
Brain Diffusion for Visual Exploration: Cortical
Discovery using Large Scale Generative Models

Andrew F. Luo
Carnegie Mellon University

afluo@cmu.edu

Margaret M. Henderson
Carnegie Mellon University

mmhender@cmu.edu

Leila Wehbe*

Carnegie Mellon University
lwehbe@cmu.edu

Michael J. Tarr*

Carnegie Mellon University
michaeltarr@cmu.edu

Abstract

A long standing goal in neuroscience has been to elucidate the functional or-
ganization of the brain. Within higher visual cortex, functional accounts have
remained relatively coarse, focusing on regions of interest (ROIs) and taking the
form of selectivity for broad categories such as faces, places, bodies, food, or
words. Because the identification of such ROIs has typically relied on manually
assembled stimulus sets consisting of isolated objects in non-ecological contexts,
exploring functional organization without robust a priori hypotheses has been
challenging. To overcome these limitations, we introduce a data-driven approach in
which we synthesize images predicted to activate a given brain region using paired
natural images and fMRI recordings, bypassing the need for category-specific
stimuli. Our approach – Brain Diffusion for Visual Exploration (“BrainDiVE”) –
builds on recent generative methods by combining large-scale diffusion models
with brain-guided image synthesis. Validating our method, we demonstrate the
ability to synthesize preferred images with appropriate semantic specificity for
well-characterized category-selective ROIs. We then show that BrainDiVE can
characterize differences between ROIs selective for the same high-level category.
Finally we identify novel functional subdivisions within these ROIs, validated with
behavioral data. These results advance our understanding of the fine-grained func-
tional organization of human visual cortex, and provide well-specified constraints
for further examination of cortical organization using hypothesis-driven methods.
Code and project site: https://www.cs.cmu.edu/~afluo/BrainDiVE

1 Introduction

The human visual cortex plays a fundamental role in our ability to process, interpret, and act on visual
information. While previous studies have provided important evidence that regions in the higher
visual cortex preferentially process complex semantic categories such as faces, places, bodies, words,
and food [1, 2, 3, 4, 5, 6, 7], these important discoveries have been primarily achieved through the
use of researcher-crafted stimuli. However, hand-selected, synthetic stimuli may bias the results
or may not accurately capture the complexity and variability of natural scenes, sometimes leading
to debates about the interpretation and validity of identified functional regions [8]. Furthermore,
mapping selectivity based on responses to a fixed set of stimuli is necessarily limited, in that it can
only identify selectivity for the stimulus properties that are sampled. For these reasons, data-driven
methods for interpreting high-dimensional neural tuning are complementary to traditional approaches.

We introduce Brain Diffusion for Visual Exploration (“BrainDiVE”), a generative approach for
synthesizing images that are predicted to activate a given region in the human visual cortex. Several
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Figure 1: Images generated using BrainDiVE . Images are generated using a diffusion model with
maximization of voxels identified from functional localizer experiments as conditioning. We find that
brain signals recorded via fMRI can guide the synthesis of images with high semantic specificity,
strengthening the evidence for previously identified category selective regions. Select images are
shown, please see below for uncurated images.

recent studies have yielded intriguing results by combining deep generative models with brain
guidance [9, 10, 11]. BrainDiVE, enabled by the recent availability of large-scale fMRI datasets
based on natural scene images [12, 13], allows us to further leverage state-of-the-art diffusion
models in identifying fine-grained functional specialization in an objective and data-driven manner.
BrainDiVE is based on image diffusion models which are typically driven by text prompts in order
to generate synthetic stimuli [14]. We replace these prompts with maximization of voxels in given
brain areas. The result being that the resultant synthesized images are tailored to targeted regions in
higher-order visual areas. Analysis of these images enables data-driven exploration of the underlying
feature preferences for different visual cortical sub-regions. Importantly, because the synthesized
images are optimized to maximize the response of a given sub-region, these images emphasize and
isolate critical feature preferences beyond what was present in the original stimulus images used in
collecting the brain data. To validate our findings, we further performed several human behavioral
studies that confirmed the semantic identities of our synthesized images.

More broadly, we establish that BrainDiVE can synthesize novel images (Figure 1) for category-
selective brain regions with high semantic specificity. Importantly, we further show that Brain-
DiVE can identify ROI-wise differences in selectivity that map to ecologically relevant properties.
Building on this result, we are able to identify novel functional distinctions within sub-regions of
existing ROIs. Such results demonstrate that BrainDiVE can be used in a data-driven manner to
enable new insights into the fine-grained functional organization of the human visual cortex.

2 Related work
Mapping High-Level Selectivity in the Visual Cortex. Certain regions within the higher visual
cortex are believed to specialize in distinct aspects of visual processing, such as the perception of
faces, places, bodies, food, and words [15, 3, 4, 1, 16, 17, 18, 19, 5, 20]. Many of these discoveries
rely on carefully handcrafted stimuli specifically designed to activate targeted regions. However,
activity under natural viewing conditions is known to be different [21]. Recent efforts using artificial
neural networks as image-computable encoders/predictors of the visual pathway [22, 23, 24, 25, 26,
27, 28, 29, 30] have facilitated the use of more naturalistic stimulus sets. Our proposed method
incorporates an image-computable encoding model in line with this past work.

Deep Generative Models. The recent rise of learned generative models has enabled sampling from
complex high dimensional distributions. Notable approaches include variational autoencoders [31,
32], generative adversarial networks [33], flows [34, 35], and score/energy/diffusion models [36, 37,
38, 39]. It is possible to condition the model on category [40, 41], text [42, 43], or images [44]. Recent
diffusion models have been conditioned with brain activations to reconstruct observed images [45,
46, 47, 48, 49]. Unlike BrainDiVE, these approaches tackle reconstruction but not synthesis of novel
images that are predicted to activate regions of the brain.

