
How does GPT-2 compute greater-than?: Interpreting
mathematical abilities in a pre-trained language model

Michael Hanna∗
ILLC

University of Amsterdam
m.w.hanna@uva.nl

Ollie Liu∗

University of
Southern California
zliu2898@usc.edu

Alexandre Variengien†

Redwood Research
alexandre.variengien@gmail.com

Abstract

Pre-trained language models can be surprisingly adept at tasks they were not ex-
plicitly trained on, but how they implement these capabilities is poorly understood.
In this paper, we investigate the basic mathematical abilities often acquired by
pre-trained language models. Concretely, we use mechanistic interpretability tech-
niques to explain the (limited) mathematical abilities of GPT-2 small. As a case
study, we examine its ability to take in sentences such as “The war lasted from the
year 1732 to the year 17”, and predict valid two-digit end years (years > 32). We
first identify a circuit, a small subset of GPT-2 small’s computational graph that
computes this task’s output. Then, we explain the role of each circuit component,
showing that GPT-2 small’s final multi-layer perceptrons boost the probability of
end years greater than the start year. Finally, we find related tasks that activate
our circuit. Our results suggest that GPT-2 small computes greater-than using a
complex mechanism that activates across diverse contexts.

1 Introduction

As pre-trained language models (LMs) have grown in both size and effectiveness, their abilities have
expanded to include a wide range of tasks, even without fine-tuning [6]. Such abilities can range
from translation to text classification and multi-step reasoning [52]. Yet despite heavy study of these
models [41, 42, 26], how LMs implement these abilities is still poorly understood.

In this paper, we study one such LM ability, performing mathematics. Mathematical ability has long
been of interest in natural language processing: models have been trained to perform tasks such as
simple arithmetic and word problems [51, 46]. Researchers have also fine-tuned pre-trained LMs on
these tasks, instead of training from scratch [18, 25]. Recently, however, LMs seem to have acquired
significant mathematical abilities without explicit training on such tasks [6, 34, 8, 16].

How these mathematical abilities arise in LMs is largely unknown. While studies have investigated
pre-trained LMs’ mathematical abilities [32, 38], existing work is behavioral: it explains what models
can do, rather than how they do it. Most work that delves into model internals does so using models
trained directly on such tasks: Hupkes et al. [23] probe such models for hierarchical structure, while
Liu et al. [27] and Nanda et al. [31] study toy models trained on modular addition. Some studies do
examine the structure of number representations in pre-trained models [30, 49]; however, they do not
provide a causal explanation about how these models leverage these representations to perform math.
The mechanisms underlying pre-trained LMs’ mathematical abilities thus remain unclear.

∗Work performed as part of Redwood Research’s REMIX program
†Work performed during an internship. Now at Conjecture

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Year-span prediction example (XX=17 and YY=32) with sample (in)valid output years.

To understand the roots of these mathematical abilities, we study them in GPT-2 small,1 [39] which
we show still possesses such abilities, despite its small size. This small size enables us to investigate
its mathematical abilities at a very low level. Concretely, we adopt a circuits perspective [35, 14],
searching for a minimal subset of nodes in GPT-2’s computational graph responsible for this ability.
To do so, we use fine-grained, causal methods from mechanistic interpretability, that allow us to
identify nodes in GPT-2 that belong in our circuit, and then prove our circuit’s correctness, through
carefully designed causal ablations [21]. We also use mechanistic methods to pinpoint how each
circuit component contributes to the mathematical task at hand. The end result of this case study is a
detailed description of GPT-2’s ability to perform one simple mathematical operation: greater-than.

Our investigation is structured as follows. We first define year-span prediction, a task that elicits
mathematical behavior in GPT-2 (Section 2). We give the model input like “The war lasted from
the year 1732 to the year 17”; it assigns higher probability to the set of years greater than 32. We
next search for the circuit responsible for computing this task, and explain each circuit component’s
role (Section 3). We find a set of multi-layer perceptrons (MLPs) that computes greater-than, our
operation of interest. We then investigate how these MLPs compute greater-than (Section 4). Finally,
we find other tasks requiring greater-than to which this circuit generalizes (Section 5).

Via these experiments, we accomplish two main goals. First, we find a circuit for greater-than
in GPT-2. This brings new mechanistic insights into math in pre-trained LMs, and builds on the
limited existing work on circuits in pre-trained LMs [50] by examining a new task with a wide output
space and rich structure. Second, we show that GPT-2’s greater-than relies on a complex circuit that
activates across contexts. This mechanism surpasses simple memorization, but does not reflect full
mathematical competence; it lies between memorization and generalization. We thus add nuance to
the memorization-generalization dichotomy, and take the first step towards a rich characterization of
the states in between them.

2 Year-Span Prediction in GPT-2

GPT-2’s size is ideal for low-level study, especially with potentially resource-intensive techniques
like those in Section 3.1. However, this small size poses a challenge: GPT-2 is less capable than
larger LMs, which still often struggle with mathematical tasks [29]. With this in mind, we craft a
simple task to elicit a mathematical behavior in GPT-2, and verify that GPT-2 produces said behavior.

Task and Dataset We focus on a simple mathematical operation, greater-than, framed as it might
naturally appear in text: an incomplete sentence following the template “The <noun> lasted from the
year XXYY to the year XX” (Figure 1). The model should assign higher probability to years >YY. We
automatically generate sentences using this template. We draw the nouns from a pool of 120 nouns
that could have a duration, found using FrameNet [1]; Appendix G lists the full pool of nouns. We
sample the century XX of the sentence from {11, . . . , 17}, and the start year YY from {02, . . . , 98}.

We impose the latter constraints because we want GPT-2 to be able to predict a target as it would
naturally be tokenized. However, GPT-2 uses byte-pair encoding, in which frequent strings more
often appear as single tokens [44]. Thus, more frequent years—multiples of 100 or those in the
20th century—are tokenized as single tokens; less frequent years are broken into two. This causes
a problem: GPT-2 could predict “[00]” after “[17]’, but “1700” is always tokenized as “[1700]”
in normal data and never as “[17][00]”. So, we exclude all single-token years from our year pool.
Finally, we want each example to have at least one correct and one incorrect validly tokenized answer,
so we exclude each century’s highest and lowest validly tokenized year from the pool of start years.

1Further references to GPT-2 refer to GPT-2 small

2



0 20 40 60 80
98
94
90
86
82
78
74
70
66
62
58
54
50
46
42
38
34
30
26
22
18
14
10

6
2

0

0.05

0.1

0.15

0.2

0.25
probability

GPT-2 Small Probability Heatmap

predicted year

Y
Y

0 20 40 60 80 100
Predicted Year

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

pr
ob

ab
ilit

y

GPT-2 Probabilities when YY=41

Figure 2: Left: Probability heatmap of GPT-2 for year-span prediction. Y-axis: the sentence’s start
year (YY). X-axis: the two-digit output year candidate. (X,Y): Mean probability assigned by GPT-2
to output year X given input year Y. Right: GPT-2’s average output distribution when YY=41

Qualitative Evaluation We first qualitatively analyze GPT-2’s baseline behavior on this task by
running it on a dataset of 10,000 examples. Each example has a noun randomly drawn from our
120 nouns, and a year drawn randomly from the 768 valid years from 1000 to 1899. For each YY
in {2, . . . , 98}, we take the average of GPT-2’s probability distribution over predicted years, for all
examples with start year YY; we visualize these average distributions in Figure 2.

GPT-2 appears to perform greater-than on our year-span prediction task: it creates a sharp cutoff
between invalid end years (≤ YY), and valid end years (> YY). It assigns higher probability to the
latter years, though not all of them: 15-20 years after YY, probabilities drop. The exact length of
the year-span receiving higher probability likely reflects patterns in GPT-2’s training data. In the
real-world, and likely also in GPT-2’s training data, our prompts’ nouns, such as a “war,” “dynasty”,
or “pilgrimage”, have average durations that GPT-2 may have learned, influencing its output.

Quantitative Evaluation We design two numerical measures of model performance for the purpose
of quantitative assessment. Let YY ∈ {02, . . . , 98} be the start year of our sentence, and py be the
probability of a two-digit output year y. We define the following two metrics:

• Probability difference:
∑

y>YY py −
∑

y≤YY py

• Cutoff sharpness: pYY+1 − pYY−1

Probability difference verifies that model output reflects a greater-than operation by measuring the
extent to which GPT-2 assigns higher probability to years >YY. It ranges from -1 to 1; higher is better.
In contrast, cutoff sharpness is not intrinsically connected to greater-than. However, it quantifies
an interesting behavior of GPT-2: the sharp cutoff between valid and invalid years. In doing so, it
checks that the model depends on YY, and does not produce constant (but valid) output, e.g. by always
outputting p(99) = 1. Cutoff sharpness ranges from -1 to 1; larger values indicate a sharper cutoff.

