that the norm of matrices Uk and Vk decrease if
‖M‖F max{cosθuk , cosθvk} < ‖UkV >k ‖F as given by the following lemma and shown in Fig. 4.

Lemma 4. If the condition ‖M‖F max{cosθuk , cosθvk} < ‖UkV >k ‖F is satisfied then we have

‖Uk+1‖F < ‖Uk‖F and ‖Vk+1‖F < ‖Vk‖F . (22)

Furthermore, if the condition ‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F is satisfied then we have

‖Uk+1‖F ≥ ‖Uk‖F and ‖Vk+1‖F ≥ ‖Vk‖F . (23)

In general, if we initialize the matrices U and V as N (0, σ) with large σ, then in the initial phase,
with high probability we have ‖M‖F max{cosθu0 , cosθv0} < ‖U0V

>
0 ‖F . According to Lemma 3

and Lemma 4, we know that the norm of the matrices Uk and Vk decreases with the increase of k
until it reaches the condition ‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F , which is also illustrated in Fig. 4. In
Fig. 4, we plot the changes of the norm of matrices U and V , the nested subfigure illustrates the the
matrix norm in log scale. It is very interesting to study the changes of the matrix norm with respect to
the optimization path. Generally, if ‖U0‖F and ‖V0‖F is initialized very large, then the decrease
of the norm will decrease the objective function (1). Meanwhile, U = 0 and V = 0 is a saddle
point of the objective function (1), the results in Lemma 4 thus indicate that the matrices Uk and Vk
are updated toward the saddle point zero. While interestingly, as shown in Fig. 4 the matrix norm
decreases to a magnitude which is strictly larger than zero, then the matrix norm begins to increase.
These observation indicates that ScaledGD can escape from the saddle point zero, the saddle avoid
phase is also illustrated in Fig. 5.

Analysis on the entire iteration process. It can be easily deduced from Eq. (16) that

‖UkV >k −M‖F < (1− η)2k‖U0V
>
0 −M‖F + ‖M‖F , (24)
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therefore after T1 = O(ln 1
δ ) iterations (for sufficiently small δ)3, we have

‖UkV >k −M‖F ≤ ‖M‖F , ∀k ≥ T1, (25)

which indicates that ‖M‖F cosθukcosθvk ≥ 1
2‖UkV

>
k ‖F . We term this period of time the initial

phase. The following lemma tells that after T1 iterations the term 2©, 3© and 4© decrease linearly.
Lemma 5. After T1 iterations of ScaledGD, the following inequalities hold ∀k ≥ T1

‖U>∗⊥Uk+1‖2 ≤ (1− χk) ‖U>∗⊥Uk‖2 (26)

‖V>∗⊥Vk+1‖2 ≤ (1− χk) ‖V>∗⊥Vk‖2 (27)

1− cosθuk+1cosθvk+1 ≤ (1− χk)
2

(1− cosθukcosθvk) (28)

where χk = ητk
1−η(1−τk) < 1 and τk =

‖M‖F cosθu
k cosθ

v
k

‖UkV >k ‖F
∈ [1/2, 1].

If 1
2‖UkV

>
k ‖F ≤ ‖M‖F cosθukcosθvk ≤ ‖UkV >k ‖F and ‖M‖F ≥ ‖UkV >k ‖F , we have that the

term 4© in Eq. (16) is upper bounded by 1− cosθukcosθvk . Thus the above Lemma 5 indicates that
after T1 iterations, the objective function decreases at rate 1 − χk. Meanwhile, cosθuk and cosθvk
are increasing, and ‖UkV >k ‖F continues to decrease until ‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F , which
means the value τk =

‖M‖F cosθu
k cosθ

v
k

‖UkV >k ‖F
is monotonically increasing with the increase of k until up

to 1. In consequence, the χk is monotonically increasing from η/2
1−η/2 to η. We name the period in

which χk increases from η/2
1−η/2 to η the saddle avoid phase as shown in Fig. 5 4. The Lemma 5

also indicates that the ScaledGD escapes saddle points exponentially fast. After the saddle avoid
phase, the ScaledGD converges to the global minima at rate 1 − η according to the analysis in
Section 4.1.1, since ‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F , we name this period the linear convergence
phase as shown in Fig. 5.

