
Suggesting Variable Order for Cylindrical Algebraic
Decomposition via Reinforcement Learning

Fuqi Jia1, 3 *, Yuhang Dong2, 3 *, Minghao Liu1, 3, Pei Huang4, Feifei Ma2, 3 †, and Jian Zhang1, 3 †

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

2Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
4Stanford University, Stanford, USA

{jiafq,liumh,maff,zj}@ios.ac.cn, dongyuhang22@mails.ucas.ac.cn,
huangpei@stanford.edu

Abstract

Cylindrical Algebraic Decomposition (CAD) is one of the pillar algorithms of
symbolic computation, and its worst-case complexity is double exponential to the
number of variables. Researchers found that variable order dramatically affects
efficiency and proposed various heuristics. The existing learning-based methods
are all supervised learning methods that cannot cope with diverse polynomial
sets. This paper proposes two Reinforcement Learning (RL) approaches combined
with Graph Neural Networks (GNN) for Suggesting Variable Order (SVO). One
is GRL-SVO(UP), a branching heuristic integrated with CAD. The other is GRL-
SVO(NUP), a fast heuristic providing a total order directly. We generate a random
dataset and collect a real-world dataset from SMT-LIB. The experiments show
that our approaches outperform state-of-the-art learning-based heuristics and are
competitive with the best expert-based heuristics. Interestingly, our models show
a strong generalization ability, working well on various datasets even if they are
only trained on a 3-var random dataset. The source code and data are available at
https://github.com/dongyuhang22/GRL-SVO.

1 Introduction

As learned in school, we know how to answer the question of whether a quadratic equation for x has
a real root. For example,

x2 + bx+ c = 0,

where b, c are unknowns. We can answer it by checking whether the discriminant is non-negative,
i.e., b2 − 4c ≥ 0. What if the number and degree of variables increase, and the formula involves the
combination of the universal quantifier (∀), existential quantifier (∃), and logical operators (and(∧),
or(∨), not(¬))? Checking whether polynomials satisfy some mathematical constraints is a difficult
problem and has puzzled mathematicians since ancient times. Until the 1930s, Alfred Tarski [1]
answered the question by proving that the theory of real closed fields admits the elimination of
quantifiers and gives a quantifier elimination procedure. Unfortunately, the procedure was impractical
due to its non-elementary complexity. In 1975, George Collins discovered the first relatively efficient
algorithm, Cylindrical Algebraic Decomposition (CAD) [2]. Currently, CAD (and variants) has

*These authors contributed equally.
†Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/dongyuhang22/GRL-SVO

2 1 0 1 2

0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

x

y

y = x2

(a) x ≺ y

𝑝𝑝: (−5,4)

(b) x ≺ y (c) y ≺ x

Figure 1: Examples of CAD. Figure 1a shows cells of {y − x2}. Figure 1b and 1c are CAD with
different variable orders on {x3y + 4x2 + xy,−x2 + 2xy − 1}.

become one of the most fundamental algorithms in symbolic computation and is widely used in
computational geometry [3], robot motion planning [4], constraint programming [5, 6, 7].

More precisely, CAD is an algorithm that eliminates (technically called project) variables one by
one and finally results in a list of regions that are sign-invariant to the polynomials (technically
called cells). CAD provides an efficient quantifier elimination in real space, thereby enabling the
solution of various problems related to polynomials. For example, the space of the discriminant of
the quadratic equation (i.e., b2 − 4c ≥ 0) can be the combination of satisfied cells. We provide a
detailed description in Appendix A. Due to its powerful analytical ability and great versatility, it is
also accompanied by huge limitations. The theoretical worst complexity is double exponential to the
number of variables [2].

Researchers have conducted in-depth studies on improving its efficiency. According to theoretical and
practical research, there lives a very important conclusion that “variable order in CAD can be crucially
important” [8, 9, 10, 11, 12, 13, 14, 15, 16]. The selection of variable orders has a great effect on the
time, memory usage as well as the number of cells in CAD. As an example, [8] introduces a category
of problems where one variable order leads to a result with double exponential complexity to the
number of variables, while another order yields a constant-sized result.

In this paper, we present a Graph-based Reinforcement Learning for Suggesting Variable Order
(GRL-SVO) approach for CAD. It has two variants: GRL-SVO(UP) (i.e., utilizing project) and
GRL-SVO(NUP) (i.e., not utilizing project). GRL-SVO(UP) is integrated into the CAD and can
select the “best” next projecting variable. Considering the high cost of interacting with the symbolic
computation tool, we also propose a fast approach GRL-SVO(NUP), which will simulate the state
transition (i.e., project) via two rules (update rule and delete rule). It can report a total variable
order before the CAD process. To evaluate the effectiveness of the models, we conduct a dataset
of random polynomial sets with 3 to 9 variables and collected instances from SMT-LIB [13, 17] to
form a real-world dataset. Experimental results show that our approaches outperform state-of-the-art
learning-based heuristics and are competitive with the best expert-based heuristics. GRL-SVO also
exhibits a strong generalization capability. The models are only trained on a 3-var random dataset,
but they still work well on other datasets.

2 Background and Related Work

In this section, we briefly introduce some basic definitions of CAD [2, 18]. We classify the previous
works of SVO and give an overview of the techniques used.

2.1 Cylindrical Algebraic Decomposition (CAD)

A Cylindrical Algebraic Decomposition (CAD) is a decomposition algorithm of a set of polynomials
in ordered Rn space resulting in finite sign-invariant regions, named cells. As shown in Figure 1a,
there are 3 cells with different colors (two infinite regions and the curve), and any points in the
cell lead to the same sign of y − x2. Let R[x] be the ring of polynomials in the variable vector
x = [x1, · · · , xn] with coefficients in R [9].

2

Definition 1 (Cell). For any finite set Q ⊆ R[x], a cell of Q is defined as a maximally connected set
in Rn where the sign of every polynomial in Q is constant.

CAD accepts a set of polynomials and a fixed variable order and mainly consists of three running
phases: project, root isolate, and lift. The project phase eliminates a variable of a polynomial set
once at a time. It will result in a new projected polynomial set that carries enough information to
ensure possible decomposition. After repeating calls to project, CAD constitutes a step-like (from n-1
variables to 1 variable) set of projected polynomials. The root isolate procedure isolates all roots of
the univariate polynomial set, and the roots split R into some segmentations. The lift phase samples
in the segmentations and assigns the sampled value to the former projected polynomial set so that the
former polynomial set will become a univariate polynomial set. After repeating root isolate and lift
n− 1 times, CAD reconstructs the entire space via a set of cells characterized by the sample points.
Since the CAD process and the project operators are not prerequisites to understand our approach,
we arrange more details in Appendix A. Here, we exemplify the process and the effect of different
variable orders.

Example 2.1. Consider a polynomial set {x3y+ 4x2 + xy,−x2 + 2xy− 1} as in Figure 1b and 1c.

CAD process. Assume that the variable order is x ≺ y. CAD eliminates y first and results
in a polynomial set {x, x2 + 1, x4 + 10x2 + 1} (i.e., project phase). The polynomial set has
only one root x = 0 (i.e., root isolation phase). Then R will be split into three segmentations:
{x < 0, x = 0, x > 0}. We sample {x = −5, x = 0, x = 5} and result in three different polynomial
sets: {−130y + 100,−10y − 26}, {−1}, and {130y + 100, 10y − 26} (i.e., lift phase). Let’s take
the first polynomial set as an example, and it has two roots, i.e., { 1013 ,−

13
5 } (i.e., root isolation phase).

Then R will be split into five segmentations: {y < − 13
5 , y = − 13

5 ,− 13
5 < y < 10

13 , y = 10
13 , y > 10

13}.
As shown in Figure 1b, the sample red point (−5, 4) can represent a sign-invariant region, the whole
shaded area (i.e., x3y + 4x2 + xy < 0 ∧ −x2 + 2xy − 1 < 0 ∧ x < 0).

Effect of different variable orders. Figure 1b first eliminates y then x and results in 13 cells, and
Figure 1c first eliminates x then y and results in 89 cells, almost seven times that of the former.

2.2 Suggesting Variable Order for Cylindrical Algebraic Decomposition

An Expert-Based (EB) heuristic is a sequence of meticulous mechanized rules. It is mainly derived
from theoretical analysis or a large number of observations on practical instances and summarized by
experts. The heuristics can capture the human-readable characteristics of the problem. A Learning-
Based (LB) heuristic will suggest an order through the scoring function or a variable selection
distribution given by the learning model. It can exploit features deep inside the problem statement
via high-dimensional abstraction.

Another important indicator is whether invoking project, as the project phases are time-consuming
for SVO heuristics in practice. In the following, UP denotes heuristics utilizing project, and NUP
denotes heuristics not utilizing project.

EB & UP. The heuristics sotd (sum of total degree) [10], and ndrr (number of distinct real roots)
[12] will project utilizing all different variable orders until the polynomial sets with only one variable.
Then sotd will select the order with the smallest sum of total degrees for each monomial, while ndrr
will select the order with the smallest number of distinct real roots. Because of the combinatorial
explosion of orders, the heuristics projecting all orders only work on the case with a small number of
variables. Based on CAD complexity analysis, gmods [13] selects the variable with the lowest degree
sum in the polynomial set after each project phase.

EB & NUP. The heuristics brown [9], and triangular [11] introduced a series of rules about statistical
features like degree, total degree, and occurrence to distinguish the importance of variables. The
heuristic chord [14] also provides an efficient algorithm based on the associated graph. It makes a
variable order via perfect elimination ordering on the graph. Note that chord heuristic only works
on the chordal graph. It is a special case that, after each project phase, the graph only removes the
linked edges of the projected variable without changing the other components.