Brain-Conditioned Image Generation. The differentiable nature of deep encoding models in-
spired work to create images from brain gradients in mice, macaques, and humans [50, 51, 52].
Without constraints, the images recovered are not naturalistic. Other approaches have combined deep
generative models with optimization to recover natural images in macaque and humans [10, 11, 9].
Both [11, 9] utilize fMRI brain gradients combined with ImageNet trained BigGAN. In particu-
lar [11] performs end-to-end differentiable optimization by assuming a soft relaxation over the
1, 000 ImageNet classes; while [9] trains an encoder on the NSD dataset [13] and first searches for

2



top-classes, then performs gradient optimization within the identified classes. Both approaches are
restricted to ImageNet images, which are primarily images of single objects. Our work presents major
improvements by enabling the use of diffusion models [44] trained on internet-scale datasets [53]
over three magnitudes larger than ImageNet. Concurrent work by [54] explore the use of gradients
from macaque V4 with diffusion models, however their approach focuses on early visual cortex with
grayscale image outputs, while our work focuses on higher-order visual areas and synthesize complex
compositional scenes. By avoiding the search-based optimization procedures used in [9], our work
is not restricted to images within a fixed class in ImageNet. Further, to the authors’ knowledge we
are the first work to use image synthesis methods in the identification of functional specialization in
sub-parts of ROIs.
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Figure 2: Architecture of brain guided diffusion (BrainDiVE). Top: Our framework consists
of two core components: (1) A diffusion model trained to synthesize natural images by iterative
denoising; we utilize pretrained LDMs. (2) An encoder trained to map from images to cortical activity.
Our framework can synthesize images that are predicted to activate any subset of voxels. Shown here
are scene-selective regions (RSC/PPA/OPA) on the right hemisphere. Bottom: We visualize every 4
steps the magnitude of the gradient of the brain w.r.t. the latent and the corresponding "predicted
x0" [55] when targeting scene selective voxels in both hemispheres. We find clear structure emerges.

3 Methods
We aim to generate stimuli that maximally activate a given region in visual cortex using paired natural
image stimuli and fMRI recordings. We first review relevant background information on diffusion
models. We then describe how we can parameterize encoding models that map from images to brain
data. Finally, we describe how our framework (Figure 2) can leverage brain signals as guidance to
diffusion models to synthesize images that activate a target brain region.

3.1 Background on Diffusion Models
Diffusion models enable sampling from a data distribution p(x) by iterative denoising. The
sampling process starts with xT ∼ N (0, I), and produces progressively denoised samples
xT−1, xT−2, xT−3 . . . until a sample x0 from the target distribution is reached. The noise level
varies by timestep t, where the sample at each timestep is a weighted combination of x0 and
ϵ ∼ N (0, I), with xt =

√
αtx0 + ϵ

√
1− αt. The value of α interpolates between N (0, I) and p(x).

In the noise prediction setting, an autoencoder network ϵθ(xt, t) is trained using a mean-squared error
E(x,ϵ,t)

[
∥ϵθ(xt, t)− ϵ∥22

]
. In practice, we utilize a pretrained latent diffusion model (LDM) [44],

with learned image encoder EΦ and decoder DΩ, which together act as an autoencoder I ≈
DΩ(EΦ(I)). The diffusion model is trained to sample x0 from the latent space of EΦ.

3.2 Brain-Encoding Model Construction
A learned voxel-wise brain encoding model is a function Mθ that maps an image I ∈ R3×H×W to
the corresponding brain activation fMRI beta values represented as an N element vector B ∈ RN :
Mθ(I) ⇒ B. Past work has identified later layers in neural networks as the best predictors of
higher visual cortex [30, 56], with CLIP trained networks among the highest performing brain
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encoders [28, 57]. As our target is the higher visual cortex, we utilize a two component design
for our encoder. The first component consists of a CLIP trained image encoder which outputs a
K dimensional vector as the latent embedding. The second component is a linear adaptation layer
W ∈ RN×K , b ∈ RN , which maps euclidean normalized image embeddings to brain activation.

B ≈ Mθ(I) = W ×
CLIPimg(I)

∥CLIPimg(I)∥2
+ b

Optimal W ∗, b∗ are found by optimizing the mean squared error loss over images. We observe that
use of a normalized CLIP embedding improves stability of gradient magnitudes w.r.t. the image.

3.3 Brain-Guided Diffusion Model
BrainDiVE seeks to generate images conditioned on maximizing brain activation in a given region. In
conventional text-conditioned diffusion models, the conditioning is done in one of two ways. The first
approach modifies the function ϵθ to further accept a conditioning vector c, resulting in ϵθ(xt, t, c).
The second approach uses a contrastive trained image-to-concept encoder, and seeks to maximize a
similarity measure with a text-to-concept encoder.

Conditioning on activation of a brain region using the first approach presents difficulties. We do
not know a priori the distribution of other non-targeted regions in the brain when a target region is
maximized. Overcoming this problem requires us to either have a prior p(B) that captures the joint
distribution for all voxels in the brain, to ignore the joint distribution that can result in catastrophic
effects, or to use a handcrafted prior that may be incorrect [47]. Instead, we propose to condition the
diffusion model via our image-to-brain encoder. During inference we perturb the denoising process
using the gradient of the brain encoder maximization objective, where γ is a scale, and S ⊆ N are the
set of voxels used for guidance. We seek to maximize the average activation of S predicted by Mθ:

ϵ′theta = ϵtheta −
√
1− αt∇xt

(
γ

|S|
∑
i∈S

Mθ(DΩ(x
′
t))i)

Like [14, 58, 59], we observe that convergence using the current denoised xt is poor without
changes to the guidance. This is because the current image (latent) is high noise and may lie
outside of the natural image distribution. We instead use a weighted reformulation with an euler
approximation [55, 59] of the final image:

x̂0 =
1√
α
(xt −

√
1− αϵt)

x′
t = (

√
1− α)x̂0 + (1−

√
1− α)xt

By combining an image diffusion model with a differentiable encoding model of the brain, we are
able to generate images that seek to maximize activation for any given brain region.

4 Results
In this section, we use BrainDiVE to highlight the semantic selectivity of pre-identified category-
selective voxels. We then show that our model can capture subtle differences in response properties
between ROIs belonging to the same broad category-selective network. Finally, we utilize Brain-
DiVE to target finer-grained sub-regions within existing ROIs, and show consistent divisions based
on semantic and visual properties. We quantify these differences in selectivity across regions using
human perceptual studies, which confirm that BrainDiVE images can highlight differences in tuning
properties. These results demonstrate how BrainDiVE can elucidate the functional properties of
human cortical populations, making it a promising tool for exploratory neuroscience.

