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Abstract

Effectively utilizing temporal information to improve 3D detection performance
is vital for autonomous driving vehicles. Existing methods either conduct tem-
poral fusion based on the dense BEV features or sparse 3D proposal features.
However, the former does not pay more attention to foreground objects, leading
to more computation costs and sub-optimal performance. The latter implements
time-consuming operations to generate sparse 3D proposal features, and the perfor-
mance is limited by the quality of 3D proposals. In this paper, we propose a simple
and effective Query-based Temporal Fusion Network (QTNet). The main idea is
to exploit the object queries in previous frames to enhance the representation of
current object queries by the proposed Motion-guided Temporal Modeling (MTM)
module, which utilizes the spatial position information of object queries along
the temporal dimension to construct their relevance between adjacent frames re-
liably. Experimental results show our proposed QTNet outperforms BEV-based
or proposal-based manners on the nuScenes dataset. Besides, the MTM is a plug-
and-play module, which can be integrated into some advanced LiDAR-only or
multi-modality 3D detectors and even brings new SOTA performance with negli-
gible computation cost and latency on the nuScenes dataset. These experiments
powerfully illustrate the superiority and generalization of our method. The code is
available at https://github.com/AlmoonYsl/QTNet.

1 Introduction

3D object detection is the fundamental task of autonomous driving, which consumes data from
sensors (e.g., LiDAR, Camera) to localize and recognize objects in the 3D world. Recent studies have
explored utilizing temporal information to improve the detection performance. According to different
manners of temporal fusion, we divide them into two categories, including BEV-based (Figure 1(a))
and proposal-based (Figure 1(b)).

BEV-based methods [16, 49, 55, 43, 57] conduct temporal fusion on the dense bird’s-eye-view (BEV)
feature by applying an affine transformation to align BEV features in previous frames to enhance
the current BEV features. However, not all pixel-wise BEV features are beneficial for boosting
the detection performance of foreground objects. To alleviate this problem, the proposal-based
approaches [46, 34, 5] usually adopt a region proposal network (RPN) to obtain many 3D proposals
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(d) Comparison of different paradigms on the same baseline

Figure 1: Temporal fusion architecture comparison. (a) BEV-based: conduct temporal fusion on
the dense BEV features. (b) Proposal-based: first extract proposal by 3D RoI pooling operation and
then implement temporal fusion on the proposal-level features. (c) Query-based (Ours): directly adopt
the query-level features to achieve temporal fusion. (d) We compare the performance, computational
cost, and latency of different paradigms on the same baseline (TransFusion-L [2]). Computation cost
and latency are tested on a single NVIDIA RTX 4090 GPU with 1 batch size. For BEV-based and
proposal-based paradigm, we reproduce the representative long-term fusion of MGTANet [16] and
MPPNet [5] on the baseline, respectively.

and then achieve temporal fusion by focusing on foreground object features extracted by the time-
consuming 3D RoI-like operations [37, 36, 9]. However, the effectiveness of temporal fusion is
bounded by the quality of the generated 3D proposals.

We argue that an effective and lightweight temporal fusion module is more meaningful to autonomous
driving technology with high real-time and detection accuracy requirements. Towards this goal,
we rethink the format of feature representation and the temporal modeling paradigm in temporal
fusion for 3D object detection task, and propose a new query-based temporal fusion method called
QTNet. Different from the BEV-based and proposal-based feature representation in Figure 1(a) and
Figure 1(b), we adopt a query-based mechanism shown in Figure 1(c) that possesses two merits. On
the one hand, the query-based representation is sparse and can effectively aggregate the foreground
object information by attention operation [39]. On the other hand, the query-based format is more
efficient due to getting rid of complex 3D RoI operations and is less sensitive to 3D object of size and
orientation than proposal-based representation.

However, the temporal modeling based on query representation is non-trivial to work well. A natural
manner is to compute the feature similarity between the queries of the current and previous frame by
cross attention operation. However, the feature measurement is less reliable since 3D objects with
similar geometric structures between adjacent frames are difficult to distinguish, leading to failed
matching. Fortunately, we observe that 3D objects usually follow the physical law of motion in the
real-world 3D space, which means that the same 3D object between adjacent frames does not shift
too much in a short time.

