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Abstract

Labeling neural network submodules with human-legible descriptions is useful for
many downstream tasks: such descriptions can surface failures, guide interventions,
and perhaps even explain important model behaviors. To date, most mechanistic
descriptions of trained networks have involved small models, narrowly delimited
phenomena, and large amounts of human labor. Labeling all human-interpretable
sub-computations in models of increasing size and complexity will almost certainly
require tools that can generate and validate descriptions automatically. Recently,
techniques that use learned models in-the-loop for labeling have begun to gain
traction, but methods for evaluating their efficacy are limited and ad-hoc. How
should we validate and compare open-ended labeling tools? This paper introduces
FIND (Function INterpretation and Description), a benchmark suite for evaluating
the building blocks of automated interpretability methods. FIND contains functions
that resemble components of trained neural networks, and accompanying descrip-
tions of the kind we seek to generate. The functions are procedurally constructed
across textual and numeric domains, and involve a range of real-world complexities,
including noise, composition, approximation, and bias. We evaluate methods that
use pretrained language models (LMs) to produce code-based and natural language
descriptions of function behavior. Additionally, we introduce a new interactive
method in which an Automated Interpretability Agent (AIA) generates function
descriptions. We find that an AIA, built with an off-the-shelf LM augmented with
black-box access to functions, can sometimes infer function structure—acting as a
scientist by forming hypotheses, proposing experiments, and updating descriptions
in light of new data. However, FIND also reveals that LM-based descriptions
capture global function behavior while missing local details. These results suggest
that FIND will be useful for characterizing the performance of more sophisticated
interpretability methods before they are applied to real-world models.

1 Introduction

The central task of interpretability research is to explain the functions that AI systems learn from
data. Investigating these functions requires experimentation with trained models, using tools that
incorporate varying degrees of human input. Hand-tooled approaches that rely on close manual
inspection [Zeiler and Fergus, 2014, Zhou et al., 2014, Mahendran and Vedaldi, 2015, Olah et al.,
2017, 2020, Elhage et al., 2021] or search for predefined phenomena [Wang et al., 2022, Nanda
et al., 2022] are increasingly complemented by more automatic approaches that enable larger-scale
analysis [Bau et al., 2020, Mu and Andreas, 2020, Hernandez et al., 2022, Oikarinen and Weng, 2023,
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Figure 1: The FIND benchmark. FIND is constructed procedurally: atomic functions are defined across domains
including elementary numeric operations (purple), string operations (green), and synthetic neural modules that
compute semantic similarity to reference entities (yellow) and implement real-world factual associations (blue).
Complexity is introduced through composition, bias, approximation and noise. We provide an LM-based
interpretation baseline that compares text and code interpretations to ground-truth function implementations.

Conmy et al., 2023]. Selection between approaches is highly application-dependent; to date, no single
protocol answers all queries users might have about a system [Doshi-Velez and Kim, 2017, Vaughan
and Wallach, 2020]. However, considering the growing body of evidence that LMs are capable of
complex reasoning and problem-solving across domains [Wei et al., 2022, OpenAI, 2023, Yao et al.,
2023, Lightman et al., 2023], we recognize their potential to become backbones of generalized agents
for automated interpretability. Indeed, recent open-ended techniques have used pretrained LMs to
describe the behavior of black-box text modules [Singh et al., 2023], including individual units inside
other LMs [Bills et al., 2023]. As we enter a regime where model explanation is performed by models
that are themselves uninterpretable, external evaluations of these techniques will be vital. At present,
evaluation of network description procedures is limited and bespoke, in part because measuring
performance on real-world problems is difficult when ground-truth descriptions of network structure
are unknown [Doshi-Velez and Kim, 2017, Lipton, 2018, Miller, 2019, Hooker et al., 2019].

This paper introduces FIND (Function INterpretation and Description), a benchmark suite for eval-
uating the building blocks of automated interpretability methods on functions whose structure is
known a priori (see Figure 1). FIND is built from over 2000 procedurally generated function inter-
pretation problems (e.g. f : country 7→ capital, unless country is in South America, in which case f
returns undefined). In each problem, candidate interpretation procedures (interpreters) are given
black-box access to functions, optionally accompanied by metadata (e.g. the domain of the function).
After evaluating these functions on chosen inputs (e.g. Japan, Mexico, Peru), interpreters must
eventually return a structured description that can be evaluated against other descriptions or used to
simulate function behavior.

We also introduce a new interpretation method that uses Automated Interpretability Agents (AIAs)
to interactively probe functions and explain their behavior. We formulate our approach to the
interpretation problem as an implementation of the scientific method, wherein the goal of the AIA is
to describe the process underlying observed input–output relations. In contrast to existing full-text
explanation systems that apply automatic captioning methods (e.g. [Hernandez et al., 2022, Bills
et al., 2023]) to pre-selected input–output pairs, the AIA generates the data itself, by running the
function on inputs it selects, observing the outputs, and updating hypotheses until it can describe
the function to human end-users. We evaluate both AIAs and existing, non-interactive automated
interpretability methods on FIND. While exhibiting sophisticated experimentation strategies and
out-performing non-interactive methods, the top-performing AIA nonetheless fails to adequately
describe 48% of functions. FIND thus shows that, in spite of promising recent results, methods based
on current LMs alone are unlikely to robustly automate even high-level interpretability tasks.

FIND focuses on the black-box function description paradigm because black-box description appears
as a subroutine (or is the sole operation) implemented by almost every existing automated inter-
pretation method, spanning label retrieval, program synthesis, and learning-based approaches. The
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functions that make up FIND are derived from past findings about specific phenomena observed in
the wild, including polysemanticity [Olah et al., 2020, Gurnee et al., 2023], compositionality [Fong
and Vedaldi, 2018, Mu and Andreas, 2020], and task misspecification [Grünwald and Van Ommen,
2017], and thus exercise the kinds of interpretability behaviors that will be required for understanding
real neural networks. While not the focus of our initial release, FIND is extensible, and designed to
eventually support targeted evaluation of interpreters’ ability to identify disparate model accuracy
across input regions (relevant to fairness and accountability) and shortcut solutions to complex
algorithmic problems (relevant to reasoning and robustness). We intend for it to be a living bench-
mark, incorporating new functions, interaction paradigms, and evaluation metrics, as interpretability
methods grow in sophistication and improve our understanding of real-world model behavior.

2 FIND functions

FIND is built from a diverse set of programs including explicit mathematical equations, string opera-
tions, logical composition, lexical relations, and factual associations. Our motivation is to construct a
set of tasks that assess how well an automated interpreter formulates and tests hypotheses about
an opaque system, and based on the results of those experiments, writes a language description or
a program approximating the system. Using additional automated evaluation procedures that we
describe in Section 3.1, language descriptions are compared to ground-truth function explanations,
and code-based descriptions are evaluated for how accurately they reproduce function behavior.

Each function in FIND is defined inside an independent Python script that accepts input arguments
from the interpreter and returns outputs to the command line. We construct FIND by defining a
set of atomic tasks in different domains and a set of operators that introduce additional complexity.
Numeric functions (Section 2.1) and string functions (Section 2.2) are expressed under a common
API that supports sampling parameters and composing, corrupting, and approximating functions.
For functions involving lexical semantics and factual associations, we implement synthetic neural
modules with an LM backbone (Section 2.3). Table 1 shows example functions from each category.

The FIND API and benchmark have been open-sourced under the MIT License and are available at:
https://github.com/multimodal-interpretability/FIND.

2.1 Functions with numeric inputs

Numeric functions test a variety of capabilities needed to interpret basic mathematical operations in
neural networks, which can include relations between neurons or a model’s representation of numeric

Table 1: Example FIND functions.