4.1 Setup
We utilize the Natural Scenes Dataset (NSD; [13]), which consists of whole-brain 7T fMRI data from
8 human subjects, 4 of whom viewed 10, 000 natural scene images repeated 3×. These subjects, S1,
S2, S5, and S7, are used for analyses in the main paper (see Supplemental for results for additional
subjects). All images are from the MS COCO dataset. We use beta-weights (activations) computed
using GLMSingle [60] and further normalize each voxel to µ = 0, σ = 1 on a per-session basis. We
average the fMRI activation across repeats of the same image within a subject. The ∼9, 000 unique
images for each subject ([13]) are used to train the brain encoder for each subject, with the remaining
∼1, 000 shared images used to evaluate R2. Image generation is on a per-subject basis and done
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on an Nvidia V100 using 1, 500 compute hours. As the original category ROIs in NSD are very
generous, we utilize a stricter t > 2 threshold to reduce overlap unless otherwise noted. The final
category and ROI masks used in our experiments are derived from the logical AND of the official NSD
masks with the masks derived from the official t-statistics.

We utilize stable-diffusion-2-1-base, which produces images of 512× 512 resolution using
ϵ-prediction. Following best practices, we use multi-step 2nd order DPM-Solver++ [61] with 50
steps and apply 0.75 SAG [62]. We set step size hyperparameter γ = 130.0. Images are resized to
224 × 224 for the brain encoder. “” (null prompt) is used as the input prompt, thus the diffusion
performs unconditional generation without brain guidance. For the brain encoder we use ViT-B/16,
for CLIP probes we use CoCa ViT-L/14. These are the highest performing LAION-2B models of
a given size provided by OpenCLIP [63, 64, 65, 66]. We train our brain encoders on each human
subject separately to predict the activation of all higher visual cortex voxels. See Supplemental for
visualization of test time brain encoder R2. To compare images from different ROIs and sub-regions
(OFA/FFA in 4.3, two clusters in 4.4), we asked human evaluators select which of two image groups
scored higher on various attributes. We used 100 images from each group randomly split into 10 non-
overlapping subgroups. Each human evaluator performed 80 comparisons, across 10 splits, 4 NSD
subjects, and for both fMRI and generated images. See Supplemental for standard error of responses.
Human evaluators provided written informed consent and were compensated at $12.00/hour. The
study protocol was approved by the institutional review board at the authors’ institution.

4.2 Broad Category-Selective Networks

ventral expanded

bodies

faces

places

words

food

multiple

Figure 3: Visualizing category-selective voxels in S1.
See text for details on how category selectivity was defined.

In this experiment, we target large groups of
category-selective voxels which can encom-
pass more than one ROI (Figure 3). These
regions have been previously identified as
selective for broad semantic categories, and
this experiment validates our method using
these identified regions. The face-, place-,
body-, and word- selective ROIs are identi-
fied with standard localizer stimuli [67]. The
food-selective voxels were obtained from [5].
The same voxels were used to select the top activating NSD images (referred to as “NSD”) and to
guide the generation of BrainDiVE images.

In Figures 4 we visualize, for place-, face-, word-, and body- selective voxels, the top-5 out of
10, 000 images from the fMRI stimulus set (NSD), and the top-5 images out of 1, 000 total images
as evaluated by the encoding component of BrainDiVE. For food selective voxels, the top-10 are
visualized. A visual inspection indicates that our method is able to generate diverse images that
semantically represent the target category. We further use CLIP to perform semantic probing of the
images, and force the images to be classified into one of five categories. We measure the percentage
of images that match the preferred category for a given set of voxels (Table 1). We find that our
top-10% and 20% of images exceed the top-1% and 2% of natural images in accuracy, indicating our
method has high semantic specificity.

Faces Places Bodies Words Food Mean

S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑
NSD all stim 17.4 17.2 29.9 29.5 31.6 31.8 10.3 10.6 10.8 10.9 20.0 20.0
NSD top-200 42.5 41.5 66.5 80.0 56.0 65.0 31.5 34.5 68.0 85.5 52.9 61.3
NSD top-100 40.0 45.0 68.0 79.0 49.0 60.0 30.0 49.0 78.0 85.0 53.0 63.6
BrainDiVE-200 69.5 70.0 97.5 100 75.5 68.5 60.0 57.5 89.0 94.0 78.3 75.8
BrainDiVE-100 61.0 68.0 97.0 100 75.0 69.0 60.0 62.0 92.0 95.0 77.0 78.8

Table 1: Evaluating semantic specificity with zero-shot CLIP classification. We use CLIP to classify images
from each ROI into five semantic categories: face/place/body/word/food. Shown is the percentage where the
classified category of the image matches the preferred category of the brain region. We show this for each
subject’s entire NSD stimulus set (10, 000 images for S1&S2); the top-200 and top-100 images (top-2% and
top-1%) evaluated by mean true fMRI beta, and the top-200 and top-100 (20% and 10%) of BrainDiVE images
as self-evaluated by the encoding component of BrainDiVE. BrainDiVE generates images with higher semantic
specificity than the top 1% of natural images for each brain region.
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Figure 4: Results for category selective voxels (S1). We identify the top-5 images from the stimulus
set or generated by our method with highest average activation in each set of category selective voxels
for the face/place/word/body categories, and the top-10 images for the food selective voxels.

Which ROI has more... photorealistic faces animals abstract shapes/lines

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
FFA-NSD 45 43 34 41 34 34 17 15 21 6 14 22
OFA-NSD 25 22 21 18 47 36 65 65 24 44 28 25

FFA-BrainDiVE 79 89 60 52 17 13 21 19 6 11 18 20
OFA-BrainDiVE 11 4 15 22 71 61 52 50 80 79 40 39

Table 2: Human evaluation of the difference between face-selective ROIs. Evaluators compare groups of
images corresponding to OFA and FFA; comparisons are done within GT and generated images respectively.
Questions are posed as: "Which group of images has more X?"; options are FFA/OFA/Same. Results are in %.
Note that the "Same" responses are not shown; responses across all three options sum to 100.