We perform this evaluation with our same 10,000-element dataset; on this dataset, GPT-2 achieves
81.7% probability difference (SD: 19.3%) and a cutoff sharpness of 6.0% (SD: 7.2%). Overall, both
qualitative and quantitative results indicate that GPT-2 performs the greater-than operation on the
year-span prediction task. For more study of GPT-2’s behavior on this task, see Appendix A.

3 A Circuit for Year-Span Prediction

Having defined our task, we now aim to understand how our model performs it internally. Since the
advent of pre-trained models, many methods, such as attention analysis [9] and probing [3], have
sought to answer this question. Probing, which trains auxiliary models (probes) to extract information
from model representations, has been particularly popular; it has been used to localize syntactic and
semantic processing in many pre-trained LMs [37, 45, 15]. However, it has significant pitfalls: most
crucially, probes can sometimes extract information from model representations that is irrelevant to
model behavior [13, 40, 22]. To avoid this issue, other work has used causal interventions [36] to
intervene on model internals, and observe changes in model behavior [20, 48, 17]. This ensures that
our insights about model internals are actually functionally relevant to model behavior.

3



In light of this, we examine GPT-2’s task performance by using causal techniques to identify a circuit:
a minimal computational subgraph of our model that suffices to compute the task [35, 14]. While
many causal methods aim to identify important components (nodes) of models [48, 11, 17], the
circuits methodology instead considers important edges. Circuits thus examine not only important
nodes, but also their interactions, and how they work together to support model behavior.

Below, we explain the path patching technique, and how to use it to find circuits (Section 3.1). We then
find a circuit for greater-than, and prove its correctness (Section 3.2). Finally, we assign semantics
to the nodes and edges of our circuit (Section 3.3). All of our experiments use the rust-circuit
library, and our code is available at https://github.com/hannamw/gpt2-greater-than. For
information on how to apply this methodology to other problems, see Appendix H.

3.1 Path Patching

To find a circuit, we use path patching, introduced by Wang et al. [50] and further described by
Goldowsky-Dill et al. [21]. This technique determines how important a model component (e.g. an
attention head or MLP) is to a task, by altering that component’s inputs and observing model behavior
post-alteration. It is much like causal mediation analysis or interchange interventions [48, 17];
however, unlike these, it allows us to constrain our intervention’s effects to a specific path.

To illustrate this, consider a model’s forward pass on its inputs as a directed acyclical graph. Its nodes
are components such as attention heads or MLPs. The input of a node v is the sum of the outputs of
all nodes with a direct edge to v. GPT-2 can be thought of as such a graph flowing from its input
tokens to its logits (and thereafter, its probabilities), as depicted in Figure 3.

In path patching, we specify new input tokens, and a path of components through which they will
reach the logits. For example, if we want to ascertain the effects of MLP 10 on the logits, we can
patch the direct path (MLP 10, logits) with new input, which we call the 01-input: “The war lasted
from the year 1701 to the year 17”. We thus alter MLP 10’s direct effects on the logits without
changing its output to the attention and MLP of layer 11 (Figure 3). If the model’s behavior (as
indicated by its logits) changes, we can be sure that this is because MLP 10 is important to that
behavior; it is not due to downstream components. Earlier methods like interchange interventions
lack this distinction—when they alter a component, they affect all components downstream from it.

The specificity of path patching allows us to test detailed hypotheses. For example, imagine that we
know that MLP 10 affects the logits both directly and via its effects on MLP 11. We want to know
how important layer 10’s attention is to the circuit via MLP 10. We can test this by patching two
paths at once: (Attn 10, MLP 10, logits) and (Attn 10, MLP 10, MLP 11, logits), as in Figure 3. This
allows us to pinpoint the relationship between precisely these two components, Attn 10 and MLP 10.
This technique underpins our circuits approach: we search for a path starting in the inputs and ending
in the logits that explains how our model performs the greater-than task.

To perform path patching, we need a new dataset that replaces a node’s original inputs. To this end,
we create the “01-dataset”: we take each example in the original dataset and replace the last two
digits YY of the start year with “01”. If a component normally boosts logits of years>YY, patching it
with the 01-dataset will cause it to boost the logits of years > 01, inducing a larger error in the model.

Figure 3: A. The computational graph of GPT-2, run on our normal dataset. B: GPT-2, where the
(MLP 10, logits) path is patched to receive 01-input. C. GPT-2, where the (Attn 10, MLP 10, logits)
path receives 01-input. Nodes receiving normal input have blue output; nodes receiving 01-input
have red output; nodes receiving both have purple output. Note that in B and C, there is no longer an
edge connecting MLP 10 and the logits.

4

https://github.com/redwoodresearch/rust_circuit_public
https://github.com/hannamw/gpt2-greater-than


0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.4

−0.2

0

0.2

0.4

pr
ob

 d
iff

 v
ar

ia
tio

n

Head

La
ye

r

IPP: Direct Contributions to the Logits

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h11

m
lp

10

5

0

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h11

m
lp

10

5

0

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

pr
ob

 d
iff

 v
ar

ia
tio

n

IPP: Direct Contributions via MLPs

Head Head

La
ye

r
La

ye
r

MLP 9 MLP 8

MLP 11 MLP 10

Figure 4: Iterative path-patching (IPP) heatmaps. Y-axis: layer of the component. X-axis: attention
head number, or MLP. (X,Y): Change in probability difference induced by patching the corresponding
component. A: Heatmap for the path ((X,Y), logits). B: Heatmaps for MLPs 8-11.

3.2 Circuit Components

MLPs We search for a circuit by identifying components that perform year-span prediction via their
direct connection to the logits. We consider as potential components GPT-2’s 144 attention heads (12
heads/layer×12 layers), and 12 MLPs (1 per layer). We do so because the residual stream [14] that
serves as input to the logits is simply the sum of these components’ direct contributions (along with
the token embeddings; we ignore these as they contain no YY information). If we consider each of
these, we will not miss any components that contribute to this task. For details, see Appendix C.

We iteratively path patch each component’s direct contributions to the logits, replacing its inputs with
the 01-dataset. In our earlier notation, for a component of interest C, we patch the path (C, logits),
as in Figure 3 B, where C = MLP 10. We patch only one component at a time, and only at the end of
the sentence; at other positions, these components cannot affect the logits directly.

After we patch a component, we run the model and record the probability difference, comparing
it to that of the unpatched model. If patching a component caused model performance to change
significantly, that component contributed to the model’s computation of year-span prediction.

Figure 4 shows the results of this experiment; for computational reasons we run it using a smaller
dataset (490 datapoints, 5 per year YY). The heatmap indicates that MLPs 8-11 are the most important
direct contributors to the logits, along with a9.h1: attention layer 9’s head 1. However, the MLPs
cannot act alone: to compute years>YY, these MLPs at the end of the sentence must know the value
of YY. But unlike attention heads, MLPs cannot attend to earlier tokens such as the YY token. Thus,
we search for nodes that contribute to the circuit via these MLPs.

Attention Heads We find components that contribute to the circuit via the MLPs using more path
patching. We start by patching components through MLP 11, since it is the furthest downstream; for
a component of interest C, we patch (C, MLP 11, logits). We find that MLP 11 relies mostly on the 3
MLPs upstream of it (Figure 4), so we search for components that act via those MLPs.

We next find components that contribute to the circuit through MLP 10. For a given C, we patch
(C, MLP 10, logits) and (C, MLP 10, MLP 11, logits), as in Figure 3 C. We do so because MLP 10
contributes directly to two nodes in our circuit, the logits and MLP 11, and we want to know which
nodes contribute via MLP 10 to the entire circuit. We repeat this procedure for MLPs 9 and 8.

The results in Figure 4 indicate that MLPs rely heavily on other MLPs upstream of them. MLPs 8
and 9, the furthest upstream of our MLPs, also rely on attention heads. MLP 9 relies on a9.h1, while
MLP 8 relies on a8.h11, a8.h8, a7.h10, a6.h9, a5.h5, and a5.h1; we add these to our circuit. Many of
these attention heads can be seen to contribute to the logits directly, though more weakly than the
MLPs do. For this reason, we also add these heads’ direct connections to the logits to our circuit.

Figure 5 visualizes the circuit we have found. We could further develop this by specifying a circuit
from the token inputs to the logits; indeed, we do so in Appendix B. However, the present circuit

5



0 20 40 60 80
98
94
90
86
82
78
74
70
66
62
58
54
50
46
42
38
34
30
26
22
18
14
10

6
2

0

0.05

0.1

0.15

0.2

0.25
probability

Patched GPT-2 Small Probability Heatmap

predicted year

Y
Y

Figure 5: Left: Diagram of the year-span prediction circuit. Center: Diagram showing which GPT-2
components receive our standard dataset vs. our 01-dataset in the circuit evaluation experiment.
Right: The probability heatmap (as in Figure 2) for the patched model.

already captures the most interesting portion of the model: the MLPs that compute greater-than. So,
we instead provide evidence that our circuit is correct, and then analyze its constituent parts.

