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Abstract

In reliable decision-making systems based on machine learning, models have to be
robust to distributional shifts or provide the uncertainty of their predictions. In node-
level problems of graph learning, distributional shifts can be especially complex
since the samples are interdependent. To evaluate the performance of graph models,
it is important to test them on diverse and meaningful distributional shifts. However,
most graph benchmarks considering distributional shifts for node-level problems
focus mainly on node features, while structural properties are also essential for
graph problems. In this work, we propose a general approach for inducing diverse
distributional shifts based on graph structure. We use this approach to create data
splits according to several structural node properties: popularity, locality, and
density. In our experiments, we thoroughly evaluate the proposed distributional
shifts and show that they can be quite challenging for existing graph models. We
also reveal that simple models often outperform more sophisticated methods on the
considered structural shifts. Finally, our experiments provide evidence that there is
a trade-off between the quality of learned representations for the base classification
task under structural distributional shift and the ability to separate the nodes from
different distributions using these representations.

1 Introduction

Recently, much effort has been put into creating decision-making systems based on machine learning
for various high-risk applications, such as financial operations, medical diagnostics, autonomous
driving, etc. These systems should comprise several important properties that allow users to rely on
their predictions. One such property is robustness, the ability of an underlying model to cope with
distributional shifts when the features of test inputs become different from those encountered in the
training phase. At the same time, if a model is unable to maintain high performance on a shifted input,
it should signal the potential problems by providing some measure of uncertainty. These properties
are especially difficult to satisfy in the node-level prediction tasks on graph data since the elements
are interdependent, and thus the distributional shifts may be even more complex than for the classic
setup with i.i.d. samples.

To evaluate graph models in the node-level problems, it is important to test them under diverse,
complex, and meaningful distributional shifts. Unfortunately, most existing graph datasets split
the nodes into train and test parts uniformly at random. Rare exceptions include the Open Graph
Benchmark (OGB) [12] that creates more challenging non-random data splits by dividing the nodes
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according to some domain-specific property. For instance, in the OGB-Arxiv dataset, the papers
are divided according to their publication date, which is a realistic setup. Unfortunately, not many
datasets contain such meta-information that can be used to split the data. To overcome this issue, Gui
et al. [10] propose the Graph OOD Benchmark (GOOD) designed specifically for evaluating graph
models under distributional shifts. The authors distinguish between two types of shifts: concept and
covariate. However, creating such shifts is non-trivial, while both types of shifts are typically present
simultaneously in practical applications. Also, the splitting strategies in GOOD are mainly based on
the node features and do not take into account the graph structure.3

In our work, we fill this gap and propose a universal method for inducing structural distributional
shifts in graph data. Our approach allows for creating diverse, complex, and meaningful node-level
shifts that can be applied to any graph dataset. In particular, we introduce the split strategies that focus
on such node properties as popularity, locality, and density. Our framework is flexible and allows
one to easily extend it with other structural shifts or vary the fraction of nodes available for training
and testing. We empirically show that the proposed distributional shifts are quite challenging for
existing graph methods. In particular, the locality-based shift appears to be the most difficult in terms
of the predictive performance for most considered OOD robustness methods, while the density-based
shift is extremely hard for OOD detection by uncertainty estimation methods. Our experiments also
reveal that simple models often outperform more sophisticated approaches on structural distributional
shifts. In addition, we investigate some modifications of graph model architectures that may improve
their OOD robustness or help in OOD detection on the proposed structural shifts. Our experiments
provide evidence that there is a trade-off between the quality of learned representations for base
classification task under structural distributional shift and the ability to separate the nodes from
different distributions using these representations.

2 Background

2.1 Graph problems with distributional shifts

Several research areas in graph machine learning investigate methods for solving node-level prediction
tasks under distributional shifts, and they are primarily different in what problem they seek to
overcome. One such area is adversarial robustness, which requires one to construct a method that
can handle artificial distributional shifts that are induced as adversarial attacks for graph models in
the form of perturbed and contaminated inputs. The related approaches often focus on designing
various data augmentations via introducing random or learnable noise [30, 42, 40, 35, 22].

Another research area is out-of-distribution generalization. The main task is to design a method that
can handle real-world distributional shifts on graphs and maintain high predictive performance across
different OOD environments. Several invariant learning and risk minimization techniques have been
proposed to improve the robustness of graph models to such real-world shifts [1, 19, 20, 38].

There is also an area of uncertainty estimation, which covers various problems. In error detection, a
model needs to provide the uncertainty estimates that are consistent with prediction errors, i.e., assign
higher values to potential misclassifications. In the presence of distributional shifts, the uncertainty
estimates can also be used for out-of-distribution detection, where a model is required to distinguish
the shifted OOD data from the ID data [24, 36, 2, 27, 18].

The structural distributional shifts proposed in our paper can be used for evaluating OOD generaliza-
tion, OOD detection, and error detection since they are designed to replicate the properties of realistic
graph data.

2.2 Uncertainty estimation methods

Depending on the source of uncertainty, it is usually divided into data uncertainty, which describes the
inherent noise in data due to the labeling mistakes or class overlap, and knowledge uncertainty, which
accounts for the insufficient amount of information for accurate predictions when the distribution of
the test data is different from the training one [5, 24, 23].

3In Appendix C, we provide a detailed discussion of the GOOD benchmark.
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General-purpose methods The most simple approaches are standard classification models that
predict the parameters of softmax distribution. For these methods, we can define the measure of
uncertainty as the entropy of the predictive categorical distribution. This approach, however, does not
allow us to distinguish between data and knowledge uncertainties, so it is usually inferior to other
methods discussed below.

Ensembling techniques are powerful but expensive approaches that providing decent predictive
performance and uncertainty estimation. The most common example is Deep Ensemble [21], which
can be formulated as an empirical distribution of model parameters obtained after training several
instances of the model with different random seeds for initialization. Another way to construct an
ensemble is Monte Carlo Dropout [6], which is usually considered as the baseline in uncertainty
estimation literature. However, it has been shown that this technique is commonly inferior to deep
ensembles, as the obtained predictions are dependent and thus lack diversity. Importantly, ensembles
allow for a natural decomposition of total uncertainty in data and knowledge uncertainty [23].

There is also a family of Dirichlet-based methods. Their core idea is to model the point-wise Dirichlet
distribution by predicting its parameters for each input individually using some model. To get
the parameters of the categorical distribution, one can normalize the parameters of the Dirichlet
distribution by their sum. This normalization constant is called evidence and can be used to express
the general confidence of a Dirichlet-based model. Similarly to ensembles, these methods are able to
distinguish between data and knowledge uncertainty. There are numerous examples of Dirichlet-based
methods, one of the first being Prior Network [24] that induces the behavior of Dirichlet distribution
by contrastive learning against the OOD samples. Although this method is theoretically sound, it
requires knowing the OOD samples in the training stage, which is a significant limitation. Another
approach is Posterior Network [2], where the behavior of the Dirichlet distribution is controlled
by Normalizing Flows [15, 13], which estimate the density in latent space and reduce the Dirichlet
evidence in the regions of low density without using any OOD samples.

Graph-specific methods Recently, several uncertainty estimation methods have been designed
specifically for node-level problems. For example, Graph Posterior Network [33] is an extension
of the Posterior Network framework discussed above. To model the Dirichlet distribution, it first
encodes the node features into latent representations with a graph-agnostic model and then uses one
flow per class for density estimation. Then, the Personalized Propagation scheme [17] is applied
to the Dirichlet parameters to incorporate the network effects. Another Dirichlet-based method is
Graph-Kernel Dirichlet Estimation [41]. In contrast to Posterior Networks, its main property is a
compound training objective, which is focused on optimizing the node classification performance and
inducing the behavior of the Dirichlet distribution. The former is achieved via knowledge distillation
from a teacher GNN, while the latter is performed as a regularisation against the prior Dirichlet
distribution computed via graph kernel estimation. However, as shown by Stadler et al. [33], this
approach is inferior to Graph Posterior Network while having a more complex training procedure
and larger computational complexity.