4.3 Individual ROIs
In this section, we apply our method to individual ROIs that are selective for the same broad semantic
category. We focus on the occipital face area (OFA) and fusiform face area (FFA), as initial tests
suggested little differentiation between ROIs within the place-, word-, and body- selective networks.
In this experiment, we also compare our results against the top images for FFA and OFA from
NeuroGen [9], using the top 100 out of 500 images provided by the authors. Following NeuroGen,
we also generate 500 total images, targeting FFA and OFA separately (Figure 5). We observe that
both diffusion-generated and NSD images have very high face content in FFA, whereas NeuroGen
has higher animal face content. In OFA, we observe both NSD and BrainDiVE images have a
strong face component, although we also observe text selectivity in S2 and animal face selectivity
in S5. Again NeuroGen predicts a higher animal component than face for S5. By avoiding the
use of fixed categories, BrainDiVE images are more diverse than those of NeuroGen. This trend
of face and animals appears at t > 2 and the much stricter t > 5 threshold for identifying face-
selective voxels (t > 5 used for visualization/evaluation). The differences in images synthesized
by BrainDiVE for FFA and OFA are consistent with past work suggesting that FFA represents faces at
a higher level of abstraction than OFA, while OFA shows greater selectivity to low-level face features
and sub-components, which could explain its activation by off-target categories [68, 69, 70].

To quantify these results, we perform a human study where subjects are asked to compare the top-100
images between FFA & OFA, for both NSD and generated images. Results are shown in Table 2.
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Figure 5: Results for face-selective ROIs. For each ROI (OFA, FFA) we visualize the top-5 images
from NSD and NeuroGen, and the top-10 from BrainDiVE. NSD images are selected using the fMRI
betas averaged within each ROI. NeuroGen images are ranked according to their official predicted
ROI activity means. BrainDiVE images are ranked using our predicted ROI activities from 500
images. Red outlines in the NSD images indicate examples of responsiveness to non-face content.

We find that OFA consistently has higher animal and abstract content than FFA. Most notably, this
difference is on average more pronounced in the images from BrainDiVE, indicating that our approach
is able to highlight subtle differences in semantic selectivity across regions.

S5 foodS1 food S5 OPAS1 OPA

food 1

food 2

OPA 1

OPA 2

Figure 6: Clustering within the food ROI and within OPA. Clustering of encoder model weights
for each region is shown for two example subjects on an inflated cortical surface.

4.4 Semantic Divisions within ROIs
In this experiment, we investigate if our model can identify novel sub-divisions within existing ROIs.
We first perform clustering on normalized per-voxel encoder weights using vmf-clustering [71]. We
find consistent cosine difference between the cluster centers in the food-selective ROI as well as
in the occipital place area (OPA), clusters shown in Figure 6. In all four subjects, we observe a
relatively consistent anterior-posterior split of OPA. While the clusters within the food ROI vary more
anatomically, each subject appears to have a more medial and a more lateral cluster. We visualize the
images for the two food clusters in Figure 7, and for the two OPA clusters in Figure 8. We observe that
for both the food ROI and OPA, the BrainDiVE-generated images from each cluster have noticeable
differences in their visual and semantic properties. In particular, the BrainDiVE images from food
cluster-2 have much higher color saturation than those from cluster-1, and also have more objects
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Food cluster 1 NSD (fMRI)

S1

S2

S1

S2

Food cluster 2 NSD (fMRI)

Food cluster 1 BrainDiVE

Food cluster 2 BrainDiVE

Figure 7: Comparing results across the food clusters. We visualize top-10 NSD fMRI (out of
10,000) and diffusion images (out of 500) for each cluster. While the first cluster largely consists
of processed foods, the second cluster has more visible high color saturation foods, and more
vegetables/fruit like objects. BrainDiVE helps highlight the differences between clusters.

Which cluster is more ... vegetables/fruits healthy colorful far away

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
Food-1 NSD 17 21 27 36 28 22 29 40 19 18 13 27 32 24 23 28
Food-2 NSD 65 56 56 49 50 47 54 45 42 52 53 42 34 39 36 42

Food-1 BrainDiVE 11 10 8 11 15 16 20 17 6 9 11 16 24 18 27 18
Food-2 BrainDiVE 80 75 67 64 68 68 46 51 79 82 65 61 39 51 39 40

Table 3: Human evaluation of the difference between food clusters. Evaluators compare groups of images
corresponding to food cluster 1 (Food-1) and food cluster 2 (Food-2), with questions posed as "Which group of
images has/is more X?". Comparisons are done within NSD and generated images respectively. Note that the
"Same" responses are not shown; responses across all three options sum to 100. Results are in %.

that resemble fruits and vegetables. In contrast, food cluster-1 generally lacks vegetables and mostly
consist of bread-like foods. In OPA, cluster-1 is dominated by indoor scenes (rooms, hallways), while
2 is overwhelmingly outdoor scenes, with a mixture of natural and man-made structures viewed from
a far perspective. Some of these differences are also present in the NSD images, but the differences
appear to be highlighted in the generated images.

To confirm these effects, we perform a human study (Table 3, Table 4) comparing the images
from different clusters in each ROI, for both NSD and generated images. As expected from visual
inspection of the images, we find that food cluster-2 is evaluated to have higher vegetable/fruit
content, judged to be healthier, more colorful, and slightly more distant than food cluster-1. We find
that OPA cluster-1 is evaluated to be more angular/geometric, include more indoor scenes, to be less
natural and consisting of less distant scenes. Again, while these trends are present in the NSD images,
they are more pronounced with the BrainDiVE images. This not only suggests that our method has
uncovered differences in semantic selectivity within pre-existing ROIs, but also reinforces the ability
of BrainDiVE to identify and highlight core functional differences across visual cortex regions.

8



OPA cluster 2 NSD (fMRI)

OPA cluster 1 BrainDiVE

OPA cluster 2 BrainDiVE

S7

S2

S7

S2

OPA cluster 1 NSD (fMRI)

Figure 8: Comparing results across the OPA clusters. We visualize top-10 NSD fMRI (out of
10,000) and diffusion images (out of 500) for each cluster. While both consist of scene images, the first
cluster have more indoor scenes, while the second has more outdoor scenes. The BrainDiVE images
help highlight the differences in semantic properties.

