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Abstract

In many scientific applications, we observe a system in different conditions in
which its components may change, rather than in isolation. In our work, we are
interested in explaining the generating process of such a multi-context system using
a finite mixture of causal mechanisms. Recent work shows that this causal model is
identifiable from data, but is limited to settings where the sparse mechanism shift
hypothesis [1] holds and only a subset of the causal conditionals change. As this
assumption is not easily verifiable in practice, we study the more general principle
that mechanism shifts are independent, which we formalize using the algorithmic
notion of independence. We introduce an approach for causal discovery beyond
partially directed graphs using Gaussian process models and give conditions under
which we provably identify the correct causal model. In our experiments, we show
that our method performs well in a range of synthetic settings, on realistic gene
expression simulations, as well as on real-world cell signaling data.

1 Introduction

Most of statistical learning theory rests on the assumption that all data is i.i.d. and comes from a single
distribution. In reality, this assumption rarely holds: observations often stem from heterogeneous
environments, different time domains, or interventional experiments. This results in non-i.i.d. data
which may contain spurious correlations, such that naive analysis could be subject to serious learning
bias [2]. Recent research tackles this problem via causal discovery, where given different context
distributions, we want to discover robust, causal relationships that transfer to novel conditions [3].
Existing approaches however commonly discover only an equivalence class of the true model [4–9].
Here, we investigate under which conditions we can identify causal directions.

To determine causal orientations, Schölkopf et al. [1] proposed the Sparse Mechanism Shift (SMS)
hypothesis, which asserts that distribution shifts are a consequence of a small number of causal
mechanism changes. It relies on the idea that causal functions exhibit robustness over different
contexts, whereas spurious correlations typically fail to generalize to modified conditions [3, 10, 11].
While the SMS assumption permits causal identification via counting of distribution shifts [12, 13],
this approach is limited to settings where only a subset of the causal conditionals change, does not
apply in the i.i.d. case, and needs conditional independence tests in practice, which suffer from a
multiple testing problem and, depending on the use case, limited power [14, 15]. To address these
issues, we propose a functional modeling approach based on algorithmic independence and give
identifiability guarantees under general assumptions. Instead of counting mechanism changes, our
approach identifies the model that achieves the most succinct lossless description of the data.

To illustrate this idea, we consider three variables in five environments (Fig. 1). The environments
correspond to different conditions that we observe our system in, such as interventional experiments
in genomics [16, 17]. In our example, there exists some mechanism responsible for generating Y
from its cause X which we call f . It remains the same in Contexts 1-4, even when the underlying
causal mechanisms and hence distributions of the covariates X,Z differ (f1), and only changes in

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



f1

YX Z

f2

Context 4

...
Context 1

Context 5

(a) Causal model for non-i.i.d. data.
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(b) Covariate shift in one context.
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(c) Covariate shift in all contexts.

Figure 1: Given non-i.i.d. data from different contexts, we are interested in the mechanism f that
generates a variable Y and that may change in one or more contexts (a). We consider a varying number
of causal functions f , modeled through a Gaussian process, in the causal (green) and anticausal (red)
direction as potential models and measure how succinctly the models encode the data (L). Here,
we find that Y has cause X and a small number |f | of different mechanisms (green star). As the
causal mechanism of Y changes independently of the mechanisms generating X and Z, this holds
regardless of whether X,Z undergo distribution shifts in one context (b) or in all contexts (c).

Context 5 as a result of a direct intervention on Y (f2). Intuitively, to most concisely describe the
data, we will need two functions in the causal direction, fewer would underfit, and more overfit. To
capture this, we propose a score that quantifies how succinctly a model can describe the observed
distributions. We show in Fig. 1(b) that it identifies the ground truth (indicated by a star symbol).

To explain why an anti-causal model from Z to Y (red) fits the data less effectively than the causal
one (green), we compare two cases. Fig. 1(b) depicts the case where we change the generating
process of covariates X and Z in only one context, while in Fig. 1(c) we do so in all five contexts.
Changing these processes does not directly affect how Y is generated, and hence the true causal
model permits equally succinct descriptions for both cases (green curve). In the anti-causal direction,
however, such an invariant does not exist; in fact, by changing the distribution of X and Z in all five
contexts we created a situation where five different functions are needed to describe Y from Z, and
none of these can as cleanly separate signal from noise as in the causal direction. As a result, we see
much worse description lengths for the anti-causal direction (red curve). We conclude that the causal
mechanism for Y offers a succinct explanation because it is independent of the mechanisms for X
and Z. This connection between the independence of mechanisms and succinct descriptions will be
the focus of our analysis.

Our contributions are as follows. We show how the algorithmic model of causation can precisely spec-
ify which kinds of causal models are permissible for a set of variables observed over multiple contexts.
Based on this framework, we propose a scoring criterion under Gaussian process models [18]. We
show that our score is theoretically sound by giving general conditions under which it identifies causal
models beyond partially directed graphs. Based on our theory, we introduce the LINC approach
for Learning causal models under INdependent Changes. In empirical evaluations, we confirm that
LINC works in practice, and show that in contrast to competitors, it is robust in various settings
including semi-synthetic gene expression data [19] as well as real-world protein-signaling data [20].
We include all proofs, code, and data in the supplementary material.

2 Causal Model and Assumptions

We begin by stating our assumptions and causal model. Throughout this work, we consider a set
of continuous variables X ∈ Rd. We observe these in multiple contexts c ∈ C. For a given set of
contexts C, we can represent the assignment of samples to contexts using a categorical variable C.
We write X(c) for a dataset in one context. Whereas the data points x ∈ X(c) are i.i.d. samples
from a distribution P (X | c), the overall data is not necessarily identically distributed. We aim to
understand this data through a causal model, as we describe next.

2



2.1 Problem Setting and Problem Statement

We assume that we can describe the true causal structure over the observed variables by a directed
acyclic graph (DAG) G = (X, E) with node set X and edges (Xi, Xj) ∈ E whenever Xi causes Xj .
As is standard in causal discovery [10], we assume that the relationship between Xi and its parents is
given by a function f ,

X
(c)
i = f

(c)
i (paGi , Ni) where Ni ⊥⊥ (paGi , C)

for each context c. We hereby assume causal sufficiency, i.e. that no unobserved variables exist.
Whereas the structural equations depend on the context, the causal structureG is shared in all contexts.
Previous work shows that we can discover G up to an equivalence class by integrating a context
variable C into conventional causal discovery methods. In particular, the ψ-Markov Equivalence
class (ψ-MEC) of G, a variant of MECs to encompass interventions, is identifiable [6].

While graphical models are essential, we place emphasis on understanding the generating process of
each variable. For a given variable Xi, we consider a mixture of m different causal mechanisms f .
Importantly, each may apply to one context or remain invariant over multiple contexts. To model this
situation, let Πi = {π1, ..., πm} be a partition of C into disjoint, nonempty sets π such that

f
(c)
i = f

(c′)
i for Πi(c) = Πi(c

′) ,

where Πi(c) is the unique set π ∈ Πi containing c. We thus write f (π)i for the invariant function f (c)i

when c ∈ π, and similarly X(π) for the pooled data from all contexts c ∈ π. To ease notation, we
write its distribution as P (X | π) := P (X | C ∈ π). This results in a set of functions

f
(Πi)
i = {f (π1)

i , ...f
(πm)
i } .

We obtain such a partition of the contexts for each variable and denote the set over those partitions by
Π = {Πi : Xi ∈ X}. Our structural equations can thus be written as

X
(c)
i = f

(π)
i (paGi , Ni) for c ∈ π (1)

for each π ∈ Πi, with independent noiseNi ⊥⊥ (paGi , C). We remark that by assuming the noiseNi to
be independent of the environment, we follow how related work characterizes environments [7, 9, 13]
as differing in distribution due to changes in the conditionals P (Xi | paGi ), independently of the
exogenous noise variables Ni, for example, due to a soft intervention on Xi.