2.3 Methods for improving robustness

Improving OOD robustness can be approached from different perspectives, which, however, share
the same idea of learning the representations that are invariant to undesirable changes of the input
distribution. For instance, the main claim in domain adaptation is that to achieve an effective domain
transfer and improve the robustness to distributional shift, the predictions should depend on the
features that can not discriminate between the source and target domains. Regarding the branch of
invariant learning, these methods decompose the input space into different environments and focus
on constructing robust representations that are insensitive to their change.

General-purpose methods A classic approach for domain adaptation is Domain-Adversarial
Neural Network [7] that promotes the emergence of features that are discriminative for the main
learning task on the source domain but do not allow to detect the distributional shift on other domains.
This is achieved by jointly optimizing the underlying representations as well as two predictors
operating on them: the main label predictor that solves the base classification task and the domain
classifier that discriminates between the source and the target domains during training. Another simple
technique in the class of unsupervised domain adaptation methods is Deep Correlation Alignment
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[34], which trains to align the second-order statistics of the source and target distributions that are
produced by the activation layers of a deep neural model that solves the base classification task.

A representative approach in invariant learning is Invariant Risk Minimization [1], which searches
for data representations providing decent performance across all environments, while the optimal
classifier on top of these representations matches for all environments. Another method is Risk
Extrapolation [20], which targets both robustness to covariate shifts and invariant predictions. In
particular, it targets the forms of distributional shifts having the largest impact on performance in
training domains.

Graph-specific methods More recently, several graph-specific methods for improving OOD robust-
ness have been proposed. One of them is an invariant learning technique Explore-to-Extrapolate Risk
Minimization [38], which leverages multiple context explorers that are specified by graph structure
editors and adversarially trained to maximize the variance of risks across different created environ-
ments. There is also a simple data augmentation technique Mixup [39] that trains neural models on
convex combinations of pairs of samples and their corresponding labels. However, devising such
a method for solving the node-level problems is not straightforward, as the inputs are connected to
each other. Based on this technique, Wang et al. [37] have designed its adaptation for graph data:
instead of training on combinations of the initial node features, this method exploits the intermediate
representations of nodes and their neighbors that are produced by graph convolutions.

3 Structural distributional shifts

3.1 General approach

As discussed above, existing datasets for evaluating the robustness and uncertainty of node-level
problems mainly focus on feature-based distributional shifts. Here, we propose a universal approach
that produces non-trivial yet reasonable structural distributional shifts. For this purpose, we introduce
a node-level graph characteristic σi and compute it for every node i ∈ V . We sort all nodes in
ascending order of σi — those with the smallest values of σi are considered to be ID, while the
remaining ones are OOD. As a result, we obtain a graph-based distributional shift where ID and OOD
nodes have different structural properties. The type of shift depends on the choice of σi, and several
possible options are described in Section 3.2 below.

We further split the ID nodes uniformly at random into the following parts:

• Train contains nodes Vtrain that are used for regular training of models and represent the only
observations that take part in gradient computation.

• Valid-In enables us to monitor the best model during the training stage by computing the
validation loss for nodes Vvalid-in and choose the best checkpoint.

• Test-In is used for testing on the remaining ID nodes Vtest-in and represents the simplest
setup that requires a model to reproduce in-distribution dependencies.

The remaining OOD nodes are split into Valid-Out and Test-Out subsets based on their σi:

• Test-Out is used to evaluate the robustness of models to distributional shifts. It consists of
nodes with the largest values of σi and thus represents the most shifted part Vtest-out.

• Valid-Out contains OOD nodes with smaller values of σi and thus is less shifted than
Test-Out. This subset Vvalid-out can be used for monitoring the model performance on a
shifted distribution. Our experiments assume a more challenging setup when such shifted data
is unavailable during training. However, the presence of this subset allows us to further separate
Vtest-out from Vtrain — the larger Vvalid-out we consider, the more significant distributional shift
is created between the train and OOD test nodes.

Our general framework is quite flexible and allows one to easily vary the size of the training part and
the type of distributional shift. Let us now discuss some particular shifts that we propose in this paper.
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(a) Popularity (b) Locality (c) Density

Figure 1: Visualization of structural shifts for AmazonPhoto dataset: ID is blue, OOD is red.

3.2 Proposed distributional shifts

To define our data splits, we need to choose a node property σi as a splitting factor. We consider
diverse graph characteristics covering various distributional shifts that may occur in practice. In a
standard non-graph ML setup, shifts typically happen only in the feature space (or, more generally,
the joint distribution of features and targets may shift). However, in graph learning tasks, there can be
shifts specifically related to the graph structure. We discuss some representative examples below.

Popularity-based The first strategy represents a possible bias towards popularity. In some appli-
cations, it is natural to expect the training set to consist of more popular items. For instance, in the
web search, the importance of pages in the internet graph can be measured via PageRank [29]. For
this application, the labeling of pages should start with important ones since they are visited more
often. Similar situations may happen for social networks, where it is natural to start labeling with
the most influential users, or citation networks, where the most cited papers should be labeled first.
However, when applying a graph model, it is essential to make accurate predictions on less popular
items. Motivated by that, we introduce a popularity-based split based on PageRank. The vector of
PageRank values πi describes the stationary distribution of a random walk with restarts, for which
the transition matrix is defined as the normalized adjacency matrix AD−1 and the probability of
restart is α:

π = (1− α)AD−1π + αp. (1)

The vector of restart probabilities p is called a personalization vector, and pi = 1/n by default, which
describes the uniform distribution over nodes.

To construct a popularity-based split, we use PageRank (PR) as a measure of node importance. Thus,
we compute PR for every node i and set σi = −πi, which means that the nodes with smaller PR
values (i.e., less important ones) belong to the OOD subsets. Note that instead of PR, one can
potentially use any other measure of node importance, e.g., node degree, or betweenness centrality.

Figure 1a illustrates that the proposed shift separates the most important nodes that belong to the
cores of large clusters and the structural periphery, which consists of less important nodes in terms
of their PR values. We also observe that such popularity-based split agrees well with some natural
distributional shifts. For instance, Figure 11a in Appendix shows the distribution of PageRank in
train and test parts of the OGB-Arxiv dataset [12]. Here, the papers are split according to their
publication date. Thus, older papers naturally have more citations and, therefore, larger PageRank.
Our proposed split allows one to mimic this behavior for datasets without timestamps available. We
refer to Appendix A for more details and additional analysis.

Locality-based Our next strategy is focused on a potential bias towards locality, which may happen
when labeling is performed by exploring the graph starting from some node. For instance, in web
search applications, a crawler has to explore the web graph following the links. Similarly, the
information about the users of a social network can usually be obtained via an API, and new users are
discovered following the friends of known users. To model such a situation, one could divide nodes
based on the shortest path distance to a given node. However, graph distances are discrete, and the
number of nodes at a certain distance may grow exponentially with distance. Thus, such an approach

5



does not provide us with the desired flexibility in varying the size of the train part. Instead, we use
the concept of Personalized PageRank (PPR) [29] to define a local neighborhood of a node. PPR is
the stationary distribution of a random walk that always restarts from some fixed node j. Thus, the
personalization vector p in (1) is set to the one-hot-encoding of j. The associated distributional shift
naturally captures locality since a random walk always restarts from the same node.