Evaluation Having defined our circuit, we perform another path-patching experiment to ensure
it is correct. In this experiment, we give most of the model inputs from the 01-dataset. The model
only receives our standard dataset via the paths specified in our circuit. So, our attention heads’
contributions to the logits are backed by the standard dataset, as are their contributions to the MLPs,
and the MLPs’ contributions to one another. But, some components of the MLPs’ inputs (those that
come from model components not in the circuit) receive input from the 01-dataset as well. We stress
that this is a difficult task, where the large majority of the model receives input that should push it to
poor performance. For a diagram of the circuit and our evaluation, see Figure 5.

We perform this evaluation using the larger dataset, and almost entirely recover model performance.
The probability difference is 72.7% (89.5% of the original) and the cutoff sharpness is 8%—sharper
than pre-patching. This indicates that our circuit is mostly sufficient to compute this task. The circuit
is also necessary: performing the opposite of the prior experiment, giving nodes in our circuit the
01-dataset, and those outside it the normal dataset, leaves GPT-2 unable to perform the task: it
achieves a probability difference of -36.6%.

If we target other circuits of a size and location similar to our circuit’s, performance is related to
the preservation of the paths from the input, to our attention heads, our MLPs (especially MLPs 9
and 10), to the logits. If the paths are interrupted (i.e. no attention head or no MLP overlap with the
original circuit), performance is very low. If at least one path is preserved, performance improves
with each additional component in common with the original circuit; MLPs have the biggest impact.

3.3 Circuit Semantics

Now, we interpret each circuit component, starting with the attention heads. We first perform a simple
attention-pattern analysis of the heads in our circuit. Figure 6 shows which tokens our attention heads
attend to at which positions. At the relevant (end) position, in-circuit attention heads attend to the YY
position, suggesting that they detect the year which the output year must be greater than.

<bos>

T
he

N
O

U
N

lasted

from

the

year

X
X

1

Y
Y

to the

year

X
X

2

<bos>

The

NOUN

lasted

from

the

year

XX1

YY

to

the

year

XX2

<bos>

T
he

N
O

U
N

lasted

from

the

year

X
X

1

Y
Y

to the

year

X
X

2

<bos>

The

NOUN

lasted

from

the

year

XX1

YY

to

the

year

XX2 0

0.2

0.4

0.6

0.8

1

A
tte

nt
io

n

Key Key

Q
ue

ry

Mean Attention Pattern for a7.h10 Mean Attention Pattern for a8.h11

Figure 6: Attention patterns of a7.h11 and a8.h10. <bos> denotes GPT-2’s start of sentence token.

6



0 20 40 60 80

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 20 40 60 80

−20

−10

0

10

20

M
ag

ni
tu

de
 in

 u
ne

m
be

dd
in

g 
sp

ac
e

Predicted Year Predicted Year

Y
Y

Logit Lens of a7.h10 Logit Lens of a8.h11

Figure 7: Logit lens of a7.h11 and a8.h10. Axes as in Figure 2; blue indicates that the module
upweights the output year, and red, that it downweights the year.

Next, we examine the contributions of attention heads using the logit lens approach [33]: we multiply
each head’s output by GPT-2’s unembedding matrix, translating this output into unembedding
(vocabulary) space. Note that here, we do not only view logit lens as a tool for obtaining intermediate
estimates of model predictions [4]. Rather, we also use it to understand components’ outputs more
generally: the logit lens can capture how such outputs shape model predictions, but it can also capture
how these outputs add information to the residual stream in unembedding space.

We visualize the heads’ outputs for each sentence in our small dataset in Figure 7. Attention head
outputs for a sentence with start year YY have a high dot product with the embedding vector for YY,
as shown by the blue diagonal in the plots; this indicates that the head upweights YY, making it a
more likely output. Note that YY was not just upweighted highly compared other 2-digit years; YY
was the most highly upweighted token across all tokens. Given our earlier analysis, we therefore
hypothesize that these attention heads identify the start year (at the YY position), and indicate it via a
spike in unembedding space of the residual stream at the end position; they thus communicate YY to
downstream components.

We similarly apply the logit lens to the outputs of MLPs 8-11 (Figure 8). The results indicate that
MLPs of 9 and 10 directly specify which years are greater than YY: the logit lens of each layer’s
output has an upper triangular pattern, indicating that they upweight precisely those years greater than
YY. MLP 11 plays a similar role, but seems to upweight roughly the first 50 years after YY, enforcing
a maximum duration for the event in the sentence. However, MLP 8 is unusual: its logit lens shows a
diagonal pattern, but no upper triangular pattern that would indicate that it computes greater-than.

We claim that this is because MLP 8 contributes mainly indirectly, via the other MLPs in our circuit.
We confirm this by patching MLP 8’s direct contributions to the logits with the 01-dataset; we do so
again with its indirect contributions, through the other MLPs. In the former case, model performance
drops only 14%, while in the latter case, it drops by 39%. So MLP 8 does not contribute much to
the logits directly, but it does contribute indirectly. Other MLPs also have mixed effects: MLP 9 has
roughly equal direct and indirect contributions (28% vs. 32%), while MLP 10 contributes mostly
directly (56% vs. 16%). MLP 11 can only contribute directly.

Our full picture of the circuit so far is this: the attention heads communicate the start year YY in
embedding space. MLP 8’s mostly influences downstream MLPs. However, MLPs 9, 10, and 11
appear to compute the greater-than operation in tandem, and in steps. We conclude that while the
attention heads identify the important year YY, it is the MLPs that effect the greater-than computation.

0 20 40 60 80

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

−4

−2

0

2

M
ag

ni
tu

de
 in

 u
ne

m
be

dd
in

g 
sp

ac
e

−10

−5

0

5

10

M
ag

ni
tu

de
 in

 u
ne

m
be

dd
in

g 
sp

ac
e

−10

0

10

20

30

M
ag

ni
tu

de
 in

 u
ne

m
be

dd
in

g 
sp

ac
e

−10

−5

0

5

10

15

M
ag

ni
tu

de
 in

 u
ne

m
be

dd
in

g 
sp

ac
e

Predicted Year Predicted Year Predicted Year Predicted Year

Y
Y

Logit Lens of MLP 11 Logit Lens of MLP 10 Logit Lens of MLP 9 Logit Lens of MLP 8

Figure 8: (Left to right) Logit lens of MLPs 11, 10, 9, and 8; labels as in Figure 7

7



1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

1

0

1

2

3

02
030405

06
0708
09

10

1112
13

14

15 1617
18

19

20
21
2223

2425
2627

28
29

30
3132

3334
35363738

39

4041

424344

45

4647484950

51
525354

55

56
5758

59

6061

6263

6465

6667
68

6970

71

72 737475

76
77

78
79

8081

82

8384
85

86
8788

89
90
91

9293

94

95
96
9798

PCA of MLP 8 Input

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

020304
0506

07

08 09

10
11 1213

14 15

16

1718

19

20

21

2223

24
25

26
27

2829

30
31

3233
34

3536
37

38

39

40

41

42

43
4445

4647

48

49

50

51
52

53

54 5556
5758

59

60
61

62
63

64
6566

6768

69
70

71

72

73

74

7576 77
78

79

80

81

82
83

8485
86

87

88

89

90

91

9293
94

9596
9798

PCA of a7.h10 Output

2 1 0 1 2

02

03 0405

06

07
0809

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31
32

33

34

35
36

37

38

39

40

41

42 4344

45 46
47

48

49

50

51

52

53

54

55

56

57

58

59 60

61

62

63

6465

66

67

68

69

70

71

72

73

74

75
76 77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

PCA of a7.h8 Output

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0203
040506070809

101112
1314
151617
1819

20
212223242526272829

30
31

3233343536373839
40

41
42

43 44
45

46
474849

50

51525354
55

56575859

60

616263

64
6566676869
70

7172
7374

75

76

77
78

79

80

8182838485

86

87
88

89

90

9192
9394

95

96
97 98

PCA of Static Embeddings

Figure 9: PCA of MLP 8’s input, a7.h10’s and a7.h8’s output, and the static year embeddings. Each
point corresponds to one datapoint’s representation, and is labeled with and colored by the its YY.

