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Abstract

Stochastic gradient descent (SGD) algorithm is the method of choice in many
machine learning tasks thanks to its scalability and efficiency in dealing with
large-scale problems. In this paper, we focus on the shuffling version of SGD
which matches the mainstream practical heuristics. We show the convergence
to a global solution of shuffling SGD for a class of non-convex functions un-
der over-parameterized settings. Our analysis employs more relaxed non-convex
assumptions than previous literature. Nevertheless, we maintain the desired compu-
tational complexity as shuffling SGD has achieved in the general convex setting.

1 Introduction

In the last decade, neural network-based models have shown great success in many machine learning
applications such as natural language processing [Collobert and Weston, 2008, Goldberg et al., 2018],
computer vision and pattern recognition [Goodfellow et al., 2014, He and Sun, 2015]. The training
task of many learning models boils down to the following finite-sum minimization problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)

}
, (1)

where f(·; i) : Rd → R is smooth and possibly non-convex for i ∈ [n] := {1, · · · , n}. Solving the
empirical risk minimization (1) had been a difficult task for a long time due to the non-convexity
and the complicated learning models. Later progress with stochastic gradient descent (SGD) and its
variants [Robbins and Monro, 1951, Duchi et al., 2011, Kingma and Ba, 2014] have shown great
performance in training deep neural networks. These stochastic first-order methods are favorable
thanks to its scalability and efficiency in dealing with large-scale problems. At each iteration SGD
samples an index i uniformly from the set {1, . . . , n}, and uses the individual gradient ∇f(·; i) to
update the weight.

While there has been much attention on the theoretical aspect of the traditional i.i.d. (independently
identically distributed) version of SGD [Nemirovski et al., 2009, Ghadimi and Lan, 2013, Bottou
et al., 2018], practical heuristics often use without-replacement data sampling schemes. Also known
as shuffling sampling schemes, these methods generate some random or deterministic permutations
of the index set {1, 2, . . . , n} and apply gradient updates using these permutation orders. Intuitively,
a collection of such n individual updates is a pass over all the data, or an epoch. One may choose to
create a new random permutation at the beginning of each epoch (in Random Reshuffling scheme) or
use a random permutation for every epoch (in Single Shuffling scheme). Alternatively, one may use a
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Incremental Gradient scheme with a fixed deterministic order of indices. In this paper, we use the
term unified shuffling SGD for SGD method using any data permutations, which includes the three
special schemes described above.

Although shuffling sampling schemes usually show a better empirical performance than SGD [Bottou,
2009], the theoretical guarantees for these schemes are often more limited than vanilla SGD version,
due to the lack of statistical independence. Recent works have shown improvement in computational
complexity for shuffling schemes over SGD in various settings [Gürbüzbalaban et al., 2019, Haochen
and Sra, 2019, Safran and Shamir, 2020, Nagaraj et al., 2019, Nguyen et al., 2021, Mishchenko et al.,
2020, Ahn et al., 2020]. In particular, in a general non-convex setting, shuffling sampling schemes
improve the computational complexity in terms of ε̂ for SGD from O

(
σ2/ε̂2

)
to O

(
nσ/ε̂3/2

)
,

where σ is the bounded variance constant [Ghadimi and Lan, 2013, Nguyen et al., 2021, Mishchenko
et al., 2020]2. We summarize the detailed literature for multiple settings later in Table 1.

While global convergence is a desirable property for neural network training, the non-convexity
landscape of complex learning models leads to difficulties in finding the global minimizer. In
addition, there is little to no work studying the convergence to a global solution of shuffling-type
SGD algorithms for a general non-convex setting. The closest line of research investigates the Polyak-
Lojasiewicz (PL) condition (a generalization of strong-convexity), which demonstrates similar
convergence rates as the strongly convex rates for shuffling SGD methods [Haochen and Sra, 2019,
Ahn et al., 2020, Nguyen et al., 2021]. In another direction, Gower et al. [2021] and Khaled and
Richtárik [2020] investigates the global convergence for some class of non-convex functions, however
for vanilla SGD method. Beznosikov and Takáč [2021] investigate a random shuffle version of
variance reduction methods (e.g. SARAH algorithm Nguyen et al. [2017]), but this approach only
can show convergence to stationary points. With a target on shuffling SGD methods and specific
learning architectures, we come up with the central question of this paper:

How can we establish the convergence to global solution for a class of non-convex functions using
shuffling-type SGD algorithms? Can we exploit the structure of neural networks to achieve this goal?

We answer this question affirmatively, and our contributions are summarized below.

Contributions.

• We investigate a new framework for the convergence of a shuffling-type gradient algorithm
to a global solution. We consider a relaxed set of assumptions and discuss their relations
with previous settings. We show that our average-PL inequality (Assumption 3) holds for a
wide range of neural networks equipped with squared loss function.

• Our analysis generalizes the class function called star-M -smooth-convex. This class contains
non-convex functions and is more general than the class of star-convex smooth functions
with respect to the minimizer (in the over-parameterized settings). In addition, our analysis
does not use any bounded gradient or bounded weight assumptions.

• We show the total complexity of O( n
ε̂3/2

) for a class of non-convex functions to reach an
ε̂-accurate global solution. This result matches the same gradient complexity to a stationary
point for unified shuffling methods in non-convex settings, however, we are able to show the
convergence to a global minimizer.

1.1 Related Work

In recent years, there have been different approaches to investigate the global convergence for machine
learning optimization. This includes a popular line of research that studies some specific neural
networks and utilizes their architectures. The most early works show the global convergence of
Gradient Descent (GD) for simple linear networks and two-layer networks [Brutzkus et al., 2018,
Soudry et al., 2018, Arora et al., 2019, Du et al., 2019b]. These results are further extended to deep
learning architectures [Allen-Zhu et al., 2019, Du et al., 2019a, Zou and Gu, 2019]. This line of
research continues with Stochastic Gradient Descent (SGD) algorithm, which proves the global
convergence of SGD for deep neural networks for some probability depending on the initialization
process and the number of input data [Brutzkus et al., 2018, Allen-Zhu et al., 2019, Zou et al.,

2The computational complexity is the number of (individual) gradient computations needed to reach an
ε̂-accurate stationary point (i.e. a point ŵ ∈ Rd that satisfies ∥∇F (ŵ)∥2 ≤ ε̂.)
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2018, Zou and Gu, 2019]. The common theme that appeared in most of these references is the over-
parameterized setting, which means that the number of parameters in the network are excessively
large [Brutzkus et al., 2018, Soudry et al., 2018, Allen-Zhu et al., 2019, Du et al., 2019a, Zou and Gu,
2019]. This fact is closely related to our setting, and we will discuss it throughout our paper.