For our experiments, we select the node j with the highest PR score as a restarting one. Then, we
compute the PPR values πi for every node i and define the measure σi = −πi. The nodes with high
PPR, which belong to the ID part, are expected to be close to the restarting node, while far away nodes
go to the OOD subset. Figure 1b confirms that the locality is indeed preserved, as the ID part consists
of one compact region around the restarting node. Thus, the OOD subset includes periphery nodes as
well as some nodes that were previously marked as important in the PR-based split but are far away
from the restarting node. Our analysis in Appendix A also provides evidence for this behavior: the
PPR-based split strongly affects the distribution of pairwise distances within the ID/OOD parts as the
locality bias of the ID part makes the OOD nodes more distant from each other.

While locality-based distributional shifts are natural, we are unaware of publicly available benchmarks
focusing on such shifts. We believe that our approach will be helpful for evaluating the robustness of
GNNs under such shifts. Our empirical results in Section 4 demonstrate that locality-based splits are
the most challenging for graph models and thus may require special attention.

Density-based The next distributional shift we propose is based on density. One of the most simple
node characteristics that describe the local density in a graph is the local clustering coefficient. Con-
sidering some node i, let di be its degree and γi be the number of edges connecting the neighbors of i.
Then, the local clustering coefficient is defined as the edge density within the one-hop neighborhood:

ci =
2γi

di(di − 1)
(2)

For our experiments, we consider nodes with the highest clustering coefficient to be ID, which implies
that σi = −ci.

This structural property might be particularly interesting for inducing distributional shifts since it is
defined through the number of triangles, the substructures that most standard graph neural networks
are unable to distinguish and count [4]. Thus, it is interesting to know how changes in the clustering
coefficient affect the predictive performance and uncertainty estimation.

Figure 1c visualizes the density-based split. We see that the OOD part includes both the high-degree
central nodes and the periphery nodes of degree one. Indeed, the nodes of degree one naturally
have zero clustering coefficient. On the other hand, for the high-degree nodes, the number of edges
between their neighbors usually grows slower than quadratically. Thus, such nodes tend to have a
vanishing clustering coefficient.

Finally, we note that the existing datasets with realistic splits may often have the local clustering
coefficient shifted between the train and test parts. Figures 12c and 13c in Appendix show this for
two OGB datasets. Depending on the dataset, the train subset may be biased towards the nodes with
either larger (Figure 13c) or smaller (Figure 12c) clustering. In our experiments, we focus on the
former scenario.

4 Experimental setup

Datasets While our approach can potentially be applied to any node prediction dataset, for our
experiments, we pick the following seven homophilous datasets that are commonly used in the
literature: three citation networks, including CoraML, CiteSeer [26, 9, 8, 31], and PubMed [28],
two co-authorship graphs — CoauthorPhysics and CoauthorCS [32], and two co-purchase datasets —
AmazonPhoto and AmazonComputer [25, 32]. Moreover, we consider OGB-Products, a large-
scale dataset from the OGB benchmark. Some of the methods considered in our work are not able to
process such a large dataset, so we provide only the analysis of structural shifts on this dataset and do
not use it for comparing different methods.

For any distributional shift, we split each graph dataset as follows. The half of nodes with the smallest
values of σi are considered to be ID and split into Train, Valid-In, and Test-In uniformly at
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random in proportion 30% : 10% : 10%. The second half contains the remaining OOD nodes and is
split into Valid-Out and Test-Out in the ascending order of σi in proportion 10% : 40%. Thus, in
our base setup, the ID to OOD split ratio is 50% : 50%. We have also conducted experiments with
other split ratios that involve smaller sizes of OOD subsets, see Appendix B for the details.

Models In our experiments, we apply the proposed benchmark to evaluate the OOD robustness and
uncertainty of various graph models. In particular, we consider the following methods for improving
the OOD generalisation in the node classification task:

• ERM is the Empirical Risk Minimization technique that trains a simple GNN model by
optimizing a standard classification loss;

• DANN is an instance of Domain Adversarial Network [7] that trains a regular and a domain
classifiers to make features indistinguishable across different domains;

• CORAL is the Deep Correlation Alignment [34] technique that encourages the representations
of nodes in different domains to be similar;

• EERM is the Explore-to-Extrapolate Risk Minimization [38] method based on graph structure
editors that creates virtual environments during training;

• Mixup is an implementation of Mixup from [37] and represents a simple data augmentation
technique adapted for the graph learning problems;

• DE represents a Deep Ensemble [21] of graph models, a strong but expensive method for
improving the predictive performance;

In context of OOD detection, we consider the following uncertainty estimation methods:

• SE represents a simple GNN model that is used in the ERM method, for which the measure
of uncertainty is Softmax Entropy (i.e., the entropy of predictive distribution);

• GPN is an implementation of the Graph Posterior Network [33] method for the node-level
uncertainty estimation;

• NatPN is an instance of Natural Posterior Network [3] in which the encoder has the same
architecture as in the SE method;

• DE represents a Deep Ensemble [21] of graph models, which allows to separate the knowledge
uncertainty that is used for OOD detection;

• GPE and NatPE represent the Bayesian Combinations of GPN and NatPN, an approach to
construct an ensemble of Dirichlet models [3].

The training details are described in Appendix F. For experiments with the considered OOD robustness
methods, including DANN, CORAL, EERM, and Mixup, we use the experimental framework from
the GOOD benchmark,4 whereas the remaining methods are implemented in our custom experimental
framework and can be found in our repository.5

Prediction tasks & evaluation metrics To evaluate OOD robustness in the node classification
problem, we exploit standard Accuracy. Further, to assess the quality of uncertainty estimates, we
treat the OOD detection problem as a binary classification with positive events corresponding to the
observations from the OOD subset and use AUROC to measure performance.

5 Empirical study

In this section, we show how the proposed approach to creating distributional shifts can be used
for evaluating the robustness and uncertainty of graph models. In particular, we compare the types
of distributional shifts introduced above and discuss which of them are more challenging. We also
discuss how they affect the predictive performance of OOD robustness methods as well as the ability
for OOD detection of uncertainty estimation methods.

4Link to the GOOD benchmark repository
5Link to our GitHub repository
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Table 1: Comparison of structural distributional shifts in terms of OOD robustness and OOD detection.
We report the drop in predictive performance of the ERM method measured by Accuracy (left) and
the quality of uncertainty estimates of the SE method measured by AUROC (right).

Popularity Locality Density

AmazonComputer −10.01% −21.95% −7.91%
AmazonPhoto −8.54% −30.93% −3.58%
CoauthorCS −3.13% −1.22% −4.86%

CoauthorPhysics −3.42% −4.75% −1.41%
CoraML −3.94% −14.61% −17.09%
CiteSeer −0.02% −26.51% −8.39%
PubMed −3.23% −5.71% −0.78%

OGB-Products −2.86% −2.83% −0.12%

Average −4.39% −13.56% −5.52%

Popularity Locality Density

AmazonComputer 88.52 86.48 44.24
AmazonPhoto 92.05 93.29 41.08
CoauthorCS 83.25 85.74 50.91

CoauthorPhysics 86.60 87.73 37.50
CoraML 75.67 87.13 81.55
CiteSeer 68.01 89.89 66.90
PubMed 68.60 66.34 58.60

OGB-Products 88.50 88.56 36.00

Average 81.40 85.65 52.10

5.1 Analysis of structural distributional shifts

In this section, we analyze and compare the proposed structural distributional shifts.

OOD robustness To investigate how the proposed shifts affect the predictive performance of graph
models, we take the most simple ERM method and report the drop in Accuracy between the ID and
OOD test subsets in Table 1 (left). It can be seen that the node classification results on the considered
datasets are consistently lower when measured on the OOD part, and this drop can reach tens of
percent in some cases. The most significant decrease in performance is observed on the locality-based
splits, where it reaches 14% on average and more than 30% in the worst case. This fact matches our
intuition about how training on local regions of graphs may prevent OOD generalization and create a
great challenge for improving OOD robustness. Although the density-based shift does not appear
to be as difficult, it is still more challenging than the popularity-based shift, leading to performance
drops of 5.5% on average and 17% in the worst case.

