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Abstract

Video generation necessitates both global coherence and local realism. This work
presents a novel non-autoregressive method GLOBER, which first generates global
features to obtain comprehensive global guidance and then synthesizes video
frames based on the global features to generate coherent videos. Specifically,
we propose a video auto-encoder, where a video encoder encodes videos into
global features, and a video decoder, built on a diffusion model, decodes the
global features and synthesizes video frames in a non-autoregressive manner. To
achieve maximum flexibility, our video decoder perceives temporal information
through normalized frame indexes, which enables it to synthesize arbitrary sub
video clips with predetermined starting and ending frame indexes. Moreover, a
novel adversarial loss is introduced to improve the global coherence and local
realism between the synthesized video frames. Finally, we employ a diffusion-
based video generator to fit the global features outputted by the video encoder for
video generation. Extensive experimental results demonstrate the effectiveness
and efficiency of our proposed method1, and new state-of-the-art results have been
achieved on multiple benchmarks.

1 Introduction

When producing a real video, it is customary to establish the overall information (global guidance),
such as scene layout or character actions and appearances, before filming the details (local character-
istics) that draw up each video frame. The global guidance ensures a coherent storyline throughout
the produced video, and the local characteristics provide the necessary details for each video frame.
Similar to real video production, generative models for the video generation task must synthesize
videos with coherent global storylines and realistic local characteristics. However, due to limited
computational resources and the potential infinite number of video frames, how to achieve global
coherence while maintaining local realism remains a significant challenge for video generation tasks.

Inspired by the remarkable performance of diffusion probabilistic models [1; 2; 3], researchers have
developed a variety of diffusion-based methods for video generation. When generating multiple
video frames, strategies of existing methods can be devided into two categories: autoregression and
interpolation strategies. As illustrated in Fig. 1(a), the autoregression strategy [4; 5] first generates
an initial video clip, and then employs the last few generated frames as conditions to synthesize
subsequent video frames. The interpolation strategy [6; 7], depicted in in Fig. 1(b), generates
keyframes first and then interpolates adjacent keyframes iteratively. Both strategies utilize generated
video frames as conditions to guide the generation of subsequent video frames, enabling subsequent

1Our codes have been released in https://github.com/iva-mzsun/GLOBER
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Figure 1: Three strategies for multi-frame video generation. (a) Autoregression strategy first generates
the starting video frames and then autoregressively predicts subsequent video frames. This approach
is prone to accumulating errors [6], such as the fading of the hula hoop. (b) Interpolation strategy
generates video keyframes first and then iteratively interpolates adjacent keyframes. This approach
can result in suboptimal video consistency since it is unaware of the global content. (c) Our proposed
non-autoregression strategy first generates a global feature to provide global guidance, and then
synthesizes local characteristics of video frames in a non-autoregressive manner. c names the
condition input of video description. xi and Ii denote the i-th video frame and its index.

global storylines to be predicted from the context of the given frames. However, since the number
of conditional video frames is limited by available computational resources and is generally small,
these strategies have a relatively poor capacity to provide global guidance, resulting in suboptimal
video consistency. In addition, the generation of local characteristics of subsequent frames refers to
previous single frames, which can lead to error accumulation and distorted local characteristics [6].

In this paper, we present a novel non-autoregression method GLOBER, which first generates 2D
global features to serve as global guidance, and then synthesizes local characteristics of video frames
based on global features to obtain coherent video generation, as illustrated in Fig. 1(c). To be specific,
we propose a video auto-encoder that involves a video encoder and a diffusion-based powerful
video decoder. The video encoder encodes each input video into a 2D global feature. The video
decoder decodes the storyline from the generated global feature and synthesizes necessary local
characteristics for video frames. To achieve maximum flexibility, our video decoder is designed to
involve no temporal modules and thus decode multiple video frames in a non-autoregressive manner.
In particular, normalized frame indexes are integrated with generated global features to provide
temporal information for the video decoder. In this way, we can obtain arbitrary sub video clips
with predetermined starting and ending frame indexes. To leverage the success of image generation
models, we initialize the video decoder with a pretrained image diffusion model [8]. Then the video
auto-encoder can be trained in a self-supervised manner with the target of video reconstruction.
Furthermore, we propose a Coherence and Realism Adversarial (CRA) loss to improve the global
coherence and local realism in the decoded video frames. For video generation, another diffusion
model is used as the video generator to generate global features by fitting the output of video encoder.

Our contributions are summarized as follows: (1) We propose a novel non-autoregression strategy for
video generation, which provides global guidance while ensuring realistic local characteristics. (2)
We introduce a powerful video decoder that allows for parallel and flexible synthesis of video frames.
(3) We propose a novel CRA loss to improve global coherence and local realism. (4) Experiments
show that our proposed method obtains new state-of-the-art results on multiple benchmarks.