With the above, we can now informally state the problem that we want to solve.
Problem Statement (Informal). Given data X over environments C we want to find

• a (sparse) graph G

• a set Π of partitions Πi of C into (few) disjoint sets

• a set of (simple) functions fπi

describing the causal mechanism generating our data X .

To formalize this problem, we next explain the principle of independence of causal mechanisms.

2.2 Algorithmic Independence of Causal Mechanisms

We base our approach on the principle of Independence of Causal Mechanisms (ICM, [10]). Different
types of independence have been proposed in the literature. Most previous work considers statistical
independence [4–9, 21], but the conditional independence constraints present in observational data
only permit the identification of DAGs up to a MEC unless we make restrictive assumptions [3, 13, 22].
This has sparked interest in algorithmic independence as an alternative formulation [23–27]. We
introduce this concept here and extend it to multi-context distributions.

With the idea that causal mechanisms offer simple explanations of complex phenomena, Janzing
and Schölkopf [23] postulate that they correspond to simple programs computing each variable Xi

from its causes paGi , where programs generating different variables Xi, Xj do not share information.
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To make this precise, we revisit several concepts. Kolmogorov complexity K(x) defines the length
of the shortest program p that computes a string x ∈ {0, 1}∗ on a universal Turing machine U and
halts [28]. For a distribution P , Kolmogorov complexity is the length of the shortest program able to
uniformly approximate P arbitrarily well,

K(P ) = min
p∈{0,1}∗

{|p| : ∀y |U(p, y, q)− P (y)| ≤ 1

q
} .

Using K and towards defining algorithmic independence, we define algorithmic mutual informa-
tion [23]. For two binary strings x, y, the algorithmic mutual information between x, y is given by
IA(x; y) = K(x) +K(y)−K(x, y). For distributions P,Q, we can state it as follows.

Definition 2.1 (Algorithmic Mutual Information [28]). The algorithmic mutual information between
two distributions P and Q is given by

IA(P ;Q) := K(P )−K(Q | P ∗)

where P ∗ is the shortest algorithmic description of P .

Two strings x, y are algorithmically independent if IA(x; y)
+
= 0 holds (up to an additive constant

that is independent of x, y), where we write IA(x1; ...;xn) if the corresponding strings are pairwise
independent. Analogously, a set of distributions Pi are jointly independent when

IA(P1; . . . ;Pn)
+
= 0 .

When the mutual information IA between different causal conditionals vanishes, we can characterize
them as independent. The algorithmic causal Markov Condition [23] states precisely this.

Postulate 2.2 (Algorithmic Markov Condition for Changing Mechanisms). Let (G,Π) be a causal
model with DAG G, partitions Π, and structural equations as in Eq. 1. Then (G,Π) is a valid causal
hypothesis only if the following equivalent conditions hold,

1. All causal mechanisms f in the model are jointly algorithmically independent. That is,

IA(
{
P (Xi | paGi , π) : i ∈ {1, ..., n} , π ∈ Πi

}
)

+
= 0 . (2)

2. The causal mechanisms f in the model describe the observed distribution most concisely.
That is, the shortest description of P (X) across all contexts c ∈ C is given by writing each
Xi as a function of paGi in each group π ∈ Πi,

K(P (X))
+
=

∑
Xi

∑
π∈Πi

K(P (Xi | paG
i , π)) (3)

where +
= denotes equality up to an additive constant.

The inner term in Eq. (2) ranges over the conditionals P (Xi | paGi , π) for each variable Xi in each
group of contexts π ∈ Πi, where we omit indices of π for ease of notation. Overall, Postulate 2.2
states that the causal mechanisms correspond to programs that do not share any information (Eq. (2))
and that describe the observed distributions most concisely (Eq. (3)).

We will use the formulation in Eq. (3) which directly uses Kolmogorov complexity of conditionals.
Due to the halting problem, we cannot compute Kolmogorov complexity for arbitrary programs [28],
but by restricting the class to be tractable, we can approximate it from above. A statistically well-
founded manner of doing so is Minimum Description Length (MDL) [29]. For a fixed class H of
models, MDL defines a description length L of encoding a dataset X together with its optimal model,

L(X | H) = min
h∈H

(
− logP (X | h) + L(h)

)
.

Regarding the choice of H, we are interested in functions f that are both expressive but also allow us
to measure their description length. Gaussian processes naturally fulfill these requirements [18, 29],
making them a fitting choice for our approach. We briefly introduce them next.
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2.3 Gaussian Process Functional Model

A Gaussian process (GP) is a collection of random variables X , any finite number of which have a
joint multivariate Gaussian distribution [18]. Each variable represents the value of a function f at a
single location x. We write functions drawn from a GP as

f ∼ GP(m(x), κ(x, x′))

for a mean function m(x) = E[f(x)] and covariance kernel κ(x, x′) = E[(f(x)−m(x))(f(x′)−
m(x′))]. Viewed differently, a GP can also be expressed as a linear regression f =

∑
αiϕi with

potentially infinitely many basis functions ϕi. Given finitely many data points (xi, yi), we can write
predictions as a linear combination of a finite number of kernel functions κ(xi, ·) centered on the
observed points xi [18],

f(x) =

n∑
i=1

αiκ(xi, x) , (4)

with α = (K+σ2I)−1y, whereK is the Gram matrix of κ withKij = κ(xi, xj), and σ2 a parameter.
This formulation will be useful when we consider the description length of GPs later.

Regarding the richness of the function class, given a kernel κ, one can construct a reproducing
Hilbert space Hκ, which is the smallest Hilbert space containing all finite expansions of the
form in Eq. (4). For some kernels, such as the radial basis function (RBF) kernel κ(xi, xj) =

λ exp(− 1
2l ∥xi − xj∥22), λ > 0 which we consider here, it is known that Hκ is dense in the space

of continuous functions [18]. That is, we can approximate these functions up to arbitrary precision
using a GP [30]. Using GPs, we now state our functional model as follows.
Assumption 1 (Functional Model with Changing Mechanisms). Given a DAG G and partitions Π,
we assume the functional model

X
(c)
i = f

(π)
i (paGi ) +Ni for c ∈ π, (5)

where π ∈ Πi is a group, f (π)i ∈ Hκ is a GP, and Ni is independent noise Ni ⊥⊥ (paGi , C).

We point out that the above makes an additive noise assumption as is standard in GP modeling.
Having stated the ICM assumption and our functional model, we are ready to introduce our approach.

3 Learning Independent Changes with LINC

We now introduce a score to instantiate Eq. (3) for GPs and give an analysis of its properties.

3.1 Measuring the Complexity of GP Models

To define the ability of our model to succinctly describe a given dataset, we need to address the
complexity of a GP f . Despite the richness of Hκ, the complexity of any f ∈ Hκ can be readily
measured by its squared norm ∥f∥2κ. For functions inferred from finite amounts of data, as in Eq. (4),
we can compute this norm ∥f∥2κ from the quantities K and α as [29]

∥f∥2κ = α⊤Kα .

Consider now the model class Hκ of GPs and a target variable Xi. For a given subset XS ⊆ X of
predictors, we can fit a GP regression f : XS 7→ Xi. Kakade et al. [31] show that the Bayesian MDL
score for this GP model is given by

L(XS , Xi | Hκ) = min
f∈Hκ

(
− logP (Xi | XS) + ∥f∥2κ

)
+R(XS) . (6)

The score balances the data fit of the GP regression model f with its complexity, ∥f∥2κ = α⊤Kα.
The remaining penalty R(XS) is independent of the minimization over f ,

R(XS) =
1
2 log det(σ

−2KS + I) ,

where KS is the Gram matrix when κ is applied to XS . We write L(f) = L(XS , Xi | Hκ) when the
context is clear, and L(G,Π) as the summed description length for a given causal model. By Eq. (3),
we choose the model with the smallest description length as our causal hypothesis.
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Problem Statement (Formal). Given data X over environments C we want to find the graph Ĝ,
partitions Π̂ and mechanisms f (π)i minimizing the score L,

Ĝ, Π̂ = argmin
G,Π

L(G,Π) . (7)

To show that we recover the correct causal structure with this objective, we give identifiability results.