OOD detection To analyze the ability of graph models to detect distributional shifts by providing
higher uncertainty on the shifted inputs, we report the performance of the most simple SE method
for each proposed distributional shift and graph dataset in Table 1 (right). It can be seen that the
popularity-based and locality-based shifts can be effectively detected by this method, which is proved
by the average performance metrics. In particular, the AUROC values may vary from 68 to 92 points
on the popularity-based splits and approximately in the same range for the locality-based splits.
Regarding the density-based shifts, one can see that the OOD detection performance is almost the
same as for random predictions on average. Only for the citation networks the AUROC exceeds 58
points, reaching a peak of 81 points. This is consistent with the previous works showing that standard
graph neural networks are unable to count substructures such as triangles. In our case, this leads to
graph models failing to detect changes in density measured as the number of triangles around the
central node.

Thus, the popularity-based shift appears to be the simplest for OOD detection, while the density-based
is the most difficult. This clearly shows how our approach to creating data splits allows one to vary
the complexity of distributional shifts using different structural properties as splitting factors.

5.2 Comparison of existing methods

In this section, we compare several existing methods for improving OOD robustness and detecting
OOD inputs on the proposed structural shifts. To concisely illustrate the overall performance of the
models, we first rank them according to a given performance measure on a particular dataset and
then average the results over the datasets. For detailed results of experiments on each graph dataset
separately, please refer to Appendix G.

OOD robustness For each model, we measure both the absolute values of Accuracy and the drop
in this metric between the ID and OOD subsets in Table 2 (left). It can be seen that a simple data
augmentation technique Mixup often shows the best performance. Only on the density-based shift,
expensive DE outperforms it on average when tested on the OOD subset. This proves that data
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Table 2: Comparison of several graph methods for improving the OOD robustness (left) and detecting
the OOD inputs by means of uncertainty estimation (right). For each task, we report the method
ranks averaged across different graph datasets (lower is better).

Popularity Locality Density
ID OOD ID OOD ID OOD

ERM 4.0 4.0 3.3 4.1 3.9 4.0
Mixup 1.4 2.1 1.4 2.4 1.9 3.3
EERM 3.6 3.9 4.4 3.3 5.0 4.3
DANN 4.3 4.3 5.0 4.1 3.0 3.6

CORAL 4.7 4.1 4.3 4.7 4.1 3.9
DE 3.0 2.6 2.6 2.3 3.1 2.0

Popularity Locality Density

SE 1.4 2.1 4.0
GPN 3.3 3.9 4.3

NatPN 5.3 4.1 2.9
DE 2.1 1.1 2.7

GPE 3.1 4.3 3.4
NatPE 5.7 5.4 3.7

Table 3: Comparison of the proposed architecture modifications that are used in the ERM method
for OOD robustness (left) and SE method for OOD detection (right). For each task, we report the
win/tie/loss counts across graph datasets for the modified GNN architecture against the base one.

Popularity Locality Density
ID OOD ID OOD ID OOD

ERM + mod 4/2/1 5/2/0 4/2/1 3/2/2 4/2/1 5/2/0

Popularity Locality Density

SE + mod 0/0/7 0/1/6 4/0/3

augmentation techniques are beneficial in practice, as they prevent overfitting to the ID structural
patterns and improve the OOD robustness. Regarding other OOD robustness methods, a graph-
specific method EERM outperforms DANN and CORAL on the popularity-based and locality-based
shifts. However, these domain adaptation methods are superior to EERM on the density-based shifts,
providing better predictive performance on average for both ID and OOD subsets.

In conclusion, we reveal that the most sophisticated methods that generate virtual environments and
predict the underlying domains for improving the OOD robustness may often be outperformed by
simpler methods, such as data augmentation.

OOD detection Comparing the quality of uncertainty estimates in Table 2 (right), one can observe
that the methods based on the entropy of predictive distribution usually outperform Dirichlet methods.
In particular, a natural distinction of knowledge uncertainty in DE enables it to produce uncertainty
estimates that are the most consistent with OOD inputs on average, especially when applied to the
locality-based and density-based shifts. In general, GPN and the combination of its instances GPE
provide higher OOD detection performance than their counterparts based on NatPN when tested on
the popularity-based and locality-based splits.

5.3 Influence of graph architecture improvements

In this section, we consider several adjustments for the base GNN architecture of such methods as
ERM, which is used to evaluate OOD robustness, and SE, which provides the uncertainty estimates
for OOD detection. In particular, we reduce the number of graph convolutional layers from 3 to 2,
replacing the first one with a pre-processing step based on MLP, apply the skip-connections between
graph convolutional layers, and replace the GCN [16] graph convolution with SAGE [11].

These changes are aimed at relaxing the restrictions on the information exchange between a central
node and its neighbors and providing more independence in processing the node representations across
neural layers. Such a modification is expected to help the GNN model to learn structural patterns that
could be transferred to the shifted OOD subset more successfully. Further, we investigate how these
changes in the model architecture affect the predictive performance and the quality of uncertainty
estimates of the corresponding methods when tested on the proposed structural distributional shifts.

For this, we use the win/tie/loss counts that reflect how many times the modified architecture
has outperformed, got a statistically insignificant difference, or lost to the corresponding method,
respectively. As can be seen from Table 3 (left), the ERM method supplied with the proposed
modifications usually outperforms the baseline architecture both on ID and OOD, which is proved
by high win counts. However, as can be seen from Table 3 (right), the same modification in the
corresponding SE method leads to consistent performance drops, which is reflected in high loss
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counts. It means that, when higher predictive performance is reached on the shifted subset, it becomes
more difficult to detect the inputs from this subset as OOD since they appear to be less distinguishable
by a GNN model in the context of the base node classification problem. Our observation is very similar
to what is required from Invariant Learning techniques, which try to produce node representations
invariant to different domains or environments. This may serve as evidence that there is a trade-off
between the quality of learned representations for solving the target node classification task under
structural distributional shift and the ability to separate the nodes from different distributions based
on these representations.

6 Conclusion

In this work, we propose and analyze structural distributional shifts for evaluating robustness and
uncertainty in node-level graph problems. Our approach allows one to create realistic, challenging,
and diverse distributional shifts for an arbitrary graph dataset. In our experiments, we evaluate the
proposed structural shifts and show that they can be quite challenging for existing graph models.
We also find that simple models often outperform more sophisticated methods on these challenging
shifts. Moreover, by applying various modifications for graph model architectures, we show that
there is a trade-off between the quality of learned representations for the target classification task
under structural distributional shift and the ability to detect the shift using these representations.

Limitations While our methods of creating structural shifts are motivated by real distributional
shifts that arise in practice, they are synthetically generated, whereas, for particular applications,
natural distributional shifts would be preferable. However, our goal is to address the situations when
such natural shifts are unavailable. Thus, we have chosen an approach universally applied to any
dataset. Importantly, graph structure is the only common modality of different graph datasets that can
be exploited in the same manner to model diverse and complex distributional shifts.

Broader impact Considering the broader implications of our work, we assume that the proposed
approach for evaluating robustness and uncertainty of graph models will support the development
of more reliable systems based on machine learning. By testing on the presented structural shifts, it
should be easier to detect various biases against under-represented groups that may have a negative
impact on the resulting performance and interfere with fair decision-making.