2 Related Work

Current video generation models can be divided into three categories: transformer-based methods that
model discretized video signals, generative adversarial networks (GAN) and diffusion probabilistic
models (DPM). The first category encodes videos to discrete video tokens and then models these
tokens with transformers [9; 10; 11; 12; 13; 14]. MOSO [12] decomposes video scenes, objects,
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and their motions to cover video prediction, generation, and interpolation tasks in an autoregressive
manner. TATS [13] follows the interpolation strategy, and introduces a time-agnostic VQGAN and a
time-sensitive hierarchical transformer to capture long temporal dependencies

GAN-base methods [15; 16; 17] excel at generating videos in specific domains. MoCoGAN [17]
proposes to decompose video content and motion by dividing the latent space. DIGAN [15] explores
video encoding with implicit neural representations. StyleGAN-V [16] extends the image generation
model StyleGAN [18] to the video generation task non-autoregressively. However, StyleGAN-V
focuses on the division of content and motion noises and ignores the importance of global guidance.
As a result, its content input (i.e., randomly sampled noise) contains limited information, whereas our
global features can provide more valuable instructions.

DPM is a recently emerging method for vision generation [4; 19; 5; 20; 21]. VDM [4] is the first
work that applies DPM to video generation by replacing all 2D convolutions with 3D convolutions.
VIDM [22] generates videos in a frame-wise autoregression manner with two individual diffusion
models. Both VDM and VIDM employ the autoregression strategy to obtain multiple video frames.
In contrast, NUWA-XL [6] adopts the interpolation strategy but requires significant computational
resources to support parallel inference. VideoFusion [19] targets at dividing the shared and residual
video signals of different video frames and modeling them respectively. It employs a non-temporal
diffusion model to synthesize video frames based on their indexes within the pixel space. PVDM
[23] utilizes 3D-to-2D projection to encode a video into three 2D latent features for efficient video
generation. In PVDM, the video decoder reconstructs video frames with fixed length (i.e. 16 frames)
and fixed interval (i.e. predefined FPS). LVDM [24] encodes videos using 3D CNN through both
spatial and temporal downsampling. Compared with previous methods, our method encompass the
following advantages. Firstly, GLOBER can take advantage of the powerful generative capability of
pretrained image diffusion models (e.g. stable diffusion) to synthesize reconstructed video frames,
thus requiring a much smaller dimension of latent features to represent videos. Secondly, GLOBER
is more flexible than prior works when decoding video frames from video latents. The video decoder
in GLOBER can decode arbitrary video frames without length or interval limitations by taking the
normalized indexes of target video frames as inputs. Thirdly, GLOBER is more efficient when training
for video generation and synthesizing long videos. Fourthly, GLOBER obtains new state-of-the-art
results on multiple benchmarks.

3 Method

In this section, we present our proposed method in details. The overall framework of our method is
depicted in Fig. 2. A video sample is represented as x ∈ RF×H×W×C , where F denotes the number
of video frames, H is the height, W is the width, and C is the number of channels. The i-th video
frame is denoted as xi ∈ RH×W×C .

3.1 Video Auto-Encoder

The video auto-encoder comprises a video encoder and a video decoder. To reduce the computational
complexity involved in modeling videos, an auxiliary image auto-encoder, which is known as KL-
VAE [8] and has been validated in previous studies [8; 6], is employed to encode each video frame
individually into a low-resolution feature. The video encoder takes video keyframes as input and
encodes them into 2D global features. Then the video decoder is used to synthesize each video frame
based on the corresponding frame index and the global feature.

Frame Encoding VAEs [25; 26; 27; 8] are widely used models that reduce search space for
vision generation. For high-resolution image generation, VAEs typically encode each image into
a latent feature and then decode it back to the original input image [10; 27; 28; 29]. To reduce
the spatial details of videos in a similar way, we employ a pretrained KL-VAE [8] to encode each
video frame individually. Specifically, the KL-VAE downsamples each video frame xi by a factor of
fframe, obtaining a frame latent feature zi ∈ RH′×W ′×C′

, where H ′ and W ′ are H
fframe

and W
fframe

,
respectively, and C ′ represents the number of feature channels.

Video Encoding As illustrated in Fig. 2, the video encoder is composed of an embedding feature
ev , an input layer, a downsample module with a downsample factor of fvideo, a mapping module, and
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Figure 2: The overall framework of our proposed method GLOBER. During training, the video
encoder and decoder are optimized jointly, with the video encoder encoding videos into global
features, which are used by the video decoder to synthesize two randomly sampled video frames
based on their corresponding frame indexes. We do not draw up the processing of timesteps and
video descriptions in the video decoder for conciseness. The synthesized video frames are evaluated
by the video discriminator for global coherence and local realism. Then the video generator is trained
to generate global features by fitting the outputs of the video encoder. During generation, the video
generator generates a novel global feature, which is then decoded by the video decoder to synthesize
video frames in a non-autoregressive manner.

an output module. The embedding feature ev ∈ RH′×W ′×C′
is randomly initialized and optimized

jointly with the entire model. It should be noted that the temporal dimensions of the embedding
feature and each frame feature are 1, which are omitted here for brevity. Since content redundancy
exists between adjacent video frames [12], we select K keyframes from each input video at equal
intervals and encode them individually using KL-VAE. This process produces the corresponding
frame features zq1 , zq2 , ..., zqK , where qk denotes the index of the k-th selected keyframe. Then,
we concatenate the embedding feature ev with keyframe features along the temporal dimension,
obtaining the input feature [ev : zq1 : ... : zqK ] ∈ R(K+1)×H′×W ′×C′

for the video encoder.