Category Example Atomic Functions Example Complex Functions
linear x 7→ ax+ b Composition

Numeric Functions

periodic x 7→ sin
(
2π
b
(x− c)

)
linear ◦ absolute x 7→ (ax+ b) + |x|

absolute x 7→ |x|
relu x 7→ max(x, 0) Domain corruption
sqrt x 7→

√
x corruption x 7→ |x| if x ∈ [a, b] else ϵ

constant x 7→ a
rational x 7→ x

x+a
Observation noise

reciprocal x 7→ 1/x linear + noise x 7→ ax+ b+ ϵ

capitalize ‘apple’ 7→ APPLE Composition

String Functions reverse ‘apple’ 7→ ‘elppa’ replace(reverse) ‘apple’ 7→ ‘elppb’
replace(a,b) ‘apple’ 7→ ‘bpple’ reverse(shift_last) ‘apple’ 7→ ‘flppa’
shift_last ‘apple’ 7→ ‘appld’ capitalize(replace) ‘apple’ 7→ BPPLE

Neural Modules

Entities Composition
time and duration time and duration OR winter sports
winter sports winter sports OR plants and botany
plants and botany time and duration OR plants and botany

Relations Domain corruption
country → capital city country → capital EXCEPT in Asia (return 0)
gemstone → color gemstone → color EXCEPT if red (return 0)
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inputs. One example is Nanda et al. [2022], where an algorithm using trigonometric manipulations
was found to perform modular arithmetic in a toy transformer model. We sample 1000 numeric
functions from the FIND API for the benchmark dataset. 85% are parameterized atomic functions
under noiseless and noisy conditions, and 15% are compositions.

Atomic functions are defined as explicit functions found in many mathematical and scientific
computing libraries such as Python [Van Rossum, 2020], SciPy [Virtanen et al., 2020], and NumPY
[Harris et al., 2020], as well as standard neural activation functions such as ReLU [Fukushima, 1975,
Nair and Hinton, 2010]. Table 1 shows examples of atomic functions defined in FIND. For each
function in the set of atomic functions A, we sample native parameters, scaling factor a, and bias b.
Parameters and sampling procedure details are provided in the Appendix and the FIND API.

Composition of atomic functions f(x) and g(x) applies an operator sampled from C = {·,+},
where f ◦ g = f(x) · g(x) or f(x) + g(x). Composed functions are sampled from a subset AC of
atomic functions A to limit final complexity. f(x), g(x) ∈ AC are described in the Appendix.

Observation noise added to f(x) tests how well the interpreter is able to estimate an underlying
function in the presence of additive noise, and whether it is able to distinguish between different
types of noise. 15% of functions f(x) ∈ A in the FIND benchmark are sampled with additive noise
f(x) +X , where X follows either a Normal, Uniform, or Poisson distribution.

Domain corruption replaces function values locally with random values. This is done either inside
or outside of a sampled interval I of range {[a, b] , [a,∞] , [−∞, a]}, where a ∼ U[−100,100]. The
length of a finite interval is sampled from U[5,20]. Corruption is defined as noise X ∈ N (µ, 0.01)
replacing the function values on I . We choose µ as the mean value of f(x) on its domain. The
interpreter is prompted to discover the corrupted interval, if any, and to return a and b. 15% of the
functions f(x) ∈ A in the benchmark dataset are corrupted on part of their domain.

Approximation of atomic functions is implemented using a two-layer neural network (MLP) with a
ReLU non-linearity. For 15% of the functions in the dataset, we train an MLP for 10k epochs on 10k
points uniformly sampled on its domain bounded by (−100, 100). Trained MLPs are provided in the
benchmark dataset and loaded by the corresponding function during interpretation 2.

2.2 Functions on strings

We build on a long history of using toy problems on strings [Hofstadter et al., 1995, Hofstadter, 1995,
Mitchell, 2021] and simple visual matrices [Lovett and Forbus, 2017, Wang and Su, 2015, Carpenter
et al., 1990, Chollet, 2019] to test the ability of a system to reverse-engineer underlying symbolic
operations. As this release of FIND is designed to evaluate language-based interpretability systems,
we focus on functions with text inputs and procedurally generate a set of functions on strings with
different levels of complexity. The benchmark dataset contains 1000 string functions sampled from
the FIND API, representing both atomic functions (30%) and compositions (70%).

Atomic functions include common string manipulation operations such as concatenate, replace,
and reverse, and implementations of copycat problems from Hofstadter et al. [1995], such as
shift_last (abc 7→ abd). Example atomic string operations are shown in Table 1, and the full set
can be found in the FIND API.

Composition of atomic functions f(x) and g(x) is defined as (g ◦ f)(x) = g(f(x)). The FIND API
supports compositions where (g ◦ f)(x) is well-defined (i.e. function pairs where (g ◦ f)(x) = x are
excluded). Example composition functions are shown in Table 1.

2.3 Synthetic neural modules

FIND includes a set of synthetic neural modules that perform word-level tasks built from Wikidata
properties [Vrandečić and Krötzsch, 2014]. We construct two types of text modules: functions
involving lexical semantics and functions involving factual relations. FIND implements synthetic
neural modules on text inputs using a single pretrained language model (Vicuna-13B) instructed to
apply different rules to inputs in response to queries (See Figure 2). Vicuna [Chiang et al., 2023]
is a fine-tuned LLaMA model licensed under an Apache License 2.0 and open-sourced for non-

2We provide an LM baseline where MLPs are treated as black boxes during interpretation, similar to the
other functions in the dataset. An alternate paradigm could allow probing of internal activations and parameters.
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Interpreter Vicuna
Prompt: I am going to give you an input. If the input is 
a country, return only the capital of that country. If 
the input is not a country, return undefined. 

China

Beijing

Atomic relation

Figure 2: Synthetic neural module implementation. Vicuna acts as a backbone that generates the outputs of
neural modules. Each function provides instructions to Vicuna that mimic the behavior of either a single neuron
(“return an association score with a predefined concept”) or a more complex module (“map inputs to outputs
according to a a predefined mapping”). The interpreter then interacts with Vicuna as a black-box function.

commercial use. Each function in the dataset is built to interact with Vicuna to return the relevant
output to the interpreter, which tests the function on different inputs to recover the underlying
rule. We find that Vicuna reliably implements functions expressed in prompts (reliability scores are
provided for each function type; see Appendix for full evaluation).

Type 1: Entities

Atomic entity functions fe(x) compare input text to reference concepts (entities) drawn from
metaclasses of Wikidata properties related to a particular concept or subject area (e.g. related to
food and eating) and return a value indicating how associated an input is with the entity. Table 1
shows example entities, and the complete list of 140 atomic entities included in FIND is provided in
the Appendix. The task of an interpreter evaluating an entity function is to recover and describe
the underlying concept, or, what all of the inputs that produced high output values had in common.
For example, if the entity is plants and botany, fe(garden) and fe(tree) should return high values,
while fe(car) should return a low value. This task is relevant to lines of work that automatically
summarize maximally activating exemplar sets to characterize neuron function [Bau et al., 2020, Mu
and Andreas, 2020, Hernandez et al., 2022, Bills et al., 2023, Singh et al., 2023], generalized to a
setting where the interpreter must also produce the data.

To implement each function, we instruct Vicuna to synthesize a binary response to interpreter
queries, corresponding to whether an input word is associated (return 1) or unassociated (return 0)
with the reference entity (see the Appendix for Vicuna prompts). The function output s = fe(x) is
then a continuous scalar value representing Vicuna’s internal probability of 1 being the response
token, between a choice of 0 and 1. Specifically, s = p1/(p0 + p1), where pi = elogiti and logiti
represents Vicuna’s output logit for token i. To validate that Vicuna can reliably identify associations
between inputs and reference entities, we collect a human-labeled set of concepts x̂j associated with
each entity ej in the dataset, and compute ŝ = fej (x̂j). The mean value of ŝ across all 140 entities
in FIND, for 10 human-annotated concepts per entity, is 0.85. We compute the same score for 10
distractor concepts per entity, sampled from the list of human annotations of other entities. The mean
score for the distractors is 0.08. See the Appendix for full experiment details.