3.2 Identifiability Results

Here, we give conditions under which we can identify the true causal model using our score function.
We begin by showing that we can discover the causal DAG in the correct Markov Equivalence class
(MEC) under the following general assumptions.

Assumption 2 (Sufficient Capacity). For each i there exist functions f (π)i ∈ Hκ s.t. Eq. (5) holds.

This recalls the assumption that our functional model is well-specified.

Assumption 3 (Causal Minimality). For all π ∈ Πi, f
(π)
i is not constant in any of its inputs.

The above is a toned-down version of the faithfulness condition, ensuring that every parent of Xi has
an influence on Xi. Without this, it would be impossible to identify the complete set of parents.

Assumption 4 (Π-Faithfulness). If π′ ̸= π ∈ Πi then f (π)i ̸= f
(π′)
i .

This assumption guarantees the uniqueness of each partition. Without it, interventions would not
necessarily lead to changes in causal mechanisms, and make identification thereof impossible.

With this, we can state our first identifiability result as follows.
Theorem 3.1 (Identification of MECs). Let Assumptions 1-4 hold and let λ be sufficiently small.
Then the estimates Ĝ, Π̂ that minimize our score L,

Ĝ, Π̂ = argmin
G,Π

L(G,Π) ,

recover a DAG Ĝ ∼ G∗ in the Markov Equivalence class of the true DAG G∗, as well as the true
partitions Π∗

i for each node i with probability 1

P (Ĝ ∼ G∗, Π̂ = Π∗) = 1

Next, we show that under independent mechanism shifts, we can also identify the fully directed G∗.
To correctly identify the direction of all edges in the discovered network, we need the following
assumption that the causal mechanisms are independent of each other and change independently.
Assumption 5 (Independent Mechanism Shift). For all i ̸= j : Πi(C) ⊥⊥ Πj(C).

We can now show that as we observe more contexts, |C| → ∞, our score identifies the correct DAG.
Theorem 3.2 (Identifiability from independent changes). Let Assumptions 1-5 hold. Then for λ
sufficiently small, where λ is a hyperparameter bounding the score differences of Ĝ,G∗, we can
identify the causes paGi and partition Πi of each Xi in the causal model (G∗,Π∗) with probability 1,

lim
|C|→∞

P (Ĝ = G∗, Π̂ = Π∗) = 1

In particular, the fully directed network G∗ is identifiable.

The requirement |C| → ∞ is necessary to turn the assumed independence of causal conditionals
across different contexts into an empirically testable statistical criterion. That is, to guarantee that
the model is indeed identifiable, we need either the distribution assigning contexts to partitions, or a
guaranteed representative sample from the distribution, which we only obtain in the limit. Essentially,
this is a frequentist approach, allowing us not to require the distributions for the partitions themselves.

We can, however, provide further probabilistic guarantees for finite numbers of contexts. To be able
to reason about probabilities of different causal structures, we need to ensure that as we observe more
contexts |C|, the number of sets in the partition remains fixed. We hence assume that for each Xi, the
contexts fall inside one of a fixed number sets Bi,1, ..., Bi,ki

which can be thought of as bins that fix
the sizes of our partitions, and thus bound the number of mechanism shifts per variable.
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Assumption 6 (Fixed Partition Sizes). For each Xi, there exists a finite number of sets Bi,1, ..., Bi,ki

such that pij := P (C ∈ Bi,j) > 0.

The assumption can be understood in a frequentist sense, in that on average each possible causal
mechanism for each variable occurs in at least a constant fraction of all samples. For example, if we
study the differences between treatments in different hospitals, then as we obtain more data, these
data would be obtained from the same set of hospitals, rather than by the addition of new hospitals.
With this, we are able to give a tighter bound as follows.
Theorem 3.3 (Identifiability in the finite context setting). Let the Assumptions of Theorem 3.2 as
well as Assumption 6 hold. Let p = mini,j pij be the minimum probability for a context to fall into
one of the bins Bi,j . Then if |C| ≥ −2p−2 log(p) > 0 we have

P (Ĝ = G∗, Π̂ = Π∗) = Ω
(
exp

(
− |E| e−c

))
,

where c = p2 |C|+ 2 log p ≥ 0 and |E| is the number of edges in G∗.

The dependence of the bound on |E| is reasonable. The sparser the graph G∗, the fewer edges that
need to be directed in its MEC. Note furthermore that the fixed size of the partitions is likely not strictly
necessary, and as long as p decays sufficiently slowly, Theorem 3.3 will still likely hold. We also note
that the bounds above apply to the case where we have no active control over intervention targets, i.e.
when mechanism shifts occur randomly. While active intervention design allows identification using
a smaller number of interventions [32], we often cannot ensure full interventional control in practice;
for example, gene editing technologies such as CRISPR-Cas gene-editing are known to have severe
off-target effects [7, 16, 17] that may not be known a priori.

In what follows, we describe how to put our theoretical insights into practice.

3.3 Discovering Independent Changes with LINC

In summary, our approach, called LINC (Learning causal models under INdependent Changes), aims
to discover a mixture of mechanisms that together most succinctly describe multi-context data.

To do so, we discover the causal DAG G and partitions Π that minimize Eq. (7). To compute L for a
given model (G,Π), we consider each causal mechanism f (π) in the model and fit a GP regression
predicting Xi from its causes paGi . We compute the MDL description length of this GP as in Eq. (6).
We do so in each group of contexts in Πi and each variable in G to obtain the overall score L(G,Π).

To discover the partitions for a known graphical model G, we suggest an exhaustive search whenever
feasible, given that the number of different contexts that we have access to may be small in the typical
use case [20]. As exhaustive search over partitions becomes prohibitive for larger numbers of contexts,
we propose a greedy variant in Appendix B. It relies on the no-hypercompression inequality [29] that
allows defining a scoring function for pairs of contexts. This pairwise measure can be used together
with a clustering approach to discover a partition of the contexts in a greedy manner.

We also face the search for a DAG G. Given the large search space over causal DAGs, existing
algorithms are of a greedy nature, such as the score-based greedy equivalence search (GES, 33) and
its generalized version GGES that can be used with general scoring functions so long as they are
locally consistent [15]. In principle, we can use the MDL score L as a plug-in estimator in GGES to
discover a MEC of the true graph. However, as there exist many greedy approaches to discover a
MEC of G from multiple contexts [4–9], whereas discovering relationships beyond MEC is relatively
underexplored [12, 13], we put our emphasis on the latter and discover the best causal DAG within a
given Markov equivalance class in our experiments, following the literature [13].

Finally, we also adress the computational burden associated with our score L due to the sample
complexity of GP regression. To alleviate this, we leverage the Random Fourier Feature (RFF)
approximation, which allows us to express the GP kernel through a Fourier transform [34]. We adapt
our scoring function accordingly to use the approximated RFF kernel. We call our main approach
LINCGP and include a comparison to the variant LINCRFF in our evaluation.

We provide the details of our algorithms, a computational complexity analysis, and the adaptation to
RFFs in the supplementary material. In the remainder of our work, we focus on evaluating LINC
empirically against relevant related work, which we survey in the following section.
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Figure 2: LINC discovers causal models beyond Markov Equivalence. We report the F1 scores for
discovering the causal direction of each edge in a random DAG G, where shading shows confidence
regions and dashed horizontal lines illustrate random guessing. In (a), we consider synthetic data
over different contexts C where |S| variables per context undergo mechanism shifts, starting from
|C| = 5, |G| = 6 and |S| = 2. In (b), we mimic real-world gene expression dynamics by simulating
data with SERGIO [19] from a random network G over |C|−1 genes, which we observe in conditions
C with a knockout intervention on one gene per condition.