The input layer employs a simple 2D spatial convolution with a kernel size of 3 to expand the available
channel maps from C ′ to D, where D represents the number of new channel maps. After the input
layer, the downsample module processes these keyframe features to capture spatial and temporal
information, while the mapping module follows. Specifically, the downsample module is composed
of a residual layer, a spatial attention layer, a temporal attention layer, and a downsample convolution,
while the mapping module follows a similar structure but replaces the downsample convolution
with a temporal split operation. Finally, the output module comprises two spatial convolutions, a
group normalization layer, and a SiLU activation function. It takes only the embedding part of the
transformed feature as input and produces the mean and standard deviation (std) features of the global
feature. Then the global feature can be sampled using the following equation:

v = vmean + vstd ∗ n (1)

where n is sampled from an isotropic Gauss distribution N (0, I), vmean, vstd ∈ RH′′×W ′′×C′′
are

the mean and std features, H ′′ and W ′′ are H′

fvideo
and W ′

fvideo
respectively, and C ′′ is the number

of channels. Considering that we are going to model the global features for generation using a
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diffusion-based model, which will be specified in Sec. 3.2, an additional kl loss [8] is employed to
force the distribution of global features towards an isotropic Gauss distribution:

Lkl =
1

2
(v2mean + v2std − log v2std − 1) (2)

Video Decoding We view the synthesis of video frames as a conditional diffusion-based generation
task. As illustrated in Fig. 2, we employ UNet [8] as the backbone of the video decoder, which can be
structured into the downsample, mapping, and upsample modules. Each module starts with a residual
block and a spatial attention layer, while the downsample and upsample modules additionally include
downsample and upsample convolutions respectively. Following [30], each frame feature z0i (i.e. zi)
is corrupted by T steps during the forward diffusion process using the transition kernel:

q(zti |zt−1
i ) = N (zti ;

√
1− βtz

t−1
i , βtI) (3)

q(zti |z0i ) = N (zti ;
√
ᾱtz

0
i , (1− ᾱt)I) (4)

where {βt ∈ (0, 1)}Tt=1 is a set of hyper-parameters, αt = 1− βt and ᾱt =
∏t

i=1 αi. Based on Eq.
(4), we can obtain the corrupted feature zti directly given the timestep t as follows:

zti =
√
ᾱtz

0
i + (1− ᾱt)nt (5)

where nt is a noise feature sampled from an isotropic Gauss distribution N (0, I). The reverse
diffusion process q(zt−1

i |zti , z0i ) has a traceable distribution:

q(zt−1
i |zti , z0i ) = N (zt−1

i |µ̃t(z
t
i , z

0
i ), β̃tI) (6)

where µ̃t(z
t
i , z

0
i ) =

1√
αt
(zti −

βt√
1−ᾱt

nt), nt ∼ N (0, I), and β̃t =
1−ᾱt−1

1−ᾱt
βt.

Given that the added noise nt in the t-th step is the only unknown term in Eq. (6), we train the UNet
to predict nt from zti condition on the timestep t, the global feature v, the frame index i, and the
video description c if exists. To achieve this, a timestep and an index embedding layers, additional
modules, and a text encoder are employed to process these condition inputs. In particular, the timestep
embedding layer first obtain the sinusoidal position encoding [31] of the diffusion timestep t and then
passes it through two linear functions with a SiLU activation interposed between them. Following
previous works [30; 32], the timestep embedding is integrated with intermediate features by the
residual block in each UNet module. The index embedding layer embeds the frame index in a similar
way with the timestep embedding layer. The additional modules (i.e. downsample, mapping, and
upsample modules) are utilized to incorporate the index embedding with the global feature and to
extract multi-scale representations of the corresponding video frame. These representations are then
added to the outputs of UNet modules after zero-convolution. When encoding video descriptions
into text embeddings, a pretrained model, namely CLIP [33], is utilized as the text encoder. During
attention calculation, these text embeddings are concatenated with flattened frame features to provide
cross-modal instructions. Finally, the L2 distance between the predicted noise n(zti , t, i, v, c) and the
added noise nt is calculated as the training target:

Lrec = ∥n(zti , t, i, v, c)− nt∥2 (7)

where ∥∗∥2 denotes the calculation of the L2 distance. The total training loss is:

L = Lrec + λ1Lkl + λ2LG
cra (8)

where λ1 and λ2 are hyper-parameters and LG
cra is specified in the following paragraph. During

generation, the video decoder synthesizes video frames given content features, frame indexes and
video descriptions (if exist) by denoising noise features with multiple steps as in [30; 34].