Future work In the future, two key areas can be explored based on our work. Firstly, there is a
need to develop principled solutions for improving robustness and uncertainty estimation on the
proposed structural shifts. Our new approach can assist in achieving this objective by providing
an instrument for testing and evaluating such solutions. Additionally, there is a need to create new
graph benchmarks that accurately reflect the properties of data observed in real-world applications.
This should involve replacing synthetic shifts with realistic ones. By doing so, we may capture the
challenges and complexities that might be faced in practice, thereby enabling the development of
more effective and applicable graph models.
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A Properties of distributional shifts

This section provides a detailed analysis and comparison of the proposed distributional shifts. For
this purpose, we consider three representative real-world datasets AmazonComputer, CoauthorCS,
and CoraML, and discuss how different distributional shifts affect the basic properties of data: class
balance, degree distribution, and graph distances between nodes within ID and OOD subsets.
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Figure 2: Class balance for AmazonComputer dataset across different types of shifts.
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Figure 3: Class balance for CoauthorCS dataset across different types of shifts.
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Figure 4: Class balance for CoraML dataset across different types of shifts.

Class balance Class balance directly affects the amount of evidence acquired by the graph process-
ing model and used for estimating uncertainty and making predictions. It is especially important for
evaluating Dirichlet-based models which exploit normalizing flows, as their density estimates can
become irrelevant due to a significant change in class balance.

In Figures 2–4, one can see that the popularity-based split does not create a notable difference in the
class balance between the ID and OOD subsets (for the datasets under consideration). Thus, the more
important and less important nodes have, on average, the same probability of belonging to a particular
class. More noticeable differences are induced by the density-based split. The locality-based split
leads to the most significant changes for some classes. This shows that the split strategies based on
the structural locality in graph can be very challenging as they also affect such crucial statistics as
class balance.

Degree distribution The node degree distribution is one of the basic structural characteristics of
graph that describes the local importance of nodes. Degrees are especially important for such graph
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Figure 5: The distribution of node degrees for AmazonComputer dataset across different shifts.
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Figure 6: The distribution of node degrees for CoauthorCS dataset across different shifts.
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Figure 7: The distribution of node degrees for CoraML dataset across different shifts.

processing methods as GNNs since they describe how many channels around the considered node are
used for message passing and aggregation.

In Figures 5–7, one can see that the most significant change in the degree distribution appears when
the ID and OOD subsets are separated based on PageRank: the ID part contains more high-degree
nodes. This is expected since PageRank is a graph characteristic measuring node importance (a.k.a.
centrality), and node degree is the simplest centrality measure known to be correlated with PageRank.
For the locality-based splits, the difference in degree distribution is smaller but still significant since
PPR selects nodes by their relative importance for a particular node, so some high-degree nodes can
be less important. Finally, for the density-based splits, the degree distribution also changes, but the
extent of shift is usually less significant, and for some datasets (e.g., CoauthorCS), the higher-degree
nodes are in the OOD subset.

Graph distance distribution The distance between two nodes in a graph is defined as the length
of the shortest path between them. Here, we compute such distances between the nodes in the ID
or OOD subset within the original graph, i.e., we consider the whole graph when searching for the
shortest path. The distribution of distances illustrates which parts of the datasets are more locally
concentrated.

In Figures 8–10, one can observe that the locality-based split leads to the most significant changes in
distances, making the OOD nodes nearly twice as far from each other as the ID ones. At the same time,
the popularity-based split does not lead to such a difference, revealing almost the same distributions
on ID and OOD subsets. This means that the popularity bias in a graph does not prevent one from
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Figure 8: The distribution of graph distances for AmazonComputer dataset across different shifts.
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Figure 9: The distribution of graph distances for CoauthorCS dataset across different shifts.
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Figure 10: The distribution of graph distances for CoraML dataset across different shifts.

covering the less popular periphery nodes since the most popular nodes may be widespread. Similarly,
the density-based split does not induce a significant difference in pairwise distances.
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B Results on other split ratios

The main part of our empirical study is focused on a 50% : 50% split ratio. In this section, we extend
our discussion with varying ID to OOD ratios and consider two setups where the fraction of OOD
samples is smaller — 70% : 30% and 90% : 10%.

Let us first revisit our analysis of the proposed structural shifts on a 70% : 30% ratio. As can be seen
in Table 4, the results in both OOD robustness, which is evaluated in the node classification task, and
OOD detection, which is done by means of uncertainty estimation, have not changed much compared
to our base setup discussed in the main text — the considered graph models show the average drop
in performance of 3% on the popularity-based shift and 6% on the density-based shift, while the
OOD detection performance remains at nearly 81 and 54 points, respectively. Despite the fact that
the graph models now have access to more diverse structures in terms of popularity and local density,
making decisions about unimportant and sparsely surrounded nodes remains as difficult as before.

Further, the drop in predictive performance on the locality-based shift appears to be less significant
compared to the original setup and reaches only 5% on average instead of the previous 14%. At the
same time, the OOD detection performance on this structural shift drops to 79 points, whereas it was
85 points in the original setup. These results also match our intuition — as the distance between the
ID and OOD nodes decreases, the OOD samples become less distinguishable from the ID ones. This
makes the OOD detection performance drop on average, while the gap between ID and OOD metrics
in standard node classification disappears.

We also may compare the existing graph models based on the results in Table 5. As can be seen, the
ranking of methods remains almost the same as in the original setup. Specifically, the most simple
data augmentation technique Mixup often shows the best performance in OOD robustness, while DE
provides the second best results on most structural shifts. As for OOD detection, the methods based
on the entropy of predictive distribution again outperform the Dirichlet ones, and the uncertainty
estimates produced by DE are best correlated with the OOD examples. Thus, our observations
regarding the performance of graph models are consistent with those reported in the paper.

Table 4: Comparison of structural distributional shifts in terms of OOD robustness and OOD detection.
We report the drop in predictive performance of the ERM method measured by Accuracy (left) and
the quality of uncertainty estimates of the SE method measured by AUROC (right). The ID to OOD
ratio in these experiments is 70% : 30% instead of 50% : 50% as in the main text.

Popularity Locality Density

AmazonComputer −3.80% −12.66% −14.04%
AmazonPhoto −7.19% −3.03% −6.79%
CoauthorCS −6.51% −1.89% −6.64%

CoauthorPhysics −2.58% −5.50% −2.47%
CoraML −7.56% −13.63% −9.49%
CiteSeer +3.24% +2.50% −4.13%
PubMed +0.46% −0.67% −1.76%

OGB-Products −2.35% −2.36% −4.02%

Average −3.28% −4.65% −6.17%

Popularity Locality Density

AmazonComputer 87.83 85.77 50.46
AmazonPhoto 91.80 85.78 47.27

CiteSeer 70.56 64.55 58.04
CoauthorCS 83.68 81.13 63.24

CoauthorPhysics 86.70 82.06 39.68
CoraML 82.06 84.63 76.82
PubMed 66.64 63.34 55.79

OGB-Products 82.35 82.44 43.50

Average 81.45 78.71 54.35

Table 5: Comparison of several graph methods for improving the OOD robustness (left) and detecting
the OOD inputs by means of uncertainty estimation (right). For each task, we report the method ranks
averaged across different graph datasets (lower is better). The ID to OOD ratio in these experiments
is 70% : 30% instead of 50% : 50% as in the main text.