Polyak-Lojasiewicz (PL) condition and related assumptions. An alternative approach is to
investigate some conditions on the optimization problem that may guarantee global convergence. A
popular assumption is the Polyak-Lojasiewicz (PL) inequality, a generalization of strong-convexity
[Polyak, 1964, Karimi et al., 2016, Nesterov and Polyak, 2006]. Using this PL assumption, it can
be shown that (stochastic) gradient descent achieves the same theoretical rate as in the strongly
convex setting (i.e linear convergence for GD and sublinear convergence for SGD) [Karimi et al.,
2016, De et al., 2017, Gower et al., 2021]. Recent works demonstrate similar results for shuffling
type SGD [Haochen and Sra, 2019, Ahn et al., 2020, Nguyen et al., 2021], both for unified and
randomized shuffling schemes. On the other hand, [Schmidt and Roux, 2013, Vaswani et al., 2019]
propose to use a new assumption called the Strong Growth Condition (SGC) that controls the rates
at which the stochastic gradients decay comparing to the full gradient. This condition implies that
the stochastic gradients and their variances converge to zero at the optimum solution [Schmidt and
Roux, 2013, Vaswani et al., 2019]. While the PL condition for F implies that every stationary point
of F is also a global solution, the SGC implies that such a point is also a stationary point of every
individual function. However, complicated models as deep feed-forward neural networks generally
have non-optimal stationary points [Karimi et al., 2016]. Thus, these assumptions are somewhat
strong for non-convex settings.

Although there are plenty of works investigating the PL condition for the objective function F
[De et al., 2017, Vaswani et al., 2019, Gower et al., 2021], not many materials devoted to study
the PL inequality for the individual functions f(·; i). A recent work [Sankararaman et al., 2020]
analyzes SGD with the specific notion of gradient confusion for over-parameterized settings where the
individual functions satisfy PL condition. They show that the neighborhood where SGD converges
linearly depends on the level of gradient confusion (i.e. how much the individual gradients are
negatively correlated). Taking a different approach, we investigate the PL property for individual
functions and further show that our condition holds for a general class of neural networks with
quadratic loss.

Over-paramaterized settings for neural networks. Most of the modern learning architectures
contain deep and large networks, where the number of parameters are often far more than the number
of input data. This leads to the fact that the objective loss function is trained closer and closer to zero.
Understandably, in such settings all the individual functions f(·; i) are minimized simultaneously at
0 and they share a common minimizer. This condition is called the interpolation property (see e.g.
[Schmidt and Roux, 2013, Ma et al., 2018, Meng et al., 2020, Loizou et al., 2021]) and is studied
well in the literature (see e.g. [Zhou et al., 2019, Gower et al., 2021]). For a comparison, functions
satisfying the strong growth condition necessarily satisfy the interpolation property. This property
implies zero variance of individual gradients at the global minimizer, which allows good behavior
for SGD near the solution. In this work, we slightly change this assumption which requires a small
variance up to some level of the threshold ε. Note that when letting ε → 0, our assumption exactly
recovers the interpolation property.

Star-convexity and related conditions. There have been many attentions to a class of structured
non-convex functions called star-convex [Nesterov and Polyak, 2006, Lee and Valiant, 2016, Bjorck
et al., 2021]. Star-convexity can be understood as convexity between an arbitrary point w and the
global minimizer w∗. The name star-convex comes from the fact that each sublevel set is star-shaped
[Nesterov and Polyak, 2006, Lee and Valiant, 2016]. Zhou et al. [2019] shows that if SGD follows a
star-convex path and there exists a common global minimizer for all component functions, then SGD
converges to a global minimum.

In recent progress, Hinder et al. [2020] considers the class of quasar-convex functions, which further
generalizes star-convexity. This property was introduced originally in [Hardt et al., 2018] under
the name ‘weakly quasi-convex’, and investigated recently in literature [Hinder et al., 2020, Jin,
2020, Gower et al., 2021]. This class uses a parameter ζ ∈ (0, 1] to control the non-convexity of the
function, where ζ = 1 yeilds the star-convexity and ζ approaches 0 indicates more non-convexity
[Hinder et al., 2020]. Intuitively, quasar-convex functions are unimodal on all lines that pass through
a global minimizer. Gower et al. [2021] investigates the performance of SGD for smooth and quasar-
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convex functions using an expected residual assumption (which is comparable to the interpolation
property). They show a convergence rate of O(1/

√
K) for i.i.d. sampling SGD with the number

of total iterations K, which translates to the computational complexity of O
(
1/ε̂2

)
. To the best

of our knowledge, this paper is the first work studying the relaxation of star-convexity and global
convergence for SGD with shuffling sample schemes, not for the i.i.d. version.

2 Theoretical Setting

We first present the shuffling-type gradient algorithm below. Our convergence results hold for any
permutation of the training data {1, 2, . . . , n}, including deterministic and random ones. Thus, our
theoretical framework is general and applicable for any shuffling strategy, including Incremental
Gradient, Single Shuffling, and Random Reshuffling.

Algorithm 1 (Shuffling-Type Gradient Algorithm for Solving (1))

1: Initialization: Choose an initial point w̃0 ∈ dom (F ).
2: for t = 1, 2, . . . , T do
3: Set w(t)

0 := w̃t−1;
4: Generate any permutation π(t) of [n] (either deterministic or random);
5: for i = 1, . . . , n do
6: Update w

(t)
i := w

(t)
i−1 − η

(t)
i ∇f(w

(t)
i−1;π

(t)(i));
7: end for
8: Set w̃t := w

(t)
n ;

9: end for

We further specify the choice of learning rate η
(t)
i in the detailed analysis. Now we proceed to

describe the set of assumptions used in our paper.