Composed entity functions mimic the behavior of neurons inside deep networks that are selective for
multiple concepts [Fong and Vedaldi, 2018, Olah et al., 2020, Mu and Andreas, 2020]. We construct
compositions of entity functions by sampling two entities from the dataset and instructing Vicuna
to return 1 if the input value to the function is associated with either entity. 60 composed entity
functions are included in the FIND benchmark.

Type 2: Relations

More complex functions inside language models learn factual associations [Meng et al., 2022]. To
mimic the behavior of these modules, we construct a set of relation functions that map inputs to
outputs according to a real-world factual association (for instance, river 7→ length or gemstone 7→
color). Atomic relations are drawn from Wikidata properties included in the Wikidata dump provided
by Sorokin and Gurevych [2018]. Table 1 shows example relation functions; a full list is provided
in the Appendix. Again we use Vicuna to implement a black box function that applies the rule in
the relation to interpreter inputs (we verify that Vicuna returns factually correct answers, see
Appendix). Figure 2 shows the prompt template for Vicuna and an example relation function.

Relation functions with bias include corruption to part of the function domain. FIND tests whether an
interpretability model can uncover which parts of the function domain have been corrupted. Corrupted
relation functions return undefined for a small region of the function domain; for example, we
corrupt the country 7→ capital relation on the subdomain Asia by prompting Vicuna to return
undefined for inputs in the subdomain.
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3 Evaluation protocol

The FIND protocol evaluates interpreters' natural language descriptions of functions in all cate-
gories. In categories where domain corruption is introduced (numeric functions and factual relations),
interpreters are evalauted on their ability to return a description of the domain of the function,
indicating any subdomain where the function behaves differently. In the mathematical reasoning and
strings categories, interpreters are evaluated on their ability to output code that approximates the
function. Section 4 provides details on the interpretation procedures we evaluate and how they are
instructed to engage with functions.

3.1 Evaluation metrics

To evaluate the accuracy of function descriptions produced by an interpreter, we use success
indicators for individual function interpretations and calculate average success rates across all
functions. For functions where interpreters write code approximating the function (numeric and
string functions), we score the accuracy of the interpretation by running the interpreter’s code
on a representative test set and comparing the result to execution of the ground-truth function. To
evaluate language descriptions of functions, we judge how well the interpreter’s description agrees
with ground-truth function behavior (for string functions and synthetic neural modules). Below we
describe success indicators for each function category in more detail.

Evaluating code-based interpretations. Running interpretation on the FIND benchmark produces
descriptions of numeric and string functions in code as well as natural language. We measure
explanation accuracy by comparing performance of the interpreter’s code to the ground-truth
function implementation on a test set. For numeric functions, we compute a normalized mean-
squared error E[(f(x) − g(x))2]/E[f(x)2] for [−128 ≤ x ≤ 128] between the ground truth FIND
function f and the interpreter’s implementation g, and regard a successful estimation as one
with Normalized MSE (NMSE) < 0.1. For string functions, we run an exact-matching binary test
(f(<string>i)==g(<string>i)) on a set of 10 test inputs per function.

Evaluating language-based interpretations. We define a “unit testing” protocol where an LM
evaluator selects which of three input-output (I-O) pairs corresponds to a language description of
a function. To judge the interpreter’s accuracy, we provide the estimated function description
(e.g. f : country 7→ capital) to the evaluator, as well as three example I-O pairs: one execution of
the ground-truth function (e.g. Germany 7→ Berlin) and two randomly sampled distractors (I-O
pairs for other FIND functions of the same type; e.g. Germany 7→ Europe, ruby 7→ red). The
evaluator selects which I-O pair matches the functionality of the description from the interpreter.
If the language description is accurate, the evaluator should select the ground-truth I-O pair as
the best match. We run this procedure on language descriptions of string functions and synthetic
neural modules for a test set of ten different triplets per function. Test sets are constructed to reveal
representative behavior of each function using inputs inside and outside of the function domain.
For relations corrupted on part of their domain (e.g. f : country 7→ capital, unless the country is in
South America), the test set includes two ground truth examples from the corrupted subdomain (e.g.
Peru 7→ undefined, Argentina 7→ undefined). For entity functions that compute similarity to
a reference concept (e.g. Greek Mythology), we provide the evaluator with only input concepts
instead of I-O pairs (e.g. Athena, skiing, GPU), and ask which concept the function described by
the interpreter is selective for. As test cases can be designed to isolate specific function behaviors,
we find the unit testing protocol to be more sensitive to small differences in function descriptions (e.g.
“transportation” vs “road transportation”) than other description-matching methods, such as having an
LM directly grade the agreement between descriptions (see the Appendix for more details).

We finetune Vicuna-13b (vicuna-evaluator) to perform the unit testing task and select representa-
tive samples matching descriptions of functions in the FIND dataset. LM-judges have been shown to
be scalable and accurate surrogates for human judgments, which are otherwise expensive to obtain
[Zheng et al., 2023]. While proprietary models such as GPT-4 demonstrate strong agreement with
humans, using such models to compare interpreter performance on a benchmark task incurs
prohibitive costs associated with API access and poses reproducibility challenges as model versions
are deprecated. We find that vicuna-evaluator matches ground-truth function descriptions to
representative inputs and outputs more accurately than GPT-4, GPT-3.5, or pretrained Vicuna-13b
(see Appendix for evaluation). Furthermore, vicuna-evaluator makes judgments that are highly
correlated with those of human subjects performing the same task (see Appendix for experiment
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details). The fine-tuned vicuna-evaluator checkpoint and training dataset can be downloaded from
the FIND repository. Training details are provided in the Appendix.

Extensions: Targeted evaluation. For users of the FIND benchmark that produce function interpreta-
tions in a structured format, this benchmark enables other evaluations targeted at specific end-use
cases for interpretability tools. For example, researchers may use FIND to explicitly evaluate whether
interpreters can pick out the portion of the domain that is corrupted, whether they can identify
components of composed functions, or whether they identified the noise model.

4 Automated Interpretability Methods

FIND can be used to evaluate any interpreter system that has the ability to execute Python scripts
autonomously at the command line. As a first demonstration, we evaluate several approaches inspired
by recent work [Hernandez et al., 2022, Bills et al., 2023, Singh et al., 2023] that use pre-trained
language models to perform interpretation. We run experiments using the OpenAI Python API. A
custom plugin equips the interpreter model with the command PYTHON(function.py input)
that it can use to call functions on its own selection of inputs. Scripts for reproducing these baselines
and complete interpretation dialogues are available in the FIND code repository.

We evaluate three different interpretation methods. (i) Non-interactive: interpretability tasks often
involve descriptions of precomputed exemplars of function behavior. In this setting, the interpreter
is equipped with a fixed set of inputs to use for probing the functions, and is prompted to produce
a description based only on function outputs for these exemplars, mirroring the non-interactive
description paradigm used by MILAN [Hernandez et al., 2022] and recent MILAN-type LM anal-
ysis approaches [Bills et al., 2023]. (ii) Automated Interpretability Agents: LM-based AIAs are
prompted to interact with the functions in FIND. The interpreter serves as an agent and runs
PYTHON(function.py input) on inputs it selects. In the base setting, the agents’ search process
is not initialized with pre-selected inputs; rather, the AIA forms hypotheses by itself, generates data
to test its current hypothesis, and interactively updates it based on observations of function outputs.
Figure 3 shows complete interactions between a GPT-4-based AIA and example functions in two
categories. At the beginning of the interaction, the agent is prompted to run experiments on the
functions to produce data that it can use to explain function behavior. Prompts for two categories
of functions are reproduced below. (iii) We also evaluate a combination of both approaches (AIA +
MILAN). In this setting, the interpretability agent is prompted to begin interpretation with a provided
set of exemplars, and then interactively continues the interpretation procedure.