Popularity Locality Density
ID OOD ID OOD ID OOD

ERM 3.0 3.4 2.9 3.1 4.3 4.3
Mixup 1.9 2.6 1.4 2.7 1.4 3.3
EERM 4.9 3.9 5.0 4.0 4.4 4.1
DANN 4.1 4.4 4.3 4.3 3.7 2.6

CORAL 4.1 4.0 4.4 4.9 4.1 3.7
DE 3.0 2.7 3.0 2.0 3.0 3.0

Popularity Locality Density

SE 1.3 2.3 3.7
GPN 3.3 3.9 3.9

NatPN 5.4 4.3 3.7
DE 3.0 1.4 1.9

GPE 3.1 3.9 3.4
NatPE 4.9 5.3 4.4
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Now let us discuss the setup based on a more extreme 90% : 10% ratio. According to Table 6, the
drop in predictive performance under the popularity-based and locality-based shifts reaches more
than 6% instead of 3% in the previous setup and almost 11% instead of 6%, respectively. This was
expected and can be explained by the fact that graph models are now tested on the nodes with the
most extreme structural properties (i.e., nodes with the lowest PageRank or clustering coefficient),
and their inaccurate predictions are no longer compensated by the more accurate ones, which were
made on the nodes with far less anomalous properties.

At the same time, the performance drop on the locality-based shift appears to be nearly 1% on
average. This result is quite reasonable since now graph models have access to the whole variety
of graph substructures and node features, which allows them to predict equally well for any graph
region regardless of its distance to some particular node. The observed effects are interesting and
also important to consider when using our approach for evaluating graph models.

Regarding the OOD detection performance, we observe that results on the locality-based shift keep
decreasing and reach 73 points, in contrast to 79 points in the previous setup (and this might happen
for the same reason as we discussed before). At the same time, the detection metrics on the remaining
structural shifts appear to be nearly the same (79 points instead of the previous 81 on the popularity-
based shift) or even better on average (63 points instead of 54 on the density-based shift), which is
consistent with the changes in predictive performance discussed above.

As for the ranking of different models in Table 7, it remains almost the same, with the most simple
methods providing top performance on the majority of prediction tasks.

Table 6: Comparison of structural distributional shifts in terms of OOD robustness and OOD detection.
We report the drop in predictive performance of the ERM method measured by Accuracy (left) and
the quality of uncertainty estimates of the SE method measured by AUROC (right). The ID to OOD
ratio in these experiments is 90% : 10% instead of 50% : 50% as in the main text.

Popularity Locality Density

AmazonComputer −8.45% −7.79% −30.98%
AmazonPhoto −8.00% +0.12% −16.35%
CoauthorCS −9.79% −4.42% −7.76%

CoauthorPhysics −3.77% −4.91% −5.32%
CoraML −16.10% +5.52% −8.03%
CiteSeer −5.14% +1.35% +1.86%
PubMed +3.33% +4.70% −2.63%

OGB-Products −2.92% −2.75% −15.61%

Average −6.36% −1.02% −10.60%

Popularity Locality Density

AmazonComputer 83.42 76.53 68.97
AmazonPhoto 89.01 82.57 64.41

CiteSeer 75.90 65.11 55.48
CoauthorCS 83.22 76.02 70.63

CoauthorPhysics 84.68 78.60 52.97
CoraML 79.36 69.64 69.78
PubMed 61.05 57.14 55.11

OGB-Products 77.92 78.02 68.33

Average 79.32 72.95 63.21

Table 7: Comparison of several graph methods for improving the OOD robustness (left) and detecting
the OOD inputs by means of uncertainty estimation (right). For each task, we report the method ranks
averaged across different graph datasets (lower is better). The ID to OOD ratio in these experiments
is 90% : 10% instead of 50% : 50% as in the main text.

Popularity Locality Density
ID OOD ID OOD ID OOD

ERM 3.3 3.7 3.4 3.0 3.3 4.4
Mixup 1.7 2.4 1.7 2.9 1.7 3.0
EERM 5.0 4.1 5.0 3.7 4.9 3.9
DANN 4.3 4.0 4.0 4.3 3.4 3.0

CORAL 3.9 3.6 4.1 5.1 4.3 3.4
DE 2.9 3.1 2.7 2.0 3.4 3.3

Popularity Locality Density

SE 1.6 2.6 3.3
GPN 3.1 3.0 3.9

NatPN 5.0 4.4 3.7
DE 2.6 1.7 1.6

GPE 3.6 4.0 4.3
NatPE 5.1 5.3 4.3
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C Comparison with the GOOD benchmark from Gui et al. [10]

Our work complements and extends the GOOD benchmark recently proposed by Gui et al. [10].
However, there are several important differences that we discuss in this section.

One of the main properties of the GOOD benchmark is its theoretical distinction between two
types of distributional shifts, which are represented through a graphical model. In particular, the
authors consider covariate shifts, in which the distribution of features changes while the conditional
distribution of targets given features remains the same, and concept shifts, where the opposite situation
occurs, i.e., the conditional target distribution changes, while the feature distribution is the same.
Although this distinction might be very helpful for understanding the properties of particular GNN
models, such exclusively covariate or concept shifts rarely happen in practice where both types of
shifts are present at the same time.

To create pure covariate or concept shifts, Gui et al. [10] introduce different subsets of variables that
either fully determine the target, create confounding associations with the target, or are completely
independent of the target. This has to be properly handled and makes it non-trivial to create
distributional shifts on new datasets with this approach. Indeed, the distributional shifts in the GOOD
benchmark can be properly implemented only for synthetic graph datasets or via appending synthetic
features that either describe various domains as completely independent variables or create the
necessary concepts by inducing some spurious correlation with the target. Moreover, the authors
claim that, in the case of real-world datasets, one has to perform screening over the available node
features to create the required setup of domain or concept shift. This fact implies numerous restrictions
on how the data splits can be prepared.

In contrast, our method does not distinguish between covariate and concept shifts and thus can be
universally applied to any dataset and does not require any dataset modifications. Importantly, the
type of distributional shift and the sizes of all split parts are easily controllable. This flexibility is the
main advantage of our approach.

Finally, Gui et al. [10] confirm the importance of using both node features and graph structure. Still,
their node-level distributional shifts are mainly based on node features such as the number of words or
the year of publication in a citation network, the language of users in a social network, or the name of
organizations in a webpage network. As for the graph properties, only node degrees are used in some
citation networks. In contrast, we focus on the graph structure and propose diverse structural shifts
together with a framework allowing one to easily create splits based on other structural properties.
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D Structural properties of the OGB data splits proposed by Hu et al. [12]

In Figures 11–13, we present how the distribution of structural node characteristics, including
PageRank, Personalized PageRank, and clustering coefficient, may change across the train and test
parts in some OGB datasets, where the distributional shifts are constructed using some domain-
specific node feature. This shows that our approach to creating data splits using structural graph
properties can be similar to realistic distributional shifts.

(a) PageRank (b) Personalized PageRank (c) Clustering coefficient

Figure 11: Structural properties across train and test parts in time-based split of OGB-Arxiv.

(a) PageRank (b) Personalized PageRank (c) Clustering coefficient

Figure 12: Structural properties across train and test parts in rank-based split of OGB-Products.

(a) PageRank (b) Personalized PageRank (c) Clustering coefficient

Figure 13: Structural properties across train and test parts in species-based split of OGB-Proteins.

19



E Dataset characteristics

Characteristics of the datasets used in this paper are listed in Table 8.

Table 8: Description of the considered graph datasets for node classification task.

Dataset # Nodes # Edges # Classes # Features

AmazonComputer 13,381 259,159 10 767

AmazonPhoto 7,484 126,530 8 745

CoauthorCS 18,333 163,788 15 6,805

CoauthorPhysics 34,493 495,924 5 8,415

CoraML 2,995 16,316 7 2,879

CiteSeer 3,327 4,732 6 3,703

PubMed 19,717 44,338 3 8,415

OGB-Products 2,449,029 61,859,140 47 100

F Method configurations

For our main series of experiments with graph models in Sections 5.1 and 5.2, we consider a graph
encoder based on three GCN convolutional layers [16]. On top of this graph encoder, we use a
single linear layer as the task-specific head, which is used to predict the parameters of categorical
distribution in classification tasks, the parameters of Dirichlet distribution for modeling uncertainty,
etc. The hidden dimension of our baseline architecture is 256, and the dropout between hidden layers
is p = 0.2. We exploit a standard Adam optimizer [14] with a learning rate of 0.0003 and a weight
decay of 0.00001. For an additional series of experiments with an improved GNN architecture, which
is discussed in Section 5.3, we reduce the number of graph convolutional layers from 3 to 2, replacing
the first one with a pre-processing step based on linear layer, apply the skip-connections between
graph convolutional layers, and replace the GCN graph convolution with SAGE [11].