Coherence and Realism Adversarial Loss We propose a novel Coherence and Realism Adversarial
(CRA) loss to improve global coherence and local realism of synthesized video frames. To reduce
computation complexity, we randomly synthesize two video frames with indexes i and j, where
0 ≤ i < j ≤ F , using the video decoder. The synthesized video frame x̄i can be decoded by
KL-VAE from the frame feature z̄i, which is obtained directly in each training step with the following
formulation:

z̄0i =
1√
ᾱt

zti −
(1− ᾱt)√

ᾱt
n(zti , t, i, v, c) (9)
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where n(zti , t, i, v, c) is the predicted noise of nt. Then the CRA loss is calculated given the synthe-
sized and real video frames using a video discriminator as depicted in Fig. 2.

In our case, we expect the discriminator to provide supervision on global coherence and local realism
of synthesized video frames. To ensure the effectiveness of the CRA loss, we formulate it based
on the following two guiding principles: (1) the real samples selected for the discriminator must
exhibit the desired correlations, whereas the fake samples must deviate from the expected patterns
and are often challenging to distinguish; (2) the real samples selected for the video auto-encoder
(i.e. the generator) should serve as the fake samples for the discriminator for adversarial training. In
particular, to make the discriminator aware of local realism, we select ⟨xi, xj⟩ as the real sample
and ⟨xi, x̄j⟩, ⟨x̄i, xj⟩, ⟨x̄i, x̄j⟩ as fake samples according to the first principle. This is because the
latter samples contain at least one synthesized video frame and violate the target pattern of realism.
Furthermore, to ensure that the discriminator is aware of the global coherence, we utilize samples
that violate temporal relationships like ⟨xj , xi⟩ and ⟨x̄j , x̄i⟩ as fake samples of the discriminator.
Then, according to the second principle, {⟨x̄i, x̄j⟩, ⟨xi, x̄j⟩, ⟨x̄i, xj⟩} are chosen as real samples of
the video auto-encoder, since these samples contain at least one synthesized video frames. The CRA
loss can be formulated as LD

cra for the discriminator and LG
cra for the generator:

LD
cra =log(1−D(⟨xi, xj⟩)) + logD(⟨xi, x̄j⟩) + logD(⟨x̄i, xj⟩)

+ logD(⟨x̄i, x̄j⟩) + logD(⟨xj , xi⟩) + logD(⟨x̄j , x̄i⟩)
LG
cra =log(1−D(⟨x̄i, x̄j⟩)) + log(1−D(⟨x̄i, xj⟩)) + log(1−D(⟨xi, x̄j⟩))

(10)

As illustrated in Fig. 2, the discriminator is built on several spatio-temporal modules that consist of
residual blocks and spatio-temporal full attentions. Considering that traditional attention is invariant
to the order of input features, two position embeddings e0 and e1 are employed and added to the
previous video frame xi and the subsequent video frame xj respectively with 0 ≤ i < j ≤ F . These
position embeddings are randomly initialized and optimized at the same time with the discriminator.

3.2 Generative Model

As shown in Fig. 2, we can obtain any desired video clip by feeding the frame indexes, global feature,
and corresponding video description (if available) to the video decoder. Since the global feature is the
only unknown term, we can train a conditional generative model to generate a global feature based
on the video description. Considering that global feature are 2D features, the generative model can
be relieved from the burden of modeling intricate video details.

In practice, global features typically have a small spatial resolution, and we utilize a transformer-based
diffusion model, DiT [35], to generate them. Specificcally, each 2D global feature v ∈ RH′′×W ′′×C

is flattened to a 1D feature with length H ′′ ×W ′′. Then the diffusion and reverse diffusion processes
of vl are similar to the procedures outlined in Eq. (3) and Eq. (6), except that the only condition is
the video description (if exists) in the training and generation processes.

4 Experiments

In this section, we first introduce the experimental setups in Sec. 4.1. Following this, in Sec. 4.2
and Sec. 4.3, we compare the quantitative and qualitative performance of our method and prior
methods on four challenging benchmarks: Sky Time-lapse [36], TaiChi-HD [37], UCF-101 [38], and
Webvid-10M [39]. Finally, Sec. 4.4 presents the results of ablation studies conducted to analyze
the necessity of the CRA loss, and Sec. 4.5 explores the influence of global feature shape on the
generation performance.

4.1 Experimental Setups

All experiments are implemented using PyTorch [40] and conducted on 8 NVIDIA A100 GPUs,
with 16-precision adopted for fast training. During the training of the video auto-encoder, pretrained
KL-VAEs [8] were utilized to encode each video frame xi into a latent feature zi, with a downsample
factor of fframe = 8 for 2562 resolution and fframe = 4 for 1282 resolution. The latent features
were then of resolution 322. The video encoder subsequently encoded the latent features of video
keyframes, extracted at fixed frame indexes of [0, 5, 10, 15] for 16-frame videos, with a downsample
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Table 1: Quantitative comparison against prior methods on UCF-101, Sky Time-lapse and TaiChi-HD
datasets for video generation. c denotes the conditon of video descriptions.