Based on the above observations, we further adopt a Motion-guided Temporal Modeling (MTM)
module based on the sparse query representation. Specifically, we first align objects from previous
frame to current frame and then generate the attention map by explicit position information of objects.
Finally, we aggregate the temporal features by the attention map to enhance the current query features
for the subsequent refinement and produce the final detection results.
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Besides, as shown in Figure 1(d), we compare our query-based paradigm with the BEV-based and
the proposal-based paradigm in terms of FLOPs, latency, and performance. We can observe that our
QTNet possesses distinct advantages in performance, computation cost, and latency. Overall, our
contributions are summarized as follows: (i) We propose a new temporal fusion method called QTNet
for 3D object detection based on sparse query-based feature representation, which is more effective
and efficient than BEV-based and proposal-based manners. (ii) We propose the MTM, which can be
plugged into LiDAR-only or multi-modality 3D detectors and boost their performance with negligible
computation cost and latency.

2 Related work

3D object detection The current 3D object detection detectors can be roughly categorized into three
categories: LiDAR-based, camera-based, and multi-modality. For LiDAR-based, some methods [37,
56, 54, 52] directly consume pnoit clouds and predict the 3d detection results. Other methods [17,
27, 36, 50, 2, 18] first quantify point clouds into regular grid structures (e.g., voxels, pillars) and
then utilize a 3D backbone to extract features. These methods map 3D grids to bird-eye view (BEV)
representation by height compression and utilize 2D CNN to extract features further for 3D object
detection with efficiency. For camera-based, some methods [21, 12, 20, 19] lift the image features into
3D space and then generate BEV features. Other methods [23, 42] follow the DETR [4] paradigm,
and they utilize queries to interact with the multi-view image features and predict the 3D detection
results. LiDAR-based methods have precise geometric information with high performance but lack
dense texture information. In contrast, camera-based methods have rich texture information but lack
explicit 3D geometric information. Obviously, LiDAR and camera information are complementary.
Therefore, multi-modality methods [14, 24, 51, 8, 2, 28, 22, 47, 15, 26, 25] utilize multi-modal fusion
to improve detection performance.

3D multi-object tracking Due to the lack of rich texture information for point clouds, LiDAR-
based tracking methods [41, 50, 31, 33] usually utilize the motion of objects for the association. For
example, CenterPoint [50] estimates the velocity by an additional regression head and utilizes L2
distance to associate objects in the previous and current frame. SimpleTrack [33] explores settings
of tracking on different datasets through a series of experiments. With the development of camera-
based detectors, some methods [53, 32] have begun to explore conducting 3D multi-object tracking
on the camera domain since there is rich appearance information in images. MUTR3D [53] uses
queries to represent objects and achieves tracking by attention [39]. PF-Track [32] utilizes a temporal
transformer to conduct temporal fusion and integrates past and future reasoning for tracked objects.

3D object detection with temporal fusion In the real world, temporal information is beneficial
to perceive the localization and direction of movement for 3D objects. Towards this goal, some
researchers exploit temporal information to boost the performance of 3D detection task. There
are two sets of mainstream, including BEV-based [49, 21, 16, 13] and proposal-based [46, 34, 5]
temporal fusion. For BEV-based paradigm, the typical approach MGTANet [16] adopts an SM-VFE
module to encode LiDAR point features and then a motion-guided deformable module to align and
aggregate multi-frame BEV features for temporal fusion. However, this BEV-based paradigm takes
both the foreground and background into consideration, leading to additional computation costs and
sub-optimal performance. For proposal-based paradigm, MPPNet [5] utilizes RoI grid pooling [9] to
extract proposal features and generate trajectories for temporal fusion. However, this proposal-based
paradigm usually adopts a multi-stage pipeline and some time-consuming 3D RoI pooling operation,
which makes the whole pipeline complex and brings unacceptable runtime. In summary, the above
methods have the disadvantage of sub-optimal performance or high latency and computation cost. To
address these problems, in this paper, we propose an efficient temporal fusion method QTNet based
on query representation, which achieves better performance and notably reduces the computation
cost and latency.

3 Method

In this section, we introduce the proposed Query-based Temporal Fusion Network (QTNet), which
is presented in Figure 2. QTNet consists of a DETR-like 3D detector, a memory bank, and our
proposed Motion-guided Temporal Modeling (MTM) module. In contrast to the prior arts, including
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Figure 2: The overall architecture of the proposed QTNet. We first feed sensor data to the DETR-
like 3D detector and generate current frame queries. We utilize a memory bank to store historical
queries for query-based temporal fusion, which follows the FIFO rule. In the temporal fusion,
we fetch these historical queries from the memory bank and then feed them to our motion-guided
temporal modeling module to fuse queries in different frames. Finally, the fused queries are utilized
to refine current detection results.

BEV-based [16, 5, 49, 57] and proposal-based [34, 5], we conduct the temporal fusion on sparse query
representation. Specifically, we first feed LiDAR point clouds to DETR-like 3D detectors [2, 47, 15]
and generate sparse query features. Note that our method can also support multi-modal data as
input (e.g., images and LiDAR point clouds). Thus, the input of images is optional. Then, we reserve
the historical sparse query features by a memory bank to reduce repeated computation costs. Next, we
take the query features of the previous frame and current frame into our MTM module and produce
the enhanced query features for the final 3D detection. Next, we will present the details of the main
components in QTNet.