Which cluster is more... angular/geometric indoor natural far away

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
OPA-1 NSD 45 58 49 51 71 88 80 79 14 3 9 10 10 1 6 8
OPA-2 NSD 13 12 14 16 7 8 11 14 73 89 71 81 69 93 81 85

OPA-1 BrainDiVE 76 87 88 76 89 90 90 85 6 6 9 6 1 3 3 8
OPA-2 BrainDiVE 12 3 4 10 7 7 5 8 91 91 83 90 97 92 91 88

Table 4: Human evaluation of the difference between OPA clusters. Evaluators compare groups of images
corresponding to OPA cluster 1 (OPA-1) and OPA cluster 2 (OPA-2), with questions posed as "Which group
of images is more X?". Comparisons are done within NSD and generated images respectively. Note that the
"Same" responses are not shown; responses across all three options sum to 100. Results are in %.

5 Discussion

Limitations and Future Work Here, we show that BrainDiVE generates diverse and realistic
images that can probe the human visual pathway. This approach relies on existing large datasets
of natural images paired with brain recordings. In that the evaluation of synthesized images is
necessarily qualitative, it will be important to validate whether our generated images and candidate
features derived from these images indeed maximize responses in their respective brain areas. As
such, future work should involve the collection of human fMRI recordings using both our synthesized
images and more focused stimuli designed to test our qualitative observations. Future work may also
explore the images generated when BrainDiVE is applied to additional sub-region, new ROIs, or
mixtures of ROIs.

Conclusion We introduce a novel method for guiding diffusion models using brain activations –
BrainDiVE – enabling us to leverage generative models trained on internet-scale image datasets for

9



data driven explorations of the brain. This allows us to better characterize fine-grained preferences
across the visual system. We demonstrate that BrainDiVE can accurately capture the semantic
selectivity of existing characterized regions. We further show that BrainDiVE can capture subtle
differences between ROIs within the face selective network. Finally, we identify and highlight fine-
grained subdivisions within existing food and place ROIs, differing in their selectivity for mid-level
image features and semantic scene content. We validate our conclusions with extensive human
evaluation of the images.
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Supplementary Material:
Brain Diffusion for Visual Exploration

1. Broader Impacts (section 7)
2. Visualization of each subject’s category selective voxels (section 8)
3. CLIP zero-shot classification results for all subjects (section 9)
4. Image gradients and synthesis process (section 10)
5. Standard error for human behavioral studies (section 11)
6. Brain Encoder R2 (section 12)
7. Additional OFA and FFA visualizations (section 13)
8. Additional OPA and food clustering visualizations (section 14)
9. Training, inference, and experiment details (section 15)

7 Broader impacts

Our work introduces a method where brain responses - as measured by fMRI - can be used to
guide diffusion models for image synthesis (BrainDiVE). We applied BrainDiVE to probe the
representation of high-level semantic information in the human visual cortex. BrainDiVE relies on
pretrained stable-diffusion-2-1 and will necessarily reflect the biases in the data used to train
these models. However, given the size and diversity of this training data, BrainDiVE may reveal
data-driven principles of cortical organization that are unlikely to have been identified using more
constrained, hypothesis-driven experiments. As such, our work advances our current understanding
of the human visual cortex and, with larger and more sensitive neuroscience datasets, may be utilized
to facilitate future fine-grained discoveries regarding neural coding, which can then be validated
using hypothesis-driven experiments.
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8 Visualization of each subject’s category selective voxel images

Figure S.1: Results for category selective voxels (S1). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels. Note the top NSD body voxel image for S1 was omitted from the main paper due to content.
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Figure S.2: Results for category selective voxels (S2). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.

Figure S.3: Results for category selective voxels (S3). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.
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Figure S.4: Results for category selective voxels (S4). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.

Figure S.5: Results for category selective voxels (S5). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.
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Figure S.6: Results for category selective voxels (S6). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.

Figure S.7: Results for category selective voxels (S7). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.
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Figure S.8: Results for category selective voxels (S8). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food selective
voxels.
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9 CLIP zero-shot classification

In this section we show the CLIP classification results for S1 – S8, where Table S.1 in this Supple-
mentary material matches that of Table 1 in the main paper. We use CLIP [63] to classify images
from each ROI into five semantic categories: face/place/body/word/food. Shown is the percentage
where the classified category of the image matches the preferred category of the brain region. We
show this for the top-200 and top-100 images (top-2% and top-1%) evaluated by mean true fMRI
beta, and the top-200 and top-100 (20% and 10%) of BrainDiVE images as self-evaluated by the
encoding component of BrainDiVE. Please see Supplementary Section 15 for the prompts we use for
CLIP classification.

Faces Places Bodies Words Food Mean

S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑
NSD top-200 42.5 41.5 66.5 80.0 56.0 65.0 31.5 34.5 68.0 85.5 52.9 61.3
NSD top-100 40.0 45.0 68.0 79.0 49.0 60.0 30.0 49.0 78.0 85.0 53.0 63.6
BrainDiVE-200 69.5 70.0 97.5 100 75.5 68.5 60.0 57.5 89.0 94.0 78.3 75.8
BrainDiVE-100 61.0 68.0 97.0 100 75.0 69.0 60.0 62.0 92.0 95.0 77.0 78.8

Table S.1: Evaluating semantic specificity with zero-shot CLIP classification for S1 and S2

Faces Places Bodies Words Food Mean

S3↑ S4↑ S3↑ S4↑ S3↑ S4↑ S3↑ S4↑ S3↑ S4↑ S3↑ S4↑
NSD top-200 33.0 39.0 74.5 71.5 57.9 47.5 27.0 20.5 49.5 53.5 48.4 46.4
NSD top-100 38.0 41.0 81.0 72.0 60.0 49.0 30.0 25.0 46.0 57.9 51.0 49.0
BrainDiVE-200 67.5 73.5 99.0 100 59.0 66.5 61.0 31.0 85.0 89.0 74.3 72.0
BrainDiVE-100 67.0 71.0 100 100 59.0 72.0 61.0 34.0 89.0 93.0 75.2 74.0

Table S.2: Evaluating semantic specificity with zero-shot CLIP classification for S3 and S4