(a) Sky Time-lapse w/o c

Methods FVD↓
Resolution 2562

MoCoGAN-HD [41] 164.1
VideoGPT [42] 222.7
DIGAN [15] 83.1
StyleGAN-V [16] 79.5

GLOBER (ours) 78.1

(b) TaiChi-HD w/o c

Methods FVD

Resolution 1282

SytleGAN-V [16] 143.5
DIGAN [15] 128.1

GLOBER (ours) 124.2

(c) Webvid-10M w/ c

Methods FVD CLIP

Resolution 2562

VideoCrafters 2 759.3 0.2981
LVDM [24] 455.5 0.2751
ModelScope 1 414.1 0.3000
VideoFactory [43] 292.4 0.3070
GLOBER (ours) 234.8 0.2816

(d) UCF-101 w/o c

Methods FVD

Resolution 1282

DIGAN [15] 577
TATS [13] 420
VIDM [22] 263

GLOBER (ours) 239.5

(e) UCF-101 w/ c

Methods FVD

Resolution 1282

TGANv2 [44] 1209
DIGAN [15] 465
TATS [13] 332
MMVG [45] 328
CogVideo [9] 305
VIDM [22] 263
VideoFusion [19] 173

GLOBER (ours) 151.5

Resolution 2562

DIGAN [15] 471.9
Make-A-Video [46] 367.2

GLOBER (ours) 168.9

Table 2: Quantitative comparison against prior methods on UCF-101 for unconditional video genera-
tion with 2562 resolution.

Method CogVideo [9] MagicVideo [47] LVDM [24] ModelScope 1 VideoLDM [7]

Zero-Shot ✓ ✓ ✓ ✓ ✓
FVD 701.6 699.0 641.8 639.9 550.6

Method VideoCrafters 2 VideoFactory [43] VideoGPT [42] MoCoGAN [17] StyleGAN-V [16]

Zero-Shot ✓ ✓ ✗ ✗ ✗
FVD 516.2 410.0 2880.6 2886.8 1431.0

Method CogVideo [9] LVDM [24] PVDM [23] GLOBER (ours)

Zero-Shot ✗ ✗ ✗ ✗
FVD 626 372 343.6 252.7

factor of fvideo = 2 and a number of output channels of C ′′ = 16, resulting in global features of
shape 16× 16× 16. The dimension of C ′ is 4 for 256x256 resolution and 3 for 128x128 resolution.
We first train the video auto-encoder as well as the discriminator jointly until convergence, and
then train DiT with the parameters of the video auto-encoder being fixed. The video auto-encoder
was trained with a batch size of 40 per GPU for 80K, 40K, and 40K steps on the UCF101, TaiChi-
HD, and Sky Time-lapse datasets, respectively. The loss weight λ1 and λ2 are set as 1e-6 and
0.1, respectively. When training the video generator, a Transformer-based diffusion model, DiT
[35], was used as the backbone. The batch size was set to 32 per GPU, and the number of training
iterations was 200K, 100K, and 100K for the UCF101, TaiChi-HD, and Sky Time-lapse datasets,
respectively. When generating videos, we sample each global feature with the number of DDIM steps
being 50 and the unconditional guidance scale being 9.0 expect otherwise specified. Then the video
decoder synthesizes target video frames parallelly with the number of DDIM steps being 50 and the
unconditional guidance scale being 3.0 for the Sky Time-lapse and TaiChi-HD datasets and 6.0 for
the UCF101 dataset.

4.2 Quantitative Comparison

Generation Quality Table 1 and Table 2 reports the results of our model trained on the Sky
Time-lapse, TaiChi-HD, UCF-101, and Webvid-10M datasets for 16-frame video generation in both
unconditional and conditional settings. As shown in Table 1(a), Table 1(b), and Table 1(c), our
method achieves comparable performance with prior state-of-the-art models on the Sky Time-lapse,
TaiChi-HD, and Webvid-10M datasets, respectively. To comprehensively compare the performance

1https://github.com/modelscope/modelscope
2https://github.com/AILab-CVC/VideoCrafter
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Table 3: Comparison of sampling time/memory using different methods for generating multiple video
frames with resolution of 2562, batch size of 1, diffusion steps of default settings, and comparable
GPU memory on a v100 GPU. F represents the number of video frames. AR denotes autoregression,
IP denotes interpolation and NAR denotes non-autoregression.