4 Related Work

Discovering cause-effect relationships is of great interest in many applications, and there exists a
growing literature on how we can do so from observational data [10]. Most well-known methods
can be categorized either as constraint-based, such as the PC algorithm [35], or score-based, such
as GES [33]. Given purely observational and identically distributed data, it is however impossible
to make definitive statements about the causal structure [10]. Non-i.i.d. data carries information
about how the system responds to external intervention or noise shifts, and hence often allows to infer
causal directions more accurately [6, 36]. We summarize approaches to do so here.

A prominent idea in causal inference from multiple contexts is that causal mechanisms remain stable,
i.e., invariant, under distribution shift [37] and there exist several causal discovery methods that use
invariance as an asymmetry between causal and non-causal orientations [3, 38–40]. Invariance may
be violated when variables are subject to interventions, as is common in biology [20]. Methods that
can discover causal relationships from a combination of observational and interventional data [41–43]
often assume known intervention targets, which is not always realistic [44]. Hence, recent research
considers multiple contexts with uncertain interventions or mechanism changes. For example, Huang
et al. [4] show how to apply the PC algorithm jointly to multiple contexts by introducing a context
variable. There are similar approaches with different instantiations [5–9], all of which however
discover causal MECs. A common approach to go beyond Markov Equivalence is functional
modelling [15, 26, 25, 45, 46], but all existing methods that we are aware of are tailored to i.i.d. data.

Finally, recent works tackle causal discovery beyond Markov Equivalence from non-i.i.d. data under
the sparse mechanism shift (SMS) [1] hypothesis. The Minimal Changes (MC) method [12] and the
Mechanism Shift Score (MSS) [13] both count the number of distributional changes across contexts
to infer edge directions within a MEC. MC assumes linear models, MSS is nonparametric. As our
contribution, we show that regularized scoring functions, such as our MDL-based score, can be
used toward the same goal. These scores have been shown to make use of the independence noise
asymmetry on i.i.d. data [25, 47], which suggests that LINC may be more widely applicable than the
SMS scores. As MC and MSS are most related to LINC, they will be the focus of our evaluation.

5 Evaluation

We consider synthetic, semi-synthetic, and real-world data to empirically evaluate LINC and how its
performance relates to the state-of-the-art. We make the code and datasets available in the supplement.

Experimental Setup In our experiments, we consider both synthetic data from a known functional
model class, as well as more realistic data following the stochastic differential equations behind gene
regulatory networks [19]. Throughout, we use an Erdös Rènyi DAG model to sample graphs G.
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Figure 3: LINC is robust in different settings. We show which methods can discover edges beyond
Markov Equivalence robustly. We consider (a) soft and hard interventions on the mechanisms in
Eq. 8, (b) dense shifts compared to i.i.d. data, where all (|S| = |C|), resp. none (|S| = 0) of the
variables change, and (c) bivariate causal discovery in the base (|S| = 2) and i.i.d. case (|S| = 0).

For the synthetic data, following the literature [4, 13] we generate data in multiple contexts using

X
(c)
i =

∑
j∈paGi

ω
(c)
ij fij(X

(c)
i ) + σ

(c)
j N

(c)
j , (8)

with weights ω(c)
ij ∼ U(0.5, 2.5), where noise is either uniform or Gaussian with equal probability.

We sample the causal functions f from {x2, x3, tanh, sinc}. In each context, we choose a random
subset S ⊆ {0, ...|G|} of variables that undergo a mechanism shift, which is either a soft intervention
by re-sampling from Eq. (8), noise scaling through σ ∼ U(2, 5), or a hard intervention via wij = 0.

In addition, we simulate data with SERGIO [19] to generate single-cell expression data according
to a gene regulatory network while modeling the real-world dynamics of gene transcription and
regulation using stochastic differential equations. Using a random DAG G as the reference network,
we generate one observational dataset as well as |G| interventional datasets, in each of which we
keep a different gene fixed to mimic a knockout intervention [48].

Baselines As a baseline for causal discovery up to Markov Equivalence, we include Pooled PC [4]
which pools data from all contexts, augments the system with a categorical variable C that encodes
the context and applies the PC algorithm to discover a causal DAG. As we are interested in evaluating
whether LINC can orient edges beyond the MEC, we also compare against the linear Minimal
Changes approach (MC) [12] and the nonlinear Mechanism Shift Score (MSS) [13] that are based on
mechanism shift counting. We instantiate MSS with the Kernel Conditional Independence (KCI) test
and use the soft score variant, which Perry et al. [13] show to consistently outperform competitors.

Causal discovery beyond MECs As our main experiment, we evaluate whether LINC can discover
causal edge orientations in non-i.i.d. data. We sample DAGs G of size |G| = 6 with edge density
p = 0.3 and generate data in |C| = 5 contexts, with |c| = 500 samples and |S| = 2. We start from
the correct MEC, use each method to discover a DAG, and report F1 scores over edge directions.

We report the results in Fig. 2(a). As pooled PC discovers a MEC jointly from all contexts, its F1
scores tend to 0.5, which can be achieved by not orienting any edges in the MEC as this results
in recall 0.5 on expectation (dashed lines). In contrast, MSS, MC and LINC discover all edge
orientations given sufficiently many contexts |C|, variables |G|, and changes |S|. The differences are
most pronounced for small DAG sizes, resp. contexts. In particular, only LINC learns additional
edge directions from i.i.d., single-context data since the competitors rely purely on mechanism shifts.
The RFF variant of LINC works surprisingly well but is ultimately similar to GPs for large |C|.
Overall, LINC compares favorably against its competitors in all settings. We defer results with
varying edge density p and sample size |c|, as well as scalability with |C| and |G| to Appendix B.

Gene regulatory networks Next, we evaluate the methods on gene expression data that we generate
with SERGIO. We show the F1 scores on edge directions in Fig. 2(b) depending on the number of
conditions |C|. While MSS is the closest competitor to LINC on synthetic data with soft interventions
(Fig. 2(a)), the hard interventions in this experiment result in poor performance (Fig. 2(b)). Despite
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assuming linearity, MC performs well, which suggests that it detects mechanism shifts even when its
functional model is likely misspecified. It performs comparably to Pooled PC, where both benefit
from an increased number of variables and conditions. LINC outperforms the competitors, the
difference being most pronounced when it observes only few conditions.

Causal discovery beyond SMS Besides confirming that LINC can handle different generating
processes, we are also interested in its robustness w.r.t. different types of distribution shifts that
may occur. In Fig. 3(a), we compare the soft interventions considered so far with noise scaling and
hard intervention. To confirm our observations that LINC generalizes to settings where the sparse
shift principle is not applicable, we compare dense shifts |S| = |C| to the case without any changes
|S| = 0 in Fig. 3(b). As expected, the competitors roughly match the base MEC in the i.i.d. case,
whereas LINC performs well. This observation is in line with recent theoretical results [25] that
MDL-based scoring functions can exploit the additive noise asymmetry [45, 49] on i.i.d. data. Lastly,
LINC also performs remarkably well compared to the baselines for causal direction determination
between pairs of variables, as we show in Fig. 3(c).

PKA

Akt

Erk
Mek

Raf

PKC

PIP2

PLCγ

PIP3 Jnk

P38

(a) DAG with LINC.

TP FP F1

LINC 14 3 0.90
MSS 12 5 0.83
MC 17 16 0.68
P-PC 15 8 0.75

(b) Edge Directions.

Figure 4: Cell Signalling Pathways. We show the DAG that
LINC estimates for the cell cytometry data (a) in comparison
to competitors (b). Green links are causal (TP) and orange
edges are anticausal (FP) according to the literature [20].