Faces Places Bodies Words Food Mean

S5↑ S6↑ S5↑ S6↑ S5↑ S6↑ S5↑ S6↑ S5↑ S6↑ S5↑ S6↑
NSD top-200 41.0 38.5 89.5 56.9 57.9 56.5 33.5 34.0 77.0 55.5 59.8 48.3
NSD top-100 45.0 46.0 93.0 55.0 54.0 61.0 33.0 32.0 85.0 56.9 62.0 50.2
BrainDiVE-200 67.0 63.0 99.5 96.0 74.0 66.0 75.0 68.0 83.5 79.0 79.8 74.4
BrainDiVE-100 64.0 57.9 100 99.0 77.0 72.0 80.0 75.0 87.0 83.0 81.6 77.4

Table S.3: Evaluating semantic specificity with zero-shot CLIP classification for S5 and S6

Faces Places Bodies Words Food Mean

S7↑ S8↑ S7↑ S8↑ S7↑ S8↑ S7↑ S8↑ S7↑ S8↑ S7↑ S8↑
NSD top-200 38.5 34.0 71.0 57.5 61.0 56.5 20.5 24.5 52.0 36.5 48.6 41.8
NSD top-100 35.0 36.0 76.0 48.0 63.0 61.0 26.0 21.0 56.0 37.0 51.2 40.6
BrainDiVE-200 73.0 77.5 93.5 94.5 65.0 64.5 31.0 56.5 85.5 55.5 69.6 69.7
BrainDiVE-100 69.0 72.0 94.0 94.0 65.0 67.0 25.0 56.0 92.0 74.0 69.0 72.6

Table S.4: Evaluating semantic specificity with zero-shot CLIP classification for S7 and S8.
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10 Image gradients and synthesis process

In this section, we show examples of the image at each step of the synthesis process. We perform
this visualization for face-, place-, body-, word-, and food- selective voxels. Two visualizations are
shown for each set of voxels, we use S1 for all visualizations in this section. The diffusion model
is guided only by the objective of maximizing a given set of voxels. We observe that coarse image
structure emerges very early on from brain guidance. Furthermore, the gradient and diffusion model
sometimes work against each other. For example in Figure S.14 for body voxels, the brain gradient
induces the addition of an extra arm, while the diffusion has already generated three natural bodies.
Or in Figure S.15 for word voxels, where the brain gradient attempts to add horizontal words, but
they are warped by the diffusion model. Future work could explore early guidance only, as described
in “SDEdit” and “MagicMix” [72, 73].

10.1 Face voxels

We show examples where the end result contains multiple faces (Figure S.9), or a single face
(Figure S.10).

Figure S.9: Example 1 of face voxel guided image synthesis for S1. We utilize 50 steps of Multistep
DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized at each step
for visualization) and the weighted euler RGB image that the brain encoder accepts (bottom).
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Figure S.10: Example 2 of face voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom)
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10.2 Place voxels

We show examples where the end result contains an indoor scene (Figure S.11), or an outdoor scene
(Figure S.12).

Figure S.11: Example 1 of place voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure S.12: Example 2 of place voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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10.3 Body voxels

We show examples where the end result contains an single person’s body (Figure S.13), or an multiple
people (Figure S.14).

Figure S.13: Example 1 of body voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure S.14: Example 2 of body voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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10.4 Word voxels

We show examples where the end result contains recognizable words (Figure S.15), or glyph like
objects (Figure S.16).

Figure S.15: Example 1 of word voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure S.16: Example 2 of word voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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10.5 Food voxels

We show examples where the end result contains highly processed foods (Figure S.17, showing what
appears to be a cake), or cooked food containing vegetables (Figure S.18).

Figure S.17: Example 1 of food voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure S.18: Example 2 of food voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).

31



11 Human behavioral study standard error

In this section, we show the human behavioral study results along with the standard error of the
responses. Each question was answered by exactly 10 subjects from prolific.co. In each table,
the results are show in the following format: Mean(SEM). Where Mean is the average response,
while SEM is the standard error of the mean ratio across 10 subjects: (SEM = σ√

10
).

Which ROI has more... photorealistic faces animals abstract shapes/lines

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
FFA-NSD 45(7.2) 43(8.3) 34(6.2) 41(6.5) 34(4.5) 34(3.5) 17(4.0) 15(3.8) 21(6.8) 6(4.0) 14(2.9) 22(6.6)
OFA-NSD 25(5.1) 22(6.4) 21(5.6) 18(5.3) 47(3.2) 36(2.5) 65(5.7) 65(6.4) 24(8.5) 44(9.2) 28(8.1) 25(6.4)

FFA-BrainDiVE 79(7.8) 89(4.8) 60(5.3) 52(5.3) 17(5.6) 13(3.5) 21(3.9) 19(2.2) 6(3.2) 11(6.4) 18(4.9) 20(6.6)
OFA-BrainDiVE 11(5.7) 4(2.5) 15(2.9) 22(5.1) 71(8.4) 61(8.2) 52(5.1) 50(3.5) 80(5.8) 79(7.4) 40(5.8) 39(7.1)

Table S.5: Human evaluation of the difference between face-selective ROIs. Evaluators compare groups of
images corresponding to OFA and FFA; comparisons are done within GT and generated images respectively.
Questions are posed as: "Which group of images has more X?"; options are FFA/OFA/Same. Results are in %.
Note that the "Same" responses are not shown; responses across all three options sum to 100.