Method VIDM VDM LVDM PVDM VideoFusion TATS ModelScope GLOBER
[22] [4] [24] [23] [19] [13] (ours)

NAR ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓
Video Encoding ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓
NUMF=16 - - 12288 8192 - 4096 16384 4096
NUMF=128 - - 98304 65536 - 32768 131072 4096

Diffusion Steps 100 100 50 - 50 - 50 50+50
F = 16 192s/20G 125s/11G 75s/9G - 22s/7G 6s/16G 31s/6G 6s/7G
F = 32 375s/20G 234s/11G 141s/13G - 39s/9G 26s/16G 48s/8G 11s/11G
F = 64 771s/20G 329s/11G 288s/20G - 76s/13G 65s/16G 82s/12G 21s/19G

on the more challenging UCF-101 dataset, we conduct experiments on both unconditional and
conditional video generation at resolutions of 1282 and 2562. For unconditional video generation, we
use the fixed textual prompt "A video of a person" as the video description, while for conditional
video generation, we use the class name of each video as the video description. Our proposed method
significantly outperforms previous state-of-the-art models, as shown in Table 1(d), Table 1(e), and
Table 2. The superior performance of our method can be attributed to two factors. Firstly, we explicitly
separate the generation of global guidance from the synthesis of frame-wise local characteristics.
As global features are 2D features with relatively small spatial resolution, our generative model can
model them effectively and efficiently without imposing a high computational burden. Secondly, the
synthesis of frame details can refer to the global feature, which provides global guidance such as
scene layout, object appearance, and overall behaviours, making it easier for our method to achieve
global-coherent and local-realistic video generation.

Generation Speed We quantitatively compare the generation speed among various video gener-
ation methods and report the results in Table 3. Our GLOBER method demonstrates remarkable
efficiency in generating video frames, thanks to its utilization of the non-autoregression strategy.
In contrast, prior methods such as VIDM and VDM, which follow the auto-regression strategy,
maintain unchanged memory but require significantly more time for generation. VideoFusion also
adopts a non-autoregressive strategy for generating multiple video frames. However, VideoFusion
remains slower than our GLOBER, since VideoFusion directly models frame pixels, which brings
huge computational burden when generating multiple video frames. TATS employs the interpola-
tion strategy by first generating video keyframes and then interpolating 3 frames between adjacent
keyframes. However, it involves autoregressive generationg of video keyframes and the interpolation
process is not parallelly implemented, thus being slower than our GLOBER. Notably, GPU memory
of VideoFusion and our GLOBER increases with the number of video frames due to the parallel
synthesis of all video frames.

4.3 Qualitative Comparison

As depicted in Figure 3, we conduct a qualitative comparison of our method with previous approaches
on the UCF-101, Sky Time-lapse, and TaiChi-HD datasets. Samples of prior methods are obtained
from [22; 19]. The UCF-101 dataset records 101 human actions and is the most challenging and
diverse dataset. When applied to this dataset, GAN-based methods such as DIGAN and StyleGAN-V
generate video samples that lack distinctiveness. In contrast, TATS, which is built on Transformer and
utilizes the interpolation strategy, generates video samples that are more identifiable. In comparison
to TATS, diffusion-based methods like VideoFusion [19] and VIDM [22] produce samples with
more pronounced appearances. However, VideoFusion generates slightly blurred object appearances,
and VIDM generates overly trivial object motions. Conversely, our GLOBER generates samples
that exhibit both distinct appearances and conspicuous movements. On the Sky Time-lapse dataset,
samples generated by DIGAN, StyleGAN-V, and TATS display trivial motions and simplistic objects.
VideoFusion and VIDM generate samples with enhanced details and more discernible boundaries,
while their motion remains somewhat negligible. In contrast, our GLOBER generates video samples
with more dynamic movements and significantly richer visual details. Similarly, on the TaiChi-
HD dataset, the human appearances generated by DIGAN, StyleGAN-V, and TATS are noticeably
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Figure 3: Quantitative comparison against previous methods on the UCF-101 (left), Sky Time-
lapse (middle) and TaiChi-HD (right) datasets. Our showcased samples on the UCF-101 datasets
are produced using the video descriptions "Apply Lipstick", "Soccer Juggling", and "Pull Ups",
respectively. Samples on the Sky Time-lapse and TaiChi-HD datasets are generated using fixed video
descriptions being "A time-lapse video of sky" and "Tai chi", respectively.

Figure 4: Visualization of samples synthesized with or
without the CRA loss by the video auto-encoder.

Table 4: Ablation study on the CRA loss.

Datasets CRA loss rFVD

UCF-101 w/o 106.7
w/ 69.7

Sky Time-lapse w/o 84.3
w/ 63.5

TaiChi-HD w/o 91.3
w/ 60.1

distorted. While VideoFusion and VIDM achieve improved human appearances, their movements
remain trivial. In contrast, samples generated by our GLOBER exhibit significant movements and
distinct object appearances.

4.4 Ablation Study on the CRA Loss

To investigate the effectiveness of our proposed CRA loss, we conducted an ablation study where the
CRA loss was removed during the training of the video auto-encoder. The quantitative results are
presented in Table 4, which unequivocally demonstrate the effectiveness of our CRA loss on all three
benchmarks: UCF-101, Sky Time-lapse, and TaiChi-HD, with a remarkable reduction in FVD scores
by 37.0, 20.8, and 31.2, respectively. In addition, we qualitatively compare videos synthesized by
models with or without the CRA loss in Fig. 4, which clearly shows that videos generated using the
CRA loss exhibit better video consistency and more distinct local details, demonstrating the necessity
of our proposed CRA loss. The effectiveness of our CRA loss can be attributed to two key factors.
Firstly, by penalizing samples that violate temporal relationships, the CRA loss enhances the overall
coherence of the synthesized video frames. Secondly, by utilizing pairwise video frames as inputs for
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the discriminator, the CRA loss can identify and penalize video frames that exhibit inconsistent or
distorted local characteristics, which further enhances the realism of the synthesized videos.