4 Explaining Greater-Than in the Year-Span Prediction Circuit

Our prior experiments show that MLPs 9-11 directly compute greater-than. But how do they do so?
We cannot provide a conclusive answer, but identify avenues by which MLPs might compute this.
We first examine their inputs, finding structure that might enable greater-than computation. Then, we
examine MLP internals, showing how neuron composition could enable greater-than computation.

4.1 Input Structure

To understand how MLPs compute greater-than, we analyze various model representations using 2D
Principal Component Analysis (PCA). For each of the 97 datapoints in our small dataset, each with a
unique start year, we analyze the input residual stream to our MLPs, as well as the output of relevant
attention heads. As a control, we also analyze representations from irrelevant model components, and
the static year embeddings. We take all component representations from the end position.

In Figure 9, PCA reveals that the input residual stream to MLP 8 (and indeed all of our MLPs, though
not all are shown) is highly structured: representations are ordered by the start year of the sentence
they are from, increasing clockwise. The same is true of the outputs of relevant attention heads
(a7.h10), which serve as inputs to the MLPs, but not of outputs of irrelevant heads (a7.h8). This
suggests that it is specifically the relevant attention heads that transmit this structured information to
relevant MLPs. But while the heads seem to transmit this structured information to the MLPs, they
need not have created this structure from scratch. We find, as in Wallace et al. [49], that structure
already exists in the static year embeddings, though the years 02-09 are clustered apart from the rest.
The heads need only unify these groups and move this information from the YY position to the end.

Structured number representations have been implicated in mathematical capability before: Liu et al.
[27] train a toy transformer model on modular addition, and find that its number representations
become structured only after it stops overfitting and begins to generalize. This suggests that GPT-
2’s structured number representations may be relevant to its greater-than ability. However, our
experiments struggle to prove this causally. When we ablate the dimensions found through PCA, to
test their importance to the greater-than task, we found little change in model performance. Similarly,
removing linearly-extractable YY information from attention head output using LEACE [5] yielded
only slightly lower probability difference (64.7%) than the baseline (81.7%). This indicates that
structured YY information may not fully explain GPT-2’s greater-than abilities.

4.2 Neuron-Level Processing

To better understand MLPs, we turn to their internals, zooming in on their neurons. We choose to
study MLP 10 closely, as we know it directly contributes to the greater-than operation. We start by
asking which of MLP 10’s neurons are important—a sort of question already studied using probing
[10, 12], causal ablations [2, 24, 48], and other techniques; see Sajjad et al. [43] for an overview.

As before, we use path patching because it provides precise causal insights. We path patch each of
MLP 10’s 3072 neurons’ direct contributions to the logits with the 01-dataset. We again record the
change in model performance, as measured by probability difference, compared to the unpatched

8



0 50

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 50 0 50

−10

−5

0

5

10

Lo
gi

t L
en

s 
M

ag
ni

tu
de

Predicted Year Predicted Year Predicted Year

Y
Y

MLP 10 Neuron 2326 MLP 10 Neuron 1138 MLP 10 Neuron 2287

0 50

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

−40

−20

0

20

40

Lo
gi

t C
ha

ng
e

Predicted Year

Y
Y

Logit Lens of Top-10 MLP 10 Neurons

Figure 10: Left: The logit lens of the 3 MLP 10 neurons most important to year-span prediction.
Right: The logit lens of the top-10 MLP 10 neurons. Blue indicates that the neuron upweights logits
at the given input year (y-axis), output year (x-axis) combination, while red indicates downweighting.

model. We find that neuron contributions to the task are sparse: most neurons can be patched (ablated)
with near zero effect on our model performance, as observed in prior work [48].

We then analyze those neurons that contribute most to model performance using the logit lens. To
do this, we take advantage of the fact that each neuron has a corresponding row in the MLP output
weight matrix. As noted by Geva et al. [19], multiplying this row by the unembedding weights yields
an (unnormalized) distribution over the logits, indicating which outputs the neuron upweights when
activated. Taking the outer product of this logit distribution with the neuron’s activations yields the
logit lens, indicating which output years the neuron upweights for each input sentence’s YY.

Figure 10 shows the logit lens of the 3 most important neurons in MLP 10; more neurons can be
found in Appendix D. Each neuron up- or down-weights certain output years depending on the input
year YY, but no individual neuron computes greater-than. No one neuron can do so, as each neuron’s
activation for each input only scales that neuron’s distribution over the logits, without changing its
overall shape. In contrast, the correct shape of the logits differs depending on the example’s start year.

Many neurons can compute greater-than when combined, though. We perform logit lens on the sum
of the top-10 neurons’ contributions 2 in Figure 10. Though they do not do so individually, the top-10
neurons perform an imperfect greater-than when summed together as a group. The logit lens of MLP
10 as a whole can be thought of as the logit lens of the sum all 3072 neurons’ contributions; we
partially recreate this with the contributions of just the top-10 neurons. Including more top neurons
produces sharper approximations of greater-than; see Appendix D for examples.

In summary, we find that even inside one MLP, the greater-than operation is spread across multiple
neurons, whose outputs compose in a sum to form the correct answer. Even the contributions of a
small number of relevant neurons composed begin to roughly form the correct operation. We study
this in MLP 10, but observe it in the other MLPs as well. Section 3.3 suggested that GPT-2 computed
greater-than across multiple important MLPs; these results suggest that moreover multiple important
neurons in each MLP compose to allow the MLP to compute greater-than.

5 Does The Circuit Generalize?

We now possess a detailed circuit for year-span prediction. But one thing remains unclear: is this a
general circuit for the greater-than operation? Or does it only only apply to this specific, toy task?
Answering this question fully would require an in-depth exploration of circuit similarity that fall
outside the scope of this paper. For the purposes of this investigation, we perform primarily qualitative
analyses of tasks that preserve the format and output space of year-span prediction.

To start, we focus on three increasingly different prompts: “The <noun> started in the year 17YY
and ended in the year 17”, “The price of that <luxury good> ranges from $ 17YY to $ 17”, and
“1599, 1607, 1633, 1679, 17YY, 17”. In all cases, a two-digit number greater than YY would be a
reasonable next token. The model performs greater-than given all of these prompts (≥ 69% probability
difference). Moreover, the circuits found via path patching are similar to those in Sections 3.2 and 3.3.
When we run GPT-2 on the first two tasks, ablating all edges not in our original year-span circuit, we
achieve 98.8% and 88.9% loss recovery respectively; for more details, see Appendix F. As before,

2We can confirm this using path patching as well; see Appendix E for details.

9



these tasks depend on MLPs 8-11 to compute greater-than; these MLPs depend on attention heads
that transmit information about YY.

That said, these tasks’ circuits are not all identical to the greater-than circuit. GPT-2 recovers only
67.8% of its original performance on the last when ablating everything but the year-span circuit.
But, a closer look at path patching results indicated that on this task, GPT-2 used not only the entire
year-span circuit, but also MLP 7 and two extra attention heads. After including those nodes, GPT-2
recovered 90.3% of performance. Similar tasks seem to use similar, but not identical, circuits.

GPT-2 produced unusual output for some tasks requiring other mathematical operations. It produced
roughly symmetric distributions around YY on the task “1799, 1753, 1733, 1701, 16YY, 16”, which
might yield predictions smaller than YY. It behaved similarly on examples suggesting an exact answer,
such as “1695, 1697, 1699, 1701, 1703, 17”, which could yield 05. GPT-2 even failed at some tasks
that were solvable using the greater-than circuit, like “17YY is smaller than 17”; it always predicted
YY. Across all such tasks, we found that GPT-2 relied on another set of heads and MLPs entirely. So
GPT-2 does not use our circuit for all math; sometimes it does not rely on it even when it should.

We also observe the opposite phenomenon: inappropriate activation of the greater-than circuit,
triggered by prompts like “The <noun> ended in the year 17YY and started in the year 17” and “The
<noun> lasted from the year 7YY BC to the year 7”. In these cases, GPT-2 ought to predict numbers
smaller than YY; however, it predicts numbers greater than YY. This is because it is using the exact
same circuit used in the greater than case! GPT-2 thus overgeneralizes the use of our circuit.

Our results suggest that our circuit generalizes to some new scenarios. But what does a generalizing
circuit imply about the origins of GPT-2’s greater-than capabilities—do they stem from memorization
[47, 7], or rich, generalizable representations of numbers [27]? Our complex circuit and the structured
numbered representations found in our PCA experiments hint at some mathematical knowledge in
GPT-2. However, the presence of a greater-than circuit does not preclude memorization. Our
circuit could function internally as a lookup table, where attention heads transmit YY information
to MLPs that then upweight the years that they have memorized to be >YY. In this case, (incorrect)
generalization would involve GPT-2 (incorrectly) activating the lookup circuit based on context.