LB & UP. To the best of our knowledge, no heuristic should be classified into this category.

LB & NUP. The approach EMLP [15] utilizes an MLP neural network. The network takes the
selected statistics of the polynomial set as input and outputs a label for variable order directly. If the

3

polynomial set has 3 variables, then 3! = 6 output labels are necessary for the neural network. The
approach PVO [16] combines neural network and EB & NUP heuristics like brown and triangular.
The neural network is trained to predict the best first variable while the EB & NUP heuristics decide
other parts of orders. These kinds of heuristics work on 6 variables at most in their experiments.

According to the classification, our proposed approaches, GRL-SVO(UP) and GRL-SVO(NUP), can
be categorized as LB & UP and LB & NUP, respectively.

2.3 Graph Neural Network and Reinforcement Learning

Graph Neural Networks (GNNs) are a class of deep learning models for graph-structured data. GNNs
include many variants according to the characteristics of the problems, such as GCN [19], GAT [20],
superGAT [21], and so on. Reinforcement Learning (RL) is an advanced machine learning paradigm
where an agent learns to make decisions by interacting with its environment. It includes various
frameworks, such as REINFORCE [22], DQN [23], and so on. By leveraging the expressive power of
GNNs to learn complex graph structures and the adaptability of Reinforcement Learning (RL) to find
optimal decision-making policies, researchers have remarkably succeeded in combinatorial algorithm
design [24, 25, 26]. GRL-SVO is based on an Advantage Actor-Critic (A2C) framework [24, 27]
with a Graph Network [28].

3 Method

This section starts with the problem formulation for the framework, followed by an overview and
description of the graph representation and architecture. Finally, we introduce the state transition
without project, which is the key technique for GRL-SVO(NUP).

3.1 Problem Formulation

We now give the formulation of SVO for CAD. Our goal is to improve CAD efficiency by suggesting
a better variable order. Computation time and memory usage are important indicators, but they will
be affected by random factors, such as CPU clock, usage rate, etc. As the main output of CAD, cells
can be the best candidate. In order to measure the quality of the result, the number of cells is an
appropriate indicator that intuitively shows the effect of CAD [29]. In theory, a large number of
cells means that the partitions are fragmented compared to a small number of cells. Usually, the
polynomial set generated from project phase is complex and difficult for the next phases of CAD.
In practice, the number of cells also strongly correlates to the computation time and memory usage.
Figures of the relation are listed in Appendix B, and we found that the computation time and memory
usage increase when the number of cells increases. The objective is to minimize the number of cells
N(Q, σ), where Q ⊆ R[x] is a polynomial set with coefficients in R and σ is the given variable
order, i.e., minN(Q, σ).

By analyzing the input polynomial set Q, we can derive the variable order so that we ought to
minimize the objective:

minN(Q, σ(Q)).

The difficulties of this framework mainly come from two aspects:

• Huge input space. The expression of a polynomial is compressed, and any slight change in
form (such as power) will change the geometric space drastically. The EB heuristics may
become inefficient when encountering characteristics beyond the summarized patterns.

• Huge output space. The number of variable orders and the number of variables have a
factorial relationship, i.e., n variables resulting in n! different variable orders. For example,
10 variables lead to 3628800 candidate variable orders. sotd-like, ndrr-like, and EMLP-like
heuristics become impractical due to the vast number of candidate variable orders.

3.2 GRL-SVO Overview

In this paper, considering the challenges mentioned above, we propose the GRL-SVO approach,
and Figure 2 shows the overall architectures. For huge input space, we compress the polynomial

4

…

F: Polynomial set

𝑥𝑥3𝑦𝑦 + ⋯ , … GNN

Actor

Critic

𝑥𝑥

action

𝑟𝑟

reward

(F, A, X)

Environment
(with Symbolic Computation Tool)

Projection

F ⟵ Projected Polynomial Set

Update A, X

(a) GRL-SVO(UP)

F: Polynomial set

𝑥𝑥3𝑦𝑦 + ⋯ , … GNN

Actor

Critic

𝑥𝑥

action

𝑟𝑟

reward

(F, A, X)

Environment
(without Symbolic Computation Tool)

Delete Rule

Update Rule: 𝜙𝜙 ⋅, 𝑥𝑥

…

(b) GRL-SVO(NUP)

Figure 2: The architecture of GRL-SVO(UP) and GRL-SVO(NUP) where ϕ(·, x) =
MLP (CONCAT (·, x)) for updating the embedding for the neighbours of x. The dashed lines
represent that it will be only utilized in training mode.

information into an associated graph [30] with embeddings, which is simple and can depict the
relationship between variables. For huge output space, we utilize the neural network to predict
the next best variable, and by repeating until no variables are left, the trajectory corresponds to a
variable order. In detail, the actor neural network provides a distribution of actions, i.e., the choice
of variables. The critic neural network scores the total order and stabilizes the training process as
a state-dependent baseline. GNN encodes each variable of the current state as a high-dimensional
embedding, and additional neural network components transform them into our policy. As for
state transformation, GRL-SVO(UP) and GRL-SVO(NUP) are different in utilizing project. The
environment of GRL-SVO(UP) projects the selected variable and reorganizes the total graph, while
that of GRL-SVO(NUP) updates the graph via the update rule and delete rule.

3.3 Graph Representation

The graph of a polynomial set can be different. We introduce a graph structure that can reflect the
coupling relationship between variables.
Definition 2 (Associated Graph [30]). Given a polynomial set F , and the variable set of F , V =
var(F), an associated graph GF (V,E) of F is an undirected graph, where E = {(xi, xj)|∃f ∈
F, xi, xj ∈ var(f)}.

In other words, if two variables appear in the same polynomial, they will have an edge.

GNNs have invariance to permutations and awareness of input sparsity [31, 32, 33]. The strength
similarly applies to our work. The associated graph is pure and simple, which only retains information
related to variables and “neighbors” in the same polynomial. Note that such a graph can easily become
a complete graph. For example, x1 + x2 + x3 + x4 corresponds to a complete associated graph.
So, we need to distinguish nodes via rich embeddings, detailed in Appendix B. The embeddings
are proposed based on former research [16, 34] and our observations. The embedding vectors of
variables will be first normalized via the z-score method, i.e.,

E′
j [x] =

Ej [x]−mean({Ej [v]})
std({Ej [v]})

, v ∈ var(F 0),

where F 0 is the corresponding polynomial set and Ej [x] denotes the j-th scalar of the original
embedding of variable x.

The graph representation is a tuple (F 0, A0, X0) where A0 ∈ {0, 1}n×n is the adjacency matrix of
the associated graph and X0 ∈ Rn×d is a normalized node embedding matrix for variables.

To encode the representation, we utilize a stack of k GNN layers, Formula (5.7) in [28]. The process
encodes the representations Xi+1 = [Xi+1[0]; · · · ;Xi+1[n− 1]] via

Xi+1[u] = σ(Xi[u] · θig,self +
∑

v∈N (u)

Xi[v] · θig,neigh + θig,bias),

where θig,self and θig,neigh are trainable parameter matrices in RHi×Hi+1

, and σ denotes the activation

function. θig,bias is the trainable bias term in RHi+1

, and N (u) is the set of neighbours of variable

5

u. Hi is the dimension of hidden channels, and H0 = d. The layer will aggregate the local
information of variables and update the embedding sequentially. Finally, we obtain the intermediate
tuple (F k, Ak, Xk).

3.4 Architecture

3.4.1 Markov Decision Process (MDP)

State Space and Action Space. GRL-SVO(UP/NUP) will suggest a variable order for any
polynomial set. The state space includes the graph representation of any polynomial set, i.e.,
S = {G = (F 0, A0, X0)}. Although it is a very large space, the state s provides sufficient statistics
to evaluate actions. Action corresponds to a candidate variable to project. For a given state s, the
action space is A = var(Fs), where Fs denotes the polynomial set of current state s.

Environment. At the time t, the environment of GRL-SVO(UP) takes current state st and selected
variable (action at) as input and outputs a new state st+1 via processing the projected polynomial
set of CAD. That of GRL-SVO(NUP) only removes the selected variable and linked edges from the
current state st and updates embeddings via neural networks, which is detailed in Section 3.5.

Reward. The number of cells is sufficient to reflect the impact of variable order on efficiency.
R(σ|s0) = −N(Fs0 , σ)/M denotes the reward for a given variable order σ under the initial state s0,
i.e., the negative number of cells divided by a static normalization factor M . If the order leads to
running timeout and cannot obtain the number of cells, R(σ|s0) = −1 directly. The reward of agent
policy will increase as the training progresses.

3.4.2 Neural Network Architecture

Neural Network. The actor network θa : Rn×d −→ Rn combines an MLP and softmax layer that
transforms the Xk

t of st to the action distribution at time t. The action obeys the distribution, i.e.,

at ∼ θa(X
k
t) = softmax(MLP (Xk

t)).

The critic network θc : Rn×d −→ R is a combination of MeanPool and MLP layers, where
MeanPool : Rn×d −→ Rd. The critic value is defined as

θc(X
k
0) = MLP (MeanPool(Xk

0)).

Training. The parameters of GRL-SVO θ = {θg, θa, θc} will go through an end-to-end training
process via stochastic gradient descent method. Given initial state s, we aim to learn the parameters
of a stochastic policy pθ(σ|s), which assigns high probabilities to order with a small number of cells
and low probabilities to order with a large number of cells. Our neural network architecture uses the
chain rule to factorize the probability of a variable order σ as pθ(σ|s) =

∏n
t=1 pθ(σ

t|s, σ<t), where
pθ(σ

t|s, σ<t) = θa(X
k
t) is current action distribution. σt is the t-th element in the variable order σ

and σ<t is the partial order from σ1 to σt−1. The training objective is the expected reward, which is
defined as J(θ|s) = Eσ∼pθ(·|s)R(σ|s).
Through the well-known REINFORCE algorithm [35], the gradient of the training objective is

∇θJ(θ|s) = Eσ∼pθ(·|s)[(R(σ|s)− c(s))∇θlogpθ(σ|s)],

where c(s) = θc(X
k
0) is the predicting critic value.