Cell signalling pathways Finally,
we evaluate LINC on real-world data
over eleven proteins and phospholipid
components, with the goal of mapping
their signaling pathways in human im-
mune cells [20]. To properly under-
stand how the components of such a
system interact, it can be indicative
how the system responds to stimula-
tory and inhibitory cues, which Sachs
et al. [20] added to the system in mul-
tiple experiments. We run LINC and
competitors on data from all contexts,
without providing information about
the interventions. We show the best
DAG that LINC identifies within the
true MEC in Fig. 4. We color edges
that Sachs et al. [20] report as causal
in green and edges with opposite orientation in orange. Except for three, LINC discovers all directions
correctly (Fig. 4(a)), leading to the highest performance compared to the competitors (Fig. 4(b)).

6 Discussion and Conclusion

In this work, we consider causal modeling of data from multiple environments where unknown
causal mechanism changes may exist. Our interest in this setting is motivated by the prevalence of
distribution shifts and heterogeneity in real-world applications, as well as by the need to analyze
interventional data in biology, where modern gene editing and measurement technologies allow
collecting large-scale experimental data [50]. Here, we showed that viewing independence of causal
mechanisms from an information-theoretic perspective allows us to analyze such data in a unifying
way. With LINC, we proposed a nonlinear functional modeling approach using Gaussian processes.
We showed theoretically that we can use it to identify causal models with independent changes, and
demonstrated in practice that it is applicable to settings beyond those where the sparse mechanism
shift principle applies, and that it gives insight into biological data with unknown intervention effects.

While we focused on theoretical guarantees in this work, developing efficient algorithms for causal
discovery is an important aspect of future work. Given the shift of research attention in causal
discovery from i.i.d. to non-i.i.d. data, we face not only the problem of efficient search for DAG
structures but in addition the problem that there may be multiple causal mechanisms per variable,
which adds an additional layer of complexity. Towards efficient search for partitions, we propose
search algorithms inspired by clustering in the supplementary, and establishing approximation
guarantees for these methods is a worthwhile direction of future work. Other future directions include
extending our theory to latent confounding, considering the situation where the split of the data into
different contexts is not known to us, or applying our insights to causal representation learning.
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A Theory

A.1 Background

We assume familiarity with Markov Equivalence of DAGs in the i.i.d. case, and refer to Lauritzen
(1996) and Pearl (2009) for detailed definitions.

For non-i.i.d. or interventional distributions, identifiability of DAGs extends to an interventional
Markov Equivalence class (iMEC) [36, 6]. This holds for general interventions targeting specific
nodes in certain contexts. That is, an intervention targeting the nodes Xi for i ∈ I corresponds to the
interventional distribution P (I), which factorizes as follows,

P (I)(X) =
∏
i∈I

P (I)(Xi | paGi )
∏
j ̸∈I

P ∅(Xj | paGj )

where P ∅ is the observational distribution [36]. Jaber et al. (2020) generalized the above to address
the case where the observational context is unknown, and formally define the MEC that one can
identify from multiple interventional distributions with unknown targets as the ψ-MEC [6].

In our work, we take a different perspective where instead of interventions with specific targets, we
consider mechanisms that are invariant in a group of contexts or change independently. Similarly to
the graphical representations of interventions through latent variables C [7, 6], we can also represent
our partitions as latent variables Π̂i(C). We will shortly show that we can discover both a DAG in
the correct Markov Equivalence class as well as the correct partition for each node.

To do so, an important property of our MDL score that we will need is information consistency [29, 31]
according to the following definition [52].
Definition A.1 (Information Consistency). A prediction strategy Q is information consistent with
respect to a competitor space Fcomp if and only if

lim
n→∞

1
n E[DKL

(
P (Y≤n | f,X≤n) || Q(Y≤n | X≤n)

)
] → 0

holds for all f ∈ Fcomp.

We refer the reader to Kakade et al. (2005) for a proof of information consistency for GP models.
We next move to our main result stating that we can use the MDL score for GP models for causal
discovery.

A.2 Proof of Theorem 3.1

We assume a causal model with changing mechanisms as in Assumption 1. We also recall Assump-
tions 2, 3, and 4. The first one ensures that our functional models are well-specified.

Assumption 2 (Sufficient capacity): For each i there exist functions f (π)i ∈ Hκ such that Eq. (5)
holds.

We also make the following assumption to avoid the pathological case that causal variables paGi do
not affect Xi.

Assumption 3 (Causal minimality): No f (π)i is constant with respect to any of its inputs.

Similarly, we also ensure that interventions have an effect on variables or, put differently, that a
mechanism change of f (π) indeed corresponds to a difference in distribution of the intervened
contexts in π.

Assumption 4 (Π∗-faithfulness): For each π ̸= π′ ∈ Π̂i we have f (π)i ̸= f
(π′)
i .

With these assumptions, we are ready to prove our Theorem 3.1, which we repeat here for ease of
access too.
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Theorem 3.1 (Identification of MECs): Let Assumptions 1-4 hold and let λ be sufficiently small.
Then the estimates Ĝ, Π̂ minimizing our score L,

Ĝ, Π̂ = argmin
G,Π

L(G,Π) ,

recover a DAG Ĝ ∼ G∗ in the Markov Equivalence class of the true DAG G∗, as well as the true
partitions Π∗

i for each node i with probability 1

P (Ĝ ∼ G∗, Π̂ = Π∗) = 1

Proof. The idea of our proof is similar to those in Yang et al. [36] and Brouillard et al. [9]. We start
by assuming that the correct partition Π∗ is known. Let Ĝ be the graph recovered by minimizing L
as above. We can write the difference in scores as

L(X; Ĝ)−L(X;G∗) =
∑
i

∑
π∈Π∗

i

DKL(P (Xi | paG
∗

i , c ∈ π);P (Xi | paĜi , c ∈ π))+
(
L(Ĝ)− L(G∗)

)
,

(9)
where the dependence on Π∗ and the functions f (π)i is left implicit.

Assume that Ĝ ⊊ G∗. Then at least one of the DKL terms is non-zero, say η > 0. However, since
L(G), L(G∗) ∝ λ, we can find a λ > 0 small enough such that

∣∣∣L(Ĝ)− L(G∗)
∣∣∣ < η, and therefore

L(X;
̂̂
G) > L(X;G∗).

Now assume that G∗ ⊊ Ĝ. Then in particular there exists an i for which paG
∗

i ⊊ paGi . However,
from the causal Markov condition we know that Xi is independent of all its non-descendants given

paG
∗

i . In particular, the KL divergence is zero. However, then either L(Ĝ) > L(G∗) or f̂ (π)i would
be constant with respect to one of its inputs.

From these two cases, it therefore follows that Ĝ is Markov equivalent to G∗.

For the case where Π∗ is not known, let Π̂ be the set of recovered partitions for each Xi. Then if
Π̂ ̸= Π∗ there must be at least one i for which Π̂i ̸= Π∗

i . There are two ways in which the partitions
can differ.

First, the partition Π̂i is more fine-grained than Π∗
i . That is, for each π∗ ∈ Π∗

i there exist groups
π1, ..., πk ∈ Π̂i such that π∗ = π1 ∪ ... ∪ πk and further there exists at least one π∗ for which k > 1.
For this π∗ and associated π1, ..., πk we have as before that for sufficiently small λ the minimizer
for L(X; Ĝ) would have to be fπ1

i = ... = fπk
i . However, by assumption (A3) this is not permitted.

This case therefore cannot occur.

Second, there could be a group π ∈ Π̂i which intersects at least two different groups π∗
1 ̸= π∗

2 ∈ Π∗
i .

However, from (A3) we know that fπ
∗
1

i ̸= f
π∗
2

i so that whatever function fπi we pick in the discovered
model, it would necessarily lead to the wrong distribution for at least one of the two groups and
therefore a positive DKL term, which as before is sub-optimal for λ small enough.

A.3 Proof of Theorem 3.2

For the proof of Theorem 3.2, we require the following formalization of independent changes of
mechanisms.
Assumption 5 (Independent Mechanism Shift): For all i ̸= j : Π̂i(C) ⊥⊥ Π̂j(C).