Though our current evidence does not allow us to definitively attribute GPT-2’s behavior to generalized
mathematical ability or memorization, it suggests that the underlying mechanism is something in
between the two. The lack of causal evidence for the role of structured number representations, and
the fact that GPT-2 cannot handle related operations like “less-than” or “equal-to” argue against
generalized math mechanisms. However, even if we view this circuit as simply retrieving memorized
facts, the retrieval mechanism at work is sophisticated. GPT-2 can (imperfectly) identify greater-than
scenarios and the relevant operand; it then activates a dedicated mechanism that retrieves the correct
answer. GPT-2’s mathematical abilities thus extend beyond a simple, exact memorization of answers.

6 Conclusion

In this paper, we attempted to bridge the gap between our understanding of mathematical abilities
in toy models, and the mystery of such abilities in larger pre-trained LMs. To do so, we outlined a
circuit in GPT-2 with interpretable structure and semantics, adding to the evidence that circuits are a
useful way of understanding pre-trained LMs, [50] even in a more complex scenario. Our circuit is
coarser-grained than findings in toy models for mathematical tasks [31], but much finer-grained than
existing work on mathematics in pre-trained LMs. Moreover, we showed that this circuit in GPT-2
activates across contexts on other greater-than-adjacent tasks. Whether such cross-context activation
reflects generalization or memorization is an open question for circuits work in general.

We note that our conclusions are limited by the small size of our model and dataset, and the simple
phenomenon studied. Our study is very model-centric: data-driven interpretability techniques would
strengthen our work. Studying circuit performance across diverse tasks could better measure the
degree to which our circuit generalizes to all greater-than tasks. Similarly, studying larger models
would confirm that our results hold for the models that dominate natural language processing today.

Despite these limitations, we believe that this study lays the groundwork for future work. Our small
study hints at the potential for circuits as a lens for the study of memorization and generalization in
pre-trained LMs. More broadly, we hope that our finding that not only attention heads, but also MLPs
and their neurons can be analyzed jointly as a complex system will motivate circuits work to come.

10



Acknowledgments and Disclosure of Funding

The authors thank Buck Shlegeris, Chris MacLeod, and Arthur Conmy for their valuable feedback
on earlier drafts of this work. They also thank Neel Nanda for a useful research meeting about this
work. They additionally thank Dani Yogatama, as well as members of the Amsterdam and Technion
NLP groups, for their helpful comments. They also appreciate the insightful reviews and discussion
provided by the anonymous reviewers for this paper. They finally thank Redwood Research for both
running the REMIX program, which provided many of the ideas, techniques, and collaborations
behind this paper, and providing continued computational and travel support thereafter.

References
[1] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet project. In

36th Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, Volume 1, pages 86–90, Montreal, Quebec, Canada,
August 1998. Association for Computational Linguistics. doi: 10.3115/980845.980860. URL
https://aclanthology.org/P98-1013.

[2] Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
Identifying and controlling important neurons in neural machine translation. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=H1z-PsR5KX.

[3] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Com-
putational Linguistics, 48(1):207–219, March 2022. doi: 10.1162/coli_a_00422. URL
https://aclanthology.org/2022.cl-1.7.

[4] Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney,
Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the
tuned lens, 2023.

[5] Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and
Stella Biderman. Leace: Perfect linear concept erasure in closed form, 2023.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[7] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=TatRHT_1cK.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,

11

https://aclanthology.org/P98-1013
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://aclanthology.org/2022.cl-1.7
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK


Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022.

[9] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does
BERT look at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276–286, Florence,
Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4828.
URL https://aclanthology.org/W19-4828.

[10] Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James
Glass. What is one grain of sand in the desert? analyzing individual neurons in deep nlp
models. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6309–6317,
Jul. 2019. doi: 10.1609/aaai.v33i01.33016309. URL https://ojs.aaai.org/index.php/
AAAI/article/view/4592.

[11] Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz, and Ivan Titov. How do decisions
emerge across layers in neural models? interpretation with differentiable masking. In Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 3243–3255, Online, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.262. URL https://aclanthology.org/2020.
emnlp-main.262.

[12] Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov. Analyzing individual
neurons in pre-trained language models. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 4865–4880, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.395.
URL https://aclanthology.org/2020.emnlp-main.395.

[13] Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. Amnesic probing: Behavioral
explanation with amnesic counterfactuals. Transactions of the Association for Computational
Linguistics, 9:160–175, 2021. doi: 10.1162/tacl_a_00359. URL https://aclanthology.
org/2021.tacl-1.10.

[14] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

[15] Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Hosein Mohebbi, and Mohammad Taher
Pilehvar. Not all models localize linguistic knowledge in the same place: A layer-wise probing
on BERToids’ representations. In Proceedings of the Fourth BlackboxNLP Workshop on
Analyzing and Interpreting Neural Networks for NLP, pages 375–388, Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
blackboxnlp-1.29. URL https://aclanthology.org/2021.blackboxnlp-1.29.

[16] Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of
chatgpt, 2023.

[17] Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. Causal abstractions of
neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=RmuXDtjDhG.

[18] Mor Geva, Ankit Gupta, and Jonathan Berant. Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 946–958, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.89. URL https://aclanthology.org/2020.acl-main.89.

12

https://aclanthology.org/W19-4828
https://ojs.aaai.org/index.php/AAAI/article/view/4592
https://ojs.aaai.org/index.php/AAAI/article/view/4592
https://aclanthology.org/2020.emnlp-main.262
https://aclanthology.org/2020.emnlp-main.262
https://aclanthology.org/2020.emnlp-main.395
https://aclanthology.org/2021.tacl-1.10
https://aclanthology.org/2021.tacl-1.10
https://aclanthology.org/2021.blackboxnlp-1.29
https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG
https://aclanthology.org/2020.acl-main.89


[19] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 5484–5495, Online and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446.
URL https://aclanthology.org/2021.emnlp-main.446.

[20] Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem Zuidema.
Under the hood: Using diagnostic classifiers to investigate and improve how language models
track agreement information. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 240–248, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5426.
URL https://aclanthology.org/W18-5426.

[21] Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023.

[22] Michael Hanna, Roberto Zamparelli, and David Mareček. The functional relevance of probed
information: A case study. In Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, pages 835–848, Dubrovnik, Croatia, May
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.58. URL
https://aclanthology.org/2023.eacl-main.58.

[23] Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and ‘diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure. J. Artif. Int.
Res., 61(1):907–926, jan 2018. ISSN 1076-9757.

[24] Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, and
Marco Baroni. The emergence of number and syntax units in LSTM language models. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 11–20, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1002. URL https://aclanthology.org/N19-1002.

[25] Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

[26] Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=DeG07_TcZvT.

[27] Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022. URL https://openreview.net/forum?id=6at6rB3IZm.

[28] Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=-h6WAS6eE4.

[29] Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta
Baral, and Ashwin Kalyan. NumGLUE: A suite of fundamental yet challenging mathematical
reasoning tasks. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 3505–3523, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.246. URL
https://aclanthology.org/2022.acl-long.246.

13

https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/W18-5426
https://aclanthology.org/2023.eacl-main.58
https://aclanthology.org/N19-1002
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=6at6rB3IZm
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://aclanthology.org/2022.acl-long.246


[30] Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose, and Eduard Hovy. Exploring numeracy
in word embeddings. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3374–3380, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1329. URL https://aclanthology.org/
P19-1329.

[31] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

[32] Rodrigo Nogueira, Zhiying Jiang, and Jimmy J. Li. Investigating the limitations of the trans-
formers with simple arithmetic tasks. ArXiv, abs/2102.13019, 2021.

[33] Nostalgebrist. interpreting GPT: the logit lens, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

[34] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021.

[35] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

[36] Judea Pearl. Causality. Cambridge University Press, 2 edition, 2009. doi: 10.1017/
CBO9780511803161.

[37] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202.
URL https://aclanthology.org/N18-1202.

[38] Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models
in arithmetic and symbolic induction, 2022.

[39] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

[40] Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm:
Does probing accuracy entail task relevance? In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pages
3363–3377, Online, April 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.eacl-main.295. URL https://aclanthology.org/2021.eacl-main.295.

[41] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know
about how BERT works. Transactions of the Association for Computational Linguistics, 8:842–
866, 2020. doi: 10.1162/tacl_a_00349. URL https://aclanthology.org/2020.tacl-1.
54.

[42] Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent
ai: A survey on interpreting the inner structures of deep neural networks, 2022. URL https:
//arxiv.org/abs/2207.13243.

[43] Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. Neuron-level interpretation of deep NLP
models: A survey. Transactions of the Association for Computational Linguistics, 10:1285–1303,
2022. doi: 10.1162/tacl_a_00519. URL https://aclanthology.org/2022.tacl-1.74.