Some of the considered methods for improving the OOD robustness, such as DANN and CORAL,
exploit the notion of domains and require the knowledge about which nodes in the training set belong
to which domain. Therefore, we need to define domains, which is not straightforward since our node
properties are real-valued, not discrete. Thus, we discretize the values into k = 10 non-intersecting
domains. After that, we assign a domain index to each node. These indices are treated as labels and
used by DANN and CORAL during their training.
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G Detailed experimental results

In this section, we provide detailed experimental results.

• Tables 9 — 15 show the predictive performance of various OOD robustness methods on the
proposed structural distributional shifts;

• Tables 16 — 22 show the OOD detection performance of various uncertainty estimation
methods on the proposed structural distributional shifts.

Table 9: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on CoraML dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 85.80± 1.10 82.42± 0.79 84.47± 0.69 72.13± 1.74 93.27± 0.28 77.33± 1.07
Mixup 89.27± 0.57 83.65± 0.67 86.27± 0.57 78.42± 0.84 88.20± 0.44 78.98± 2.10
EERM 88.40± 1.22 83.07± 0.76 88.80± 0.73 69.96± 6.62 86.87± 0.45 79.07± 0.32
DANN 86.00± 1.10 79.01± 0.77 81.45± 0.65 65.03± 2.51 91.33± 0.76 78.37± 2.07

CORAL 85.00± 1.11 77.65± 0.62 82.33± 0.25 66.83± 2.24 89.55± 0.54 73.34± 2.28
DE 87.00± 0.00 82.74± 0.00 84.67± 0.00 75.40± 0.00 93.00± 0.00 78.90± 0.00

ERM + mod 85.33± 0.62 82.55± 0.56 84.87± 0.61 72.59± 0.96 94.13± 0.69 79.33± 0.37

Table 10: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on CiteSeer dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 72.43± 1.33 72.42± 0.37 77.60± 0.66 57.03± 1.16 73.75± 0.96 67.57± 0.49
Mixup 72.79± 0.74 72.13± 0.69 76.82± 0.59 56.45± 4.53 76.88± 1.47 68.59± 2.12
EERM 71.47± 1.01 70.48± 0.66 75.31± 0.80 61.95± 3.30 76.46± 0.92 68.18± 0.71
DANN 67.57± 0.96 67.84± 0.65 71.17± 0.33 54.90± 2.49 75.07± 1.48 61.13± 2.82

CORAL 67.87± 1.19 67.77± 0.38 71.87± 0.62 57.16± 1.84 73.47± 1.22 58.53± 2.02
DE 73.27± 0.00 72.37± 0.00 78.38± 0.00 64.71± 0.00 74.17± 0.00 70.35± 0.00

ERM + mod 73.75± 0.62 71.73± 1.02 76.70± 1.14 59.86± 2.23 75.80± 0.96 68.32± 1.01

Table 11: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on PubMed dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 86.85± 0.12 84.04± 0.33 86.75± 0.48 81.80± 1.07 85.96± 0.27 85.29± 0.16
Mixup 89.32± 0.24 88.21± 0.21 87.94± 0.37 86.20± 0.75 88.72± 0.25 88.23± 0.16
EERM 86.83± 0.12 83.39± 0.10 85.67± 0.24 84.79± 0.18 86.43± 0.22 84.10± 0.10
DANN 86.26± 0.48 84.49± 0.18 86.04± 0.30 85.41± 1.04 87.07± 0.24 84.74± 0.14

CORAL 86.31± 0.48 84.48± 0.37 86.00± 0.32 85.36± 1.63 87.24± 0.15 84.86± 0.27
DE 87.17± 0.00 84.72± 0.00 87.07± 0.00 82.82± 0.00 86.61± 0.00 85.97± 0.00

ERM + mod 88.83± 0.24 87.39± 0.27 88.32± 0.51 87.58± 0.17 88.56± 0.43 87.71± 0.22
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Table 12: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on AmazonComputer dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 92.43± 0.24 83.18± 0.58 93.04± 0.38 72.62± 0.52 93.10± 0.27 85.73± 0.60
Mixup 92.27± 0.19 66.80± 2.84 93.76± 0.19 66.94± 2.00 92.46± 0.44 74.72± 1.09
EERM 89.49± 1.55 82.08± 0.61 92.22± 0.37 61.39± 0.85 88.09± 0.55 79.98± 1.28
DANN 91.25± 0.37 83.39± 1.87 92.30± 0.77 68.84± 2.53 91.84± 0.79 83.89± 1.37

CORAL 91.25± 0.54 84.77± 1.48 92.47± 0.18 62.36± 1.87 91.40± 0.91 85.35± 1.58
DE 92.51± 0.00 84.17± 0.00 93.31± 0.00 73.93± 0.00 93.24± 0.00 86.93± 0.00

ERM + mod 90.99± 0.16 85.72± 0.34 91.74± 0.24 63.67± 0.35 92.40± 0.34 86.17± 0.20

Table 13: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on AmazonPhoto dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 95.82± 0.24 87.63± 0.65 93.73± 0.29 64.73± 3.80 94.64± 0.38 91.25± 0.16
Mixup 97.99± 0.36 87.73± 2.39 95.55± 0.30 75.36± 2.01 95.50± 0.41 90.71± 2.13
EERM 95.90± 0.40 86.84± 1.02 91.95± 0.21 54.06± 0.81 90.46± 0.38 88.91± 0.31
DANN 95.25± 0.26 85.23± 0.78 91.81± 0.39 48.79± 5.04 93.99± 0.66 91.87± 0.46

CORAL 95.34± 0.27 85.91± 0.67 91.85± 0.51 45.70± 3.34 93.64± 0.80 91.99± 0.43
DE 95.82± 0.00 88.82± 0.00 93.59± 0.00 69.15± 0.00 94.38± 0.00 92.09± 0.00

ERM + mod 97.07± 0.35 89.95± 0.20 95.01± 0.43 57.41± 1.79 95.22± 0.33 91.97± 0.33

Table 14: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on CoauthorCS dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 93.60± 0.18 90.67± 0.20 92.34± 0.14 91.22± 0.35 94.30± 0.17 89.71± 0.21
Mixup 94.97± 0.33 94.05± 0.38 94.05± 0.13 91.48± 0.16 94.97± 0.29 92.11± 0.15
EERM 93.82± 0.08 91.01± 0.15 91.22± 0.27 91.95± 0.21 93.64± 0.23 88.42± 0.15
DANN 93.89± 0.26 90.59± 0.12 91.66± 0.37 91.65± 1.29 94.60± 0.16 89.92± 0.29

CORAL 93.80± 0.14 90.78± 0.13 91.69± 0.23 91.37± 0.48 94.42± 0.07 89.72± 0.22
DE 93.68± 0.00 90.93± 0.00 92.64± 0.00 91.76± 0.00 94.55± 0.00 90.05± 0.00

ERM + mod 95.35± 0.15 95.00± 0.06 94.77± 0.09 94.06± 0.11 96.67± 0.11 93.64± 0.16

Table 15: Comparison of several graph methods for improving the OOD robustness in terms of their
predictive performance across structural shifts on CoauthorPhysics dataset.

popularity locality density
ID OOD ID OOD ID OOD

ERM 93.60± 0.18 90.67± 0.20 92.34± 0.14 91.22± 0.35 94.30± 0.17 89.71± 0.21
Mixup 96.96± 0.11 94.05± 0.74 97.27± 0.11 93.39± 0.95 96.80± 0.08 84.57± 0.85
EERM 95.93± 0.10 93.37± 0.08 94.04± 0.16 92.32± 0.11 95.26± 0.03 93.98± 0.06
DANN 96.56± 0.14 93.73± 0.25 96.64± 0.23 91.35± 1.12 96.08± 0.17 95.05± 0.11

CORAL 96.51± 0.10 93.58± 0.29 96.93± 0.08 86.21± 0.86 95.97± 0.09 95.00± 0.17
DE 93.68± 0.00 90.93± 0.00 92.64± 0.00 91.76± 0.00 94.55± 0.00 90.05± 0.00

ERM + mod 95.35± 0.15 95.00± 0.06 94.77± 0.09 94.06± 0.11 96.67± 0.11 93.64± 0.16
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Table 16: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on CoraML dataset.