3.1 Memory Bank

Different from the existing temporal fusion methods [16, 49, 57] that require much repeated com-
putation for the feature extraction from the previous frames, we utilize a memory bank to preserve
the historical information for the subsequent temporal fusion. Here, we define a memory bank S
with the size of N ×K, where N means the number of used historical frames and K is the number
of queries. Our memory bank follows the first-in and first-out (FIFO) rule to achieve query feature
updates. In more detail, we first conduct temporal fusion in the t frame and reserve N historical
frames. Then, we fetch queries [Qt−1, Qt−2, ...Qt−N ] in historical frames. Next, we can fuse these
historical queries with the current queries Qt so as to obtain the enhanced current queries Q

′

t. Finally,
we push current queries Qt into S and pop the oldest queries Qt−N .

3.2 Motion-guided Temporal Modeling Module

The Motion-guided Temporal Modeling (MTM) module is applied to enhance the current query
features by combining the feature information from the history frames. Specifically, we first obtain
the current object queries Qt and their corresponding positions Ct (can also be regarded as the
center of 3D objects) from the DETR-like 3D detectors. In this paper, we adopt Transfusion-L [2] as
the default 3D detector. Then, we feed current queries Qt, previous fused queries Q

′

t−1, and their
corresponding positions Ct and Ct−1 to MTM for generating current fused queries Q

′

t. In more detail,
we present the structure of MTM in Figure 3, which includes three steps: the position alignment of
objects between the previous and the current frames, the attention map generation, and the feature
aggregation. For the process of this alignment, we first align objects from previous frame to current
frame by the motion of objects and the ego vehicle. Given the ego pose matrix Rt−1

w and Rt
w in t− 1
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Figure 3: The details of MTM. In the MTM, the center of queries in different frames is used to
produce the attention map of queries, which is then applied to enhance the current queries.

frame and t frame, we transform objects from the world coordinate to the ego coordinate. Then, the
aligned transformation matrix Rt

t−1, which transforms objects from t− 1 frame to t frame, can be
calculated as:

Rt
t−1 = Rt

w · inv(Rt−1
w ), (1)

where the inv denotes the matrix inversion operation. Then, we can align the center of objects in
t− 1 frame to t frame by their velocity Vt−1 and the aligned transformation matrix Rt

t−1 with the
related time interval ∆t between t and t− 1 frame:

C
′

t−1 = (Ct−1 + Vt−1 ·∆t) · (Rt
t−1)

T (2)
For the attention map generation, we first define the number of Qt is Nt and Qt−1 is Nt−1. Then,
we utilize the L2 center distance of objects between adjacent frames to build the cost matrix Ot

t−1 ∈
RNt×Nt−1 :

Ot
t−1 = L2(Ct − C

′

t−1), (3)
where the L2 denotes the euclidean distance. To avoid the occurrence of impossible matching
situations for better temporal modeling, we introduce the L2 velocity error distribution of each
category in 0.5 seconds as our distance cost threshold γ, which is similar to CenterPoint [50].
Besides, these associated objects with different categories are masked. We formulate the above
process as follows:

M =

{
0, Ot

t−1 ≤ γ and st = st−1

1e8, Ot
t−1 > γ or st ̸= st−1

, (4)

where st and st−1 denote the category of objects in t and t−1 frames, respectively. After adopting the
attention mask M with the row-wise softmax function on the cost matrix, we generate the attention
map A, which is derived from the explicit position information:

A = softmax(−1 ·Ot
t−1 −M), (5)

For feature aggregation, we utilize the attention map to aggregate historical features. Given the
current queries Qt, previous fused queries Q

′

t−1, and attention map A in Figure 3, the aggregated
temporal features Ft−1 can be calculated as:

Ft−1 = ϕ2(A · ϕ1(Q
′

t−1)), (6)
where the ϕ1 and ϕ2 denote two linear layers. After aggregation, we can combine Ft−1 and Qt to
generate the current fused queries Q

′

t:

Q
′

t = Norm(Qt +Dropout(FFN(Norm(Qt +Dropout(Ft−1))))), (7)
where Dropout, Norm, and FFN denote the dropout operation [38], the layer normalization [1],
and the feed-forward network, respectively. Finally, we utilize Q

′

t to refine the predicted results of
the current frame through two simple FFNs, which are utilized to estimate the confidence of the
classification branch and the residual of the regression branch for further refinement. Besides, we
follow [40, 35] to utilize the IoU branch to rectify the confidence score of prediction results in the
current frame.
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Figure 4: Decouple temporal fusion. The decoupling manner conducts temporal fusion on classi-
fication and regression branches separately for better detection performance. Here, the weights of
classification and regression branches are not shared.