4.5 Impact on the Global Feature Shapes

Table 5: Sensitivity analysis on the shape of global
features on the UCF-101 datasets.

H ′′ ×W ′′ × C ′′ FVDrec ↓ FVDgen ↓
8× 8× 64 276.1 725.1
16× 16× 16 189.7 560.4
16× 16× 32 184.9 521.2

We experiment the effect of different shapes of
the global features on the quality of synthesized
video frames. As reported in Table 5, videos
generated using global features with a shape
of 8 × 8 × 64 exhibit lower quality than those
generated using global features with a shape of
16 × 16 × 16. And the use of global features
with a shape of 16 × 16 × 32 brings a further
improvement of 39.2 in FVD score. It may be
due to two reasons. Firstly, our experiments are conducted on the UCF-101 dataset, which contains
complex motions that require more channels to be effectively represented. Secondly, by utilizing
the KL loss to constrain the distribution of global features toward an isotropic Gaussian, it becomes
easier for the generative model to fit the distribution of the global features even with a number of
channels, thus increasing the number of channels could bring improved performance.

5 Conclusion and Limitations

This paper introduces GLOBER, a novel diffusion-based video generation method that emphasizes
the significance of global guidance in multi-frame video generation. Our method offers three distinct
advantages. Firstly, it alleviates the computation burden of modeling video generation by replacing
3D video signals with 2D global features. Secondly, it utilizes a non-autoregressive generation
strategy, enabling the efficient synthesis of multiple video frames and surpassing the performance
of prior methods in terms of efficiency. Lastly, by incorporating global features as guidance, our
method generates videos with enhanced coherence and realism, achieving new state-of-the-art results
on multiple benchmarks. Nevertheless, our research exhibits several limitations. Firstly, we find
GLOBER difficult to process videos with frequent scene changes, as such transitions have the
potential to disrupt the video coherence. Furthermore, we have not explored the performance of
GLOBER in open-domain video generation tasks due to computational resource constraints. Future
works are encouraged to solve the above issues.
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A Appendix

B Broader Impact

The goal of this work is to advance research on video generation methods. Our method has the
potential to facilitate the workflow of film production and animation, exhibiting a positive influence
on creative video applications. Since our method is trained mainly on domain-specific datasets, the
potential deleterious consequences of exploiting our model for malicious purposes, such as spreading
misinformation or producing fake videos, seem to be insignificant. Nevertheless, it remains crucial to
apply an abundance of caution and implement strict and secure regulations.

(a) Sky Time-lapse

(b) UCF-101

Figure 5: Genetated long videos with 128 frames on the Sky Time-lapse and UCF-101 datasets (4
frames skipped).

C Experimental Results on Long Video Generation Tasks

We obtain new state-of-the-art results on the SkyTimelapse and UCF-101 datasets for long video
generation tasks. All experiments are conducted without conditional inputs. The quantitative results
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are reported in Table 6. MoCoGAN, MoCoGAN-HD, DIGAN, and StyleGAN-V are GAN-based
methods, which dominate the field of vision generation until 2022. Based on diffusion probabilistic
models, VIDM outperforms these GAN-based methods by a large margin. However, VIDM employs
the auto-regression generation strategy to generate long videos, which lacks global guidance and
suffers from error accumulation. Our method, GLOBER, outperforms VIDM significantly due to its
incorporation of global features and non-autoregression generation strategy. We present several video
samples in Fig. 5, which demonstrate that our method can generate long videos of remarkable quality.

Table 6: Quantitative Results of FVD comparison on the SkyTimelapse and UCF-101 datasets for
128-frame long video generation.

Method UCF-101 Sky Time-lapse

MoCoGAN [CVPR18] 3679.0 575.9
+StyleGAN2 backbone 2311.3 272.8
MoCoGAN-HD [ICLR21] 2606.5 878.1
DIGAN [ICLR22] 2293.7 196.7
StyleGAN-V [CVPR22] 1773.4 197.0
VIDM [AAAI23] 1531.9 140.9

GLOBER (ours) 1177.4 125.5

D More Qualitative Results

We present more qualitative results on the UCF-101, Sky Time-lapse, and TaiChi-HD datasets in the
link: https://iva-mzsun.github.io/GLOBER.

E Sensitivity Analysis of Unconditional Guidance Scale

We investigate the effectiveness of the unconditional guidance scale µ that is used when employing
class-condition constraints. Table 7 presents the influence of µ on the FVD score of videos condition-
ally decoded by the video decoder on the UCF-101 2562 benchmark. Table 8 presents the influence
of µ on the FVD score of videos conditionally sampled by the video generator on the UCF-101 2562

dataset. It is evident that appropriate selection of the unconditional guidance scale is important in
ensuring the quality of videos decoded or sampled with class conditions.