Assumption 1. Suppose that f∗
i := minw∈Rd f(w; i) > −∞, i ∈ {1, . . . , n}.

Assumption 2. Suppose that f(·; i) is L-smooth for all i ∈ {1, . . . , n}, i.e. there exists a constant
L ∈ (0,+∞) such that:

∥∇f(w; i)−∇f(w′; i)∥ ≤ L∥w − w′∥, ∀w,w′ ∈ Rd. (2)

Assumption 1 is required in any algorithm to guarantee the well-definedness of (1). In most applica-
tions, the component losses are bounded from below. By Assumption 2, the objective function F is
also L-smooth. This Lipschitz smoothness Assumption is widely used for gradient-type methods. In
addition, we denote the minimum value of the objective function F∗ = minw∈Rd F (w). It is worthy
to note the following relationship between F∗ and the component minimum values:

F∗ = min
w∈Rd

F (w) =
1

n
min
w∈Rd

(
n∑

i=1

f(w; i)

)
≥ 1

n

n∑
i=1

min
w∈Rd

(f(w; i)) =
1

n

n∑
i=1

f∗
i . (3)

We are interested in the case where the set of minimizers of F is not empty. The equality F∗ =
1
n

∑n
i=1 f

∗
i attains if and only if a minimizer of F is also the common minimizer for all component

functions. This condition implies that the variance of individual functions is 0 at the common
minimizer.

2.1 PL Condition for Component Functions

Now we are ready to discuss the Polyak-Lojasiewicz condition as follows.

Definition 1 (Polyak-Lojasiewicz condition). We say that f satisfies Polyak-Lojasiewicz (PL) in-
equality for some constant µ > 0 if

∥∇f(w)∥2 ≥ 2µ[f(w)− f∗], ∀w ∈ Rd, (4)

where f∗ := minw∈Rd f(w).

4



The PL condition for the objective function F is sufficient to show a global convergence for (stochas-
tic) gradient descent [Karimi et al., 2016, Nesterov and Polyak, 2006, Polyak, 1964]. It is well known
that a function satisfying the PL condition is not necessarily convex [Karimi et al., 2016]. However,
this assumption on F is somewhat strong because it implies that every stationary point of F is also a
global minimizer. Our goal is to consider a class of non-convex function which is more relaxed than
the PL condition on F , while still having the good global convergence properties. In this paper, we
formulated an assumption called “average PL inequality”, specifically for the finite sum setting:
Assumption 3. Suppose that f(·; i) satisfies average PL inequality for some constant µ > 0 such
that

1

n

n∑
i=1

∥∇f(w; i)∥2 ≥ 2µ
1

n

n∑
i=1

[f(w; i)− f∗
i ], ∀w ∈ Rd. (5)

where f∗
i := minw∈Rd f(w; i).

Comparisons. Assumption 3 is weaker than assuming the PL inequality for every component function
f(·; i). In general setting, Assumption 3 is not comparable to assuming the PL inequality for F .
Formally, if F satisfies PL the condition for some parameter τ > 0, then we have:

2τ [F (w)− F∗] ≤ ∥∇F (w)∥2 ≤ 1

n

n∑
i=1

∥∇f(w; i)∥2. (6)

However, by equation (3) we have that [F (w) − F∗] ≤ 1
n

∑n
i=1[f(w; i) − f∗

i ]. Therefore, the PL
inequality for each function f(·; i), cannot directly imply the PL condition on F and vice versa.

In the interpolated setting where there is a common minimizer for all component function f(·; i), it
can be shown that the PL condition on F is stronger than our average PL assumption:

2τ
1

n

n∑
i=1

[f(w; i)− f∗
i ] = 2τ [F (w)− F∗] ≤ ∥∇F (w)∥2 ≤ 1

n

n∑
i=1

∥∇f(w; i)∥2.

On the other hand, our assumption cannot imply the PL inequality on F unless we impose a strong
relationship that upper bound the sum of individual squared gradients 1

n

∑n
i=1 ∥∇f(w; i)∥2 in terms

of the full squared gradient ∥∇F (w)∥2, for every w ∈ Rd . For these reasons, the average PL
Assumption 3 is arguably more reasonable than assuming the PL inequality for the objective function
F . Moreover, we show that Assumption 3 holds for a general class of neural networks with a final
bias layer and squared loss function. We have the following theorem.

Theorem 1. Let {(x(i), y(i))}ni=1 is a training data set where x(i) ∈ Rm is the input data and
y(i) ∈ Rc is the output data for i = 1, . . . , n. We consider an architecture h(w; i) with w be the
vectorized weight and h consists of a final bias layer b:

h(w; i) = WT z(θ; i) + b,

where w = vec({θ,W, b}) and z(θ; i) are some inner architectures, which can be chosen arbitrarily.
Next, we consider the squared loss f(w; i) = 1

2∥h(w; i)− y(i)∥2. Then

∥∇f(w; i)∥2 ≥ 2[f(w; i)− f∗
i ], ∀w ∈ Rd, (7)

where f∗
i := minw∈Rd f(w; i).

Therefore, for this application, Assumption 3 holds with µ = 1.

2.2 Small Variance at Global Solutions

In this section, we change the interpolation property in previous literature [Ma et al., 2018, Meng
et al., 2020, Loizou et al., 2021] by a small threshold. For any global solution w∗ of F , let us define

σ2
∗ := inf

w∗∈W∗

(
1

n

n∑
i=1

∥∇f(w∗; i)∥2
)
. (8)

We can show that when there is a common minimizer for all component functions (i.e. when the
equality F∗ = 1

n

∑n
i=1 f

∗
i holds), the best variance σ2

∗ is 0. It is sufficient for our Theorem to impose
a O(ε)-level upper bound on the variance σ2

∗:

5



Assumption 4. Suppose that the best variance at w∗ is small, that is, for ε > 0

σ2
∗ ≤ Pε, (9)

for some P > 0.