All interpretation methods use off-the-shelf LMs (GPT-4 [OpenAI, 2023], GPT-3.5 (GPT-3.5-turbo)
[Brown et al., 2020], and Llama-2 (Llama-2-13b-chat, Llama-2-70b-chat) [Touvron et al., 2023])
as interpreters, and operate without a human in the loop. AIA-based interactions show structured
interpretation procedures, even when the final explanation is not fully accurate (see the predicted
numeric function in Figure 3). The AIA makes and tests informed hypotheses about the functions:
for example, testing densely spaced points in a specific interval to reveal a “separating point” in the
behavior of the numeric function, and testing different forms of transportation to determine whether
a synthetic neuron is selective for land, sea, or air travel (Figure 3). Once the AIA has gathered
sufficient data and produces a final description, the run stops automatically. The Appendix further
describes experimental settings.

Prompt for numeric functions:

Hi, your job is to interpret a function f(x) that is implemented in the {function.py} script. f(x) takes
numerical inputs. All you can do is call f(x) on a value of x by running PYTHON({function.py} value). Try
to describe the function implemented by f(x) by running experiments on it. You can call
the function on multiple inputs at a time by running PYTHON({function.py} value1 value2 value3...).
You can run the function multiple times on the same input. We encourage testing a large range of values
before writing a description. You can test values between [-128 and 128]. The output could be
noisy and your goal is to find a good simple description of f(x) that explains most of the function
behavior. f(x) may combine multiple different operations. There may be an interval inside the domain
where the function behaves differently. If that is the case, describe that interval. Your description of
the function should have three parts. First,
[DESCRIPTION]: Describe what the function is doing in language.
[DOMAIN]: What is the domain of the function? Is there an interval where the function displays unexpected
behavior? What are the numeric bounds of that interval? What is going on there?
[CODE]: Write Python code that approximates the behavior of the function.
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Prompt for synthetic neural modules (entities):

Hi, your job is to interpret a function f(x) that is implemented in the {function.py} script. f(x) takes
word inputs and returns a value between 0 and 1, where a value closer to 1 indicates the association with
a particular concept. Your task is to figure out what that concept is. f(x) may be selective for more than
one concept. If that is the case, describe all concepts that f(x) is selective for. Try to describe the
function implemented by f(x) by running experiments on it. We encourage you to test a diverse and random
selection of words: spanning many different categories, including both common and obscure words, concrete
and abstract words. You can call the function on multiple inputs at a time by running PYTHON({function.py}
word1 word2 word3 ...). We encourage running many tests before writing a description. The goal is to find
a good simple description of f(x) that explains most of the function behavior. Your description of the
function should be in the following form. [DESCRIPTION]: Describe what the function is doing in language.

Figure 3: AIA function interpretation with GPT-4. The interpretability agent is able to conduct experiments
that reveal the behavior of an unseen function, by making hypotheses, selecting inputs that produce informative
data, and updating hypotheses in light of new information. We include the full dialogues for two example
functions: a numeric function involving a hyperbolic tangent (left), and a synthetic neural module that returns a
continuous value between zero and one indicating input association with the ground truth concept road transport
(right). Numeric function and synthetic neural module prompts were used at the beginning of the respective
conversations, and have been omitted from the figure for simplicity. We overlay a plot of the predicted numeric
function and the real function for comparison. Points on the real function that GPT-4 sampled are marked. Final
explanations are compared to ground truth functions for evaluation (See Table 2).
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Table 2: Interpretation success rates. For each function type we report the successful estimation rate (higher
better) based on different indicators, and with different experimental settings (e.g. initialization with exemplars).

Code (exact match) Language (unit test)

Numeric Strings Strings Entities Relations

AIA AIA AIA AIA MILAN AIA +MILAN AIA MILAN AIA +MILAN

Llama-2-13b-chat 0 0 0.33 0.34 0.54 0.58 0.46 0.45 0.42
Llama-2-70b-chat 0.01 0.01 0.33 0.34 0.61 0.62 0.47 0.44 0.46
GPT-3.5 0.12 0.13 0.66 0.39 0.81 0.88 0.37 0.64 0.68
GPT-4 0.33 0.23 0.82 0.56 0.89 0.89 0.78 0.74 0.92

Figure 4: AIA (GPT-4) interpretations. Examples from all FIND categories, with evaluation scores (NMSE
and unit test) marked in red if below the success threshold (NMSE> 0.1, unit test< 0.33) and green otherwise.

5 Results

We evaluate the AIA method as well as the non-interactive baselines with different off-the-shelf
LMs. Results are summarized in Table 2 and example function descriptions are shown in Figure 4.
Additional example interpretations of functions in all categories are provided in the Appendix.

GPT-4 is a stronger interpretability agent than GPT-3.5 and Llama-2. Success rates for all
function categories are reported in Table 2 (AIA columns). The GPT-4 interpretability agent achieves
universally higher success rates than GPT-3.5 and Llama-2 (which often score at chance value). In
fact, we find that Llama-2 often invents the output of the function without executing it (see examples
in Appendix). This is also reflected in the mean length of interpretation dialogues, which are
1.4, 1.4, 2.1, and 4.1 for Llama-2-13b-chat, Llama-2-70b-chat, GPT-3.5 and GPT-4 respectively (we
count the number of interpreter-function interactions). We additionally observe that interpretations
of string functions receive significantly higher scores using the unit testing protocol compared to
string-matching outputs of estimated code. As unit testing selects for representative examples of
function behavior and not exact string-matches, the procedure is more forgiving of less specific
descriptions, or descriptions with minor inaccuracies (see Appendix for additional discussion of unit
testing limitations).

Interactive vs. non-interactive. In addition to AIAs, we evaluate two other interpretation methods:
MILAN [Hernandez et al., 2022] where the interpreter produces a description based only on
function outputs for a given set of exemplars, and a combination of AIA + MILAN, where the
same set of exemplars is used to initialize the interpretation session, and the agent is subsequently
permitted to perform additional experimentation. For both settings, we sample the exemplars
(two related to the function, eight distractors) from a human-constructed list of inputs associated
with each function (see Appendix for details). In the non-interactive MILAN setting, we observe
a small improvement in performance over uninitialized AIAs; GPT-4 interpretation performance
improves from 0.56 to 0.89 on entity functions, and decreases slightly on relations, from .78 to .74.
Initializing AIAs with MILAN exemplars and allowing additional experimentation dramatically boosts
the performance of GPT-4 and GPT-3.5 agents (and also slightly improves Llama-2 performance), as
shown in Table 2 and Figure 5 (see init.). Notably, when initialized with exemplars, GPT-3.5 exhibits
performance interpreting entity functions comparable to GPT-4. These results suggest that off-the-
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shelf LM agents are limited by breadth of search. Indeed, LMs tend to start sampling with simple
words (e.g. apple, dog, car) which do not reveal function behavior for highly specific reference
entities (e.g. The New York Times, arachnids and arachnology). We view exemplar computation
as one of many “tools” that an interpretability agent could use, and hope that this benchmark will
drive exploration of additional tools (e.g. example synthesis) as part of automated interpretation
methods. Procedures that combine initialization and interactive experimentation could improve
the efficiency of existing labeling approaches that use large fixed datasets [Bau et al., 2017] to
precompute maximally activating inputs, and potentially also surface novel behaviors not captured in

Figure 5: AIA interpretation scores by subcategory
(with GPT-4). Complex functions are usually more dif-
ficult to interpret than atomic functions. String functions
are evaluated using the string-matching indicator.

predefined sets of exemplars.