Table 7: Sensitivity analysis of the unconditional guidance scale µ for video reconstruction on the
UCF-101 dataset.

µ 0 3 6 9 12 15

FVD 211.4 114.3 106.7 133.2 281.1 670.8

Table 8: Sensitivity analysis of the unconditional guidance scale µ for video generation on the
UCF-101 dataset.

µ 0 3 6 9 12 15

FVD 575.6 173.0 172.6 171.5 168.9 224.3

F Quality of frame features generated by Equ. (9)

When adopting the CRA loss, we directly obtain the synthesized frame feature z̄i according to
Equ. (9). Considering that diffusion models typically perform T denoising steps to synthesize a
realistic sample, we explore the rationality of this design choice. As depicted in Fig. 6, the quality
deterioration in estimated video frames is acceptable for most samples. It is reasonable since the
diffusion process is under the guidance of global features, which contain sufficient local and global
information.
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Figure 6: Video frames estimated by Equ. (9) with different timesteps on the UCF-101 dataset with
256× 256 resolution.

G Necessity to consider "keyframes" for extracting global features from a
given video

It’s time- and computation- consuming to process all video frames for extracting global features,
especially when we encode long videos such as 128. As depicted in Fig. 7, when the number of
input video frames increasing, the maximum training batchsize dramaticly decreases and the required
training time boosts. Thus it is necessary to use keyframes rather than all video frames to obtain
better training efficiency.

Figure 7: Comparison of the maximum training batch size and required time using different number
of input video frames.

H More Efficiency Comparison

We compare the generation efficiency of our GLOBER with prior works, e.g. PVDM, with comparable
settings as reported in Table. 9. Results with * are taken from PVDM and measured with a single
NVIDIA 3090ti 24GB GPU. The rest are evaluated on a single NVIDIA 3090 24GB GPU by us
due to lack of 3090ti. LVDM has not released models and scripts for 128-frame video generation.
Limited by memory, our GLOBER decodes a 128-frame video by parallelly and no-overlapped
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decoding every 32 video frames. DiT is the video generator of GLOBER. The results demonstrate
that our GLOBER is more efficient than PVDM and LVDM when training for video generation and
synthesizing long videos.

Table 9: Maximum training batch size and required inference time (in seconds) for different methods
to synthesize a 256x256 resolution video.

Method Train Batch Size Inference Time (16
frames)

Interence Time
(128 frames)

TATS* - 84.8 434
VideoGPT* - 139 N/A

VDM* - 113 N/A
LVDM - 98 N/A

PVDM-L* 2 20.4 166
GLOBER (ours) 4 21.4 145.7

GLOBER (DiT only) 8 3.57 3.57

I Ablation Study on the KL loss

Following [8], the KL loss, i.e. Equ. (2), can punish the distribution of latent features towards a
standard normal distribution to avoid high shift and high variance. We conduct an ablation study on
the variance prediction and the KL loss. As reported in Table 10, removing variance prediction brings
improvements on rFVD, but deteriorates FVD significantly since the video decoder is no longer
robust to disturbance of generated features. Adding variance prediction improves the generation
performance to some extent. The performance further boosts after employing the KL loss since
the KL loss brings neglectable decrease on rFVD but can effectively facilitate DiT to model the
distribution of global features using the diffusion theory.

Table 10: Ablation study on variance prediction and the KL loss. All experiments are conducted on
the TaiChiHD dataset for 16-frame video generation with 2562 resolution. Autoencoders are trained
for 1500 epochs (15h) and DiTs are trained for 2000 epochs (14h).

Design of the video auto-encoder rFVD FVD

Determinstic (w/o variance) 68.9 773.4
+ variance prediction (w/o KL loss) 71.5 549.5

+ variance prediction + KL loss 75.3 332.7

J Settings of Hyper Parameters

The detailed settings of model hyper parameters are presented in Table 11.
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Table 11: Hyper-parameters of the video auto-encoder and the quantitative results on video recon-
struction. Experimental settings on the UCF-101 dataset are the same for both conditional and
unconditional video generation except given video descriptions.

UCF-101 2562 Sky Time-lapse 2562 TaiChi-HD 1282

Batch Size 40 32 32
Learning Rate 1e-5 1e-4 5e-5

KL-VAE

fframe 8 8 4

Video Encoder

fvideo 2
Input Shape 32
Input Channels 4
Output Channels 16
Model Channels 320
Num Res. Blocks 2
Num Head Channels 64
Attention Resolutions [16, 8]
Channel Multiplies [1, 2]

Video Decoder (UNet)

Input Shape 32
Input Channels 4
Output Channels 4
Model Channels 320
Num Res. Blocks 2
Num Head 8
Attention Resolutions [32, 16, 8]
Channel Multiplies [1, 2, 4, 4]

Video Generator (DiT)

Input Shape 16 16 16
Input Channels 16 16 16
Model Channels 1152 1024 1024
Num Head 16 16 16
Depth 28 20 20
Mlp Ratio 4 4 4
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