It is important to note that in current non-convex literature, Assumption 4 alone (or, assuming
σ2
∗ = 0 alone) is not sufficient enough to guarantee a global convergence property for SGD. Typically,

some other conditions on the good landscape of the loss function are needed to complement the
over-parameterized setting. Thus, we have motivation to introduce our next assumption.

2.3 Generalized Star-Smooth-Convex Condition for Shuffling Type Algorithm

We introduce the definition of star-smooth-convex function as follows.
Definition 2. The function g is star-M -smooth-convex with respect to a reference point ŵ ∈ Rd if

∥∇g(w)−∇g(ŵ)∥2 ≤ M⟨∇g(w)−∇g(ŵ), w − ŵ⟩, ∀w ∈ Rd. (10)

It is well known that when g is L-smooth and convex [Nesterov, 2004], we have the following general
inequality for every w,w′ ∈ Rd:

∥∇g(w)−∇g(w′)∥2 ≤ L⟨∇g(w)−∇g(w′), w − w′⟩ (11)

Our class of star-smooth-convex function requires a similar inequality to hold only for the special
point w′ = ŵ. Interestingly, this is related to a class of star-convex functions, which satisfies the
convex inequality for the minimizer ŵ:

(star-convexity w.r.t ŵ) g(w)− g(ŵ) ≤ ⟨∇g(w), w − ŵ⟩, ∀w ∈ Rd, (12)

This class of functions contains non-convex objective losses and is well studied in the literature
(see e.g. [Zhou et al., 2019]). Our Lemma 1 shows that the class of star-smooth-convex function is
broader than the class of L-smooth and star-convex functions. Therefore, our problem of interest is
non-convex in general.
Lemma 1. The function g is star-M -smooth-convex with respect to ŵ for some constant M > 0 if
one of the two following conditions holds:

1. g is L-smooth and convex.

2. g is L-smooth and g is star-convex with respect to ŵ.

Proof. The first statement of Lemma 1 follows directly from equation (11). We have that g is
star-M -smooth-convex with respect to any reference point and M = L.

Now we proceed to the second statement. From the star-convex property of g with respect to ŵ, we
have

g(w)− g(ŵ) ≤ ⟨∇g(w), w − ŵ⟩, ∀w ∈ Rd,

and ∇g(ŵ) = 0 since ŵ is the global minimizer of g. On the other hand, g is L-smooth and we have

g(ŵ) ≤ g

(
w − 1

L
∇g(w)

)
≤ g(w)− 1

2L
∥∇g(w)∥2,

which is equivalent to ∥∇g(w)∥2 ≤ 2L[g(w)− g(ŵ)], i ∈ [n]. Since ∇g(ŵ) = 0, i ∈ [n], we have
for ∀w ∈ Rd

∥∇g(w)−∇g(ŵ)∥2 ≤ 2L[g(w)− g(ŵ)]
(12)
≤ 2L⟨∇g(w)−∇g(ŵ), w − w∗⟩.

This is a star-M -smooth-convex function as in Definition 2 with M = 2L.

For the analysis of shuffling type algorithm in this paper, we consider the general assumption called
the generalized star-smooth-convex condition for shuffling algorithms:
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Assumption 5. Using Algorithm 1, let us assume that there exist some constants M > 0 and N ≥ 0
such that at each epoch t = 1, . . . , T , we have for i = 1, . . . , n:

∥∇f(w
(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i))∥2 ≤ M⟨∇f(w

(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩

+N
1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2, (13)

where w∗ is a global solution of F .

We note that it is sufficient for our analysis to assume the case N = 0, i.e. the individual function
f(·; i) is star-M -smooth-convex with respect to w∗ for every i = 1, . . . , n as in Definition 2. In that
case, the assumption does not depend on the algorithm progress.

Assumption 5 is more flexible than the star-M -smooth-convex one in (10) because an additional term
N 1

n

∑n
i=1 ∥w

(t)
i − w

(t)
0 ∥2 for some constant N > 0 allows for extra flexibility in our setting, where

the right-hand side term ⟨∇f(w; i)−∇f(w∗; i), w − w∗⟩ could be negative for some w ∈ Rd.

Note that we do not impose any assumptions on bounded weights or bounded gradients. Therefore,
the term 1

n

∑n
i=1 ∥w

(t)
i − w

(t)
0 ∥2 cannot be uniformly bounded by any universal constant.

3 New Framework for Convergence to a Global Solution

In this section, we present our theoretical results. Our Lemma 2 first provides a recursion to bound
the squared distance term ∥w̃t − w∗∥2:
Lemma 2. Assume that Assumptions 1, 2, 3, and 5 hold. Let {w̃t}Tt=1 be the sequence generated by
Algorithm 1 with 0 < ηt ≤ min

{
n

2M , 1
2L

}
. For every γ > 0 we have

∥w̃t − w∗∥2 ≤
(
1 + C1η

3
t

)
∥w̃t−1 − w∗∥2 + C2ηtσ

2
∗ − C3ηt[F (w̃t−1)− F∗]. (14)

where w∗ is a global solution of F , F∗ = minw∈Rd F (w), and
C1 = 8L2

3 + 14NL2

M + 4γL4

6M ,

C2 = 2
M + 1 + 5

6L2 + 8N
3ML2 + 5γ

12M ,

C3 = γ
γ+1

µ
M .

(15)

Rearranging the results of Lemma 2, we have

F (w̃t−1)− F∗ ≤ 1

C3

(
1

ηt
+ C1η

2
t

)
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗. (16)

Therefore, with an appropriate choice of learning rate that guarantee
(
1/ηt + C1η

2
t

)
≤ 1/ηt−1, we

can unroll the recursion from Lemma 2. Thus we have our main result in the next Theorem.
Theorem 2. Assume that Assumptions 1, 2, 3, and 5 hold. Let {w̃t}Tt=1 be the sequence generated by
Algorithm 1 with the learning rate η

(t)
i = ηt

n where 0 < ηt ≤ min
{

n
2M , 1

2L

}
.