Which cluster is more... vegetables/fruits healthy

S1 S2 S5 S7 S1 S2 S5 S7
Food-1 NSD 17(4.3) 21(4.8) 27(5.1) 36(3.5) 28(5.8) 22(3.7) 29(6.2) 40(4.0)
Food-2 NSD 65(7.2) 56(6.4) 56(5.7) 49(3.9) 50(7.1) 47(4.9) 54(6.0) 45(4.3)

Food-1 BrainDiVE 11(7.0) 10(6.0) 8(6.6) 11(6.5) 15(6.2) 16(6.0) 20(7.2) 17(7.1)
Food-2 BrainDiVE 80(7.3) 75(8.0) 67(9.8) 64(7.4) 68(7.7) 68(7.3) 46(9.3) 51(7.8)

Which cluster is more... colorful far away

S1 S2 S5 S7 S1 S2 S5 S7
Food-1 NSD 19(5.5) 18(6.1) 13(2.8) 27(3.5) 32(6.6) 24(4.7) 23(6.5) 28(4.2)
Food-2 NSD 42(6.4) 52(5.6) 53(6.5) 42(6.4) 34(7.0) 39(8.1) 36(7.9) 42(7.3)

Food-1 BrainDiVE 6(3.8) 9(5.7) 11(5.7) 16(4.9) 24(6.8) 18(6.4) 27(8.9) 18(6.0)
Food-2 BrainDiVE 79(7.9) 82(6.9) 65(7.6) 61(8.9) 39(10.1) 51(9.0) 39(8.8) 40(8.8)

Table S.6: Human evaluation of the difference between food clusters. Evaluators compare groups of images
corresponding to food cluster 1 (Food-1) and food cluster 2 (Food-2), with questions posed as "Which group of
images has/is more X?". Comparisons are done within NSD and generated images respectively. Note that the
"Same" responses are not shown; responses across all three options sum to 100. Results are in %.

Which cluster is more... angular/geometric indoor

S1 S2 S5 S7 S1 S2 S5 S7
OPA-1 NSD 45(7.2) 58(9.4) 49(7.7) 51(9.0) 71(5.6) 88(4.9) 80(5.1) 79(5.6)
OPA-2 NSD 13(4.0) 12(2.4) 14(2.9) 16(4.5) 7(3.2) 8(3.7) 11(3.0) 14(4.3)

OPA-1 BrainDiVE 76(7.8) 87(8.6) 88(6.6) 76(7.8) 89(5.6) 90(5.7) 90(4.7) 85(5.3)
OPA-2 BrainDiVE 12(4.9) 3(2.0) 4(1.5) 10(4.2) 7(3.2) 7(3.2) 5(2.1) 8(2.4)

Which cluster is more... natural far away

S1 S2 S5 S7 S1 S2 S5 S7
OPA-1 NSD 14(3.8) 3(2.0) 9(4.1) 10(2.8) 10(2.4) 1(0.9) 6(2.9) 8(2.4)
OPA-2 NSD 73(3.4) 89(7.4) 71(6.4) 81(6.1) 69(4.6) 93(3.8) 81(6.5) 85(5.5)

OPA-1 BrainDiVE 6(3.2) 6(1.5) 9(3.6) 6(2,9) 1(0.9) 3(2.8) 3(2.8) 8(5.6)
OPA-2 BrainDiVE 91(5.7) 91(3.6) 83(6.9) 90(5.5) 97(2.8) 92(6.6) 91(5.6) 88(7.4)

Table S.7: Human evaluation of the difference between OPA clusters. Evaluators compare groups of images
corresponding to OPA cluster 1 (OPA-1) and OPA cluster 2 (OPA-2), with questions posed as "Which group
of images is more X?". Comparisons are done within NSD and generated images respectively. Note that the
"Same" responses are not shown; responses across all three options sum to 100. Results are in %.
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12 Brain encoder R2

S1 S2

S3 S4

S5 S6

S7 S8

Figure S.19: Visualization of R2 on test set images. We evaluate R2 on the ∼ 1000 images shared
by all subjects. Note that voxels in early visual or outside of higher visual are not modeled.

In Figure 12 we show the R2 of the brain encoder as evaluated on the test images. Our brain encoder
consists of a CLIP backbone and a linear adaptation layer. We do not model voxels in the early visual
cortex, nor do we model voxels outside of higher visual. Our model can generally achieve high R2 in
regions in known regions of visual semantic selectivity.
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13 OFA and FFA visualizations

In this section, we visualize the top-10 NSD and BrainDiVE images for OFA and FFA. NSD images
are selected using the fMRI betas averaged within each ROI. BrainDiVE images are ranked using our
predicted ROI activities from 500 images.

Figure S.20: Results for face-selective ROIs in S1.

Figure S.21: Results for face-selective ROIs in S2.
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Figure S.22: Results for face-selective ROIs in S5.

Figure S.23: Results for face-selective ROIs in S7.
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14 OPA and food visualizations

S5 foodS1 food

food 1

food 2

OPA 1

OPA 2

S2 food S7 food

S5 OPAS2 OPAS1 OPA S7 OPA

Figure S.24: Clustering within the food ROI and within OPA. Clustering of encoder model weights
for each region is shown for four subjects on an inflated cortical surface.

Consistent with Jain et al. [5], we observe that the food voxels themselves are anatomically variable
across subjects, while the two food clusters form alternating patches within the food patches. OPA
generally yields anatomically consistent clusters in the four subjects we investigated, with all four
subjects showing an anterior-posterior split for OPA.

OPA cluster 2 NSD (fMRI)

OPA cluster 1 BrainDiVE

OPA cluster 2 BrainDiVE

S2

S2

OPA cluster 1 NSD (fMRI)

S1

S1

Figure S.25: Comparing results across the OPA clusters for S1 and S2.
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OPA cluster 2 NSD (fMRI)

OPA cluster 1 BrainDiVE

OPA cluster 2 BrainDiVE

S5

S7

S7

OPA cluster 1 NSD (fMRI)

S5

Figure S.26: Comparing results across the OPA clusters for S5 and S7.
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Food cluster 1 NSD (fMRI)

S1

S2

S1

S2

Food cluster 2 NSD (fMRI)

Food cluster 1 BrainDiVE

Food cluster 2 BrainDiVE

Figure S.27: Comparing results across the food clusters for S1 and S2.

38



S7

S5

S7

Food cluster 1 NSD (fMRI) Food cluster 1 BrainDiVE

S5

Food cluster 2 NSD (fMRI) Food cluster 2 BrainDiVE

Figure S.28: Comparing results across the food clusters for S5 and S7.
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15 Training, inference, and compute details

Encoder training. Our encoder backbone uses ViT-B/16 with CLIP pretrained weights
laion2b_s34b_b88k provided by OpenCLIP [65, 66]. The ViT [74] weights for the brain encoder
are frozen. We train a linear layer consisting of weight and bias to map from the 512 dimensional
vector to higher visual voxels B. The CLIP image branch outputs are normalized to the unit sphere.