Popularity Locality Density

SE 75.67± 0.85 87.13± 0.74 81.55± 0.45
NatPN 47.31± 9.44 81.66± 3.05 69.05± 3.05
GPN 66.95± 1.15 73.09± 2.21 70.95± 1.58
DE 70.55± 0.00 93.32± 0.00 84.46± 0.00

NatPE 37.59± 0.00 78.48± 0.00 65.83± 0.00
GPE 65.67± 0.00 74.23± 0.00 71.07± 0.00

SE + mod 55.66± 0.25 72.97± 0.71 68.27± 0.58

Table 17: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on CiteSeer dataset.

Popularity Locality Density

SE 68.01± 1.23 89.89± 0.56 66.90± 0.41
NatPN 31.18± 1.54 91.96± 3.14 59.77± 1.54
GPN 61.99± 1.74 69.53± 5.10 57.41± 1.72
DE 56.22± 0.00 98.18± 0.00 70.48± 0.00

NatPE 28.07± 0.00 89.02± 0.00 58.10± 0.00
GPE 63.01± 0.00 73.89± 0.00 57.94± 0.00

SE + mod 54.36± 0.56 78.74± 0.55 61.03± 0.73

Table 18: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on PubMed dataset.

Popularity Locality Density

SE 68.60± 0.34 66.34± 1.03 58.60± 0.39
NatPN 49.61± 3.17 58.91± 2.89 51.00± 1.45
GPN 72.30± 0.29 69.63± 4.84 62.04± 0.68
DE 74.31± 0.00 72.19± 0.00 63.04± 0.00

NatPE 46.94± 0.00 56.41± 0.00 49.54± 0.00
GPE 72.62± 0.00 66.07± 0.00 62.58± 0.00

SE + mod 53.68± 0.12 54.86± 0.72 52.25± 0.13
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Table 19: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on AmazonComputer dataset.

Popularity Locality Density

SE 88.52± 0.37 86.48± 0.80 44.24± 0.57
NatPN 53.83± 15.71 59.92± 6.59 44.42± 3.44
GPN 81.23± 1.44 82.84± 2.56 43.92± 2.56
DE 82.53± 0.00 83.54± 0.00 50.88± 0.00

NatPE 41.33± 0.00 51.93± 0.00 42.09± 0.00
GPE 81.35± 0.00 81.97± 0.00 43.81± 0.00

SE + mod 60.54± 0.41 74.09± 0.64 59.27± 0.44

Table 20: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on AmazonPhoto dataset.

Popularity Locality Density

SE 92.05± 0.27 93.29± 0.60 41.08± 1.89
NatPN 79.72± 7.29 65.66± 11.98 54.88± 17.40
GPN 80.85± 2.64 90.90± 2.82 49.97± 2.24
DE 90.72± 0.00 96.66± 0.00 51.33± 0.00

NatPE 80.43± 0.00 59.74± 0.00 64.69± 0.00
GPE 82.95± 0.00 91.61± 0.00 51.74± 0.00

SE + mod 66.93± 0.47 83.09± 1.57 51.36± 0.94

Table 21: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on CoauthorCS dataset.

Popularity Locality Density

SE 83.25± 0.40 85.74± 1.06 50.91± 0.26
NatPN 59.99± 5.57 64.53± 12.82 58.47± 8.22
GPN 63.43± 0.46 64.84± 1.57 56.81± 0.54
DE 82.50± 0.00 87.54± 0.00 54.47± 0.00

NatPE 61.00± 0.00 60.55± 0.00 62.63± 0.00
GPE 62.12± 0.00 63.76± 0.00 57.15± 0.00

SE + mod 58.05± 0.71 64.43± 1.40 56.99± 0.26

Table 22: Comparison of several graph methods for uncertainty estimation in terms of their OOD
detection performance across structural shifts on CoauthorPhysics dataset.

Popularity Locality Density

SE 86.60± 0.29 87.73± 0.51 37.50± 0.32
NatPN 56.74± 3.68 59.54± 23.75 58.81± 5.96
GPN 67.48± 0.45 74.05± 2.67 50.99± 0.53
DE 85.94± 0.00 91.93± 0.00 36.15± 0.00

NatPE 56.11± 0.00 46.14± 0.00 56.94± 0.00
GPE 66.29± 0.00 72.16± 0.00 51.89± 0.00

SE + mod 64.84± 0.73 88.02± 0.31 44.13± 0.31
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H Visualization of distributional shifts in graph domain

In Figures 14–20, we provide the visualizations of different structural shifts in graph domain for
all the considered graph datasets: ID is blue, OOD is red. Some graphs have multiple connected
components — in that case, we keep only the largest one.

(a) Popularity (b) Locality (c) Density

Figure 14: Visualization of structural shifts in graph domain for CoraML dataset.

(a) Popularity (b) Locality (c) Density

Figure 15: Visualization of structural shifts in graph domain for CiteSeer dataset.

(a) Popularity (b) Locality (c) Density

Figure 16: Visualization of structural shifts in graph domain for PubMed dataset.
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(a) Popularity (b) Locality (c) Density

Figure 17: Visualization of structural shifts in graph domain for AmazonPhoto dataset.

(a) Popularity (b) Locality (c) Density

Figure 18: Visualization of structural shifts in graph domain for AmazonComputer dataset.

(a) Popularity (b) Locality (c) Density

Figure 19: Visualization of structural shifts in graph domain for CoauthorCS dataset.

(a) Popularity (b) Locality (c) Density

Figure 20: Visualization of structural shifts in graph domain for CoauthorPhysics dataset.
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I Visualization of distributional shifts in node feature space

In Figures 21–27, we provide the visualizations of different structural shifts in node feature space for
all the considered graph datasets: ID is blue, OOD is red. The pictures are obtained by reducing the
original node feature space into the 2D space of t-SNE representations.

(a) Popularity (b) Locality (c) Density

Figure 21: Visualization of structural shifts in node feature space for CoraML dataset.

(a) Popularity (b) Locality (c) Density

Figure 22: Visualization of structural shifts in node feature space for CiteSeer dataset.

(a) Popularity (b) Locality (c) Density

Figure 23: Visualization of structural shifts in node feature space for PubMed dataset.
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(a) Popularity (b) Locality (c) Density

Figure 24: Visualization of structural shifts in node feature space for AmazonPhoto dataset.

(a) Popularity (b) Locality (c) Density

Figure 25: Visualization of structural shifts in node feature space for AmazonComputer dataset.

(a) Popularity (b) Locality (c) Density

Figure 26: Visualization of structural shifts in node feature space for CoauthorCS dataset.

(a) Popularity (b) Locality (c) Density

Figure 27: Visualization of structural shifts in node feature space for CoauthorPhysics dataset.
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