Let the number of iterations T = λ
ε3/2

for some λ > 0 and ε > 0. Constants C1, C2, and C3 are
defined in (15) for any γ > 0. We further define K = 1 + C1D

3ε3/2 and specify the learning rate
ηt = Kηt−1 = Ktη0 and η0 = D

√
ε

K exp(λC1D3) such that D
√
ε

K ≤ min
{

n
2M , 1

2L

}
for some constant

D > 0. Then we have

1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤
K exp(λC1D

3)

C3Dλ
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗, (17)

where F∗ = minw∈Rd F (w) and σ2
∗ is defined in (8).

Our analysis holds for arbitrarily constant values of the parameters γ, λ and D. In addition, we show
our current analysis for every shuffling scheme. An interesting research question arises: whether the
convergence results can be improved if one chooses to analyze a randomized shuffling scheme in this
framework. However, we leave that question to future works.

Using Assumption 4, we can show the total complexity of Algorithm 1 for our setting.
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Table 1: Comparisons of computational complexity (the number of individual gradient evaluations)
needed by SGD algorithm to reach an ε̂-accurate solution w that satisfies F (w) − F (w∗) ≤ ε̂ (or
∥∇F (w)∥2 ≤ ε̂ in the non-convex case).

Settings References Complexity Shuffling
Schemes

Global
Solution

Convex
Nemirovski et al. [2009],
Shamir and Zhang [2013] (1) O

(
∆2

0+G2

ε̂2

)
✗ ✓

Mishchenko et al. [2020],
Nguyen et al. [2021] (2) O

(
n

ε̂3/2

)
✓ ✓

PL condition Nguyen et al. [2021] Õ
(

nσ2

ε̂1/2

)
✓ ✓

Star-convex
related Gower et al. [2021] (3) O

(
1
ε̂2

)
✗ ✓

Non-convex
Ghadimi and Lan [2013] (5) O

(
σ2

ε̂2

)
✗ ✗

Nguyen et al. [2021],
Mishchenko et al. [2020] (5) O

(
nσ
ε̂3/2

)
✓ ✗

Our setting
(non-convex) This paper, Corollary 1(4) O

(
n(N∨1)3/2

ε̂3/2

)
✓ ✓

(0) We note that the assumptions in this table are not comparable and we only show the roughly complexity in
terms of ε̂. In addition, to make fair comparisons, we only report the complexity of unified shuffling schemes.
(1) Standard results for SGD in convex literature often use a different set of assumptions from the one in
this paper (e.g. bounded domain that ∥w − w∗∥2 ≤ ∆0 for each iterate w and/or bounded gradient that
E[∥∇f(w; i)∥] ≤ G2). We report the corresponding complexity for a rough comparison.
(2) [Mishchenko et al., 2020] shows a bound for Incremental Gradient while [Nguyen et al., 2021] has a unified
setting. We translate these results for unified shuffling schemes from these references to the convex setting.
(3) Since we cannot find a reference containing the convergence rate for vanilla SGD and star-convex functions,
we adapt the reference Gower et al. [2021] here. This paper shows a result for L-smooth and quasar convex
function with an additional Expected Residual (ER) assumption, which is weaker than assuming smoothness for
f(·; i) and interpolation property. The star-convex results hold when the quasar-convex parameter is 1.
(4) Since we use a different set of assumptions than the other references, we only report the rough comparison
in n,N and ε̂, where N is the constant from Assumption 5 and N ∨ 1 = max(N, 1). Note that N = 0 in the
framework of star-smooth-convex function. In addition, we need σ2

∗ = 0 so that the complexity holds with
arbitrary ε̂. We explain the detailed complexity below and in the Appendix.
(5) Standard literature for SGD in non-convex setting assumes a bounded variance that Ei

[
∥f(w; i) −

∇F (w)∥2
]
≤ σ2, we report the rough comparison.

Corollary 1. Suppose that the conditions in Theorem 2 and Assumption 4 hold. Choose C1Dλ = 1
and ε = ε̂/G such that 0 < ε̂ ≤ G with the constants

G =
2C1D

2e

C3
∥w̃0 − w∗∥2 +

C2P

C3
, where

C1 = 8L2

3 + 14NL2

M + 4L2

3M ,

C2 = 2
M + 1 + 5

6L2 + 8N
3ML2 + 5

12ML ,

C3 = 1
L2+1

µ
M .

Then, the we need T = λG3/2

ε̂3/2
epochs to guarantee

min
1≤t≤T

[F (w̃t−1)− F∗] ≤
1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤ ε̂.
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Computational complexity. Our global convergence result in this Corollary holds for a fixed value of
ε̂ in Assumption 4. Thus, when ε → 0, this assumption is equivalent to assuming σ2

∗ = 0. The total
complexity of Corollary 1 is O

(
n

ε̂3/2

)
. This rate matches the best known rate for unified sampling

schemes for SGD in convex setting [Mishchenko et al., 2020, Nguyen et al., 2021]. However, our
result holds for a broader class of functions that are possibly non-convex. Comparing to the non-
convex setting, current literature [Mishchenko et al., 2020, Nguyen et al., 2021] also matches our
rate to the order of ε̂, however, we can only prove that SGD converges to a stationary point with a
weaker criteria ∥∇F (w)∥2 ≤ ε̂ for general non-convex funtions. Table 1 shows these comparisons in
various settings. Note that when using a randomized shuffling scheme, SGD often performs a better
rate in terms of the data n in various settings with and without (strongly) convexity. For example, in
strongly convex and/or PL setting, the convergence rate of RR is Õ(

√
n/

√
ε̂) , which is better than

unified schemes with Õ(n/
√
ε̂) [Ahn et al., 2020]. However, for a fair comparison, we do not report

these results in Table 1 as our theoretical analysis is derived for unified shuffling scheme.