3.3 Decouple Strategy

We observe that there is an imbalance in the classification and regression learning for temporal fusion.
This phenomenon is also mentioned in VISTA [10] for 3D detection task. However, this decoupled
manner brings more computation costs and latency, which is unacceptable for most BEV-based
and proposal-based methods. In contrast, benefiting from our efficient design of temporal fusion,
the computation cost and latency of QTNet are negligible compared with the whole 3D detection
network. Therefore, we decouple the classification and regression branches as shown in Figure 4(b)
instead of the coupling manner in Figure 4(a) that is usually employed in the previous temporal fusion
methods [49, 5, 16]. Specifically, we separately implement the temporal fusion for the classification
branch and the regression branch so as to achieve better detection performance.

4 Experiments

4.1 Experimental setup

Dataset We evaluate our method on the nuScenes dataset [3], which is a large-scale autonomous
driving dataset. It contains 700, 150, and 150 scenes for training, validation, and testing. Each scene
is roughly 20 seconds long and annotated at 2Hz, and provides point clouds acquired by 32-beam
LiDAR and surrounding images acquired by 6 cameras. Note that each sample consists of one key
frame and nine sweep frames. Besides, there are roughly 1.6M objects for 10 categories (barrier,
bicycle, bus, car, motorcycle, pedestrian, trailer, truck, construction vehicle, and traffic cone) on
the 3D object detection task. For the evaluation metric, Mean Average Precision (mAP) [11] and
nuScenes detection score (NDS) [3] are used to evaluate the performance of 3D detectors on the
nuScenes dataset.

4.2 Implementation details

Following the settings of nuScenes dataset, we concatenate point clouds of one key frame and nine
sweeps as the input of a sample, which is roughly 0.5 seconds long. Each point is represented as
(x, y, z, r,∆t), where the (x, y, z), r, and ∆t denote the 3D coordinate of a point, the reflectance,
and the time offset from the key frame, respectively.

Our method is implemented on 3D object detectors with LiDAR or multi-modality (LiDAR and
images). For LiDAR, we take the TransFusion-L [2] as our LiDAR-only baseline. For multi-
modality, we take the TransFusion [2] and DeepInteraction [47] as our multi-modality baseline. The
voxelization range is set to [−54m, 54m] for both X and Y axes and [−5m, 3m] for Z axis. The
voxel size is set to (0.075m, 0.075m, 0.1m). We set the number of queries as 200 for training and
testing. For temporal fusion, we utilize 2 or 3 historical frames. Note that we do not adopt any test
time augmentation (TTA), multiple models ensemble, or future frames during inference.
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Table 1: Comparison with state-of-the-art methods on the nuScenes validation set. The L and C
represent LiDAR and camera, respectively. The column of Frames denotes the number of key frame.
∗ denotes our reproduced results. † denotes future information is used.

Method Year Modality Frames Backbones mAP↑ NDS↑
MVP [51] NeurIPS 2021 LC 1 DLA34 & VoxelNet 67.1 70.8
AutoAlignV2 [8] ECCV 2022 LC 1 CSPNet & VoxelNet 67.1 71.2
TransFusion [2] CVPR 2022 LC 1 R50 & VoxelNet 67.5 71.3
BEVFusion [22] NeurIPS 2022 LC 1 Swin-Tiny & VoxelNet 67.9 71.0
DeepInteraction [47] NeurIPS 2022 LC 1 R50 & VoxelNet 69.9 72.6
BEVFusion [28] ICRA 2023 LC 1 Swin-Tiny & VoxelNet 68.5 71.4
MSMDFusion [15] CVPR 2023 LC 1 R50 & VoxelNet 69.3 72.1
CMT [44] ICCV 2023 LC 1 V2-99 & VoxelNet 70.3 72.9

TransFusion∗ [2] CVPR 2022 LC 1 R50 & VoxelNet 67.1 70.7
+QTNet - LC 4 R50 & VoxelNet 68.5 71.6
DeepInteraction∗ [47] NeurIPS 2022 LC 1 R50 & VoxelNet 69.9 72.6
+QTNet - LC 4 R50 & VoxelNet 70.3 73.1