Through Monte Carlo sampling, we obtain N i.i.d polynomial sets corresponding to states
s1, s2, · · · , sN ∼ S, and N variable orders σi ∼ pθ(·|si). So we update the parameters of neural
networks via

θa ← θa +
1

N

N∑
i=1

(R(σi|si)− c(si))∇θlogpθ(σi|si),

θc ← θc +
1

N

N∑
i=1

(R(σi|si)− c(si))∇θc(si).

Inference. At inference time, we generate an order via a greedy selection. For the i-th element of the
order σ, we select the variable x with the maximal probability, i.e., x = argmaxx∈Vt−1

(p(x|s, σ<t)),

6

where Vt−1 = var(Fst−1) is the set of variables that have not been projected at time t. After selecting
variables n− 1 times, we obtain the total order σ.

3.5 State Transition without Project
𝑥𝑥1 𝑥𝑥2

𝑥𝑥3 𝑥𝑥4

(a)

𝑥𝑥1 𝑥𝑥2

𝑥𝑥3

(b)

Figure 3: The associated graph of {x3
1 − 4x2

2x3 +
12x2+3, 3x2

1x4− 4x3
4− 1} in Figure 3a. Assume

that we select x4 to project, it results {x1− 1, x1+
1, x2

1−x1+1, x2
1+x1+1, x3

1−4x2
2x3+12x2+3}

and the associated graph is shown in Figure 3b.

We provide an LB & NUP heuristic to free from
interaction with the symbolic computation tools.
It simulates the project via a neural network for
embedding transformation and a delete rule.

As an example, Figure 3 shows a specific
case of state transition. The polynomial set
changes after project phase the variable x4,
where 3x2

1x4 − 4x3
4 − 1 is reduced to a set

{x1−1, x1+1, x2
1−x1+1, x2

1+x1+1}without
x4 while the polynomial x3

1−4x2
2x3+12x2+3

remains unchanged. So, the embedding of neigh-
bors of x4, i.e., x1, will change greatly while
that of other variables will change slightly. Besides, the projected variable should also be removed
from the associated graph. Based on the aforementioned inspiring situations, we propose two rules
for approximately simulating project.

At time t− 1, assume xi is the next projecting variable. We mainly consider the projected variable’s
influence on its 1-hop neighbor variables.

Update Rule. We update the embedding X without project for other variables xj via

X[xj]
t =

{
ϕ(X[xj]

t−1, X[xi]
t−1), A[xi][xj] = 1,

X[xj]
t−1, otherwise,

where ϕ(a, b) = MLP (CONCAT (a, b)) is the neural network that simulates the project for
embedding transformation.

Delete Rule. It will trivially remove xi and edges linked to xi and update A,X in the state
correspondingly.

A←− RemoveRowColumn(A,Map(xi)),

X ←− RemoveRow(X,Map(xi)),

Map(xj)←−Map(xj)− 1, i < j < n,

where the function Map(x) : V −→ N, maps the variable x to the index in matrix A and X , the
operation RemoveRowColumn(A,Map(xi)) removes the row and column of variable xi from A,
and the operation RemoveRow(X,Map(xi)) removes the row of variable xi from X .

After such transitions, the state will feed the model defined by Section 3.4 and obtain the next
projecting variable. After calling the model n− 1 times, the trajectory corresponds to a variable order
suggested by GRL-SVO(NUP).

4 Experiments

4.1 Setup

Implementation and Environments. We utilized PyTorch Geometric [36] for implementations of
our approach. The hyper-parameters are listed in Appendix B. We utilized the NVIDIA Tesla V100
GPU for training. After the heuristics output the variable order, all instances with the given variable
order are run with MAPLE 2018 on an Intel Xeon Platinum 8153 CPU (2.00GHz). The run-time
limit is 900 seconds, and the time to predict a variable order is also counted.

Dataset. We utilize two CAD datasets: random and SMT-LIB. The detailed parameters of random
generation and collecting methods for SMT-LIB are presented in Appendix B.

The random dataset contains 7 categories from 3-var to 9-var. We generate 20000 3-var instances and
split them into training, testing, and validation sets in a ratio of 8:1:1. We pre-run all 3! = 6 variable
orders and remove non-conforming instances where some variables are eliminated due to random

7

0 20 40 60 80 100
Epochs

1000

2000

3000

4000

5000

Nu
m

be
r o

f T
im

eo
ut

 In
st

an
ce

s

GRL-SVO(UP)
GRL-SVO(NUP)
gmods
brown
triangular
sotd
ndrr
EMLP

(a)

0 20 40 60 80 100
Epochs

0.35

0.30

0.25

0.20

0.15

0.10

Av
er

ag
e

Re
wa

rd
s o

f A
ll

In
st

an
ce

s

GRL-SVO(UP)
GRL-SVO(NUP)
gmods
brown
triangular
sotd
ndrr
EMLP

(b)

3 4 5 6 7 8 9
Number of Variables

0

200

400

600

800

Av
er

ag
e

Pr
ed

ict
io

n
Ti

m
e

(s
)

gmods
brown
triangular
sotd
ndrr
GRL-SVO(UP)
GRL-SVO(NUP)

(c)

Figure 4: The performance of all heuristics. Figure 4a and 4b correspond to the training phase, and
the horizontal lines represent the timeout instances of corresponding heuristics on the training set.
Figure 4c is the PT graph over number of variables.

generation, for example, x − x = 0; we remove the instances that are all timeout under 6 orders.
The rest sets have 14990, 1871, and 1887 instances, respectively. The other categories contain 1000
instances. They are generated by randpoly of MAPLE. We also collect a SMT-LIB dataset where
there are from 3-var to 9-var instances with numbers {5908, 1371, 131, 123, 318, 41, 24}.
Baselines. We compare our approach with two kinds of state-of-the-art heuristics, UP or NUP. For
UP, we compare our approaches with sotd and ndrr implemented in the ProjectionCAD package
[37]. Besides, we also implement gmods [13] in MAPLE. For NUP, we compare our approaches
with brown, and triangular implemented in the RegularChains package [38]. EMLP approach is
proposed by England [15] and its implementation only supports 3-var instances. PVO(brown) and
PVO(triangular) are PVO approaches combined with EB & NUP heuristics, brown and triangular,
respectively. The provided implementations [16] only support 4,5,6-var instances.

Criterion. Assume T and N denote the running time and number of cells. AVG.T and AVG.N
denote the average of T and N . If an instance runs timeout, we count the maximum time (900
seconds) and the maximum number of cells of this instance solved by other heuristics into the
calculation. We remove the instances that all heuristics lead to CAD timeout, as such instances can
not distinguish the ability of heuristics. PT and #SI denote the variable order prediction time used
by heuristics and the number of solved instances within the time limit. For UP heuristics, PT also
takes project time into consideration. Except for #SI , the criteria are the smaller, the better.

Experiments. We conduct three experiments to evaluate our approaches. First of all, we only train the
models on the 3-var random dataset. Then, we generalize the trained models on random datasets with
up to 9 variables and the SMT-LIB dataset. Finally, we compare GRL-SVO(UP) and GRL-SVO(NUP)
and discuss different application scenarios. We list ablation experiments in Appendix C, investigating
the effect of features (of the initial embedding), network size, network structure, reward normalization
factor M , GNN architecture, and coefficient. We also list additional results in Appendix D, including
results under other criteria and performance of fine-tuning.

4.2 Results

Training GRL-SVO. Figure 4a and Figure 4b show the performance during training with the
instances in the training set. GRL-SVO outperforms the other heuristics through training and shows a
rapid performance improvement. The UP heuristics are better than the NUP heuristics. The inference
can be more accurate because the UP heuristics obtain more information than the NUP heuristics. In
the beginning, GRL-SVO(NUP) with the random initial parameters is better than GRL-SVO(UP).
After training, GRL-SVO(UP) shows better performance.

Generalization. We only train on the 3-var dataset and generalize the models to the other datasets.
After removing all timeout instances, there are 1876, 651, 416, 354, 349, 409, and 383 instances for
the random dataset from 3-var to 9-var; for the SMT-LIB dataset, 1777, 387, 17 instances for 3-var,
4-var to 6-var and 7-var to 9-var, respectively. Table 1 shows the performance of all heuristics, and
the best scores are bolded. GRL-SVO(UP) is the only LB approach with UP heuristics, achieving the
best performance among most UP and NUP heuristics except for the 4-var category. GRL-SVO(NUP)
also achieves competitive performance compared to other NUP heuristics. GRL-SVO also shows

8

Table 1: The performance of all heuristics. The dash “-” indicates that the method does not support
the category.