Under this assumption, we can prove that we can identify the full causal model.
Theorem 3.2 (Identifiability from independent changes): Let Assumptions 1-5 hold. Then for λ
sufficiently small, where λ is a hyperparameter bounding the score differences of Ĝ,G∗, we can
identify the causes paGi and partition Πi of each Xi in the causal model (G∗,Π∗) with probability 1,

lim
|C|→∞

P (Ĝ = G∗, Π̂ = Π∗) = 1

In particular, the fully directed network G∗ is identifiable.
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Proof. As we have seen from Theorem 3.1, we can identify the correct MEC and Π∗ already. Our
goal is therefore to show that any other Ĝ in the same MEC as G∗ will correspond to a Π̂ different
from Π∗.

Let us consider the target variable Xi. We can ask ourselves what happens when an edge Xi → Xj

is misdirected in Ĝ. We will show that the misdirected edge will lead to a wrong partition with
probability 1 as |C| → ∞.

To that end, note that when Π∗
i (c) = Π∗

i (c
′) but Π∗

j (c) ̸= Π∗
j (c

′) for two different contexts c, c′

then in the alternative graph Ĝ, the distribution P (Xi | paĜi , C = c) ̸= P (Xi | paĜi , C = c′) is not
invariant. Therefore, for each set π ∈ Π̂i, the number of functions required to model the distribution
of Xi increases. That is, we require one function for each Π̂j(c) such that Π̂i(c) = π.

Now, due to Π̂i(C) ⊥⊥ Π̂j(C) this is guaranteed to be one function for each pair (π, π′) ∈ Π̂i × Π̂j

as |C| → ∞.

However, this would lead to the wrong partitions Π̂j ̸= Π∗
j , in contradiction to Theorem 3.1 above.

A.4 Proof of Theorem 3.3

We now turn to the probabilistic version of the previous result, for which we need the following
assumption.
Assumption 6 (Fixed Partition Sizes): For each Xi, there exists a finite number of sets Bi,1, ..., Bi,ki

such that pij := P (C ∈ Bi,j) > 0.

With this, we can prove Theorem 3.3.
Theorem 3.3 (Identifiability in the finite context setting): Let the Assumptions of Theorem 3.2 as
well as Assumption 6 hold. Let p = mini,j pij be the minimum probability for a context to fall into
one of the bins Bi,j . Then if |C| ≥ −2p−2 log(p) > 0 we have

P (Ĝ = G∗, Π̂ = Π∗) = Ω
(
exp

(
− |E| e−c

))
,

where c = p2 |C|+ 2 log p ≥ 0 and |E| is the number of edges in G∗.

Proof. The proof is based on the same idea as the proof of Theorem 3.2, and uses probabilistic
bounds on the coupon collector problem to obtain the desired result.

That is, we derive bounds on the probability that for an edge Xi → Xj in G∗, there exist pairs of
contexts c, c′ such that Π∗

i (c) = Π∗
i (c

′) and Π∗
j (c) ̸= Π∗

j (c
′) for all possible combinations in Π̂i×Π̂j .

We can consider these as bins with probabilities ≥ p2, so that for the stopping time T = |C|fin at
which each such bin has been hit at least once we have

P
(
T < −2p−2 log(p) + c/p

)
−→ exp(−e−c) .

By using c = p2 |C|+ 2 log p ≥ 0, we therefore have

P (Xi → Xj ∈ Ĝ, Π̂i = Π∗
i ) = Ω

(
exp

(
−e−c

))
,

and by taking the naive lower bound of treating all edges independently, we therefore obtain

P (Ĝ = G∗, Π̂ = Π∗) = Ω
(
exp

(
− |E| e−c

))
.
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A.5 Discussion of Identifiability Results

Here, we place our identifiability results in the context of related work. In doing so, we explain our
observation that our approach already discovers causal directions given a single context, as well as
state the implications of Thm. 3.3 on how many contexts we need to identify the causal DAG.

Identifiability from a single context The work of Peters et al. [45] shows that causal DAGs are
fully identifiable from i.i.d. data using independence of residuals. These results are obtained by
assuming differentiability of the underlying distributions as well as causal mechanisms. By modeling
our causal mechanisms via GPs, these assumptions are not applicable since individual GP paths are
in general not differentiable. For our more general setting, we are not aware of a proof that the DAG
is identifiable from a single context. However, Marx and Vreeken [25] show that in the bivariate
case, MDL-based score functions allow to identify the causal direction from i.i.d. data using the
independent noise asymmetry. Our empirical results support this as our approach can already direct a
reasonable number of edges given a single context as well as in the bivariate case.

Identifiability depending on the number of contexts We remark that our results address the case
where our data comes from random environments over which we have no control. When we do
have control over the environments, i.e., when we can actively perform interventions with known
effects, then general results on the numbers of required contexts apply, requiring data from O(logm)
environments for m variables [32].

As a second note, in Theorem 3.3, we show how many contexts it takes us to identify both the causal
graph as well as the partition of the causal mechanisms across environments. If we care only about
the identifiability of the causal graph, then two mechanisms per variable (for those variables that are
not already directed by Meek’s rules) suffice, which dramatically reduces the number of contexts
required. In particular, if we obtain samples with equal probabilities for each mechanism, then we
require only 20 contexts to orient up to 10000 edges with probability >0.99, independently of the
precise structure of the graph. This compares to (roughly) 8 contexts that are required under optimal
intervention design for causal learning [32]. Our results however do not require us to have control
over the intervention targets, which is realistic in many practical applications where we may encounter
unknown distribution shifts or off-target intervention effects [7, 17].

A.6 Discussion of Assumptions

To conclude our theoretical analysis and point out the limitations of our method, we revisit the main
assumptions that we make and discuss in which settings we consider them reasonable.

Functional Model (Assumption 1,2) While we avoid some issues related to conditional indepen-
dence testing in causal discovery [14, 15], this comes at the cost that we need to make additional
assumptions on the functional form of causal mechanisms. As we noted in the main text, Gaussian
processes constitute a rich function class and allow for a fully non-parametric approach. While
they are more general than the functional model assumed in Peters et al. [45], a similar kernelized
scoring function is proposed by Huang et al. [15] which also allows for regularization, so a use of
this functional model in a non-i.i.d. setting could be an interesting comparison in future work.

Invariant Noise (Assumption 1,2) By assuming that the noise Ni remains invariant across environ-
ments, we follow how related work defines environments [13, 9, 7]. This assumes that different envi-
ronments arise from changes in the functional dependencies between the variables, commonly known
as soft interventions. That is, environments differ due to changes of the conditional P (Xi | paGi ) of
some variables Xi while the exogenous noise variables Ni remain invariant. Example applications
where this holds include knockout or knockdown interventions in genomics, where the expression
of a certain gene is prevented or inhibited [16, 17], as well as the molecular interventions in our
real-world dataset, where activating or inhibiting reagents are added to the system [20].

To give an example where noise invariance is violated, we consider direct interventions on the noise
Ni in our experiments (Fig. 3(a)). Our results suggest that this particular model misspecification is
not a limitation in practice. The same is true for perfect intervention (Fig. 3(a)).
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Sufficiency There is one other reason why noise invariance may be violated which relates to
another assumption, namely causal sufficiency. If there is an unobserved variable, it may introduce a
correlation of the noise Ni of different observed variables. Considering contexts allows to address
confounding in a limited sense, since the categorical context variable C can represent so-called
"pseudo-confounders", such as background stimuli that remain fixed in a given context [4]. However,
these need to be a function of the domain index. There may also be a global latent confounder that
introduces a correlation between the noises N (c) across different environments. We are not aware
of approaches that address this situation, and extending our theoretical framework to general latent
confounding is an interesting option for future work.

Faithfulness (Assumption 3,4) Faithfulness assumptions are standard in causal discovery, and
in our case assert that the causal parents of a variable indeed affect the variable, as well as that our
partitions faithfully represent all changes in causal mechanisms. Both criteria are necessary to detect
parents, respectively mechanism changes, from the observed distributions.