CenterPoint [50] CVPR 2021 L 1 VoxelNet 59.6 66.8
TransFusion-L [2] CVPR 2022 L 1 VoxelNet 65.1 70.1
INT [43] ECCV 2022 L 10 VoxelNet 61.8 67.3
LidarMultiNet [48] AAAI 2023 L 1 VoxelNet 63.8 69.5
VoxelNeXt [7] CVPR 2023 L 1 VoxelNet 60.0 67.1
LargeKernel3D [6] CVPR 2023 L 1 Voxel-LargeKernel3D 63.3 69.1
LinK [30] CVPR 2023 L 1 Voxel-LinK 63.6 69.5
MGTANet [16] AAAI 2023 L 3 VoxelNet 62.9 68.7
MGTANet† [16] AAAI 2023 L 3 VoxelNet 64.8 70.6

TransFusion-L∗ [2] CVPR 2022 L 1 VoxelNet 65.0 70.0
+QTNet - L 3 VoxelNet 66.3 70.8
+QTNet - L 4 VoxelNet 66.5 70.9

Table 2: Comparison with state-of-the-art methods on the nuScenes test set. † denotes future
information is used.

Method Year Modality Frames Backbones mAP↑ NDS↑
CenterPoint [50] CVPR 2021 L 1 VoxelNet 60.3 67.3
TransFusion-L [2] CVPR 2022 L 1 VoxelNet 65.5 70.2
VISTA [10] CVPR 2022 L 1 VoxelNet 63.7 70.4
LidarMultiNet [48] AAAI 2023 L 1 VoxelNet 67.0 71.6
VoxelNeXt [7] CVPR 2023 L 1 VoxelNet 64.5 70.0
LargeKernel3D [6] CVPR 2023 L 1 Voxel-LargeKernel3D 65.3 70.5
LinK [30] CVPR 2023 L 1 Voxel-LinK 66.3 71.0

3DVID† [49] TPAMI 2021 L 3 VoxelNet 65.4 71.4
MGTANet† [16] AAAI 2023 L 3 VoxelNet 65.4 71.2
QTNet - L 3 VoxelNet 68.2 72.0
QTNet - L 4 VoxelNet 68.4 72.2

Our training process is divided into two stages. In the first stage, we train the DETR-like 3D
detectors (TransFusion-L, TransFusion, and DeepInteraction) with their default settings. In the
second stage, we generate the memory bank of query features and prediction results. Then, we train
our QTNet for 10 epochs without GT-Sampling [45] and CBGS [58] on four NVIDIA RTX 4090
GPUs. To optimize our network, we adopt the AdamW [29] optimizer with a one-cycle learning rate
policy, and the batch size is set to 16.

4.3 Comparison to the state of the art

We compare the proposed QTNet with previous state-of-the-art 3D detectors on the nuScenes [3]
validation and test set. As shown in Table 1, QTNet shows consistent performance improvement
when our module is integrated into the LiDAR-only detector Transfusion-L [2] or multi-modality
methods Transfusion [2] and DeepInteraction [47]. Compared with the single frame LiDAR-only
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Table 3: Comparison of computation cost and latency on the nuScenes validation set. ∗ denotes our
reproduced results. The FLOPs and Latency are tested on a single NVIDIA RTX 4090 GPU with the
batch size of 1.

Method Modality mAP (%)↑ NDS (%)↑ FLOPs (G)↓ Latency (ms)↓ Params (M)

TransFusion∗ [2] LC 67.1 70.7 445.9 201.2 37.0
+QTNet LC 68.5 71.6 446.4 207.7 37.7
DeepInteraction∗ [47] LC 69.9 72.6 499.2 355.0 57.8
+QTNet LC 70.3 73.1 499.7 361.5 58.5

TransFusion-L∗ [2] L 65.0 70.0 90.7 138.2 8.3
+QTNet L 66.5 70.9 90.8 144.7 8.6

Table 4: Compared with other paradigms on the TransFusion-L. ∗ denotes the fine-tuned results. Note
that when introducing MGTANet into TransFusion-L, we need to fine-tune the detection head of
TransFusion-L, which is harmful to the final detection performance. Therefore, for a fair comparison,
we choose the same fine-tuned TransFusion-L on different paradigms.