4.2 Convergence of AltScaledGD
The convergence analysis of the AltScaledGD is similar to that of ScaledGD, while different to
ScaledGD, the objective function (1) is upper-bounded by three terms in AltScaledGD as

‖Uk+1V
>
k+1 −M‖F ≤ (1− η)2‖UkV

>
k −M‖F︸ ︷︷ ︸

1©

+(η − η2) ‖M‖F ‖V>∗⊥Vk‖2︸ ︷︷ ︸
2©

+η ‖M‖F ‖U>∗⊥Uk+1‖2︸ ︷︷ ︸
3©

(29)

3Please refer to the supplementary results for more detailed analysis.
4Since in this period of time, the norm of the matrices Uk and Vk decrease, while once χk = η (equivalently

τk = 1), according to Lemma 4 and Lemma 3, the norm of the matrices Uk and Vk begin to increase, which
indicates that the matrices Uk and Vk are escaping from the saddle point zero.
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therefore, the analysis of AltScaledGD for (1) is much easier than that of the ScaledGD in
Eq. (16). Specifically, we only need to guarantee that the distance between subspaces of Uk and U∗
(‖U>∗⊥Uk‖2), Vk and V∗ (‖V>∗⊥Vk‖2) decrease linearly. The Lemma 2 also holds for AltScaledGD as
Lemma 6. (Convergence of the distance between subspaces) For AltScaledGD (4), if
‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F and 0 < η ≤ 1, then the following holds

‖U>∗⊥Uk+1‖2 ≤ (1− η)‖U>∗⊥Uk‖2, ‖V>∗⊥Vk+1‖2 ≤ (1− η)‖V>∗⊥Vk‖2. (30)

The condition in Lemma 6 can be satisfied ∀k if ‖M‖F cosθu0 cosθv0 ≥ ‖U0V
>
0 ‖F and 0 < η ≤ 1

as specified by the following lemma, the condition is mild compared to the condition in Lemma 3.
Lemma 7. For AltScaledGD (4), if ‖M‖F cosθu0 cosθv0 ≥ ‖U0V

>
0 ‖F and 0 < η ≤ 1, then the

following is true
‖M‖F cosθukcosθvk ≥ ‖UkV >k ‖F ,∀k > 0. (31)
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Figure 6: Illustration of the effect of learning
rate η for the convergence.

The convergence analysis of AltScaledGD is the
same as that of the ScaledGD in Section 4.1 with
small initialization and general Gaussian initializa-
tion (the three phases convergence). The main differ-
ence between ScaledGD and AltScaledGD is that η
in ScaledGD should be small such that η ≤ cη < 1,
while for AltScaledGD η can be as large as 1. It
can be seen from Eq. (29) that if η = 1, the the
AltScaledGD Eq. (4) converges to the global min-
ima in just one iteration. We also illustrate the con-
vergence of ScaledGD Eq. (2) and AltScaledGD
Eq. (4) with respect to the learning rate η in Fig. 6.
It can be seen from Fig. 6 that for small learning
rate η = 0.1, the convergence property (the loss
curve) of AltScaledGD is almost exactly the same as
ScaledGD, while for large learning rate η = 0.8, the
AltScaledGD converges very fast, in contrast the ScaledGD does not converge as the condition η ≤ cη
is not satisfied according to Lemma 3. These results certificates the superiority of AltScaledGD over
ScaledGD, since both ScaledGD and AltScaledGD converges fast with large η, while the learning
rate η is upper-bounded by a small constant cη in ScaledGD.

5 Conclusion

In this work, we are the first to rigorously prove the global convergence of ScaledGD and AltScaledGD
for the non-convex low rank matrix factorization problem and show that thanks to the preconditioning
matrices the global convergence rate of ScaledGD and AltScaledGD are independent of the condition
number of the matrixM , thus they converge faster than gradient descent algorithm for ill-conditioned
problem. We further prove that ScaledGD and AltScaledGD converges linearly from both small
initialization and general random initialization, which is in contrast to the existing global convergence
analysis that are only applicable to small initialization. Meanwhile, we show that compared to
ScaledGD, AltScaledGD is more practical as it enables larger learning rate thus converges fast.

Limitations. This paper concerns low-rank matrix factorization which is the population loss of the
more general low-rank matrix recovery problem, such as matrix completion and matrix sensing.
While the empirical loss is different to the population loss in that the number of the samples is limited,
therefore our results can not directly applied to general low-rank matrix recovery. Our further work
is to study the empirical loss with the help of RIP condition for matrix sensing and the sampling
lower-bound for matrix completion.
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