[44] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

14

https://aclanthology.org/P19-1329
https://aclanthology.org/P19-1329
https://openreview.net/forum?id=9XFSbDPmdW
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://aclanthology.org/N18-1202
https://aclanthology.org/2021.eacl-main.295
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://arxiv.org/abs/2207.13243
https://arxiv.org/abs/2207.13243
https://aclanthology.org/2022.tacl-1.74
https://aclanthology.org/P16-1162


[45] Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 4593–4601, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1452. URL https://aclanthology.org/P19-1452.

[46] Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro Szekely. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 644–
656, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.53. URL https://aclanthology.org/2021.naacl-main.53.

[47] Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memo-
rization without overfitting: Analyzing the training dynamics of large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 38274–38290. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf.

[48] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation
analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 12388–12401. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
92650b2e92217715fe312e6fa7b90d82-Paper.pdf.

[49] Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do NLP models
know numbers? probing numeracy in embeddings. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 5307–5315, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1534. URL
https://aclanthology.org/D19-1534.

[50] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=NpsVSN6o4ul. Note: Path patching was introduced only in the arXiv version
of this paper: https://arxiv.org/abs/2211.00593.

[51] Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 845–854, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1088. URL https://aclanthology.org/D17-1088.

[52] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

15

https://aclanthology.org/P19-1452
https://aclanthology.org/2021.naacl-main.53
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://aclanthology.org/D19-1534
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2211.00593
https://aclanthology.org/D17-1088
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD


A More Behavioral Study of Greater-Than in GPT-2

In this section, we discuss the results of additional behavioral studies of GPT-2’s behavior.

GPT-2 also predicts valid XX Although our previous experiments show that GPT-2 predicts a valid
two-digit end year YY, we also verify that GPT-2 predicts a valid continuation when the output prefix
XX is not provided. In this scenario, GPT-2 should either predict either a two-digit century token
whose value is ≥ XX, or an entire 4-digit year token that is ≥ XXYY. We test this using the same
dataset as in previous experiments, with the final XX removed. We find that on average, considering
the top-100 tokens (95% of probability mass), 94% of their probability mass (89% of the total) is
assigned to valid continuations. So, GPT-2 generally predicts valid XX.

GPT-2’s top predictions are valid As suggested by the high probability difference achieved by
GPT-2, its top YY predictions for an input from our dataset are quite good. 100% of the top-1
continuations, and 98.6% of top-5 continuations were correct.

Default Behavior in GPT-2 GPT-2 predicts the greater-than in greater-than scenarios, but also in
scenarios where less-than would be appropriate (see Section 5). For this reason, we also tested how
GPT-2 behaves in a scenario where neither greater-than nor less-than in required, in order to a elicit a
sort of default behavior.

To test this, we created sequences of 4-digit numbers like “XXY1, XXY2,..., XXYN, XX”. We chose
XX, Y1,. . . ,YN randomly for each sequence, respecting tokenization. Sequences were generally not
monotone, so any 2-digit continuation YY could have been valid. We found that GPT-2’s behavior
depends on the sequence length N . At low N , GPT-2 produces mostly numbers > YN; the proportion
of continuations < YN increases smoothly until 50% by N = 20. So even in the context of random
sequences, GPT-2 often generates increasing numbers.

Beyond simple behavioral study, we conducted a circuits analysis on this task, and found that our
greater-than circuit also underlies this behavior. This provides another example of GPT-2’s ability to
identify greater-than situations is flawed. However, it also demonstrates again that whenever we see
this greater-than behavior, our circuit is responsible. An open question worth answering is why our
circuit activates in such incorrect scenarios, and if this can be mitigated.

B The Full Year-Span Prediction Circuit

Now, we describe the rest of the year-span prediction circuit. This is actually not very large, as we
already know most of the important components. All that remains is to understand how the input to
the attention heads is crafted.

We can investigate this via iterative path-patching again: we will look for nodes that influence the
attention heads. This can be done in three ways: via queries, keys, and values. The queries and keys
jointly determine what the attention heads attend to. In theory, attention patterns should be relatively
constant across examples: in all cases, attention heads should attend to the YY position. If this is the
case, we should be able to ignore the queries and keys, and focus only the value.

In practice, attention patterns are not exactly constant as YY changes. While broad trends are similar,
the intensity of the attention to the YY position varies (though not linearly with YY, as might make
sense: see Figure 11). At YY=01, attention to the YY position is rather low, meaning that model
greater-than behavior is less pronounced when patched. Thus, the queries and keys are somewhat
important: patching them with bad data reduces performance by 15% with respect to our partial
circuit. The influences on these heads via the keys are similar to those on the values, discussed in the
next paragraph. The influences via the queries are distinct, but we will set these aside, and focus on
the value vectors.

The most important influences on these heads are the influences on their values at the YY position.
The values are combined to form each attention head’s output: patching the values with 01-input
entirely disrupts circuit performance, unlike patching its keys or queries.

To find influences on these values, we iteratively path patch potential components that might com-
municate with our attention heads via their values at the YY position. We find (Figure 12) that these

16



0 20 40 60 80 100
Input Year (YY)

0.60

0.65

0.70

0.75

0.80

0.85

At
te

nt
io

n

Attention of a7.h10 (end position) to the YY position

Figure 11: Attention from a7.h10 (end position) to the YY position, by input year YY

0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.4

−0.2

0

0.2

0.4

pr
ob

 d
iff

 v
ar

ia
tio

n

Head

La
ye

r

Attention Value

Figure 12: Iterative path patching results through attention heads’ value vectors

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 mlp

10

8

6

4

2

0

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 mlp h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 mlp h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 mlp

−0.4

−0.2

0

0.2

0.4

pr
ob

 d
iff

 v
ar

ia
tio

n

Head Head Head Head

La
ye

r

Iterative Path Patching MLP 3 Iterative Path Patching MLP 2 Iterative Path Patching MLP 1 Iterative Path Patching MLP 0

Figure 13: Iterative path patching results for MLPs 0-3

17



0 20 40 60 80
98
94
90
86
82
78
74
70
66
62
58
54
50
46
42
38
34
30
26
22
18
14
10

6
2

0

0.05

0.1

0.15

0.2

0.25
probability

Full-Circuit Patched GPT-2 Small Probability Heatmap

predicted year

Y
Y

Figure 14: (Left) Full circuit diagram. Note that grouped MLPs are interconnected; attention heads
are not. (Right) Probability heatmap for the patched full circuit.

0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.4

−0.2

0

0.2

0.4
pr

ob
 d

iff
 v

ar
ia

tio
n

Head

La
ye

r

IPP: Direct Contributions to the Logits

Figure 15: Path Patching Step 1: Logits

are mostly MLPs 0-3, as well as a0.h5, a0.h3, and a0.h1. We delve again into this group of MLPs
(Figure 13), and see that each MLP relies on the MLPs before it and a0.h1; MLP 2 is the exception,
as it does not rely on MLP 1. We know that a0.h5 can only rely on the token embeddings; there is
nothing else before it in the residual stream! We attempt to find what MLP 0 depends on, but it does
not rely on any of the attention heads prior to it; this indicates that it depends primarily on the token
embeddings, not shown in these iterative path patching diagrams.

We have now developed a hypothesis regarding a full circuit, pictured in Figure 14. We evaluate it as
before, keeping in mind that the keys and values of the attention heads are patched with the same
input components as found earlier; the queries, not the focus of this section, receive all good inputs.
The circuit achieves a probability difference of 71.5% (98.3% of what we achieved earlier), and a
cutoff sharpness of 10.5% (again sharper than pre-patching). The qualitative results are in Figure 14.

C Circuit Finding, Step by Step

In this section, we explain the circuit finding procedure step by step, with additional diagrams to
aid comprehension. We start, as indicated previously, by patching direct connections to the logits
(Figure 15). This reveals connections to the logits from MLPs 8-11, as well as a9.h1. We continue
with the next furthest downstream MLP, MLP 11, and see which nodes influence the circuit via it.
Note that the only path through which a node C can influence the circuit via MLP 11 is (C, MLP 11,
logits), in red (Figure 16, right). The results (Figure 16, left) indicate that the other MLPs influence
the circuit most through MLP 11.

18



0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.1

−0.05

0

0.05

0.1

pr
ob

 d
iff

 v
ar

ia
tio

n

Head

La
ye

r

m11

Figure 16: Path Patching Step 2: MLP 11

0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.2

−0.1

0

0.1

0.2

pr
ob

 d
iff

 v
ar

ia
tio

n

Head

La
ye

r

m10

Figure 17: Path Patching Step 3: MLP 10

0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.2

−0.1

0

0.1

0.2

pr
ob

 d
iff

 v
ar

ia
tio

n

Head

La
ye

r

m9

Figure 18: Path Patching Step 4: MLP 9

19



0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

−0.1

−0.05

0

0.05

0.1

pr
ob

 d
iff

 v
ar

ia
tio

n

Head

La
ye

r

m8

Figure 19: Path Patching Step 5: MLP 8

We continue onward to MLP 10, and see which nodes are most influential on the circuit via it. We
consider all the ways in which nodes could contribute via MLP 10 to the circuit, shown in red on the
right of Figure 17. The results (Figure 17) again that MLP 10 relies mostly on MLPs 8 and 9. We
proceed similarly with MLP 9, considering all the ways in which it influences the circuit; the results
in Figure 18 indicate that it relies mostly on MLP 8 and a9.h1.