Categories NUP UP
EB LB EB LB

brown triangular EMLP PVO(brown) PVO(triangular) GRL-SVO(NUP) sotd ndrr gmods GRL-SVO(UP)

3-var(test)
#SI 1620 1504 1686 - - 1772 1784 1663 1693 1798

AVG .T 171.41 228.32 140.87 - - 94.87 91.47 148.92 124.06 78.06
AVG .N 2427.74 2669.67 2390.68 - - 2166.67 2149.07 2007.98 2195.80 2089.68

4-var
#SI 415 376 - 408 392 443 625 488 513 533

AVG .T 352.87 394.71 - 360.33 376.71 314.57 85.12 292.06 215.48 191.45
AVG .N 5241.95 5585.90 - 5323.83 5582.46 5131.40 3925.28 4248.45 4849.18 4764.50

5-var
#SI 236 202 - 242 218 238 43 27 329 346

AVG .T 434.52 494.37 - 418.34 465.43 420.51 827.47 853.75 238.01 207.79
AVG .N 12310.70 13224.18 - 11795.90 12555.82 12090.49 14538.69 14845.67 10466.79 9744.58

6-var
#SI 175 149 - 180 160 202 5 5 273 306

AVG .T 501.75 552.14 - 490.73 527.86 439.62 889.16 889.97 284.40 214.55
AVG .N 20639.07 20440.23 - 20181.98 19290.37 19302.97 23298.50 23329.10 17561.67 16715.20

7-var
#SI 163 118 - - - 153 1 1 270 297

AVG .T 548.15 631.85 - - - 552.47 897.75 897.79 313.73 245.57
AVG .N 27790.31 27795.79 - - - 27302.28 30452.64 30456.31 24465.89 22432.30

8-var
#SI 173 138 - - - 172 0 0 310 345

AVG .T 601.90 654.20 - - - 597.09 900.00 900.00 372.34 322.80
AVG .N 39382.26 40679.57 - - - 38815.98 43112.02 43112.02 34016.98 33505.21

9-var
#SI 151 125 - - - 158 0 0 286 325

AVG .T 649.41 690.29 - - - 625.69 900.00 900.00 431.11 374.78
AVG .N 48273.67 49832.78 - - - 46946.09 52173.03 52173.03 42594.25 42270.91

SMT-LIB (3-var)
#SI 1770 1763 1675 - - 1766 1750 1694 1772 1772

AVG .T 20.33 23.68 83.09 - - 22.38 34.38 65.10 18.32 18.53
AVG .N 4449.79 5070.46 7661.07 - - 4104.43 3672.21 4140.72 3873.22 3946.84

SMT-LIB (4-var to 6-var)
#SI 374 372 - 372 372 364 356 339 379 379

AVG .T 86.03 89.95 - 88.32 88.98 91.17 105.18 142.32 59.96 67.51
AVG .N 24596.20 24260.88 - 23039.49 22730.34 21040.09 16896.16 21013.25 17388.52 18894.51

SMT-LIB (7-var to 9-var)
#SI 13 12 - - - 12 11 11 16 14

AVG .T 308.14 377.32 - - - 339.90 541.53 588.33 260.53 329.91
AVG .N 53971.24 58675.94 - - - 51570.88 51470.41 62185.82 50381.12 56312.41

competitive performance in the real-world dataset, SMT-LIB dataset. Note that although the heuristics
sotd perform better than GRL-SVO(UP) on the 4-var instances, they run timeout in most instances
from 5-var due to the combinatorial explosion of the number of variable orders as shown in Figure 4c.
The NUP heuristics take a short prediction time, and the polylines in Figure 4c overlap. For example,
an instance with 7 variables leads to 7! = 5040 variable orders to project for sotd and ndrr.

4.3 Discussion on GRL-SVO(UP/NUP)

As in Table 1, GRL-SVO(UP) performs better in #SI , AVG.T , AVG.N compared to GRL-
SVO(NUP). It is understandable because GRL-SVO(UP) receives more real-world information from
the projected polynomial set at each step. As in Figure 4c, GRL-SVO(NUP) is faster than GRL-
SVO(UP). The inference time of GRL-SVO(NUP) is almost unchanged with the increase of variables,
but there is an obvious increase of GRL-SVO(UP). As the number of variables grows, the time of
project and interactions between GRL-SVO(UP) and symbolic computation tools will be critical. It
is also the bottleneck of UP heuristics like GRL-SVO(UP), gmods, sotd, and ndrr. Therefore, the
application scenarios corresponding to the two models will be different.

Internalizing GRL-SVO(UP) into the CAD process is a promising option. As project is an algorithm
component of CAD, internalization will help reuse the results of projection and reduce the interaction
time. GRL-SVO(NUP) is cheap and can extract information directly from polynomial representations.
It might be applied to other tools that do not use the entire CAD process. As a canonical example,
the automated reasoning tools like Z3 [5], YICES2 [6], CVC5[39], utilize project partially only for
generating lemmas when solving non-linear arithmetic problems. At the beginning of solving, they
also require a fixed variable order. For tasks that are time-critical and do not utilize full CAD in the
solving process, GRL-SVO(NUP) seems to be a better option.

5 Limitations

Our graph representation cannot embed complete information on polynomials. The associated graph
is simple and only shows the relationship between variables. Through selection, we conduct the
embedding of graph nodes, but they still ignore plenty of minutiae information, for example, the
distribution of coefficients. Besides, the lack of sufficiently large datasets is also a matter of urgency.
We can generate large amounts of random data but may lack practical instances for training. Another
slight limitation is the prediction time. Python and PyTorch are both heavy techniques. The prediction
time of GRL-SVO shown in Figure 4c is actually not much different from other heuristics.

9

6 Conclusion and Future Work

In the paper, we have proposed the first RL-based approach to suggest variable order for cylindrical
algebraic decomposition. It has two variants: GRL-SVO(UP) for LB & UP and GRL-SVO(NUP) for
LB & NUP. GRL-SVO(UP) can suggest branching variables in the CAD process; GRL-SVO(NUP)
can suggest total variable order before the CAD process. Our approaches outperform state-of-the-art
learning-based heuristics and are competitive with the best expert-based heuristics. Our RL-based
approaches also show a strong learning and generalization ability. Future work is to deploy our
approach to practical applications, such as constructing an RL-based package for MAPLE and an
algorithm component for automated reasoning tools for non-linear arithmetic solving.

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (NSFC) under
grants No.61972384 and No.62132020. Feifei Ma is also supported by the Youth Innovation Promo-
tion Association CAS under grant No.Y202034. The authors would like to thank Bican Xia, Jiawei
Liu, and the anonymous reviewers for their comments and suggestions.

References
[1] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. In Quantifier

elimination and cylindrical algebraic decomposition, pages 24–84. Springer, 1998.

[2] George E Collins. Quantifier elimination for real closed fields by cylindrical algebraic decom-
postion. In Automata theory and formal languages, pages 134–183. Springer, 1975.

[3] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008.

[4] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[5] Dejan Jovanovic and Leonardo Mendonça de Moura. Solving Non-linear Arithmetic. In IJCAR
2012, volume 7364 of Lecture Notes in Computer Science, pages 339–354. Springer, 2012.

[6] Dejan Jovanovic. Solving Nonlinear Integer Arithmetic with MCSAT. In VMCAI 2017, volume
10145 of Lecture Notes in Computer Science, pages 330–346. Springer, 2017.

[7] Fuqi Jia, Rui Han, Pei Huang, Minghao Liu, Feifei Ma, and Jian Zhang. Improving Bit-Blasting
for Nonlinear Integer Constraints. In ISSTA 2023, pages 14–25. ACM, 2023.

[8] Christopher W. Brown and James H. Davenport. The Complexity of Quantifier Elimination and
Cylindrical Algebraic Decomposition. In ISSAC 2007, pages 54–60. ACM, 2007.

[9] Christopher W Brown. Companion to the Tutorial: Cylindrical Algebraic Decomposition.
United States Naval Academy, 2004.

[10] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Efficient Projection Orders for CAD.
In ISSAC 2004, pages 111–118. ACM, 2004.

[11] Changbo Chen, James H. Davenport, François Lemaire, Marc Moreno Maza, Bican Xia,
Rong Xiao, and Yuzhen Xie. Computing the Real Solutions of Polynomial Systems with the
RegularChains Library in Maple. ACM Commun. Comput. Algebra, 45(3/4):166–168, 2011.

[12] Russell J. Bradford, James H. Davenport, Matthew England, and David J. Wilson. Optimising
Problem Formulation for Cylindrical Algebraic Decomposition. In CICM 2013, volume 7961
of Lecture Notes in Computer Science, pages 19–34. Springer, 2013.

[13] Tereso del Río and Matthew England. New Heuristic to Choose a Cylindrical Algebraic
Decomposition Variable Ordering Motivated by Complexity Analysis. In CASC 2022, volume
13366 of Lecture Notes in Computer Science, pages 300–317. Springer, 2022.

10

[14] Haokun Li, Bican Xia, Huiying Zhang, and Tao Zheng. Choosing Better Variable Orderings
for Cylindrical Algebraic Decomposition via Exploiting Chordal Structure. J. Symb. Comput.,
116:324–344, 2023.

[15] Matthew England and Dorian Florescu. Comparing Machine Learning Models to Choose the
Variable Ordering for Cylindrical Algebraic Decomposition. In CICM 2019, volume 11617 of
Lecture Notes in Computer Science, pages 93–108. Springer, 2019.

[16] Changbo Chen, Zhangpeng Zhu, and Haoyu Chi. Variable Ordering Selection for Cylindrical
Algebraic Decomposition with Artificial Neural Networks. In ICMS 2020, volume 12097 of
Lecture Notes in Computer Science, pages 281–291. Springer, 2020.

[17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[18] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Algebraic Decomposition
I: The Basic Algorithm. SIAM J. Comput., 13(4):865–877, 1984.

[19] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR 2017. OpenReview.net, 2017.

[20] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR 2018. OpenReview.net, 2018.

[21] Dongkwan Kim and Alice Oh. How to Find Your Friendly Neighborhood: Graph Attention
Design with Self-Supervision. In ICLR 2021. OpenReview.net, 2021.

[22] Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In NIPS 1999, pages
1057–1063. The MIT Press, 1999.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602, 2013.

[24] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combi-
natorial Optimization with Reinforcement Learning. In ICLR 2017. OpenReview.net, 2017.