Mθ(I) = W ×
CLIPimg(I)

∥CLIPimg(I)∥2
+ b

Training is done using the Adam optimizer [75] with learning rate lrinit = 3e − 4 and lrend =
1.5e− 4, with learning rate adjusting exponentially each epoch. We train for 100 epochs. Decoupled
weight decay [76] of magnitude decay = 2e− 2 is applied. Each subject is trained independently
using the ∼ 9000 images unique to each subject’s stimulus set, with R2 evaluated on the ∼ 1000
images shared by all subjects.

During training of the encoder weights, the image is resized to 224 × 224 to match the input size
of ViT-B/16. We augment the images by first randomly scaling the pixels by a value between
[0.95, 1.05], then normalize the image using OpenCLIP ViT image mean and variance. Prior to input
to the network, we further randomly offset the image spatially by up to 4 pixels along the height
and width dimensions. The empty pixels are filled in using edge value padding. A small amount of
gaussian noise N (0, 0.052) is added to each pixel prior to input to the encoder backbone.

Objective. For all experiments, the objective used is the maximization of a selected set of
voxels. Here we will further draw a link between the optimization objective we use and the traditional
CLIP text prompt guidance objective [14, 59]. Recall that Mθ is our brain activation encoder that
maps from the image to per-voxel activations. It accepts as input an image, passes it through a ViT
backbone, normalizes that vector to the unit sphere, then applies a linear mapping to go to per-voxel
activations. S ∈ N are the set of voxels we are currently trying to maximize (where N is the set of
all voxels in the brain), γ is a step size parameter, and DΩ is the decoder from the latent diffusion
model that outputs an RGB image (we ignore the euler approximation for clarity). Also recall that we
use a diffusion model that performs ϵ-prediction.

In the general case, we perturb the denoising process by trying to maximize a set of voxels S:

ϵ′theta = ϵtheta −
√
1− αt∇xt

(
γ

|S|
∑
i∈S

Mθ(DΩ(x
′
t))i)

For the purpose of this section, we will focus on a single voxel first, then discuss the multi-voxel
objective.
In our case, the single voxel perturbation is (assuming W is a vector, and that ⟨·, ·⟩ is the inner
product):

ϵ′theta = ϵtheta −
√
1− αt∇xt(γMθ(DΩ(x

′
t)))

= ϵtheta −
√
1− αt∇xt(γMθ(Igen))

= ϵtheta − γ
√
1− αt∇xt(⟨W,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩+ b)

We can ignore b, as it does not affect optimal CLIPimg(Igen)

≡ ϵtheta − γ
√
1− αt∇xt(⟨W,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)

Now let us consider the typical CLIP guidance objective for diffusion models, where Ptext is the
guidance prompt, and CLIPtext is the text encoder component of CLIP:

ϵ′theta = ϵtheta − γ
√
1− αt∇xt(⟨

CLIPtext(Ptext)

∥CLIPtext(Ptext)∥2
,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)

As such, the W that we find by linearly fitting CLIP image embeddings to brain activation plays the
role of a text prompt. In reality, ∥W∥2 ̸= 1 (but norm is a constant for each voxel), and there is likely
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no computationally efficient way to “invert” W directly into a human interpretable text prompt. By
performing brain guidance, we are essentially using the diffusion model to synthesize an image Igen
where in addition to satisfying the natural image constraint, the image also attempts to satisfy:

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
=

W

∥W∥2
Or put another way, it generates images where the CLIP latent is aligned with the direction of W . Let
us now consider the multi-voxel perturbation, where Wi, bi is the per-voxel weight vector and bias:

ϵ′theta = ϵtheta −
√
1− αt∇xt

(
γ

|S|
∑
i∈S

Mθ(DΩ(x
′
t))i)

We move
γ

|S|
outside of the gradient operation

= ϵtheta −
γ

|S|
√
1− αt∇xt(

∑
i∈S

Mθ(DΩ(x
′
t))i)

= ϵtheta −
γ

|S|
√
1− αt∇xt

(
∑
i∈S

[
⟨Wi,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩+ bi

]
)

We again ignore bi as it does not affect gradient

≡ ϵtheta −
γ

|S|
√
1− αt∇xt

(
∑
i∈S

⟨Wi,
CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)

We can move
∑

outside due to the distributive nature of gradients

= ϵtheta −
γ

|S|
√
1− αt

∑
i∈S

[
∇xt

(⟨Wi,
CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)
]

Thus from a gradient perspective, the total gradient is the average of gradients from all voxels. Recall
that the inner product is a bilinear function, and that the CLIP image latent is on the unit sphere. Then
we are generating an image that

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
=

∑
i∈S Wi

∥
∑

i∈S Wi∥2
Where the optimal image has a CLIP latent that is aligned with the direction of

∑
i∈S Wi.

Compute. We perform our experiments on a cluster of Nvidia V100 GPUs in either 16GB or
32GB VRAM configuration, and all experiments consumed approximately 1, 500 compute hours.
Each image takes between 20 and 30 seconds to synthesize. All experiments were performed using
PyTorch, with cortex visualizations done using PyCortex [77].

CLIP prompts. Here we list the text prompts that are used to classify the images for
Table 1. in the main paper.

face_class = ["A face facing the camera", "A photo of a face", "A photo of
a human face", "A photo of faces", "A photo of a person’s face", "A person
looking at the camera", "People looking at the camera","A portrait of a
person", "A portrait photo"]

body_class = ["A photo of a torso", "A photo of torsos", "A photo of limbs",
"A photo of bodies", "A photo of a person", "A photo of people"]

scene_class = ["A photo of a bedroom", "A photo of an office","A photo of a
hallway", "A photo of a doorway", "A photo of interior design", "A photo
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of a building", "A photo of a house", "A photo of nature", "A photo of
landscape", "A landscape photo", "A photo of trees", "A photo of grass"]

food_class = ["A photo of food"]

text_class = ["A photo of words", "A photo of glyphs", "A photo of a glyph",
"A photo of text", "A photo of numbers", "A photo of a letter", "A photo of
letters", "A photo of writing", "A photo of text on an object"]

We classify an image as belonging to a category if the image’s CLIP latent has highest cosine
similarity with the CLIP latent of a prompt belonging to a given category. The same prompts are used
to classify the NSD and generated images.
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