Method Paradigm mAP NDS FLOPs (G) Latency (ms) Params (M)

TransFusion-L∗ [2] - 63.1 67.8 90.7 138.2 8.3
+MGTANet [16] BEV 64.0 (+0.9) 68.1 (+0.3) +193.0 +22.1 +5.5
+MPPNet [5] Proposal 63.4 (+0.3) 68.2 (+0.4) +131.3 +127.9 +7.0
+QTNet Query 64.7 (+1.6) 69.0 (+1.2) +0.1 +4.5 +0.3

baseline TransFusion-L, QTNet brings 1.3% (or 1.5%) mAP and 0.8% (or 0.9%) NDS improvements
with 3 (or 4) frames, which achieves a new SOTA performance for LiDAR-only detectors. Besides,
QTNet even outperforms MGTANet†, a manner of using the future frame information, by 1.5% mAP
and 0.2% NDS. Note that QTNet does not utilize any future information since future information can
not be fetched in the realistic scene of autonomous driving. Besides, compared with the single frame
multi-modality baseline TransFusion, QTNet also produces 1.4% mAP and 0.9% NDS improvement.
Based on the previous SOTA multi-modality method DeepInteraction, QTNet brings 0.4% mAP and
0.5% NDS improvement, achieving a new SOTA result for multi-modality 3D object detection.

On the nuScenes test benchmark, we take TransFusion-L as our baseline. As shown in Table 2,
QTNet outperforms the advanced temporal fusion method MGTANet† by 2.8% mAP and 0.8% NDS
for 3 frames as input, which illustrates the superiority of QTNet. QTNet achieves 68.4% mAP and
72.2% NDS with 4 frames, setting a new SOTA performance. Besides, we present the computation
cost and latency by integrating our QTNet into different baselines in Table 3. It can be seen that our
method brings consistent performance improvement with negligible computation cost and latency.

4.4 Ablation studies

Query-based v.s. Other paradigms For a fair comparison, we integrate the representative long-
term fusion of MGTANet[16] and MPPNet[5] into our baseline TransFusion-L[2] and keep the same
number of frames as 3. As shown in Table 4, we present the results of QTNet and other methods
in terms of the performance and computation cost. QTNet outperforms the BEV-based method
MGTANet and the proposal-based method MPPNet 0.9% NDS and 0.8% NDS, respectively. For
computation cost and latency, QTNet only brings a tiny increment of 0.1 GFLOPs and 4.5 ms based on
the baseline of TransFusion-L. However, MGTANet even additionally produces 193.0 GFLOPs and
22.1 ms, and MPPNet brings 131.3 GFLOPs and 127.9 ms on the same baseline. These experiments
effectively demonstrate that QTNet possesses superior performance and less computation cost and
latency when compared with other paradigms. Besides, QTNet is lightweight, which only brings tiny
extra parameters of 0.3 M.

Ablation studies on our QTNet We adopt the TransFusion-L [2] as our baseline (I) under the
case of 3 frames as input and conduct ablation studies on our QTNet as shown in Table 5(a). Here,
we provide an available manner to model the relationship of adjacent frames for temporal fusion by
the cross attention operation [39] (II) for comparison. It can be observed that there is only a minor
performance improvement with the mAP of 0.2% over baseline. In contrast, our proposed MTM
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Table 5: Ablation studies on the temporal fusion, evaluated on the nuScenes validation set.

(a) Ablation studies on components of QTNet.

# Cross Attention MTM IoU Decouple mAP NDS

I 65.0 70.0
II ✓ 65.2 70.0
III ✓ 66.2 70.5
IV ✓ ✓ 66.3 70.6
V ✓ ✓ ✓ 66.4 70.8

(b) Ablation studies on the number of frames

Frames mAP NDS FLOPs (G) Latency (ms)

1 65.0 70.0 90.65 138.2
2 66.1 70.6 +0.07 +3.1
3 66.4 70.8 +0.10 +4.5
4 66.5 70.9 +0.14 +6.5
5 66.4 70.9 +0.24 +7.7

ID:1

ID:0

ID:2

(a) (b)�

1

0

ID:0
ID:1

ID:2

ID:0
ID:1

ID:2

� − 1

Figure 5: Attention map comparison. For better visualization, we select some predictions with high
confidence score and calculate the attention map. The row and column of attention map represent
objects in t and t− 1 frame, respectively. The value of attention map is higher and the relevance is
stronger. The attention map (a) generated by cross attention is ambiguous. The attention map (b)
generated by our MTM is more discriminative than cross attention.

(III) obtains 1.2% mAP and 0.5% NDS performance gains over baseline. Besides, we apply the IoU
branch [35, 40] to rectify the confidence score of prediction results (IV), which can further boost
the detection performance. Finally, we decouple the classification and regression of temporal fusion
(V), which further brings 0.2% NDS performance gains. The above experiments demonstrate the
effectiveness of our proposed components in our QTNet.

Different Number of Frames We explore the impact of detection performance on the different
number of frames in the temporal fusion, whose results are shown in Table 5(b). We can find that as
the number of frames increases from 1 to 4, the performance gain is gradually strengthening. When
the number of frames reaches 5, the performance starts to saturate. Besides, the computation cost and
latency slightly increase as the number of frames increases. However, thanks to our efficient design,
the extra computation cost and latency are much slight compared with our whole network.