[25] Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can Q-Learning with
Graph Networks Learn a Generalizable Branching Heuristic for a SAT Solver? In NIPS 2020.
OpenReview.net, 2020.

[26] Yao Qin, Hua Wang, Shanwen Yi, Xiaole Li, and Linbo Zhai. A Multi-Objective Reinforce-
ment Learning Algorithm for Deadline Constrained Scientific Workflow Scheduling in Clouds.
Frontiers of Computer Science, 15:1–12, 2021.

[27] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforce-
ment Learning. In ICML 2016, volume 48 of JMLR Workshop and Conference Proceedings,
pages 1928–1937. JMLR.org, 2016.

[28] William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

[29] Russell J. Bradford, James H. Davenport, Matthew England, Scott McCallum, and David J.
Wilson. Truth Table Invariant Cylindrical Algebraic Decomposition. J. Symb. Comput., 76:1–35,
2016.

[30] Chenqi Mou, Yang Bai, and Jiahua Lai. Chordal Graphs in Triangular Decomposition in
Top-Down Style. J. Symb. Comput., 102:108–131, 2021.

[31] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT Solver from Single-Bit Supervision. In ICLR 2019. OpenReview.net,
2019.

11

[32] Minghao Liu, Fan Zhang, Pei Huang, Shuzi Niu, Feifei Ma, and Jian Zhang. Learning the
Satisfiability of Pseudo-Boolean Problem with Graph Neural Networks. In CP 2020, volume
12333 of Lecture Notes in Computer Science, pages 885–898. Springer, 2020.

[33] Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial Optimization and Reasoning with Graph Neural Networks. In IJCAI
2021, pages 4348–4355. ijcai.org, 2021.

[34] Zongyan Huang, Matthew England, David J. Wilson, James H. Davenport, Lawrence C. Paulson,
and James P. Bridge. Applying Machine Learning to the Problem of Choosing a Heuristic to
Select the Variable Ordering for Cylindrical Algebraic Decomposition. In CICM 2014, volume
8543 of Lecture Notes in Computer Science, pages 92–107. Springer, 2014.

[35] Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Mach. Learn., 8:229–256, 1992.

[36] Matthias Fey and Jan E. Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[37] Matthew England, David J. Wilson, Russell J. Bradford, and James H. Davenport. Using
the Regular Chains Library to Build Cylindrical Algebraic Decompositions by Projecting and
Lifting. In ICMS 2014, volume 8592 of Lecture Notes in Computer Science, pages 458–465.
Springer, 2014.

[38] François Lemaire, Marc Moreno Maza, and Yuzhen Xie. The RegularChains library in MAPLE.
SIGSAM Bull., 39(3):96–97, 2005.

[39] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. CVC5: A
Versatile and Industrial-Strength SMT Solver. In TACAS 2022, volume 13243 of Lecture Notes
in Computer Science, pages 415–442. Springer, 2022.

[40] Scott McCallum. An Improved Projection Operation for Cylindrical Algebraic Decomposition.
In EUROCAL 1985, volume 204 of Lecture Notes in Computer Science, pages 277–278. Springer,
1985.

[41] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 257–266. ACM, 2019.

[42] Shyam A. Tailor, Felix L. Opolka, Pietro Liò, and Nicholas D. Lane. Adaptive filters and
aggregator fusion for efficient graph convolutions. CoRR, abs/2104.01481, 2021.

[43] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

[44] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[45] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. CoRR, abs/1711.07553,
2017.

[46] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NIPS 2017, pages 1024–1034, 2017.

[47] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. In Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021, pages 1548–1554. ijcai.org, 2021.

12

A Cylindrical Algebraic Decomposition

A.1 Detailed Description

A.1.1 Polynomial

N and R denote the set of natural numbers and real numbers, respectively. Let x = {x1, · · · , xn} be
the variable set, where x1 < x2 < · · · < xn is the order of the variables.

A term ti is a finite production of powers of variables, i.e. ti =
∏n

j=1 x
di,j

j , where di,j ∈ N as the
degree of the variable xj . We denote

∑n
j=1 di,j as the degree of the term.

A polynomial P ∈ R[x] of general form is a finite sum of terms, i.e., P =
∑m

i=1 citi, where ci ∈ R is
coefficient of term ti. In addition, the equivalent nested form of polynomial Q ∈ R[x1, · · · , xi−1, xi],

Q = amxdm
i + am−1x

dm−1

i + · · ·+ a0,

where 0 < d1 < · · · < dm, and the coefficients ai are polynomials in R[x1, · · · , xi−1] with am ̸= 0.
We denote xi as main variable, dm as degree, am as leading coefficient of the polynomial Q. For
example, given a variable order x1 < x2 < x3,

p(x1, x2, x3) = x1x2x
2
3 + x2x

2
3 + x2

3 + x1x3 + x2x3

= ((x1 + 1)x2)x
2
3 + (x1 + x2)x3.

The degree of x1x2x
2
3, x2x

2
3, x2

3, x1x3, x2x3 are 4,3,2,2,2, while that of the polynomial p(x1, x2, x3)
is 2, and leading coefficient is ((x1 + 1)x2).

A.1.2 Cylindrical Algebraic Decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition algorithm of a set of polynomials
in ordered Rn space resulting in finite sign-invariant regions, named cells. After CAD, it can query
a limited set of sample points in corresponding cells. Due to the sign of each polynomial is either
always positive, always negative, or always zero on any given cell, one can determine the sign of the
polynomials at any point in Rn using this set of sample points.

Note that computing the CAD of a set of univariate polynomials (one-dimensional CAD) is quite
simple. We only need to calculate all the real roots of the polynomials, and the cells are precisely these
real roots themselves along with the intervals they divide. This leads to a motivation for computing the
CAD of a set of polynomials with n variables, which involves recursively reducing the construction of
a k-dimensional CAD to the construction of a (k− 1)-dimensional CAD, until reaching the recursive
boundary of computing a one-dimensional CAD, and then constructing higher-dimensional CAD
from lower-dimensional CAD continuously.

Formally, the algorithm consists of three components: projection, root isolation, and lift. A diagram is
shown in Figure 5. The project phase eliminates the variables of a polynomial set Pn with n variables
by a strictly defined projection operator proj in a given order x1 < x2 < · · · < xn until only one
variable x1 left, resulting in polynomial sets P1, · · · , Pn−1, where Pi = proj(Pi+1) contains only
the variables x1, · · · , xi. The projection operator is carefully designed to ensure that the CAD of
Pi can be constructed from the CAD of Pi−1. Then the root isolate and lift phases are alternated
successively. To make the following statement compatible, we replace the notation of P1 with P1,1.
Let N(i) denote the number of cells generated by Pi (also equals to the number of sample points).
We set N(0) to be 1. The root isolate phase will output all roots of a univariate polynomial set. When
i = 1, the roots of P1,1 split R into N(1) cells. Let SPi,k, 1 ≤ k ≤ N(i − 1) denote the set of
sample points of the cells generated by Pi,k and SPi denote the union of SPi,k. Actually, SPi is
precisely the sample points of the cells generated by Pi and |SPi| = N(i). The lift phase assigns
each sample point si,k of SPi to variables of Pi+1, i.e., (x1, x2, · · · , xi) ← si,k, 1 ≤ k ≤ N(i),
to polynomials in Pi+1, resulting in univariate polynomial sets Pi+1,k, 1 ≤ k ≤ N(i). Invoking
the root isolate phase will obtain each SPi+1,k and finally their union SPi+1. After repeating root
isolate and lift for n− 1 times, we achieve the cells of Pn characterized by the sample points SPn.
The paper provides a concrete example of the CAD process in Example 2.1.

The projection operator proj plays a key role in the CAD process, which carries enough information
to ensure that the CAD of any set of polynomials P can be constructed from the CAD of proj(P).

13

𝑃𝑃𝑛𝑛: {𝑓𝑓 ∈ ℝ[𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛]}

𝑃𝑃𝑛𝑛−1: {𝑓𝑓 ∈ ℝ[𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛−1]}

𝑃𝑃1: {𝑓𝑓 ∈ ℝ[𝑥𝑥1]}

⋯

𝑆𝑆𝑃𝑃𝑛𝑛: {𝑝𝑝 ∈ ℝ𝑛𝑛}

𝑆𝑆𝑃𝑃𝑛𝑛−1: {𝑝𝑝 ∈ ℝ𝑛𝑛−1}

𝑆𝑆𝑃𝑃1: {𝑝𝑝 ∈ ℝ}

⋯

Project

Project

Project

Lift

Lift

Lift

Root Isolation

Figure 5: The process of CAD.

The first projection operator that satisfies the above property is designed by George Collins[2], which
is too complicated, however. Here, we introduce another classic simplified projection operator, the
McCallum Projection Operator[40]. It is the default projection operator used in the ProjectionCAD
package[37] and our architecture of GRL-SVO(UP).

In mathematics, the resultant is used to determine whether two polynomials have common zeros,
while the discriminant is used to determine if one polynomial has repeated roots. Both these two
tools are crucial in the construction of the projection operator. We first introduce the definitions of the
resultant and the discriminant, and then the McCallum Projection Operator is detailed in Definition 5.
Definition 3 (Resultant). Let f1, f2 be two polynomials in R[x1, . . . , xn]. Assume that

f1 = amxdm
n + am−1x

dm−1
n + · · ·+ a0,

f2 = bnx
dn
n + bn−1x

dn−1
n + · · ·+ b0.

The resultant of f1 and f2 with respect to xn, Res(f1, f2, xn), is:

Res(f1, f2, xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 · · · a0
am am−1 · · · a0

. . .
. . .