If we further assume that L,M,N > 1, the detailed complexity with respect to these constants is

O
(
L4(M +N)3/2

µ3/2
· n

ε̂3/2

)
.

We present all the detailed proofs in the Appendix. Our theoretical framework is new and adapted to
the finite-sum minimization problem. Moreover, it utilizes the choice of shuffling sample schemes to
show a better complexity in terms of ε̂ than the complexity of vanilla i.i.d. sampling scheme.

4 Numerical Experiments

In this section, we show some experiments for shuffling-type SGD algorithms to demonstrate our
theoretical results of convergence to a global solution. Following the setting of Theorem 1, we
consider the non-convex regression problem with squared loss function. We choose fully connected
neural networks in our implementation. We experiment with different regression datasets: the
Diabetes dataset from sklearn library [Efron et al., 2004, Pedregosa et al., 2011] with 442 samples in
dimension 10; the Life expectancy dataset from WHO [Repository, 2016] with 1649 trainable data
points and 19 features. In addition, we test with the California Housing data from StatLib repository
[Repository, 1997, Pedregosa et al., 2011] with a training set of 16514 samples and 8 features.

For the small Diabetes dataset, we use the classic LeNet-300-100 model [LeCun et al., 1998]. For
other larger datasets, we use similar fully connected neural networks with an additional starting layer
of 900 neurons. We apply the randomized reshuffling scheme using PyTorch framework [Paszke et al.,
2019]. This shuffling scheme is the common heuristic in training neural networks and is implemented
in many deep learning platforms (e.g. TensorFlow, PyTorch, and Keras [Abadi et al., 2015, Paszke
et al., 2019, Chollet et al., 2015]).

For each dataset {xi, yi}, we preprocess and modify the initial data lightly to guarantee the over-
parameterized setting in our experiment. We do this by using a pre-training stage: firstly we use
GD/SGD algorithm to find a weight w that yields a sufficiently small value for the loss function
(for Diabetes dataset we train to 10−8 and for other datasets we train to 10−2). Letting the input
data xi be fixed, we change the label data to ŷi such that the weight w yields a small loss function
O(ϵ) for the optimization associated with data {xi, ŷi}, and the distance between ŷi and yi is small.
Then the modified data is ready for the next stage. We summarize the data (after modification) in our
experiments in Table 2.

Table 2: Datasets used in our experiments

Data name # Samples # Features Networks layers Sources

Diabetes 442 10 300-100 Efron et al. [2004]

Life Expectancy 1649 19 900-300-100 Repository [2016]

California Housing 16514 8 900-300-100 Repository [1997]
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For each dataset, we first tune the step size using a coarse grid search [0.0001, 0.001, 0.01, 0.1, 1]
for 100 epochs. Then, for example, if 0.01 performs the best, we test the second grid search
[0.002, 0.005, 0.01, 0.02, 0.05] for 5000 epochs. Finally, we progress to the training stage with 106

epochs and repeat that experiment for 5 random seeds. We report the average results with confidence
intervals in Figure 1.

Figure 1: The train loss produced by Shuffling SGD algorithm for three datasets: Diabetes, Life
Expectancy and California Housing.

For California Housing data, Shuffling SGD fluctuates toward the end of the training process.
Nevertheless, for all three datasets it converges steadily to a small value of loss function. In summary,
this experiment confirms our theoretical guarantee that demonstrates a convergence to global solution
for shuffling-type SGD algorithm in neural network settings.

5 Conclusion and Future Research

In this paper, our focus is on investigating the global convergence properties of shuffling-type SGD
methods. We consider a more relaxed set of assumptions in the framework of star-smooth-convex
functions. We demonstrate that our approach achieves a total complexity of O( n

ε̂3/2
) to attain an

ε̂-accurate global solution. Notably, this result aligns with the previous computational complexity
of unified shuffling methods in non-convex settings, while ensuring that the algorithm converges
to a global solution. Our theoretical framework revolves around the shuffling sample schemes for
finite-sum minimization problems in machine learning.

We also provide insights into the relationships between our framework and well-established over-
parameterized settings, as well as the existing literature on the star-convexity class of functions.
Furthermore, we establish connections with neural network architectures and explore how these
learning models align with our theoretical optimization frameworks.

This paper prompts several intriguing research questions, including practical network designs and
more relaxed theoretical settings that can support the global convergence of shuffling SGD methods.
Additionally, extending the global convergence framework to other stochastic gradient methods
[Duchi et al., 2011, Kingma and Ba, 2014] and variance reduction methods [Le Roux et al., 2012,
Defazio et al., 2014, Johnson and Zhang, 2013, Nguyen et al., 2017], all with shuffling sampling
schemes, as well as the exploration of momentum shuffling methods [Tran et al., 2021, 2022],
represents a promising direction.

An interesting research question that arises is whether the convergence results can be further enhanced
by exploring the potential of a randomized shuffling scheme within this framework [Mishchenko
et al., 2020]. However, we leave this question for future research endeavors.

10



References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. Sgd with shuffling: optimal rates without compo-
nent convexity and large epoch requirements. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 17526–17535. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/cb8acb1dc9821bf74e6ca9068032d623-Paper.pdf.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 242–252. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.
press/v97/allen-zhu19a.html.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 322–332.
PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/arora19a.html.
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learning problems using stochastic recursive gradient. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2613–2621. JMLR. org, 2017.

Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, and Marten van Dijk. A
unified convergence analysis for shuffling-type gradient methods. Journal of Machine Learning
Research, 22(207):1–44, 2021. URL http://jmlr.org/papers/v22/20-1238.html.

13

http://proceedings.mlr.press/v130/loizou21a.html
http://proceedings.mlr.press/v80/ma18a.html
http://proceedings.mlr.press/v108/meng20a.html
http://proceedings.mlr.press/v108/meng20a.html
http://jmlr.org/papers/v22/20-1238.html


Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Global Health Observatory Data Repository. Life expectancy and healthy life expectancy, 2016. URL
https://apps.who.int/gho/data/view.main.SDG2016LEXREGv?lang=en.