At this juncture, it might be appropriate to ask which nodes in the graph most influence the circuit
via a9.h1. However, we skip this node because, as we explain in the circuit semantics section
(Section 3.3), the attention heads are acting together separately from the MLPs, performing different
roles. Moreover, when analyzing attention heads, we must consider what influences their queries, keys,
and values separately, a complicated task best avoided in the MLP-centric analysis. In Appendix B,
we explore in greater detail the nodes that contribute to such attention heads.

Instead, we complete our circuit-finding section by finding nodes that contribute to the circuit via MLP
8. This reveals (Figure 19) the heads that identify YY, completing our initial circuit investigations.

20



0 50

80

60

40

20

0 50 0 50 0 50

80

60

40

20

−4

−2

0

2

4

Lo
gi

t L
en

s 
M

ag
ni

tu
de

Predicted Year Predicted Year Predicted Year Predicted Year

Y
Y

Y
Y

MLP 10 Neuron 606 MLP 10 Neuron 2848 MLP 10 Neuron 2305 MLP 10 Neuron 46

MLP 10 Neuron 2659 MLP 10 Neuron 946 MLP 10 Neuron 1616 MLP 10 Neuron 832

Figure 20: Neuron contributions for each MLP 10 neuron in the top 4-11. Neurons ordered by
importance, left-to-right, top-to-bottom. Blue indicates that the neuron upweights a certain predicted
year, given a starting year YY, while red indicates downweighting.

0 50

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 50

−40

−20

0

20

40

Lo
gi

t L
en

s 
M

ag
ni

tu
de

Predicted Year Predicted Year

Y
Y

Top-100 MLP 10 Neurons Logit Lens Top-200 MLP 10 Neurons Logit Lens

Figure 21: Neuron contributions of the top-100 (left) and 200 (right) neurons in MLP 10. Blue
indicates that the neuron upweights a certain predicted year, given a starting year YY, while red
indicates downweighting.

D MLP 10 Neuron Contributions

In this section, we display the contributions of the top 10 most important neurons of MLP 10, found in
Figure 20. Many neurons’ contributions are relatively constant across YY; e.g. the 4th most important
neuron always upweights later years. Others differ across YY but not predicted year; the 10th most
important neuron downweights all years for the last 10 years or so, where correct answers are very
few generally. The 3rd most important neuron varies in both dimensions, having 0 contribution for
years YY from around 10 to 50, but a distinct pattern for all other YY. Only the first few neurons
are very intense in color, as we have fixed the range of the color scale: these neurons are the most
important because they cause the greatest changes when they are patched.

21



Combining these contributions rapidly produces patterns resembling those of the MLP as a whole.
We see this weakly by viewing the top-10 neurons’ contributions, but more strongly in the top-100 or
200 (of 3072) neurons (Figure 21). In these logit lens diagrams, there is a consistent increase in logit
lens magnitude between YY and YY+1, for a given start year YY.

22



0 50

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 50 0 50

−0.5

0

0.5

1

Lo
gi

t C
ha

ng
e

Predicted Year Predicted Year Predicted Year

Y
Y

MLP 10 Neuron 2326 MLP 10 Neuron 1138 MLP 10 Neuron 2287

Figure 22: Direct effects of top-3 MLP 10 Neurons

0 50

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 50

−3

−2

−1

0

1

2

3

Lo
gi

t C
ha

ng
e

Predicted Year Predicted Year

Y
Y

Summed Direct Effects Patched Direct Effects

Figure 23: Summed and patched direct effects of top-10 MLP 10 Neurons

E Logit Lens vs. Direct Effects via Path Patching

We use the logit lens throughout this paper for consistency, both internally and with prior work. How-
ever, the logit lens has flaws: in reality, the residual stream is normalized using layer normalization
prior to being transformed into the logits. This nonlinearity could in theory cause the scaling of
logit lens to be misleading, perhaps in such a way that affects our conclusions. In this section, we
will show that the logit lens results can be recreated with another technique, direct effects via path
patching, that avoids this flaw. The two techniques fortunately yield the same insights.

Using the logit lens, we would normally multiply our component of interest’s output by the unem-
bedding matrix. To measure direct effects, we take the unpatched, original model’s year logits, over
each YY, as a baseline. We then patch the direct path between our component and the logits with the
01-dataset, and again record the logits. The difference between the unpatched logits, and the logits
when we patch (ablate) our component of interest, reveals the direct effect that said component had.
This approach eliminates one major concern of the logit lens: it yields the difference of two sets of
logits, which were both produced with layer normalization, and which has interpretable units.

We can perform our neuron-level logit lens experiments by instead patching the direct paths to the
top-3 neurons of MLP 10 (Figure 22). The results are essentially identical to the logit lens results,
though they differ in magnitude. We can also sum these direct effects, as we summed the logit lens
outputs; again, results differ from those of the logit lens only in magnitude (Figure 23). Finally, we
can also patch all top-10 neurons as a group, and view their direct effects; these results are identical
to those of the summed direct effects (Figure 23). This suggests that our summed logit lens approach
genuinely reflected the direct effects that these neurons have on the logits.

We conclude that the results given by the logit lens and those given by direct effects are largely
similar, so concerns about the logit lens are not dire. However, we note that all of our logit lens
results (including those for entire MLPs and attention heads) are reproducible using direct effects.

23



0 20 40 60 80

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 20 40 60 80 0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Predicted Year Predicted Year Predicted Year

Y
Y

Probability Heatmap Probability Heatmap Probability Heatmap

Figure 24: Probability heatmaps for (left to right) “1799, 1753, 1733, 1701, 16YY, 16”, “1695, 1697,
1699, 1701, 1703, 17”, and “17YY is smaller than 17”.

0 20 40 60 80

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 20 40 60 80 0 20 40 60 80

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

Predicted Year Predicted Year Predicted Year

Y
Y

Probability Heatmap Probability Heatmap Probability Heatmap

Figure 25: Probability heatmaps for (left to right) “The <noun> started in the year 17YY and ended in
the year 17”, “The <noun> happened in 17YY. Some years later, it is now the year 17”, and “1599,
1607, 1633, 1679, 17YY, 17”.

F Year-Span Circuit Generalization

In this section we provide evidence for the generalization of the year-span circuit to some (but not all)
tasks. For tasks where the model failed entirely, we provide the probability heatmaps (to show its
failure). For tasks where the model succeeded, or incorrectly generalized the greater-than circuit, we
additionally provide path patching results and logit lens heatmaps to show how circuit structure and
semantics are preserved.

Tasks Failed Figure 24 displays probability heatmaps for “1799, 1753, 1733, 1701, 16YY, 16”,
“1695, 1697, 1699, 1701, 1703, 17”, and “17YY is smaller than 17”. In the first case, GPT-2 predicts
a roughly uniform distribution around YY. In the second case, the right answer varies: though the
penultimate number in the provided sequence is YY=“03”, and the sequence increases by 2 step,
depending on YY, we must vary the increase per step, in order to avoid the single-token number
“1700”. In any case, the model fails to predict the correct answer, often predicting YY+1, although
the step is always > 1. In the final case, the model always outputs YY.

Tasks Completed Correctly Figure 25 displays probability heatmaps for “The <noun> started in
the year 17YY and ended in the year 17”, “The price of that <luxury good> ranges from $ 17YY
to $ 17”, and “1599, 1607, 1633, 1679, 17YY, 17”. All tasks are completed successfully, just like
year-span prediction, though note that the second task is completed less well, as is visible in its
heatmap. Its probability difference is only 75%, as opposed to 90%.

Given this, we proceed using iterative path patching direct logits connections as before; Figure 26
shows the results. All of these plots look almost identical to our original plots, so we evaluate the
circuit on each of tasks using the methodology from Section 3.2. This works for the first two tasks,
with performance recoveries > 90%, but not the last.

For the last task, we observe that MLP 8 relies also on MLP 7, which in turn relies on two extra
attention heads not observed in our original circuit: a7.h11 and a6.h1 (Figure 27). Accounting for
this in our circuit leads us back to > 90% loss recovery.