. . .
. . .

am am−1 · · · a0
bn bn−1 · · · b0

bn bn−1 · · · b0
. . .

. . .
. . .

. . .
bn bn−1 · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Definition 4 (Discriminant). Let f be a polynomial in R[x1, . . . , xn]. Assume that

f = amxdm
n + am−1x

dm−1
n + · · ·+ a0.

The discriminant of f with respect to xn, Dis(f, xn), is:

Dis(f, xn) =
(−1)

m(m−1)
2

am
Res(f,

∂f

∂xn
, xn).

Definition 5 (McCallum Projection Operator). Let F = {f1, . . . , fk} be a set of polynomials in
R[x1, . . . , xn]. The McCallum projection operator, projm, is a mapping that maps F to projm(F),
where projm(F) is the set of polynomials in R[x1, . . . , xn−1] defined by:

• The coefficients of each polynomial in F ,

• The discriminant of each polynomial in F with respect to xn,

• The resultant of any two different polynomials fi, fj in F with respect to xn.

Another important component in the CAD algorithm is the real root isolation algorithm, which
accepts a set of univariate polynomials and results in all the roots (actually, the arbitrarily small
intervals that contain each root) of the univariate polynomials. This can be accomplished by invoking

14

the subalgorithm RootIsolation multiple times and adjusting the upper and lower bounds of the initial
interval for each univariate polynomial.

We provide the specifics of the algorithm RootIsolation in Algorithm 2. Before that, some necessary
concepts like the sign variation, the 1-norm, and the Sturm sequence are introduced, which play a
role in the algorithm RootIsolation.

Definition 6 (Sign Variation). For a sequence of non-zero real numbers c: c1, c2, · · · , ck, the sign
variation of c, V (c), is:

V (c) = |{i|1 ≤ i < k&cici+1 < 0}|.
For a sequence of univariate polynomials S: f1, f2, · · · , fk, the sign variation of S at real number a,
Va(S) is:

Va(S) = V (s),

where s is the real number sequence f1(a), f2(a), · · · , fk(a).
Definition 7 (1-norm). Given a univariate polynomial f = amxdm + am−1x

dm−1 + · · ·+ a0. The
1-norm of f , ||f ||1, is:

||f ||1 =

m∑
i=0

|ai|.

Algorithm 1 SturmSequence
Input : f : a univariate polynomial
Output: sturm: the Sturm Sequence of f

1: sturm← []
2: h← f
3: g ← f ′

4: r ← −rem(g, h, x)
5: while r ̸= 0 do
6: Append r to sturm
7: h← g
8: g ← r
9: r ← −rem(g, h, x)

10: end while
11: return sturm

Algorithm 2 RootIsolation
Input : f : a univariate polynomial
Output: (a, b): f has a real root in (a, b) where a, b are rational numbers

1: S ← SturmSequence(f)
2: a← −||f ||1
3: b← ||f ||1
4: if Va(S) = Vb(S) then
5: return failure
6: end if
7: while Va(S)− Vb(S) > 1 do
8: c← a+b

2

9: if Va(S) > Vc(S) then
10: b← c
11: else
12: a← c
13: end if
14: end while
15: return (a, b)

15

102 103 104

Number of Cells

100

101

102

103

Ti
m

e
(s

)

(a)

102 103 104

Number of Cells

101

102

103

104

105

M
em

or
y

Us
ag

e
(M

B)

(b)

Figure 6: The relationships between the number of cells and other important indicators. Figure 6a and
Figure 6b respectively correspond to the relationships between the number of cells and computation
time and the relationships between the number of cells and memory usage. Five hundred instances of
3-var are randomly selected from the random dataset to construct the two scatterplots.

A.2 Case Study: Discriminant

Actually, whether x2 + bx + c = 0 has a real root is equivalent to checking the satisfiability of
∃x.x2 + bx + c = 0. Let’s elaborate on why the quantified formula ∃x.x2 + bx + c = 0 can
be transformed into an equivalent quantifier-free formula b2 − 4c ≥ 0 via CAD techniques. By
feeding the CAD algorithm with the set of polynomial {x2 + bx+ c} and an order b ≺ c ≺ x, CAD
decomposes R3 into 9 cells:

b = b

c < b2

4

x < − b
2 −

√
b2−4ac

2 ,

b = b

c < b2

4

x = − b
2 −

√
b2−4ac

2 ,

b = b

c < b2

4

x = − b
2 +

√
b2−4ac

2 ,
b = b

c < b2

4

x > − b
2 +

√
b2−4ac

2 ,

b = b

c < b2

4

− b
2 −

√
b2−4ac

2 < x < − b
2 +

√
b2−4ac

2 ,
b = b

c = b2

4

x < − b
2 ,

b = b

c = b2

4

x = − b
2 ,

b = b

c = b2

4

x > − b
2 ,

b = b

c > b2

4

x = x.

Note that the sign of the polynomial x2 + bx+ c is zero if and only if (b, c, x) belongs to cells:
b = b

c = b2

4

x = − b
2 ,

b = b

c < b2

4

x = − b
2 −

√
b2−4ac

2 ,

b = b

c < b2

4

x = − b
2 +

√
b2−4ac

2 .

So we know that there must exist x such that x2 + bx+ c = 0 when b2 − 4c > 0 or b2 − 4c = 0, and
it is impossible to find a x such that x2 + bx+ c = 0 when b2 − 4c < 0. So, we can conclude the
quantified formula ∃x.x2 + bx+ c = 0 is equivalent to the quantifier-free formula b2 − 4c ≥ 0. In
fact, similar processes can be abstracted into a universal algorithm to solve the quantifier elimination
problems in the real closed field. See [2] for more details.

A.3 Relation of #Cells And Efficiency

As in Figure 6, there is a strong correlation between the number of cells produced and the computation
time, as well as the memory usage. When the number of cells increases, the computation time and
the memory usage also increase.

16

Table 2: Parameters of randpoly function.
Parameter Description

vars List or set of variables
coeffs Generator of coefficients
expons Generator of exponents
terms Number of terms
degree Total degree for a dense polynomial
dense The polynomial is to be dense

homogeneous The polynomial is to be homogeneous

Table 3: Parameters of random dataset generation.
#vars coeffs expons terms

3 rand(-100..100) rand(0..2) rand(3..6)
4 rand(-100..100) rand(0..2) 3
5 rand(-100..100) rand(0..2) 3
6 rand(-100..100) rand(0..2) 3
7 rand(-100..100) rand(0..2) 3
8 rand(-100..100) rand(0..2) 3
9 rand(-100..100) rand(0..2) 3

B Experiment Setup

B.1 Datasets

B.1.1 Random Dataset

We generated the random polynomial set via the randpoly(vars, opts) function in MAPLE, where
opts are specifying properties like coeffs, expons, terms, degree, dense, homogeneous. Table 2 lists
the descriptions of parameters. We also show an example of random polynomial generation.

For example, randpoly([x1, x2, x3], terms = 4, expons = rand(0..2), coeffs = rand(-100..100)) will
generate a polynomial,

56x1x
2
2x

2
3 − 4x2

1x2x3 + 37x1x
2
2x3 − 32x1x2x

2
3,

where rand(a..b) is a random number generator in the range of [a, b]. Note that the random polynomial
is sparse and non-homogeneous by default. We also ignore the parameter degree, because it is only
valid in the case of dense random polynomial generation.

Table 3 lists the parameters for randpoly for generating the random dataset, where #vars = n
corresponds to a list of variables [x1, x2, · · · , xn]. The random number for terms is generated with
Python’s random library outside the MAPLE script. If the polynomial produced by MAPLE lacks a
constant term, one is added, ranging from -100 to 100, using the same Python library.

B.1.2 SMT-LIB Dataset

The SMT-LIB dataset is built by the instances that only involve real constraints in the QF_NRA
category of the SMT-LIB [17]. Using the Python interface of Z3[5], we parse the instances to extract
the polynomial sets, discarding any instances that cannot be correctly parsed. Then we categorize the
processed polynomial sets based on the number of variables and finally build the SMT-LIB dataset,
containing instances ranging from 3 to 9 variables with counts {5908, 1371, 131, 123, 318, 41, 24}.
Furthermore, we observed that there are numerous polynomial sets in the dataset that yield the same
result after factoring out the irreducible factors, which are indistinguishable from CAD algorithms.
So we cluster them and only one instance of each clustering is included in the dataset, resulting in
{1777, 387, 17} instances for 3-var, 4-var to 6-var and 7-var to 9-var, respectively.

B.2 Neural Networks

Table 4 lists the hyper-parameters of the GNN encoder, the networks used in GRL-SVO(NUP)’s
architecture to transform the original embeddings linearly and simulate the project process, actor
network, critic network, and RL architecture.

C Ablation Experiments

C.1 The Effect of Features

There are 14 different features to characterize a variable listed in Table 5. We conduct an experiment
on the effect of features. We make masks for these features, where the mask will set the features that
we do not care about as zero.

17

Table 4: The hyper-parameters.
Category Parameter Value

GNN The number of GNN layers 4
GNN The number of Intermediate layer features 256
GNN Aggregation method mean
GNN Use bias True

NUP_transform The size of MLP layer features [14, 256, 128, 64]
NUP_simulate The size of MLP layer features [128, 512, 256, 64]

Actor The size of MLP layer features [256, 512, 128, 1]
Critic The size of MLP layer features [256, 512, 128, 1]
RL Batch size 32
RL Learning rate 2e-5
RL Training maximum epoch 100
RL Reward normalization factor (M) 50000

Table 5: The original embedding of a variable in an associated graph.
Symbol Description
E1(x) Number of other variables occurring in the same polynomials
E2(x) Number of polynomials containing x
E3(x) Maximum degree of x among all polynomials
E4(x) Sum of degree of x among all polynomials
E5(x) Maximum degree of leading coefficient of x among all polynomials
E6(x) Maximum number of terms containing x among all polynomials
E7(x) Maximum degree of all terms containing x
E8(x) Sum of degree of all terms containing x
E9(x) Sum of degree of leading coefficient of x
E10(x) Sum of number of terms containing x
E11(x) Proportion of x occurring in polynomials
E12(x) Proportion of x occurring in terms
E13(x) Maximum number of other variables occurring in the same term
E14(x) Maximum number of other variables occurring in the same polynomial

1. One-hot masks (test the effect of a single feature), for example, to test the effect of E1, the
corresponding one-hot mask is (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Multiplying with input
feature will result in a feature vector with only E1 while others are 0.