Which functions can LMs recover? Fig-
ure 4 shows examples of AIA interpreta-
tions that successfully explain the behavior
of some functions (e.g. cases (b),(d)), but fail
to fully characterize more complex functions
(e.g. cases (a),(c)), also reflected in some per-
subcategory success scores (Figure 5). This
is a limitation of using off-the-shelf LMs as
agents: they may miss small corruptions to
part of the domain (Figure 4a), which in real-
world interpretability settings could stem from
bias in the training set. LMs could be outfitted
specifically for interpretability with additional
tools (e.g. for sampling) and further improved
by fine-tuning.

6 Related work

Explanation evaluation methods have previously benchmarked salience methods according to their
ability to recover ground-truth segmentations [Zhang et al., 2018, Selvaraju et al., 2017, Fong and
Vedaldi, 2017, Yang and Kim, 2019], or identify inputs that causally affect outputs [Zeiler and Fergus,
2014, Petsiuk et al., 2018, Wagner et al., 2019, DeYoung et al., 2020]. Explanation benchmarks have
also evaluated correlation with system performance [Adebayo et al., 2018, Casper et al., 2023] or
human understanding of decisions [Kim et al., 2022]. Our benchmark differs because we evaluate
global explanations of black box functions instead of evaluating local explanations of decisions.

Model interpretability metrics have quantified the degree of model interpretability, i.e. by measuring
how closely deep network features match a human-labeled concept [Bau et al., 2017, Kim et al., 2018,
Goh et al., 2021, Wu et al., 2021, Burgess et al., 2018, Mu and Andreas, 2020, Geva et al., 2021].
While these methods can measure disentanglement in model representations, they are only as good as
their ability to identify interpretable features. We tackle this problem by providing a benchmark for
interpretation methods themselves, rather than the models that they explain.

Full-text explanation systems provide natural-language explanations for black box systems or their
features [Hendricks et al., 2016, Camburu et al., 2018, Ehsan et al., 2018, Kumar and Talukdar, 2020,
Hernandez et al., 2022]. Recent efforts exploit the capabilities of LMs to explain data directly, but
these works utilize only tiny evaluation benchmarks, including 19 synthetic neuron puzzles in Bills
et al. [2023] and 54 ground-truth module topics in Singh et al. [2023]. Motivated by the promise of
this LM-driven approach and the need to quantify performance, our work provides a comprehensive
benchmark of full-text black-box explanation systems.

7 Conclusion

We introduce FIND, a new benchmark for evaluating automated interpretability methods. Baseline
results show early evidence that agents built from advanced LMs can construct hypotheses and
experiments to validate them, supporting the suitability of LMs as general-purpose interpretability
backbones. However, we find many functions that LM agents cannot sufficiently explain, suggesting
augmentation with additional tools will be necessary for robust automation of interpretability tasks.
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Appendix
Supplemental Materials for FIND: A Function Description Benchmark for Evaluating Inter-
pretability Methods. This appendix provides hosting, access, and maintenance details, and additional
information about the FIND dataset and experiments described in the main paper.

A Limitations

We view FIND as a test of necessary, but not sufficient, capabilities for automated interpretation.
The ultimate test of these interpretation methods’ effectiveness must be their ability to generate
actionable insights about real models, which FIND does not evaluate. But clean, simple benchmarks
with ground-truth answers have been a major driver of more general capabilities in LMs, and we
hope that FIND can play a similar role in interpretability research. Additionally, the current release
of FIND only includes black-box interpretation problems. This style of problem is relevant to many
existing automated procedures such as NetDissect [Bau et al., 2017] and MILAN [Hernandez et al.,
2022], which treat single neurons as black boxes; however, most interpretability work occurs in a
white-box setting. We intend for FIND to be extended in the future to incorporate white-box function
interpretation problems, including descriptions of individual components of neural circuits (the IOI
circuit from Wang et al. [2022] is just one example), some of which could be represented as the types
of composition problems that are already included in FIND, but where interpreters access and
label individual sub-computations inside composed functions.

B Ethics statement

FIND includes entities drawn from Wikidata that represent real-world concepts like video games,
paleontology, and airports, as well as more potentially sensitive topics like The Holocaust, World
War II, and disasters (see Appendix D). We include these topics in FIND because they are relevant to
behaviors inside neural networks trained on real-world data, that we want automated interpretation
procedures to be able to describe. We additionally note that interpreters which test the semantic
similarity between input concepts and reference entities may surface surprising or controversial
similarity scores that stem from learned biases inside the LM backbone of the synthetic neural modules
(e.g. men having a higher similarity score with mathematics than women). Advanced interpretation
procedures would be able to name and describe these biases, but the FIND evaluation protocol
currently does not test ability to discover biases other than those included explicitly in FIND (via
corruptions to function subdomains).

C Additional interpretation examples

Below we provide additional examples of AIA interpretations performed with a GPT-4 agent for each
of the FIND categories. For numeric functions, we report the NMSE score (lower is better) marked in
green if the score is below the success threshold, or red otherwise. For strings and synthetic neural
modules, we report the unit test score (higher is better) marked in green if the score is above chance,
or red otherwise. Complete interpretation dialogues are available in the FIND code repository.
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Figure A1: Numeric function interpretation examples. Plots compare the code interpretation to the ground-
truth function implementation. Points on the FIND function sampled by the GPT-4 AIA are indicated. NMSE
scores are marked in green if the score is below the success threshold (0.1), or red otherwise.
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Figure A2: Synthetic neural module interpretation examples. Unit test scores are marked in green if the
score is above chance (0.33), or red otherwise.

Figure A3: String function interpretation examples. Unit test scores are marked in green if the score is above
chance (0.33), or red otherwise.
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D FIND documentation

The FIND API, benchmark dataset, and associated metadata are open-sourced under an MIT license
and available at: https://github.com/multimodal-interpretability/FIND.

The FIND repository contains the utilities necessary for reproducing benchmark results for the LM
baselines reported in the paper, and running and evaluating interpretation of the FIND functions with
other interpreters defined by the user.

The FIND dataset itself is hosted on Zenodo with DOI: 10.5281/zenodo.8034162. The GitHub README
provides instructions for downloading the dataset file into the appropriate directory for use with the
FIND utilities.

Responsibility statement. The authors affirm that they have full authority to license the dataset
under the terms of the MIT License and they accept all responsibilities for the dataset.

Dataset. Each function is expressed as an independent.py file that can be called by the interpreter
with the FIND utilities. The benchmark dataset includes:

1. 1000 numeric functions sampled from the FIND API (see section E)
2. 1000 string functions sampled from the FIND API (see section F)
3. 275 synthetic neural modules with an LM backbone (see section G )

An interpreter can be tested on a single function or the entire FIND dataset using
collect_interpretations.py. Most of the functions are self-contained, see one example here
(find_dataset/numeric/f00470/function_code.py):

import numpy as np
import sys

def function(x):
return (-4.5*x**4 - 0.7*x**3 - 2.6*x**2 + 0.4*x**1 + 3.9) *

(-25.3 * np.where(x > 0, x, x * 0.3) + 5.2)

if __name__ == '__main__ ':
outputs = ''
for arg in sys.argv [1:]:

x = float(arg)
try:

out = function(x)
except:

out = 'None'
outputs += f'({arg}, {out})'

print(f'Function input - output pairs: {outputs}')

For numeric functions that load trained MLPs, the dataset includes a .pt file with model weights in the
same folder as function_code.py. Other functions (synthetic neural modules) that are implemented
with an LM backbone rely on calls to a self-hosted Vicuna inference server. For example, this function
(find_dataset/neurons_entities/f00013/function_code.py) simulates a neuron selective for
works of fiction by measuring Vicuna output logits:
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import openai
import sys
import numpy as np
import torch

openai.api_key = "EMPTY"
openai.api_base = {API_BASE}
model = "vicuna -13b-v1.1"

from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained ({ LLAMA_PATH })
zero_token_id = tokenizer._convert_token_to_id('0')
one_token_id = tokenizer._convert_token_to_id('1')

concept = 'works of fiction '

def function(input , sys_prompt ):
messages =[

{"role": "system", "content": sys_prompt},
{"role": "user", "content": # Vicuna prompt for function
f"I am going to give you an input. Return only \"1\" if that input is related to
{concept }." + "Return only \"0\" otherwise .\n
Do not return any additional information other than the 0 or 1 answer .\n" +
f"Input: {input}"} # input from interpreter