Why MTM is better? Intuitively, the cross attention operation [39] can directly construct the
relevance among query features. However, objects with similar geometric structures between adjacent
frames are difficult to distinguish in LiDAR point clouds, which makes the construction of the
relationship between two frames less reliable. On the contrary, MTM builds an explicit motion
modeling for temporal fusion by taking advantage of the fact that the same 3D objects between
adjacent frames do not shift too much in a short time. To further illustrate the effectiveness of our
MTM, we present the visualization for the manners of cross attention and our MTM as shown in
Figure 5. Here, for convenience, we select three objects from predictions with high scores in t and
t−1 frames. The attention map generated by cross attention is ambiguous, which leads to sub-optimal
performance for temporal fusion. On the contrary, the attention map generated by our MTM is more
discriminative. Therefore, our MTM can establish more reliable relevance among queries than cross
attention, which proves the rationality and superiority of our proposed MTM.

4.5 Limitation

Our method can be integrated into some advanced LiDAR-only or multi-modality DETR-like 3D
detectors and brings performance improvements with negligible computation cost and latency. How-
ever, the main limitation is that the cost and latency of our method increase as the number of frames
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increases. In the future, we will explore recurrent architecture for 3D object detection with temporal
fusion.

5 Conclusion

In this paper, we propose a query-based temporal fusion network named QTNet for 3D object
detection. Based on our query-based feature representation, we introduce a lightweight motion-guided
temporal modeling MTM module to aggregate temporal features more efficiently and effectively.
Extensive experiments demonstrate the superiority of our proposed QTNet by comparing it with the
mainstream BEV-based and proposal-based paradigms. Besides, QTNet even achieves new state-of-
the-art on the nuScenes dataset for LiDAR-only and multi-modality 3D detectors with negligible
computation cost and latency compared with the baseline network.
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A Appendix

A.1 Performance on the Camera-based method

Although we design our motion-guided temporal modeling (MTM) module based on the LiDAR
domain, we also explore the performance of MTM on camera-based methods. Thus, we integrate the
MTM into the advanced camera-based detector CAPE [42] with two frames as input for temporal
fusion on the nuScenes [3] validation set. As shown in Table 6, our MTM can also boost the
performance of the camera-based method, which effectively demonstrates the generality of our
method.

Table 6: Performance of camera-based method with MTM. The C represents camera. ∗ denotes our
reproduced results. All models are trained by four NVIDIA RTX 4090 GPUs with 24 epochs and
without CBGS [58]. The batch size is set to 4.

Method Year Modality Frames Resolution Backbone mAP NDS mATE mASE mAOE mAVE mAAE

CAPE∗ [42] CVPR 2023 C 1 704 × 256 R50 27.5 35.9 0.794 0.286 0.642 0.847 0.215
+MTM - C 2 704 × 256 R50 31.6 43.8 0.752 0.277 0.558 0.438 0.182
CAPE∗ [42] CVPR 2023 C 1 800 × 320 V2-99 39.7 46.3 0.693 0.270 0.438 0.747 0.206
+MTM - C 2 800 × 320 V2-99 43.9 53.6 0.656 0.266 0.380 0.350 0.183

A.2 Performance breakdown for each category

We report the detailed performance of QTNet for each category on the nuScenes [3] testing benchmark,
as shown in Table 7. Compared with our LiDAR-only baseline TransFusion-L [2], QTNet brings
consistent improvements on most categories, especially on the construction vehicle (+7.0% AP),
motorcycle (+6.6% AP), and bicycle (+6.3% AP).

Table 7: Comparison with state-of-the-art methods on the nuScenes testing set for each category. The
L and C represent LiDAR and camera, respectively. C.V., Ped., M.C., B.C., T.C., and B.R. represent
construction vehicle, pedestrian, motorcycle, bicycle, traffic cone, and barrier, respectively. The
column of Frames denotes the number of key frame. † denotes future information is used.

Method Modality Frames mAP NDS Car Truck Bus Trailer C.V. Ped. M.C. B.C. T.C. B.R.