StatLib Repository. California housing, 1997. URL https://www.dcc.fc.up.pt/~ltorgo/
Regression/cal_housing.html.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Itay Safran and Ohad Shamir. How good is sgd with random shuffling? In Conference on Learning
Theory, pages 3250–3284. PMLR, 2020.

Karthik Abinav Sankararaman, Soham De, Zheng Xu, W Ronny Huang, and Tom Goldstein. The
impact of neural network overparameterization on gradient confusion and stochastic gradient
descent. In International conference on machine learning, pages 8469–8479. PMLR, 2020.

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
growth condition, 2013.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pages 71–79, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
URL https://proceedings.mlr.press/v28/shamir13.html.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. J. Mach. Learn. Res., 19(1):2822–2878, January 2018.
ISSN 1532-4435.

Trang H Tran, Lam M Nguyen, and Quoc Tran-Dinh. SMG: A shuffling gradient-based method
with momentum. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 10379–10389. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
tran21b.html.

Trang H Tran, Katya Scheinberg, and Lam M Nguyen. Nesterov accelerated shuffling gradient method
for convex optimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 21703–21732. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/tran22a.html.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. In Kamalika Chaudhuri and Masashi
Sugiyama, editors, Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 1195–
1204. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/v89/vaswani19a.
html.

14

https://apps.who.int/gho/data/view.main.SDG2016LEXREGv?lang=en
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://proceedings.mlr.press/v28/shamir13.html
https://proceedings.mlr.press/v139/tran21b.html
https://proceedings.mlr.press/v139/tran21b.html
https://proceedings.mlr.press/v162/tran22a.html
https://proceedings.mlr.press/v89/vaswani19a.html
https://proceedings.mlr.press/v89/vaswani19a.html


Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 2053–2062, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks, 2018.

15



On the Convergence to a Global Solution
of Shuffling-Type Gradient Algorithms
Supplementary Material, NeurIPS 2023

A Theoretical settings: Proof of Theorem 1

A.1 Proof of Theorem 1

Proof. Let us use the notation f(w; i) = ϕi(h(w; i)) = 1
2∥h(w; i) − y(i)∥2. We consider an

architecture h(w; i) with w be the vectorized weight and h consists of a final bias layer b:

h(w; i) = WT z(θ; i) + b ∈ Rc,

where w = vec({θ,W, b}) and z(θ; i) are some inner architecture, which can be chosen arbitrarily.

Firstly, we compute the gradient of f(·; i) with respect to b ∈ Rc. For j = 1, . . . , c, we have

∂f(w; i)

∂bj
=

∂ϕi(h(w; i))

∂bj
=

c∑
k=1

∂h(w; i)k
∂bj

· ∂ϕi(x)

∂xk

∣∣∣
x=h(w;i)

=
∂ϕi(x)

∂xj

∣∣∣
x=h(w;i)

, i = 1, . . . , n.

(18)

The last equality follows since ∂h(w;i)k
∂bj

= 0 for every k ̸= j and ∂h(w;i)k
∂bj

= 1 for k = j. In other
words, it is the identity matrix.

Let us denote that f∗
i = minw f(w; i) and ϕ∗

i = minx ϕi(x). We prove the following statement for
µ = 1:

∥∇wf(w; i)∥2 ≥ ∥∇xϕi(x)|x=h(w;i)∥2 ≥ 2µ[ϕi(h(w; i))− ϕ∗
i ] ≥ 2µ[f(w; i)− f∗

i ],

for every w ∈ Rd, and i = 1, . . . , n.

We begin with the first inequality:

∥∇wf(w; i)∥2 =

d∑
j=1

(∂f(w; i)
∂wj

)2
≥

d∑
j=d−c+1

(∂f(w; i)
∂wj

)2
=

c∑
j=1

(∂f(w; i)
∂bj

)2
(18)
=

c∑
j=1

(∂ϕi(x)

∂xj

∣∣∣
x=h(w;i)

)2
= ∥∇xϕi(x)|x=h(w;i)∥2.

Now let us prove the PL condition for each function ϕi(x), i.e., there exists a constant µ > 0 such
that:

∥∇xϕi(x)∥2 ≥ 2µ[ϕi(x)− ϕ∗
i ] ∀x ∈ Rc, i = 1, . . . , n.

Recall the squared loss that ϕi(x) =
1
2∥x − y(i)∥2 and ∇xϕi(x) = x − y(i). We can see that the

constant µ = 1 satisfies the following inequality for every x ∈ Rc, i = 1, . . . , n:

∥∇xϕi(x)∥2 = ∥x− y(i)∥2 = 2
1

2
∥x− y(i)∥2 = 2µϕi(x) ≥ 2µ[ϕi(x)− ϕ∗

i ],

where the last inequality follows since ϕ∗
i ≥ 0.

The PL condition for ϕi directly implies the second inequality. The last inequality follows from
the facts that f(w; i) = ϕi(h(w; i)) and f∗

i = minw fi ≥ minx ϕi(x) = ϕ∗
i . Hence, Theorem 1 is

proved.
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B Preliminary results for SGD Shuffling Algorithm

In this section, we present the preliminary results for Algorithm 1. Firstly, from the choice of learning
rate η(t)i := ηt

n and the update w(t)
i+1 := w

(t)
i − η

(t)
i ∇f(w

(t)
i ;π(t)(i+ 1)) in Algorithm 1, for i ∈ [n],

we have

w
(t)
i = w

(t)
i−1 −

ηt
n
∇f(w

(t)
i−1;π

(t)(i)) = w
(t)
0 − ηt

n

i−1∑
j=0

∇f(w
(t)
j ;π(t)(j + 1)). (19)

Hence,

w
(t+1)
0 = w(t)

n = w
(t)
0 − ηt

n

n−1∑
j=0

∇f(w
(t)
j ;π(t)(j + 1)). (20)

Next, we refer to a Lemma in [Nguyen et al., 2021] to bound the updates of shuffling SGD algorithms.