]

completion = openai.ChatCompletion.create(
model=model ,
messages=messages ,
temperature =0.0

)

logprobs = np.array(completion.choices [0]. logprobs)
output_tokens = tokenizer.encode(completion.choices [0]. message.content , return_tensors='pt')
indices = torch.logical_or(output_tokens == zero_token_id , output_tokens == one_token_id)
indices = indices.int()
index_of_choice = indices.nonzero ()
index = index_of_choice [0][1]. item()
index = index -1
prob_1 = np.exp(logprobs[index , one_token_id ]) / (np.exp(logprobs[index , zero_token_id ]) +

np.exp(logprobs[index , one_token_id ]))

return prob_1

if __name__ == '__main__ ':
outputs = ''
prompt = "You are an AI trained to identify words related to input concepts."
for arg in sys.argv [1:]:

outputs += f'({arg}, {function(arg , prompt ):.4f}) '
print(f'Function input - output pairs: {outputs}')

Calling these functions requires running inference on Vicuna. Instructions for setting up and running
a Vicuna inference server can be found in the FIND GitHub README. Vicuna is open-sourced (Apache
License 2.0) for non-commercial use. Vicuna is also subject to the LLaMA model license (GNU
General Public License v3.0), the OpenAI Terms of Use, and the ShareGPT Privacy Practices.

Reproducibility. Many of the functions in this dataset are self-contained; the ones that are not can be
reproduced with Vicuna-13B-v1.1, which is open-sourced and accessible to research GPUs, or can be
run in the cloud (to run the interpretation baselines in this paper, we used 2x NVIDIA GeForce RTX
3090 GPUs). Running the evaluation requires hosting vicuna-evaluator. We provide the finetuned
vicuna-evaluator checkpoint for download via the FIND GitHub. All scripts for reproducing
evaluations reported in the paper are available in the GitHub repository, and we discuss comparisons
to other LMs as evaluators in section F.

E Numeric function API details

The API for generating numeric functions can be found at:
https://github.com/multimodal-interpretability/FIND/src/make_functions/make_numeric.

The library of numeric functions is located in the script math_functions.py, which defines indi-
vidual functions in the set A of atomic functions and randomly samples their parameters. We also
randomly sample integer scale and bias parameters between [−30, 30] for each function.
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15% of the numeric functions in the FIND dataset are compositions of two atomic functions
f(x) and g(x). To limit the complexity of the compositions, we choose f(x) and g(x)
from a subset AC of atomic functions, where AC = linear, polynomial, step, RELU,
constant, ceiling, floor, rectangle, square wave, and combine them using only mul-
tiplication and addition.

FIND is extensible: the API can be used as a general numeric function generator, allowing the user to
make other design choices targeting specific interpretability applications.

F String function API details

The API for generating string functions can be found at:
https://github.com/multimodal-interpretability/FIND/src/make_functions/make_strings.

All functions and sampling parameters used to create the FIND dataset are articulated in
string_functions.py. Like with numeric functions, we define a subset (described in the API) of
string functions with lower complexity to use in compositions.

G Synthetic neural modules

To validate the reliability of Vicuna as a backbone for the synthetic neural modules, we score its
execution of the FIND functions on human labels associated with each entity in FIND, and ground-truth
factual relation pairs (extracted from Wikidata).

D1 Entities

For each entity, we construct a list of 10 associated concepts (e.g. for the climate entity, associated
words include humidity, temperature, atmosphere). In Table A1 we list all entities included
in FIND, and report the mean function output across 10 human labels associated with each entity
(function output is computed from Vicuna output logits) and the mean function output for 10 labels
randomly sampled from the rest of the dataset. A score closer to 1 indicates stronger association
between input concept and reference entity. For all entities in FIND, Vicuna scores reliably distinguish
between associated and unassociated concepts. We additionally show selectivity of each entity
function for concepts associated with that entity relative to all other entities in Figure A4.

Table A1: Atomic entities and Vicuna scores for Synthetic Neural Modules

Entity Same Entity Score Random Entity Score

sport organizations 0.996 0.112
corporations 0.968 0.053
elections 0.670 0.012
musical works 0.978 0.110
films 0.992 0.023
climate 0.810 0.009
computer hardware 0.972 0.004
physics 0.992 0.021
religions and beliefs 0.899 0.013
law and justice 0.995 0.104
transport 0.786 0.129
education 0.783 0.122
politics 0.508 0.029
works of fiction 0.971 0.087
games and leisure activities 0.763 0.136
biology 0.994 0.168
mathematics 0.993 0.020
geology 0.993 0.044
government and state 0.644 0.067
food and eating 0.855 0.101
air transport 0.763 0.011
road transport 0.787 0.027
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Table A1 – continued from previous page

Entity Same Entity Score Random Entity Score

rail transport 0.672 0.001
cycling 0.846 0.011
the New York Times 0.703 0.163
aircraft 0.737 0.003
bodies of water 0.992 0.094
mineralogy 0.984 0.054
occupations 0.976 0.178
professional wrestling 0.872 0.004
quantity indicating a percentage 0.996 0.148
plays 0.546 0.149
horses 0.964 0.005
photography 0.977 0.026
music 0.965 0.038
fashion 0.898 0.154
chess 0.700 0.004
racket sports 0.828 0.129
art 0.991 0.457
disasters 0.687 0.022
spacecraft 0.915 0.018
video games 0.991 0.035
the relationship of an element to its class 0.893 0.708
basketball 0.767 0.009
winter sports 0.984 0.002
American football 0.849 0.036
golf 0.925 0.026
baseball 0.893 0.006
ice hockey 0.663 0.003
women and feminism 0.819 0.120
lighthouses 0.493 0.010
tennis 0.804 0.008
water sports 0.958 0.014
comics 0.637 0.012
algorithms 0.801 0.021
tourism 0.690 0.186
bridges 0.685 0.012
books 0.774 0.111
linguistics 0.995 0.464
utilization and ownership 0.402 0.206
online communities 0.889 0.084
television 0.851 0.023
astronomy 0.995 0.054
disability 0.637 0.023
proteins 0.399 0.072
human anatomy 0.966 0.053
gymnastics 0.751 0.026
architecture 0.800 0.055
sculpture 0.795 0.030
archaeology 0.836 0.083
theater 0.899 0.104
dams 0.776 0.012
birds and ornithology 0.993 0.070
computing 0.988 0.302
time and duration 0.699 0.052
age 0.832 0.040
weapons and military equipment 0.820 0.003
ratios and proportions 0.446 0.155
typefaces and typography 0.911 0.094
burials graves and memorials 0.878 0.010
processes and manufacturing 0.645 0.058
paleontology 0.934 0.054
banking 0.922 0.034
lakes 0.552 0.060
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Table A1 – continued from previous page