CenterPoint [50] L 1 60.3 67.3 85.2 53.5 63.6 56.0 20.0 84.6 59.5 30.7 78.4 71.1
TransFusion-L [2] L 1 65.5 70.2 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2
VISTA [10] L 1 63.7 70.4 84.7 54.2 64.0 55.0 29.1 83.6 71.0 45.2 78.6 71.8
LidarMultiNet [48] L 1 67.0 71.6 86.9 57.4 64.7 61.0 31.5 87.2 75.3 47.6 85.1 73.5
VoxelNeXt [7] L 1 64.5 70.0 84.6 53.0 64.7 55.8 28.7 85.8 73.2 45.7 79.0 74.6
LargeKernel3D [6] L 1 65.3 70.5 85.9 55.3 66.2 60.2 26.8 85.6 72.5 46.6 80.0 74.3
LinK [30] L 1 66.3 71.0 86.1 55.7 65.7 62.1 30.9 85.8 73.5 47.5 80.4 75.1

3DVID† [49] L 3 65.4 71.4 87.5 56.9 63.5 60.2 32.1 82.1 74.6 45.9 78.8 69.3
MGTANet† [16] L 3 65.4 71.2 87.7 56.9 64.6 59.0 28.5 86.4 72.7 47.9 83.8 65.9
QTNet L 3 68.2 72.0 86.5 57.2 68.3 63.0 34.3 88.1 74.9 49.7 82.7 77.0
QTNet L 4 68.4 72.2 86.6 57.7 68.3 62.9 35.2 88.2 74.9 50.5 82.8 77.3

Besides, we report the detailed performance of QTNet for each category on the nuScenes [3] validation
benchmark, as shown in Table 8.

Table 8: Comparison with different baselines on the nuScenes validation set for each category. ∗

denotes our reproduced results.

Method Modality Frames mAP NDS Car Truck Bus Trailer C.V. Ped. M.C. B.C. T.C. B.R.

TransFusion∗ [2] LC 1 67.1 70.7 87.7 61.6 75.9 42.4 26.5 88.0 75.2 63.8 77.3 72.2
+QTNet LC 4 68.5 71.6 87.8 63.0 76.6 43.1 27.7 89.3 77.5 68.8 78.3 72.5
DeepInteraction∗ [47] LC 1 69.9 72.6 88.5 64.4 79.2 44.5 30.1 88.9 79.0 67.8 80.0 76.4
+QTNet LC 4 70.3 73.1 88.4 64.7 79.0 44.8 29.4 89.4 80.5 70.6 79.7 76.1
BEVFusion∗ [28] LC 1 69.9 72.6 88.5 64.4 79.2 44.5 30.1 88.9 79.0 67.8 80.0 76.4
+QTNet LC 4 70.3 73.1 88.4 64.7 79.0 44.8 29.4 89.4 80.5 70.6 79.7 76.1

TransFusion-L∗ [2] L 1 65.0 70.0 86.7 60.4 75.3 41.6 24.6 86.8 71.8 56.5 74.4 71.8
+QTNet L 3 66.3 70.8 87.1 61.1 75.5 43.0 25.7 87.8 75.2 61.2 75.6 71.4
+QTNet L 4 66.5 70.9 87.2 61.5 75.8 43.0 25.7 87.8 75.5 61.5 75.4 71.4
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A.3 Visualization

To illustrate the superiority of our QTNet, we visualize the results of TransFusion-L [2] on the
nuScenes [3] validation set for comparison. As shown in Figure 6, QTNet can detect the hard-
detected objects for TransFusion-L and boost the detection performance thanks to our proposed
temporal fusion module MTM. As shown in Figure 7, QTNet successfully correct the angle error
of objects for TransFusion-L thanks to our proposed temporal fusion module MTM. Besides, as
shown in Figure 8, we compare TransFusion-L and QTNet along the temporal dimension for better
presentation. It can be seen that the object on the lower left, which is moving away from the ego
vehicle, is not detected in t frame by TransFusion-L. However, QTNet can still capture the object in t
frame, benefiting from our effective temporal fusion.

(a)

(b)

Figure 6: Comparison of LiDAR-only baseline TransFusion-L (a) and QTNet (b) on the nuScenes
validation set. Blue and green boxes are the prediction and ground truth boxes. It can be seen that
TransFusion-L fails to detect the hard-detected objects. However, thanks to the temporal information,
QTNet detects these objects successfully.

(a)

(b)

Figure 7: Comparison of LiDAR-only baseline TransFusion-L (a) and QTNet (b) about orientation of
objects. Thanks to the temporal information, QTNet successfully corrected the orientation error.
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(a)

(b)

Figure 8: Comparison of LiDAR-only baseline TransFusion-L (a) and QTNet (b) along the temporal
dimension. The ego vehicle is moving from bottom to top.

A.4 Discussions of potential societal impacts

Effectively utilizing temporal information is vital for autonomous driving. QTNet improves 3D
detection performance with negligible computation cost and latency by a lightweight temporal fusion
module MTM, which can utilize temporal information to improve the safety of autonomous driving
in the real world. However, temporal fusion usually requires sensor synchronization in time, which
puts forward higher requirements for the hardware of autonomous driving.
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