2. Operation masks (test the effect of different operations in features) will group features
according to their operation type (maximum, sum, and proportion). Note that we treat
E1, E2 as sub-features utilizing sum operation.

• Max: E3, E5, E6, E7, E13, E14

• Sum: E1, E2, E4, E8, E9, E10

• Prop: E11, E12

3. Object masks (test the effect of different objects in features) will group features according
to their target objects (variable, term, and polynomials).

• Var: E1, E3, E4, E13, E14

• Term: E5, E6, E7, E8, E9, E10, E12

• Poly: E2, E11

4. Because degree is a common feature that most heuristics are concerned with, testing the
effect of degree is necessary. Degree masks will group features according to whether they
utilize degree.

• Degree: E3, E4, E5, E7, E8, E9

• NoDegree: E1, E2, E6, E10, E11, E12, E13, E14

Table 6 and Table 7 show the results of different single, operation, object, and degree features. We can
conclude that only one feature is not enough. The sum, term, and degree may be the most important
factors, as using Sum/Term/Degree features will result in the largest difference in performance.

18

Table 6: The performance of different single features.
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

NUP
#SI 1459 1458 1467 1635 1560 1589 1461 1647 1613 1670 1462 1670 1459 1459

AVG .T 252.02 250.85 247.38 151.71 198.43 186.27 251.03 157.77 175.60 147.61 249.17 147.61 252.02 252.02
AVG .N 2874.94 2859.65 2852.56 2246.06 2642.66 2592.94 2861.09 2478.10 2515.79 2508.01 2857.07 2508.04 2874.94 2874.97

UP
#SI 1459 1540 1596 1693 1632 1627 1461 1687 1667 1706 1540 1706 1459 1459

AVG .T 252.33 211.51 184.73 121.36 163.03 165.65 251.22 137.31 145.16 129.87 211.53 129.86 252.23 252.24
AVG .N 2874.97 2743.79 2755.63 2174.76 2559.63 2531.44 2860.81 2394.39 2465.49 2386.24 2743.79 2386.24 2874.87 2874.90

Table 7: The performance of different feature classifications.
Operation Object Degree

Max Sum Prop Var Term Poly Degree NoDegree

NUP
#SI 1640 1754 1670 1635 1726 1462 1723 1685

AVG .T 159.42 101.21 147.48 152.11 116.39 249.17 114.95 141.65
AVG .N 2444.09 2145.71 2496.74 2250.21 2300.32 2857.07 2177.08 2468.04

UP
#SI 1716 1788 1707 1698 1751 1540 1770 1715

AVG .T 119.80 81.93 129.53 119.32 102.07 211.55 91.31 125.53
AVG .N 2346.79 2082.22 2369.74 2184.08 2232.74 2743.79 2103.21 2359.62

C.2 The Effect of Network Size

We conduct an experiment on the effect of network size, and the results are listed in Table 8. The
number of GNN layers (for short, #G) ∈ {1, 2, 3, 4, 5} and the number of Intermediate layer features
(for short, #I) ∈ {32, 64, 128, 256, 512} where Actor and Critic will keep the same proportion 2:4:1.
Note that the input dimension of Actor and Critic is the same as #I. For example, if #I = 32, then the
dimension of the Actor and Critic are both [32, 64, 16, 1]. Elements in the following tables are #SI in
the validation set and #SI in the testing set, respectively.

C.3 The Effect of Network Structure

We conduct an experiment on the effect of network structure. We build two models: one without
embedding (NO_EMB), and the other without edge (NO_EDGE). Note that the GNN updating
operator we used is x′

i = W1xi + W2

∑
j∈N (i) ej,i · xj + b. As edges are not considered in

NO_EDGE, actually, the operator will be x′
i = W1xi + b. So NO_EDGE is equivalent to MLP.

For NO_EMB, #SI = 1459,AVG .T = 252.03,AVG .N = 2874.91. Table 9 shows the result
of NO_EDGE on testing set. The performance of NO_EMB drops dramatically while that of
NO_EDGE is good, and GRL-SVO can still outperform such models. We explore the performance of
NO_EDGE(NUP) under different sizes of parameters with GRL-SVO(NUP). MLP_4_512 has twice
as many parameters as ours. GRL-SVO(NUP) can outperform all MLPs as shown in Figure 7. It is
the advantage of the graph structure where a variable can grasp neighbor information.

C.4 The Effect of Reward Normalization Factor (M)

We make an ablation experiment on M that we train the models with M=10000, 20000, 50000(ours),
100000, and without M . Note that if there is no M , the reward (the number of cells) will be a
relatively large integer. As shown in Table 10, M is necessary. The first number is the result of the
validation set, while the second is the result of the testing set.

C.5 The Effect of GNN Architecture

We conduct experiments using different GNN architectures available in PyTorch Geometric that have
similar formal parameters as the GNN architecture we used: ClusterGCNConv[41], EGConv[42],

Table 8: The performance (#SI) of GRL-SVO(NUP) and GRL-SVO(UP).
GRL-SVO(NUP) GRL-SVO(UP)

32 64 128 256 512 32 64 128 256 512
1 1754,1737 1756,1741 1771,1765 1770,1765 1764,1765 1767,1759 1768,1758 1777,1774 1789,1789 1790,1793
2 1771,1764 1762,1747 1765,1763 1767,1766 1764,1768 1773,1763 1780,1777 1778,1776 1786,1793 1788,1794
3 1765,1758 1756,1744 1766,1758 1761,1766 1770,1769 1781,1767 1783,1778 1782,1785 1788,1794 1786,1793
4 1765,1761 1768,1761 1764,1762 1766,1765 1769,1765 1775,1766 1784,1775 1780,1779 1792,1794 1788,1793
5 1768,1762 1765,1763 1771,1759 1766,1761 1763,1762 1779,1779 1784,1781 1788,1797 1792,1790 1791,1790

19

Table 9: The performance of NO_EDGE under different sizes.
MLP_2_256 MLP_3_256 MLP_4_256 MLP_4_512

#SI 1763 1763 1764 1756
AVG.T 97.89 98.43 97.68 99.08
AVG.N 2132.33 2140.18 2129.33 2148.64

1 10 20 30 40 50 60 70 80 90 100
Epochs

900

1000

1100

1200

1300

1400

1500

Nu
m

be
r o

f T
im

eo
ut

 In
st

an
ce

s

GRL-SVO(NUP)
MLP_2_256
MLP_3_256
MLP_4_256
MLP_4_512

(a) On training set

1 10 20 30 40 50 60 70 80 90 100
Epochs

100

120

140

160

180

Nu
m

be
r o

f T
im

eo
ut

 In
st

an
ce

s

GRL-SVO(NUP)
MLP_2_256
MLP_3_256
MLP_4_256
MLP_4_512

(b) On validation set

Figure 7: The training process of NO_EDGE and GRL-SVO(NUP).

FiLmConv[42], LEConv[42], GATConv [20], GATv2Conv [43], GeneralConv [44], ResGatedGraph-
Conv [45], SageConv [46], TransformerConv [47]. We could observe from Table 11 that each graph
neural network (GNN) is capable of effectively learning this problem. Our approach is not reliant on
the specific GNN structure.

C.6 The Effect of Coefficient

With regard to the choice of variable order, the current works do not consider coefficient (both
Expert-Based or Learning-Based heuristics). Some experts in Symbolic Computation believe that the
reason may be related to the calculation of CAD projection: CAD projection uses two polynomials to
make a resultant (Definition 3) to eliminate a common variable, so it first depends on the common
variable set of these two polynomials (which does not involve coefficient); secondly, the amount of
calculation generally depends on the degree of public variables because the degree determines the size
of the resultant matrix. For practical instances, the variation range of the coefficients is uncontrollable,
which will increase the difficulty of Learning-Based design and training the neural network. The
impact of the coefficient on the problem is complex. We provide some intuition through Figure 8.

(a) {x3y + 4x2 + xy,−x2 + 2xy − 1}, x ≺ y : 13, y ≺ x : 89;

(b) {x3y + 8x2 + xy,−x2 + 2xy − 1}, x ≺ y : 13, y ≺ x : 89;

(c) {x3y − 4x2 + xy,−x2 + 2xy − 1}, x ≺ y : 45, y ≺ x : 125;

(d) {x3y + 4x2 + xy, x2 + 2xy − 1}, x ≺ y : 29, y ≺ x : 101;

(e) {−x3y + 4x2 + xy,−x2 + 2xy − 1}, x ≺ y : 45, y ≺ x : 97.