Entity Same Entity Score Random Entity Score

natural science 0.970 0.359
geography 0.981 0.039
insects and entomology 0.897 0.033
philosophy 0.991 0.168
poetry 0.991 0.071
encyclopedias 0.642 0.350
television shows 0.914 0.095
awards prizes and honours 0.997 0.159
the Middle Ages 0.871 0.053
plants and botany 0.994 0.189
marine biology 0.996 0.059
color 0.780 0.080
airports 0.712 0.003
science 0.946 0.284
anime and manga 0.969 0.094
Christianity 0.988 0.015
Buddhism 0.993 0.002
Greek mythology 0.949 0.013
Judaism and the Jewish people 0.965 0.012
music genres 0.987 0.144
fictional characters 0.892 0.144
rap and hip hop 0.693 0.055
Islam 0.949 0.016
The Walt Disney Company 0.937 0.005
agriculture 0.982 0.104
hiking 0.384 0.018
New York City 0.969 0.113
gardens 0.896 0.093
personality traits 0.879 0.172
camping 0.728 0.065
gender 0.555 0.049
cemeteries and graves 0.984 0.027
London 0.954 0.105
Los Angeles 0.949 0.042
Chicago 0.959 0.047
Paris 0.789 0.017
Berlin 0.923 0.052
sailing 0.897 0.001
swimming 0.901 0.015
the Holocaust 0.788 0.007
arachnids and arachnology 0.798 0.128
musical instruments 0.997 0.042
meteorology 0.926 0.011
disease 0.787 0.010
Ireland 0.784 0.020
libraries 0.612 0.122
museums 0.848 0.058
journalism 0.883 0.020
buildings 0.795 0.153
cryptocurrencies 0.951 0.001
events and news 0.725 0.229
Louisiana 0.745 0.012
revolutions 0.623 0.076
mines and mining 0.918 0.039
Switzerland 0.947 0.050
World War II 0.986 0.064

Average 0.846 0.079
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Figure A4: Entity functions implemented using Vicuna respond more strongly to concepts related to their
reference entity (diagonal) than to concepts related to other entities (off-diagonal). The value in row i and
column j corresponds to the average output of the entity ei function for 10 inputs associated with entity ej . Each
row is normalized using softmax. The prompt template used to instruct Vicuna to implement each function is
shown in Section G.
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Table A2: Factual relations and domain corruptions

Input Output Domain corruptions <case 1, case 2>

country capital of the country country is in <Asia, S. America>
city country where the city is located city is in <Mexico, The U.S.>
head of state country where that person was head of state head of state is a <man, woman>
monument country where monument is located monument in <New York City, France>
monument continent where monument is located monument in <S. America, Australia>
city in the U.S. state where the city is located city is in <California, Texas>
country official language of the country country in <N. America, S. America>
well-known person occupation of the person person is a <woman, man>
name of a person most likely gender of the person name begins with <T, S>
country continent where the country is located country is in <Asia, Europe>
opera composer of the opera opera is in <Italian, German>
title of a book author of the book book written <pre-1900, post-1900>
country another country on its border country is in <Africa, N. America>
politician political party of the politician politician is a <man, woman>
river continent where the river is located continent is <Africa, Europe>
city time zone of the city city is in <N. America, Asia>
opera language of the opera opera is in <English, Italian>
animal main food source of the animal animal is a <carnivore, herbivore>
animal typical habitat of the animal animal lives on <land, in the ocean>
gemstone color of the gemstone gemstone is <red, blue>
country color of the country’s flag country is in <N. America, Asia>
river length of the river river is in <N. America, Europe>
country maximum elevation in the country country is in <S. America, Africa>
country height of the tallest skyscraper in that country country is in <N. America, Asia>
country height of the average person in that country country is in <Europe, S. America>

D2 Relations

FIND includes 75 synthetic neural modules that map inputs to outputs using real-world factual relations drawn
from Wikidata properties. The set of relation functions is built from 25 atomic relations (e.g. country 7→ capital)
and two domain corruptions per relation, where the function returns undefined for a small region of the domain
(e.g. country 7→ capital EXCEPT if country in South America, then return undefined). Table A2 lists atomic
relation functions included in FIND, and the two domain corruptions applied to each function. We evaluate
Vicuna accuracy applying relation functions to input concepts by scoring the accuracy of the mapping applied to
10 inputs per function, where inputs are drawn from concepts in Wikidata with the property applied by each
relation function. Mean Vicuna accuracy across relations in FIND is 91.2%.

E Interpretation

Utilities for reproducing interpretation experiments and adding other, user-defined interpreters are provided
in the GitHub repository. We report interpretation baselines using GPT-4, GPT-3.5 (GPT-3.5-turbo), and
Llama-2 (Llama-2-13b-chat, Llama-2-70b-chat). Interpretation dialogues never exceeded context length of
8K tokens for GPT-4, 4K tokens for GPT 3.5, and 2048 for Llama-2. Full interpretation dialogues from our
baselines can be downloaded from https://data.csail.mit.edu/FIND/FIND-interpretations.zip.

E1 Llama-2 hallucination

We note that Llama-2 often fails to engage with the functions and instead hallucinates outputs before func-
tion output values are returned to the interpretation dialogue. Example hallucinations are shown below for
Llama-2-13b-chat interpreting a synthetic neural module function. We tested different system prompts to
encourage Llama-2 to perform the task. The top-performing Llama-2 prompt is reproduced in Section G.

E2 Sampling initialization experiments (AIA +MILAN)

Initialization experiments were performed for synthetic neural modules where search strategy (initially guessing
very simple words) handicapped interpreter performance. As described in Section 5 of the main paper, in
this setting the interpreter was provided with a list of 10 inputs per function to use for initialization (two
associated with the function, eight distractors). These exemplars were sampled from the lists of human-labeled
concepts associated with each function as described in Appendix G. The set of suggested initial inputs we used
for each function is included in the FIND dataset as a JSON file in each synthetic neural module subfolder.
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Figure A5: Llama-2 hallucinates function responses and produces incorrect descriptions. An example is shown
for a synthetic neural module. Llama-2 does not correctly call the function and hallucinates function calls,
outputs, and a function description in a single message, before any function outputs are returned.

F Evaluation

F1 Vicuna-evaluator

Utilities for reproducing all baseline results are included in the GitHub repository. The unit testing evaluation
protocol (for strings and synthetic neural modules) requires hosting vicuna-evaluator. We provide the
finetuned vicuna-evaluator checkpoint as well as the training dataset for download via the FIND GitHub.
vicuna-evaluator was finetuned from vicuna-13b-v1.1 on a dataset simulating the unit testing procedure on
ground-truth descriptions of all string functions and synthetic neural modules in FIND. Ground-truth descriptions
of each function were generated using GPT-4 (temperature = 0) prompted to write a natural language description
of function behavior when shown code implementing the function. Unit tests in the training dataset include
one representative sample of function behavior (an I-O pair, or a single input for entity functions) and two
distractors sampled from other functions of the same type, and the correct answer for the evaluator (the index
of the representative sample). Indices of representative examples and distractors are randomized across unit tests.
We finetune on a dataset size 30K with examples uniformly distributed between entities, relations, and string
functions. We train for 3 epochs with a cosine learning rate scheduler and a 2e-5 maximum learning rate on
8xA100 GPUs, using other default hyperparameters from Zheng et al. [2023].

We compare the reliability of different LM-evaluators by performing the unit test procedure using the ground
truth function description instead of the description estimated by the interpreter. A perfect evaluator would
distinguish the correct input-output pair from distractors in 100% of cases. Table A3 compares the performance of
vicuna-evaluator on ground-truth function descriptions to the performance of GPT-4, GPT-3.5, and pretrained
Vicuna-13b on a test set of 10 representative examples (and two distractors sampled uniformly at random from
other functions in the same category) per function. GPT-4 is a strong evaluator, however is impractical for use
with this benchmark due to reproducibility challenges and API costs. While pretrained Vicuna is near chance
(33%), vicuna-evaluator shows near ceiling performance in all categories.

F2 Vicuna-evaluator agreement with human judges

We tested whether scoring implemented by vicuna-evaluator agrees with human judgments by having humans
perform the same unit-testing task as vicuna-evaluator for a subset of functions in the dataset. That is, we
provide the estimated function description (e.g. f(x) maps countries to capitals) to the evaluator, as well
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Table A3: Accuracy of LMs as evaluators on ground-truth functions

Strings Entities Relations

Vicuna 0.345 0.390 0.400
GPT-3.5 0.680 0.955 0.888
GPT-4 0.900 0.964 0.952
Vicuna-Evaluator 0.956 0.981 0.998

as three example I-O pairs: one execution of the ground-truth function (e.g. Germany 7→ Berlin) and two
randomly sampled distractors (I-O pairs for other FIND functions of the same type; e.g. Germany 7→ Europe,
ruby 7→ red). The evaluator (human or LM) selects which input-output pair matches the functionality of the
description from the interpreter. If the language description is accurate and useful, the evaluator should
select the ground-truth input-output pair as the best match.

