
A Appendix

A.1 Performance on the Camera-based method

Although we design our motion-guided temporal modeling (MTM) module based on the LiDAR
domain, we also explore the performance of MTM on camera-based methods. Thus, we integrate the
MTM into the advanced camera-based detector CAPE [8] with two frames as input for temporal fusion
on the nuScenes [2] validation set. As shown in Table 1, our MTM can also boost the performance of
the camera-based method, which effectively demonstrates the generality of our method.

Table 1: Performance of camera-based method with MTM. The C represents camera. ∗ denotes our
reproduced results. All models are trained by four NVIDIA RTX 4090 GPUs with 24 epochs and
without CBGS [13]. The batch size is set to 4.

Method Year Modality Frames Resolution Backbone mAP NDS mATE mASE mAOE mAVE mAAE

CAPE∗ [8] CVPR 2023 C 1 704 × 256 R50 27.5 35.9 0.794 0.286 0.642 0.847 0.215
+MTM - C 2 704 × 256 R50 31.6 43.8 0.752 0.277 0.558 0.438 0.182
CAPE∗ [8] CVPR 2023 C 1 800 × 320 V2-99 39.7 46.3 0.693 0.270 0.438 0.747 0.206
+MTM - C 2 800 × 320 V2-99 43.9 53.6 0.656 0.266 0.380 0.350 0.183

A.2 Performance breakdown for each category

We report the detailed performance of QTNet for each category on the nuScenes [2] testing benchmark,
as shown in Table 2. Compared with our LiDAR-only baseline TransFusion-L [1], QTNet brings
consistent improvements on most categories, especially on the construction vehicle (+7.0% AP),
motorcycle (+6.6% AP), and bicycle (+6.3% AP).

Table 2: Comparison with state-of-the-art methods on the nuScenes testing set for each category. The
L and C represent LiDAR and camera, respectively. C.V., Ped., M.C., B.C., T.C., and B.R. represent
construction vehicle, pedestrian, motorcycle, bicycle, traffic cone, and barrier, respectively. The
column of Frames denotes the number of key frame. † denotes future information is used.

Method Modality Frames mAP NDS Car Truck Bus Trailer C.V. Ped. M.C. B.C. T.C. B.R.

CenterPoint [12] L 1 60.3 67.3 85.2 53.5 63.6 56.0 20.0 84.6 59.5 30.7 78.4 71.1
TransFusion-L [1] L 1 65.5 70.2 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2
VISTA [5] L 1 63.7 70.4 84.7 54.2 64.0 55.0 29.1 83.6 71.0 45.2 78.6 71.8
LidarMultiNet [10] L 1 67.0 71.6 86.9 57.4 64.7 61.0 31.5 87.2 75.3 47.6 85.1 73.5
VoxelNeXt [4] L 1 64.5 70.0 84.6 53.0 64.7 55.8 28.7 85.8 73.2 45.7 79.0 74.6
LargeKernel3D [3] L 1 65.3 70.5 85.9 55.3 66.2 60.2 26.8 85.6 72.5 46.6 80.0 74.3
LinK [7] L 1 66.3 71.0 86.1 55.7 65.7 62.1 30.9 85.8 73.5 47.5 80.4 75.1

3DVID† [11] L 3 65.4 71.4 87.5 56.9 63.5 60.2 32.1 82.1 74.6 45.9 78.8 69.3
MGTANet† [6] L 3 65.4 71.2 87.7 56.9 64.6 59.0 28.5 86.4 72.7 47.9 83.8 65.9
QTNet L 3 68.2 72.0 86.5 57.2 68.3 63.0 34.3 88.1 74.9 49.7 82.7 77.0
QTNet L 4 68.4 72.2 86.6 57.7 68.3 62.9 35.2 88.2 74.9 50.5 82.8 77.3

Besides, we report the detailed performance of QTNet for each category on the nuScenes [2] validation
benchmark, as shown in Table 3.

Table 3: Comparison with different baselines on the nuScenes validation set for each category. ∗

denotes our reproduced results.

Method Modality Frames mAP NDS Car Truck Bus Trailer C.V. Ped. M.C. B.C. T.C. B.R.

TransFusion∗ [1] LC 1 67.1 70.7 87.7 61.6 75.9 42.4 26.5 88.0 75.2 63.8 77.3 72.2
+QTNet LC 4 68.5 71.6 87.8 63.0 76.6 43.1 27.7 89.3 77.5 68.8 78.3 72.5
DeepInteraction∗ [9] LC 1 69.9 72.6 88.5 64.4 79.2 44.5 30.1 88.9 79.0 67.8 80.0 76.4
+QTNet LC 4 70.3 73.1 88.4 64.7 79.0 44.8 29.4 89.4 80.5 70.6 79.7 76.1
BEVFusion∗ [? ] LC 1 69.9 72.6 88.5 64.4 79.2 44.5 30.1 88.9 79.0 67.8 80.0 76.4
+QTNet LC 4 70.3 73.1 88.4 64.7 79.0 44.8 29.4 89.4 80.5 70.6 79.7 76.1

TransFusion-L∗ [1] L 1 65.0 70.0 86.7 60.4 75.3 41.6 24.6 86.8 71.8 56.5 74.4 71.8
+QTNet L 3 66.3 70.8 87.1 61.1 75.5 43.0 25.7 87.8 75.2 61.2 75.6 71.4
+QTNet L 4 66.5 70.9 87.2 61.5 75.8 43.0 25.7 87.8 75.5 61.5 75.4 71.4
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A.3 Visualization

To illustrate the superiority of our QTNet, we visualize the results of TransFusion-L [1] on the
nuScenes [2] validation set for comparison. As shown in Figure 1, QTNet can detect the hard-
detected objects for TransFusion-L and boost the detection performance thanks to our proposed
temporal fusion module MTM. As shown in Figure 2, QTNet successfully correct the angle error
of objects for TransFusion-L thanks to our proposed temporal fusion module MTM. Besides, as
shown in Figure 3, we compare TransFusion-L and QTNet along the temporal dimension for better
presentation. It can be seen that the object on the lower left, which is moving away from the ego
vehicle, is not detected in t frame by TransFusion-L. However, QTNet can still capture the object in t
frame, benefiting from our effective temporal fusion.

(a)

(b)

Figure 1: Comparison of LiDAR-only baseline TransFusion-L (a) and QTNet (b) on the nuScenes
validation set. Blue and green boxes are the prediction and ground truth boxes. It can be seen that
TransFusion-L fails to detect the hard-detected objects. However, thanks to the temporal information,
QTNet detects these objects successfully.

(a)

(b)

Figure 2: Comparison of LiDAR-only baseline TransFusion-L (a) and QTNet (b) about orientation of
objects. Thanks to the temporal information, QTNet successfully corrected the orientation error.
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Figure 3: Comparison of LiDAR-only baseline TransFusion-L (a) and QTNet (b) along the temporal
dimension. The ego vehicle is moving from bottom to top.

A.4 Discussions of potential societal impacts

Effectively utilizing temporal information is vital for autonomous driving. QTNet improves 3D
detection performance with negligible computation cost and latency by a lightweight temporal fusion
module MTM, which can utilize temporal information to improve the safety of autonomous driving
in the real world. However, temporal fusion usually requires sensor synchronization in time, which
puts forward higher requirements for the hardware of autonomous driving.
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