24



0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 mlp 0 1 2 3 4 5 6 7 8 9 10 11 mlp

−0.4

−0.2

0

0.2

0.4

pr
ob

 d
iff

 v
ar

ia
tio

n

Head Head Head

La
ye

r

Iterative Path Patching: Logits Iterative Path Patching: Logits Iterative Path Patching: Logits

Figure 26: Iterative path patching plots (C, logits) for (left to right) “The <noun> started in the year
17YY and ended in the year 17”, “The price of that <luxury good> ranges from $ 17YY to $ 17”,
and “1599, 1607, 1633, 1679, 17YY, 17”.

0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 mlp

−0.04

−0.02

0

0.02

0.04

pr
ob

 d
iff

 v
ar

ia
tio

n

Head Head

La
ye

r

Iterative Path Patching: MLP 7 Iterative Path Patching: MLP 8

Figure 27: Iterative path patching plots for “1599, 1607, 1633, 1679, 17YY, 17”, searching for
components that influence the circuit via MLPs 8 (left) and 7 (right).

Tasks Completed Incorrectly Finally, we address the tasks “The <noun> ended in the year 17YY
and started in the year 17” and “The <noun> lasted from the year 7YY BC to the year 7”, which do
use our circuit, but should not do so.

0 20 40 60 80

2
7

12
17
22
27
32
37
42
47
52
57
62
67
72
77
82
87
92
97

0 20 40 60 80

0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

Predicted Year Predicted Year

Y
Y

Probability Heatmap Probability Heatmap

Figure 28: Probability heatmaps for “The <noun> ended in the year 17YY and started in the year 17”
(left) and “The <noun> lasted from the year 7YY BC to the year 7” (right).

25



0 1 2 3 4 5 6 7 8 9 10 11 mlp

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 mlp

−0.2

−0.1

0

0.1

0.2

pr
ob

 d
iff

 v
ar

ia
tio

n

Head Head

La
ye

r

Iterative Path Patching: Logits Iterative Path Patching: Logits

Figure 29: Iterative path patching plots (C, logits) for “The <noun> ended in the year 17YY and
started in the year 17” (left) and “The <noun> lasted from the year 7YY BC to the year 7” (right).

Figure 28 displays probability heatmaps for “The <noun> ended in the year 17YY and started in the
year 17” and “The <noun> lasted from the year 7YY BC to the year 7”. Both tasks are completed
successfully, though note that the latter task is completed less well.

As with the other tasks using this circuit, the iterative path patching plots (Figure 29) look similar
to those of year-span prediction. Note that since the goal for these tasks is to produce “less-than”,
patching and impeding circuit components improves task performance (indicated in blue rather than
red), since the circuit performs “greater-than”. We evaluate the circuit on each of tasks using the
methodology from Section 3.2. This works for both tasks, with performance recoveries > 90%.

G Noun Pool for Templated Sentences

We use the following nouns in our main template: abduction, accord, affair, agreement, appraisal,
assaults, assessment, attack, attempts, campaign, captivity, case, challenge, chaos, clash, collabora-
tion, coma, competition, confrontation, consequence, conspiracy, construction, consultation, contact,
contract, convention, cooperation, custody, deal, decline, decrease, demonstrations, development, dis-
agreement, disorder, dispute, domination, dynasty, effect, effort, employment, endeavor, engagement,
epidemic, evaluation, exchange, existence, expansion, expedition, experiments, fall, fame, flights,
friendship, growth, hardship, hostility, illness, impact, imprisonment, improvement, incarceration,
increase, insurgency, invasion, investigation, journey, kingdom, marriage, modernization, negotiation,
notoriety, obstruction, operation, order, outbreak, outcome, overhaul, patrols, pilgrimage, plague,
plan, practice, process, program, progress, project, pursuit, quest, raids, reforms, reign, relationship,
retaliation, riot, rise, rivalry, romance, rule, sanctions, shift, siege, slump, stature, stint, strikes, study,
test, testing, tests, therapy, tour, tradition, treaty, trial, trip, unemployment, voyage, warfare, work.

For the <luxury good> noun considered in the generalization section, we use a smaller pool of
nouns: gem, necklace, watch, ring, suitcase, scarf, suit, shirt, sweater, dress, fridge, TV, bed, bike,
lamp, table, chair, painting, sculpture, plant.

H Applying the Circuits Approach to Other Problems

In order to find a circuit for a given model ability, one must define a task, dataset, and metric; one
can then apply the path patching approaches we use. However, task, dataset, and metric design are
important; not just any task, dataset, or metric will be compatible. In this section, we discuss the
qualities that a task, dataset, and metric should have, in order to be used with our approach.

Task The path-patching approach is compatible with a variety of tasks. The chosen task should:

• Have a clearly delimited set of correct and incorrect answers for each example.

26



• Require only one forward pass of the model (as opposed to e.g. generation tasks which
require multiple passes).

• Be solvable by your model: if your model cannot solve the task, there may be no circuit. At
minimum, the model should exhibit consistent behavior (even if it’s not exactly correct)

The granularity of insights will depend on the granularity of the task chosen. Complex tasks like
natural language inference could require different (sub-)circuits depending on the specific question; it
might be hard to find one precise circuit responsible for the task. Smaller, simpler tasks will likely
yield easier to interpret results.

For the purpose of this example, we consider the task of fact retrieval, much akin to the task of Meng
et al. [28]. Each input will have an (ideally single-token) correct answer, which can be predicted with
one forward pass. Moreover, it seems possible that facts are mostly stored and retrieved using the
same circuit.

Dataset Path-patching requires two datasets: a normal and corrupted dataset. The normal dataset is
just a collection of examples/inputs for the task; its examples should:

• Clearly indicate the task at hand. LMs perform language modeling, and do not natively
perform other tasks; they may leak probability to answers that are not correct or incorrect,
but simply task-irrelevant. The inputs to the LM should push as much probability as possible
onto the task’s output space.

• Allow evaluation based on only the distribution over possible next tokens (generated via one
forward pass)

• Be representative of your task. Your choice of datasets effectively define the scope of the
phenomenon you study, so it is essential that the scopes of the dataset and the intended task
match!

Each example from the normal dataset should have a corresponding corrupted example / input. The
corrupted input should:

• form a minimal pair with the normal input: they should differ minimally from each other
(being the same length, and differing by only one or two tokens)

• elicit a different model response, with a distinct correct answer, compared to the normal
input

• belong to the same sort of task. We locate the circuit by activating the same circuit with two
different inputs.

For fact retrieval, a normal input could be "Paris is the capital of"; the corrupted counterpart could be
"Rome is the capital of". Both of these examples are reasonable input for fact retrieval, but the two
will elicit very different responses. Note that an input like "Paris is in" would be less appropriate,
because it doesn’t clearly indicate that the task is fact retrieval, or what fact should be retrieved.

Metric The metric is a function that takes in model logits and labels. It should:

• Output a real number measuring model behavior/performance on the task.
• Detect small changes in whether the model is behaving according to the normal or corrupted

input, or somewhere in between. A continuous loss is thus preferable to metrics like 0-1
loss/accuracy.

One family of metrics used in previous work is the probability assigned to the correct answer(s), minus
the probability of the incorrect answer(s) induced by the corrupted input. In the greater-than case,
this is p(y >YY) - p(y ≤YY). For fact retrieval, we would compute p(France) - p(Italy). This family
of metrics the model is implicitly sensitive to the model generating off-task output as this generally
takes away from the probability of correct answers. It is explicitly sensitive to the probability of the
corrupted input’s answer.

Other metrics are possible. For example, if it is difficult to quantify task performance, but still
possible to create minimal pairs, one could simply measure the KL-divergence between the original

27



and (partially) patched / corrupted distributions. However, this is harder to interpret, and less targeted
at your actual task of interest.

I Computational Resources

All experiments were performed on an Nvidia A100 GPU. The path patching experiments and circuit
semantics experiments take no longer than an hour to complete. The generalization experiments
take a similar amount of time, being very similar to the original experiments. The neuron-level
experiments (in particular finding top neurons) can take multiple hours to run. Overall, the final
experiments can be run in less than 24 hours.

28


	Introduction
	Year-Span Prediction in GPT-2
	A Circuit for Year-Span Prediction
	Path Patching
	Circuit Components
	Circuit Semantics

	Explaining Greater-Than in the Year-Span Prediction Circuit
	Input Structure
	Neuron-Level Processing

	Does The Circuit Generalize?
	Conclusion
	More Behavioral Study of Greater-Than in GPT-2
	The Full Year-Span Prediction Circuit
	Circuit Finding, Step by Step
	MLP 10 Neuron Contributions
	Logit Lens vs. Direct Effects via Path Patching
	Year-Span Circuit Generalization
	Noun Pool for Templated Sentences
	Applying the Circuits Approach to Other Problems
	Computational Resources