We ran human evaluations on the scoring of descriptions of synthetic neural modules (descriptions produced
by GPT-4), where human subjects can apply common knowledge to perform the unit testing task (numeric and
string functions may require additional expertise or computational tools). We ran this experiment on a subset of
25 functions from the dataset in each subcategory, and the same sample of 10 ground truth and distractor outputs
as seen by vicuna-evaluator, for a total of 250 tasks per function. Three human subjects completed each task.
Subjects were recruited from Amazon Mechanical Turk and were required to be “Masters” (with U.S. location,
HIT acceptance rate of at least 95%, and a history of at least 100 HITs). Workers were paid $0.06 per task.

To evaluate the baseline accuracy of both vicuna-evaluator and human subjects on the unit-testing task, we
provide the ground-truth function description instead of the function description produced by the interpreter
(ceiling accuracy on this task should be 1.00). Performance of humans and vicuna-evaluator is shown in
Table A4. Humans are able to perform the task correctly for synthetic neural modules (entities and relations),
scoring close to ceiling accuracy: mean accuracy 0.975 (SD 0.029) and 0.968 (SD 0.035), respectively. Human
evaluators also score automatically generated interpretations (from GPT-4, see average scores in Table A4)
comparably to vicuna-evaluator: we find significant positive correlation between per-function scores from
human evaluators and vicuna-evaluator for both entities (Spearman’s ρ = 0.904, p = 5.97e − 10) and
relations (Spearman’s ρ = 0.89, p = 4.09e − 8). These results show that in function categories where
humans can apply common knowledge to reliably perform the unit testing task, their judgments agree with
vicuna-evaluator, demonstrating (like in Chiang et al. [2023]) that LM judgments can be used as surrogates
for human judgments of automated interpretations.

Table A4: Vicuna-evaluator agreement with human judges.

Entities Relations

Evaluator ground-truth interpretation ground-truth interpretation

vicuna-evaluator 0.992 0.660 1.00 0.715
human evaluators 0.975 0.708 0.968 0.700

F3 Discussion of unit testing limitations

As mentioned in Section 5, unit testing (which selects for representative examples of function behavior and not
exact implementation matches) is more forgiving of vague or general function descriptions, or descriptions with
minor inaccuracies. We hypothesize that this explains the trend visible in Figure 5, where the evaluator scores
slightly higher on relation functions with domain corruptions than atomic relations. We note that in almost
all cases, the interpreter failed to uncover the domain corruption (likely due to limited sampling), and its
description of the corrupted relation function was very similar to its description of the uncorrupted function.
For use cases of FIND that focus on whether an interpreter can detect a corrupted part of the domain, unit
testing specificity could be increased by including additional representative samples from the corrupted part of
the domain (we include 2 out of 10).

F4 Using description matching for evaluating language-based interpretations

We experimented with having an the evaluator directly grade the agreement between the interpreter’s
description of the function and its ground truth description. We found that GPT-4 is able to score the agreement
of language descriptions. However, this procedure is also insensitive to small differences between descriptions
(e.g. GPT-4 judges that the descriptions “this function is selective for inputs related to road transportation” and
“this function is selective for inputs related to transportation” describe the same underlying function). We note
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similar behavior for relations with domain corruptions (e.g. descriptions of “maps countries to capitals” and
“maps countries to capitals except in South America” are judged as highly similar).

G Prompts

Interpreter prompts for all function categories, system prompts, and Vicuna prompts are provided in the
GitHub Repository. Those not shown in the main paper are reproduced below.

Entity function Vicuna prompt

I am going to give you an input. Return only 1 if that input is related to {entity}. Return only 0
otherwise. Do not return any additional information other than the 0 or 1 answer.
Input: {input}.

Entity function Vicuna prompt: composition

I am going to give you an input. Return only 1 if that input is related to {entity1}. Return only
1 if that input is related to {entity2}. Return only 0 otherwise. Do not return any additional information
other than the 0 or 1 answer.
Input: {input}.

Entity function Vicuna system prompt

You are an AI trained to identify words related to input concepts.

Relation function Vicuna prompt

I am going to give you an input. If the input is {concept1}, return only {concept2}. If the input is
not {concept1}, return 'undefined'. Input: {input}.

Relation function Vicuna prompt: domain corruption

I am going to give you an input. If the input is {concept1}, return only {concept2}. If the input is
not {concept1}, return 'undefined'. If {exception}, return 'undefined'. Input: {input}.

Relation function Vicuna system prompt

You are a helpful assistant. You apply real-world knowledge to map input words to output words according
to a rule provided by the user. Try to be as precise as possible.
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Interpreter prompt: strings

Hi, your job is to interpret a function f(x) that is implemented in the {function.py} script. f(x) takes
string inputs. All you can do is call f(x) on an input string by running PYTHON(function.py string). Try
to describe the function implemented by f(x) by running experiments on it. You can call the function on
multiple inputs at a time by running PYTHON(function.py string1 string2
string3...). We encourage testing a large range of inputs before writing a description. The goal is
to find a good simple description of f(x) that explains most of the function behavior. f(x) may combine
multiple different operations. Your description of the function should be in the following form. [
DESCRIPTION]: Describe what the function is doing in language.
[CODE]: Write Python code that approximates the behavior of the function

Interpreter prompt: relations

Hi, your job is to interpret a function f(x) that is implemented in the function.py script. f(x) takes
word inputs, and applies a rule to the input word. Try to describe the rule implemented by
f(x) by running experiments on it. We encourage you to test a diverse selection of words spanning real-
world concepts like places, events, and people. You can call the function on multiple inputs at
a time by running PYTHON(function.py word1 word2 word3 ...). We encourage running many tests before
writing a description. The goal is to find a good simple description of f(x) that explains most of the
function behavior. There may be some inputs where you expect the function to behave a certain way, but it
does not. If that is the case, describe the part of the domain where the rule the function normally
applies, does not hold. Your description of the function should have two parts.
[DESCRIPTION]: Describe in language the rule applied by the function.
[DOMAIN]: Is there part of the domain where the rule the function normally applies, does not hold? If so,
describe that corruption. If not, describe the domain of the function where the rule applies.

Interpreter system prompt (GPT)

You now have access to some commands to help complete the user's request.
You are able to access the user's machine with these commands. In every message you send, include
'COMMAND:' with your command at the end. Here is a list of commands with explanations of how they are used:

Command: [PYTHON(function.py)]
Explanation: [Run a python script with the given file name. Use quotes for the filename argument. Do
not use quotes in the function command itself.]

When you use a command, the user will respond with 'Response:' followed by the output of the command.
Use this output to help the user complete their request.

Interpreter system prompt (Llama-2)

You now have the ability to execute commands to run external functions. You are able to access the user's
machine with these commands. In every message you send, include 'COMMAND:' with your command at the end.
Here is a list of commands with explanations of how they are used:

Command: [PYTHON(function.py)]
Explanation: [Run a python script with the given file name. Use quotes for the filename argument. Do
not use quotes in the function command itself.]

When you use a command, the user will respond with 'Response:' followed by the output of the commmand.
Use this output to help the user complete their request. After you receive a task from the
user, you must execute PYTHON(function.py) to run the external function. You will then receive outputs
from the external function to analyze. You must only analyze outputs produced by the function when you run
PYTHON(function.py). Do not run the function any other way. Do not analyze any
other outputs besides the ones produced by running PYTHON(function.py).
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