Independent Mechanism Shift (Assumption 5) Rather than assuming sparse mechanism shifts,
we consider independent mechanism shifts in our work. To formally assume this, we consider our
partitions Π as independent random variables, which can be thought of as deterministic functions
of the context variable C. The result is a categorical random variable that indicates the group
membership, rather than context membership, of samples. By assuming independence of these
random variables and including them in our model, we ensure that incorrectly directed edges in G
lead to larger numbers of modeled mechanisms and thus larger values of our score L.

To explain this, we recall the example in Fig. 1. The true partition for Y has two groups, and
the partition of its causal child Z has either two (Fig. 1(b)) or five (Fig. 1(c)) groups. In the true
causal model, the partitions for Y and Z are independent. Indeed, in the causal direction, we see
no differences in our MDL scores between both cases (green curves in Fig. 1(b), 1(c)) and discover
the true partition for Y with |f | = 2 (green star) independently of the changing partition for Z in
these cases. If we consider an anticausal function Z → Y , in contrast, there is a difference between
both cases (red curves). The partition we discover for Y here depends on the partition of Z, and
in both cases it has more groups (minima of the red curves, |f | = 4, |f | = 5) and larger score
values compared to the causal direction. In the proof of Theorem 3.2, we show more generally that
under independence of the true partitions, incorrectly directed edges will lead to more groups in the
discovered partitions as well as larger score values of the model.

We justify the independent mechanism shift assumption in the context of interventional experiments.
Consider a gene knockout intervention. This is an exogenous influence and independent of the causal
interactions between other genes. Similarly, Sachs et al. [20] perform soft interventions by adding
compounds that activate or inhibit specific molecules. In both examples, a mechanism change is
due to an external influence and does not depend on the causal mechanism of other variables. In
general, this independence holds in generic situations where there is no confounding behind cause
and effect [1, 4].

Fixed Partition Sizes (Assumption 6) By fixing partition sizes, we fix the number of different
causal mechanisms for each of the variables. In effect, we assume that all heterogeneity in causal
effects is captured in our model. For example, if we studied the differences between treatments in
different hospitals, then as we obtain more data, these data would be obtained from the same set of
hospitals, rather than by the addition of new hospitals. By ensuring that the partition sizes are fixed,
we ensure that the things we are trying to learn do not change as we obtain more data. This allows us
to give our more practical identifiability result in Theorem 3.3 for a smaller number of contexts.

B Algorithms

In this section, we describe the implementation details of the LINC algorithm and its variants.

B.1 LINC for Learning causal models under Independent Changes

Our approach LINC considers data over continuous variables X(c) in multiple contexts c ∈ C, and
returns a causal graph G and a set of partitions Π.
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Algorithm 1: LINC

Input: data X(c), candidate DAGs G.
Output: DAG G and partitions Π.
for each DAG G ∈ G do

for each variable Xi with causes XS in G do
for each partition Π of C do

for each group π in Π do
Pool the data in π to obtain X(π)

Fit a GP f ∼ GP(X
(π)
S → X

(π)
i )

Compute L(X(π)
S , X

(π)
i | Hκ) using Eq. (6)

end for
end for

end for
Find the partitions Π̂G minimizing Eq. (10)

end for
Find the DAG Ĝ minimizing Eq. (11)
return Ĝ, Π̂G

In Alg. 1, we show the exact search algorithm that we consider in the main paper. It traverses a set of
candidate causal graphs G. For each graph G and variable Xi, it discovers a mixture of mechanisms
that generate Xi from its parents in G. To do this, we consider each partition of the contexts, fit a GP
regression model to the data pooled in each group in the partition, and compute the MDL score for
these GPs. We choose the partition that results in the smallest overall description length,

Π̂i = argminΠ L(Π)

= argmin
Π

∑
π∈Π

L(X
(π)
S , X

(π)
i | Hκ) (10)

where the set XS corresponds to the parents of Xi in G. Repeating this for each variable, we obtain
the partitions Π̂G for G. We return the DAG Ĝ with smallest overall description length,

Ĝ = argminG∈G

∑
Π∈Π̂G

L(Π) . (11)

Regarding the complexity of our algorithm, we need to address three aspects: the search space over
DAGs G, the search space over partitions Π, and the GP regression itself. We propose efficient
approaches for each aspect in the following, and conclude by giving a complexity analysis.

B.2 LINC with Greedy Equivalence Search

We first address the problem of discovering causal DAGs. As the search space over DAG models is
super-exponential in the number of variables [33], we limit consideration to the Markov Equivalence
class of the true model and set G = MEC(G∗). We remark that in case the true MEC is unknown,
one can apply LINC using a two-stage approach, first using existing causal discovery approaches for
multiple contexts [4, 7, 5, 9] to discover a partially directed causal graph, and subsequently applying
LINC to orient the remaining edges.

We can also use our MDL score in a score-based DAG search algorithm, such as Greedy Equivalence
Search (GES) [33]. GES uses a scoring criterion that evaluates each causal relationship between a
given set of causesXS and an effectXi. Huang et al. [15] show how to use generalized, nonparametric
scoring functions in GES, leading to the Generalized GES algorithm (GGES). Our score can be used
as a plug-in estimator within this framework because it is a locally consistent scoring criterion due
to information consistency of GPs. We note that our score is not score-equivalent, that is, different
DAGs in the same MEC may attain different scores, but Huang et al. [15] show that score local
consitency is sufficient to use a scoring function with GGES. While we discover a single DAG G
over all contexts in this manner, we can account for non-i.i.d.-ness of the data as well as changes of
the causal mechanisms.
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Algorithm 2: LINCCLUS

Input: data X(c), variable Xi with causes XS .
Output: partition Πi.
for each context c in C do

Regression in the context f (c) ∼ GP(X
(c)
S → X

(c)
i )

for each context c′ ̸= c and c′ already seen do
Compute L′(XS , Xi | c, c′) using Eq. (12)

end for
end for
Find Π = argminΠ

∑
π∈Π

∑
c,c′∈π L

′(XS , Xi | c, c′) using clustering, e.g. by solving Eq. (13)
return Π

We propose exploring combinations of LINC with different DAG search frameworks in future work,
and focus on orienting edges within a MEC in our experiments. This is motivated by two reasons.
Firstly, it allows to study the behavior of our scoring function in isolation, taking out the effect of
greedy DAG search algorithms, such that our experimental evaluation can support our theoretical
results. Secondly, our closest competitors are the mechanism counting scores that need to start from a
base MEC [12, 13] such that we also evaluate LINC on orienting edges within a MEC.

B.3 LINC with Clustering

To scale efficiently with the number of contexts, we introduce a variant of LINC that, rather than all
set partitions, considers pairwise combinations of contexts.

To this end, we adapt the Minimum Description Length (MDL) score for GPs. We want to measure
whether the dataX(c), X(c′) over two contexts c, c′ is preferably encoded using separate GP functions
for each, or a single model over the pooled data. A natural way to compare different modelling
hypotheses is via the gain in compression of one model over the other.

By the no-hypercompression inequality [29], the probability that a model other than the optimal one
should achieve a substantially better compression for a dataset is negligible. More specifically, the
probability that the competing model leads to a gain in compression of k bits if it is not the true
model is smaller than or equal to 2−k. For a significance threshold α, we can consider a gain of k
bits as insignificant in case 2−k > α [29].