Table 10: The performance of different M .
NO_M 1000 10000 50000 (ours) 100000

NUP
#SI 1677, 1666 1672, 1669 1764, 1769 1766, 1765 1766, 1765

AVG .T 133.06, 142.19 140.28, 142.56 93.03, 95.57 91.68, 97.78 93.46, 97.51
AVG .N 2230.65, 2214.20 2250.11, 2222.47 2134.50, 2136.30 2129.45, 2142.98 2147.43, 2157.56

UP
#SI 1182, 1196 1726, 1723 1789, 1795 1792, 1795 1791, 1793

AVG .T 387.16, 381.11 109.12, 115.13 73.86, 80.20 72.02, 79.57 73.68, 79.86
AVG .N 3125.50, 3101.32 2100.53, 2097.48 2058.08, 2081.92 2062.09, 2075.23 2058.05, 2070.75

20

Table 11: The performance of GRL-SVO(NUP) with different GNN architectures.
ClusterGCNConv EGConv FiLmConv LEConv GATConv

#SI 1767 1765 1760 1761 1726
AVG.T 94.26 98.53 96.49 96.76 119.72
AVG.N 2144.66 2177.32 2136.67 2151.75 2166.78

GATv2Conv GeneralConv ResGatedGraphConv SageConv TransformerConv
#SI 1762 1768 1759 1765 1769

AVG.T 104.14 95.17 96.25 96.74 94.45
AVG.N 2184.86 2132.81 2146.59 2131.22 2134.51

(a) (b) (c) (d) (e)

Figure 8: The results of slight changes of coefficients.

The number of cells of (a) and (b) are the same, while (c), (d), and (e) are different. But the best
variable order is the same (x ≺ y) in these cases. To a certain extent, in these cases, the coefficient
mostly affects the number of cells. We conduct an experiment on coefficient that we have randomly
modified the coefficients (in [-100, 100]) of 1000 instances randomly selected from a 3-var testing set.
Since the coefficients were the only modification made, we used the original variable order generated
from the unaltered instances. Our models continue to outperform other heuristics, as demonstrated
by Table 12. We observe a slight decline in the performance of all heuristics, indicating that the
coefficient also plays a significant role as a parameter (although it may not be the most crucial one).

D Additional Results

D.1 Results Under Other Criteria

Assume T and N denote the running time and number of cells. COMAVG.T and COMAVG.N
denote the average of T and N of the instances that all heuristics solved within the time limit. Since
the sotd and ndrr heuristics are not applicable to most instances with the number of variables more
than 5, we remove the comparison with these two heuristics on the results of the new criteria.

There are 1325, 292, 142, 106, 84, 103, and 87 common instances that all heuristics except sotd and
ndrr solved within the time limit for the random dataset from 3-var to 9-var; and for the SMT-LIB
dataset, 1670, 354, 9 instances for 3-var, 4-var to 6-var and 7-var to 9-var, respectively. Table 13
shows the results and the best scores are bolded. We can observe that GRL-SVO still achieves a
relatively good performance under the new criteria.

D.2 Performance of Fine-Tuning

As GRL-SVO(UP) has demonstrated strong generalization abilities and achieved the best performance
on almost all datasets, there is still room for further improvement in the generalization capabilities
of GRL-SVO(NUP). So, we further investigate the performance of GRL-SVO(NUP) after fine-

Table 12: The performance of different heuristics after the coefficients are randomly modified.
brown triangular EMLP sotd ndrr gmods GRL-SVO(NUP) GRL-SVO(UP)

#SI 831 762 855 898 842 867 892 912
AVG.T 155.42 212.50 125.54 79.73 141.29 100.30 79.96 64.89
AVG.N 2380.67 2606.40 2353.11 2065.13 2288.08 2162.19 2100.57 2023.58

21

Table 13: The performance of different heuristics under the new criteria. The dash “-” indicates that
the method does not support the category.

Categories NUP UP
EB LB EB LB

brown triangular EMLP PVO(brown) PVO(triangular) GRL-SVO(NUP) gmods GRL-SVO(UP)

3-var(test) COMAVG .T 36.45 48.77 34.08 - - 23.28 22.52 17.68
COMAVG .N 1678.48 1968.18 1656.93 - - 1474.59 1489.72 1420.41

4-var COMAVG .T 24.25 14.07 - 23.22 13.75 20.50 12.48 13.82
COMAVG .N 2286.79 2476.00 - 2227.53 2306.30 2018.79 1730.37 1739.16

5-var COMAVG .T 27.90 32.51 - 27.36 30.26 31.36 19.33 15.82
COMAVG .N 4624.49 5222.65 - 4355.15 4866.49 4298.32 3415.94 3340.59

6-var COMAVG .T 52.71 38.95 - 56.23 40.57 38.38 32.67 22.98
COMAVG .N 7687.28 6897.06 - 7761.30 6733.09 6281.09 5440.62 4278.75

7-var COMAVG .T 58.55 51.96 - - - 50.21 38.41 30.15
COMAVG .N 9785.12 9055.57 - - - 8731.50 6826.24 5810.71

8-var COMAVG .T 102.45 118.83 - - - 91.54 67.18 69.62
COMAVG .N 15484.69 17655.02 - - - 14730.24 11053.10 12075.62

9-var COMAVG .T 137.26 169.25 - - - 123.67 98.77 96.90
COMAVG .N 20045.44 23814.45 - - - 18132.95 16094.36 15995.05

SMT-LIB (3-var) COMAVG .T 10.41 12.07 31.72 - - 10.66 9.47 9.67
COMAVG .N 3234.61 3746.72 6391.53 - - 2906.43 2736.89 2815.23

SMT-LIB (4-var to 6-var) COMAVG .T 39.75 41.06 - 36.23 39.41 34.21 28.00 29.42
COMAVG .N 16839.63 16815.20 - 14730.58 15160.26 12977.31 10847.26 12156.08

SMT-LIB (7-var to 9-var) COMAVG .T 43.57 43.55 - - - 17.55 36.78 41.99
COMAVG .N 17169.67 17169.67 - - - 6149.89 12669.22 14919.67

Table 14: The performance of NUP heuristics, with the performance of GRL-SVO(NUP) after
fine-tuning. The dash “-” indicates that the method does not support the category.

Categories NUP
EB LB

brown triangular EMLP PVO(brown) PVO(triangular) GRL-SVO(NUP)

3-var(test)
#SI 1620 1504 1686 - - 1772

AVG .T 170.63 227.60 140.06 - - 94.07
AVG .N 2421.18 2663.09 2384.29 - - 2157.92

4-var
#SI 415 376 - 408 392 456

AVG .T 352.87 394.71 - 360.33 376.71 298.74
AVG .N 5258.57 5539.73 - 5338.45 5536.28 5060.19

5-var
#SI 236 202 - 242 218 253

AVG .T 435.64 495.34 - 419.50 466.47 394.12
AVG .N 12465.41 13493.00 - 11932.31 12826.53 11586.65

6-var
#SI 175 149 - 180 160 204

AVG .T 500.62 551.15 - 489.57 526.80 432.64
AVG .N 20487.45 20068.22 - 20029.06 18993.53 19407.97

7-var
#SI 163 118 - - - 175

AVG .T 549.15 632.62 - - - 522.35
AVG .N 28552.12 29182.78 - - - 27779.48

8-var
#SI 173 138 - - - 177

AVG .T 601.17 653.60 - - - 594.77
AVG .N 39540.72 40902.42 - - - 38957.71

9-var
#SI 151 125 - - - 171

AVG .T 651.36 691.92 - - - 619.39
AVG .N 48860.36 50315.52 - - - 47406.84

SMT-LIB (3-var)
#SI 1770 1763 1675 - - 1768

AVG .T 20.33 23.68 83.09 - - 20.86
AVG .N 4449.79 5070.46 7654.04 - - 4014.59

SMT-LIB (4-var to 6-var)
#SI 374 372 - 372 372 365

AVG .T 83.92 87.85 - 86.22 86.88 88.42
AVG .N 24514.73 24178.54 - 22953.99 22644.04 20910.95

SMT-LIB (7-var to 9-var)
#SI 13 12 - - - 12

AVG .T 308.14 377.32 - - - 341.21
AVG .N 53971.24 58675.94 - - - 52381.82

tuning. We conduct a case study on fine-tuning, utilizing 100 instances with 4 variables. All the
hyperparameters employed during the training process were identical to those listed in Table 4.

As shown in Table 14, after fine-tuning, GRL-SVO(NUP) exhibits the best performance among all
NUP methods across all categories of the random dataset. The #SI indicator for GRL-SVO(NUP)
showed enhancements ranging from 1.00% to 14.38% across the 4-var to 9-var categories of the
random dataset, with slight improvements also observed in the SMT-LIB dataset. Although fine-tuning
can help improve the efficiency of GRL-SVO(NUP), the approach is not fit for the instances with a
relatively larger number of variables, as we need to run the most variable orders of each instance to
build a training dataset. So, for high-dimensional instances, how to fine-tune is a promising direction.

22

	Introduction
	Background and Related Work
	Cylindrical Algebraic Decomposition (CAD)
	Suggesting Variable Order for Cylindrical Algebraic Decomposition
	Graph Neural Network and Reinforcement Learning

	Method
	Problem Formulation
	GRL-SVO Overview
	Graph Representation
	Architecture
	Markov Decision Process (MDP)
	Neural Network Architecture

	State Transition without Project

	Experiments
	Setup
	Results
	Discussion on GRL-SVO(UP/NUP)

	Limitations
	Conclusion and Future Work
	Cylindrical Algebraic Decomposition
	Detailed Description
	Polynomial
	Cylindrical Algebraic Decomposition

	Case Study: Discriminant
	Relation of #Cells And Efficiency

	Experiment Setup
	Datasets
	Random Dataset
	SMT-LIB Dataset

	Neural Networks

	Ablation Experiments
	The Effect of Features
	The Effect of Network Size
	The Effect of Network Structure
	The Effect of Reward Normalization Factor (M)
	The Effect of GNN Architecture
	The Effect of Coefficient

	Additional Results
	Results Under Other Criteria
	Performance of Fine-Tuning