Hence, we consider the gain L′ in compression that two separate GPs achieve over a joint model,

L′(XS , Xi | c, c′) = L(X
{c,c′}
S , X

{c,c′}
i )

−
(
L
(
X

(c)
S , X

(c)
i

)
+ L(X

(c)
S , X

(c)
i )

)
. (12)

Given that the gains should not be positive by no-hypercompression, we minimize the pairwise scores
L′. This can be seen as a graph clustering problem on a graph with nodes c ∈ C, weighted edges
between each pair c, c′ with weights L taking positive values iff c, c′ belong to the same cluster, and
where the number of clusters is unknown. Miyauchi et al. (2018) consider exactly this problem and
show that it corresponds to the following Integer Linear Program (ILP) objective,

min
∑
ci,cj

L′(ci, cj)xij (13)

where xij are decision variables indicating group membership, xij = 1 if ci, cj ∈ π and zero
otherwise. The minimization is subject to so-called triangle constraints [53] ensuring that the solution
is a valid partition of C, and can be solved using standard solvers.

As another variant, we can use hierarchical clustering with distance measure L′. With this approach,
we discover the best partition of a given size k = |Π|. We select the best k by comparing the full
MDL scores of the partitions at k and returning the minimal one.

We show how to adapt LINC in Alg. 2, and refer to it as LINCCLUS.
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B.4 LINC with Random Fourier Features

Last, we show how our score can be adapted to a common approximation of GPs using Random
Fourier Features (RFFs) [34].

Computing L for GPs is computationally expensive since GP regression does not scale well with the
number of samples. One way to mitigate the complexity of GP regression is to express its kernel
through a Fourier transform, which in turn can be approximated efficiently. This is known as the
Random Fourier Feature (RFF) approximation [34].

The approach is as follows: if κ is shift-invariant, we have

κ(x, y) =

∫
p(ω) cos(ω⊤(x− y))dω

≈ 1

R

∑R
r=1 cos(iω

⊤
r (x− y)) = z(x)⊤z(y)

for some probability measure p(ω). For the RBF kernel, this measure p(ω) is another Gaussian
distribution [18]. Here, z(x) = 1√

R
(
√
2 cos(ω⊤

1 x), ...,
√
2 cos(ω⊤

Rx))
⊤ and z(y) similarly. Thus, for

each pair xi, xj , we obtain an unbiased estimator

κ(xi, xj) = z(xi)
⊤z(xj) .

The RFF approximation of GP prediction uses the regression f(x) = z(x)⊤w. We define our MDL
encoding using the log-likelihood of this regression, as well as the norm

∥f∥2κ = w⊤Zw

for the feature matrix Z = z(X)z(X)⊤. Up to these modifications, we use the MDL encoding in
Eq. 6 for RFF regression models.

B.5 Complexity

For DAG discovery, exact search is infeasible due to the super-exponential search space over causal
DAGs [33]. There are greedy solutions in O(|V|3), V being the number of nodes in the DAG [26].

Regarding the partition discovery problem, the exact solution involves the evaluation of b partitions,
b being a bell number in |C|. Heuristic search requires only |C|2 regressions. While the problem
of finding an optimal clustering of C (e.g., using the ILP) is still NP-hard [53], there exist efficient
options such as k-means that we could insert. In addition, we have |C| << N , and ILP search can be
done using standard solvers, which we found to be efficient in practice.

Lastly, exact GP regression is in O(N c) for N data points and c ≈ 2.7, while the RFF approximation
is in O(min{N3,M3}) for M features [34].

C Experiments

In this section, we include additional information on the experiments we present in the main paper. In
addition, we illustrate how LINC and its variants introduced in the previous section scale in practice.

C.1 Causal Discovery Beyond MEC

First, we revisit our main experiment on causal discovery beyond MEC in Fig. 2(a). As we show F1
scores in this figure, we also include the Precision and Recall in Fig. 5.

We can observe that LINC performs well in terms of edge recall in all settings, while maintaining
precision comparably high to MSS. Only for large edge densities, LINC is surpassed by MSS, while
we outperform competitors for small DAG sizes, small edge density, and under few mechanism
changes respectively for a small number of contexts. In particular, for no mechanism changes (|S| = 0
and |C| = 1) and when few variables are involved in the causal relationships (|G| = 3 and p = 0.3),
we can see that the recall values are close to 0.5 (dashed lines) suggesting that the DAGs recovered
by the competitors are close to the known base MEC, while LINC learns additional causal directions.
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Figure 5: LINC disovers causal models beyond Markov Equivalence. We report Recall and Precision
on discovering causal edges within a MEC. As in the main paper, we consider synthetic data from
different contexts, with the base settings of |C| = 5 contexts, |G| = 6 variables, |S| = 2 intervened
variables, edge density p = 0.3, and |c| = 500 samples.

C.2 Scalability Experiments

Given that we suggested more efficient variants of LINC, we evaluate their performance and scalabil-
ity here. We are interested in whether LINCCLUS can efficiently discover partitions for increasing |C|,
whether LINCRFF improves runtimes for increasing sample sizes |c|, and whether our method and
competitors are applicable to larger DAG sizes |G|.
Throughout this section, we consider the main experimental setup of discovering causal models
beyond Markov Equivalence, and use the settings |S| = 1, C| = 3, |c| = 500 and |G| = 3, p = 0.3.

C.2.1 LINC with Clustering
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Figure 6: LINC can be combined
with clustering to discover parti-
tions. We compare exhaustive enu-
meration of partitions (gray, Alg. 1)
to clustering (Alg. 2).

In Fig. 6, we compare the variant of LINC that exhaustively
enumerates all context partitions (Alg. 1) to LINCCLUS which
relies on clustering the contexts by compression gain (Alg. 2).
As the clustering procedure in LINCCLUS, we consider Integer
Linear Programming (ILP) as well as agglomerative clustering
(aggl.).

As an exhaustive search over all partitions did not finish running
for |C| = 20 in a reasonable time (one day), we include partial
results (gray).

For simplicity, we instantiated LINC with RFFs in all cases.
While an enumeration of all partitions of the contexts is not
feasible for more than 20 contexts, we found the clustering
approaches to scale easily to at least 50 contexts. In particular,
both result in high F1 scores for directing edges in a MEC given
enough contexts, with perfect F1 scores when given more than
15 contexts. This suggests that in practice, rather than com-
puting the full MDL score for each partition, we can consider
using pairwise MDL compression gains to apply LINC to many
contexts.

C.2.2 LINC with Random Fourier Features

Next, we turn to the kernel approximation through Random
Fourier Features (RFFs) described in the previous section.
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Figure 8: LINCs variants are accurate while being scalable. We compare LINC with RFFs and
clustering to the baselines, for (a) an increasing numbers of contexts, and (b) increasing DAG size.
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Figure 7: LINC can be combined
with RFFs to improve sample com-
plexity. We compare LINC with
the GP MDL score (solid) to the
RFF approximation (dashed).

We also included RFFs in our main evaluation in Fig. 5 to
confirm that they work well in practice. To illustrate the compu-
tational benefit, we also compare the runtimes of GPs and RFFs
in Fig. 7. We again use the settings |S| = 1, |c| = 500 and
p = 0.3 and consider |C| = 3. We confirm that RFFs mitigate
the sample complexity of the GP regression without notably
affecting performance.

C.2.3 LINC and Competitors

To conclude, we compare the efficient variants of LINC to its
competitors. We are interested in whether the clustering variant
of LINC combined with RFFs is scalable while being accurate.

In Fig. 8, we show our experiment on discovering causal edges
for up to 50 contexts, resp. variables. As we found no noticeable
difference between the clustering approaches that we instantiate
LINC with, we show only the ILP version to avoid clutter.

LINC scales to at least 50 contexts, while Pooled PC was not
applicable to more than 30 contexts in a reasonable time, even
on 3-variable DAGs (Fig. 8(a)). We also find that LINC scales
to DAGs with at least 50 variables with comparable runtimes to
the nonlinear baselines (Fig. 8(b)). Regarding performance, in Fig. 8(a) we can see that MC discovers
only the base MEC due to the small number of variables. Pooled PC and particularly MSS need a
larger number of contexts in this case, whereas the efficient version of LINC discovers all causal
directions given five contexts. We conclude from our experiments that the efficient versions of LINC
reliably perform in practice.
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