Lemma 3 (Lemma 5 in Nguyen et al. [2021]). Suppose that Assumption 2 holds for (1). Let {w(t)
i }

be generated by Algorithm 1 with the learning rate η
(t)
i := ηt

n > 0 for a given positive sequence
{ηt}. If 0 < ηt ≤ 1

2L for all t ≥ 1, we have

1

n

n−1∑
j=0

∥w(t)
j − w∗∥2 ≤ 4∥w(t)

0 − w∗∥2 + 8σ2
∗ · η2t , (21)

1

n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 ≤ η2t ·

8L2

3
∥w(t)

0 − w∗∥2 +
16L2σ2

∗
3

· η4t + 2σ2
∗ · η2t . (22)

Now considering the term ∥w(t)
n − w

(t)
0 ∥2, we get that

∥w(t)
n − w

(t)
0 ∥2

(20)
≤ η2t

n

∥∥∥∥∥∥ 1n
n−1∑
j=0

∇f(w
(t)
j ;π(t)(j + 1))

∥∥∥∥∥∥
2

=
η2t
n

∥∥∥∥∥∥ 1n
n−1∑
j=0

(∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1)))

∥∥∥∥∥∥
2

≤ η2t
n

1

n

n−1∑
j=0

∥∥∥∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))
∥∥∥2

(2)
≤ L2η2t

n

1

n

n−1∑
j=0

∥w(t)
j − w∗∥2

(21)
≤ 4L2η2t

n
∥w(t)

0 − w∗∥2 +
8L2η4t

n
σ2
∗.

We further have

1

n

n∑
j=0

∥w(t)
j − w

(t)
0 ∥2 =

1

n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 + 1

n
∥w(t)

n − w
(t)
0 ∥2

≤ η2t ·
8L2

3
∥w(t)

0 − w∗∥2 +
16L2σ2

∗
3

· η4t + 2σ2
∗ · η2t

+
4L2η2t

n
∥w(t)

0 − w∗∥2 +
8L2η4t

n
σ2
∗. (23)
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C Main results: Proofs of Lemma 4, Lemma 2, Theorem 2, and Corollary 1

C.1 Proof of Lemma 4

Lemma 4. Let {w(t)
i }Tt=1 be the sequence generated by Algorithm 1 with η

(t)
i = ηt

n , with 0 < ηt ≤
n

2M for ηt ≤ 1
2L . Then, under Assumptions 1, 2, and 5, we have

∥w(t+1)
0 − w∗∥2 ≤

(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2 +B2ηtσ
2
∗,

(24)

where {
B1 = 8L2

3 + 14NL2

M ,

B2 = 2
M + 1 + 5

6L2 + 8N
3ML2 .

(25)

Proof. We start with Assumption 5. Using the inequality 1
2∥a∥

2 − ∥b∥2 ≤ ∥a − b∥2, we have for
t = 1, . . . , T and i = 1, . . . , n:

1

2
∥∇f(w

(t)
i−1;π

(t)(i))∥2 − ∥∇f(w∗;π
(t)(i))∥2

≤ ∥∇f(w
(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i))∥2

(13)
≤ M⟨∇f(w

(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩+N

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

= M⟨∇f(w
(t)
i−1;π

(t)(i)), w
(t)
i−1 − w∗⟩ −M⟨∇f(w∗;π

(t)(i)), w
(t)
i−1 − w∗⟩

+N
1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2,

This statement is equivalent to

−⟨∇f(w
(t)
i−1;π

(t)(i)), w
(t)
i−1 − w∗⟩ ≤ − 1

2M
∥∇f(w

(t)
i−1;π

(t)(i))∥2 + 1

M
∥∇f(w∗;π

(t)(i))∥2

− ⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩

+
N

M

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2, (26)

For any w∗ ∈ W ∗, from the update (19) we have,

∥w(t)
i − w∗∥2

(19)
= ∥w(t)

i−1 − w∗∥2 −
2ηt
n

⟨∇f(w
(t)
i−1;π

(t)(i)), w
(t)
i−1 − w∗⟩+

η2t
n2

∥∇f(w
(t)
i−1;π

(t)(i))∥2

(26)
≤ ∥w(t)

i−1 − w∗∥2 −
2ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩+

2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

+
η2t
n2

∥∇f(w
(t)
i−1;π

(t)(i))∥2

(a)

≤ ∥w(t)
i−1 − w∗∥2 −

ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩+

2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

= ∥w(t)
i−1 − w∗∥2 −

ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2
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− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w

(t)
0 ⟩ − 2ηt

n
⟨∇f(w∗;π

(t)(i)), w
(t)
0 − w∗⟩

+
2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

(b)

≤ ∥w(t)
i−1 − w∗∥2 −

ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

+
ηt
n
∥∇f(w∗;π

(t)(i))∥2 + ηt
n
∥w(t)

i−1 − w
(t)
0 ∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
0 − w∗⟩+

2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2,

where (a) follows since ηt ≤ n
2M and (b) follows by the inequality 2⟨a, b⟩ ≤ ∥a∥2∥b∥2.

Note that 1
n

∑n
i=1⟨∇f(w∗;π

(t)(i)), w
(t)
0 − w∗⟩ = ⟨∇F (w∗), w

(t)
0 − w∗⟩ = 0 since w∗ is a global

solution of F . Now we sum the derived statement for i = 1, . . . , n and get

∥w(t)
n − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+ ηt

(
2

M
+ 1

)
1

n

n∑
i=1

∥∇f(w∗;π
(t)(i))∥2 + ηt

n

n∑
i=1

∥w(t)
i−1 − w

(t)
0 ∥2

+
2Nηt
M

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

(8),(22)
≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+

(
2

M
+ 1

)
ηtσ

2
∗ +

8L2η3t
3

∥w(t)
0 − w∗∥2 +

16L2η5t
3

σ2
∗ + 2η3t σ

2
∗

+
2Nηt
M

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

(23)
≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+

(
2

M
+ 1

)
ηtσ

2
∗ +

8L2η3t
3

∥w(t)
0 − w∗∥2 +

16L2η5t
3

σ2
∗ + 2η3t σ

2
∗

+
16NL2η3t

3M
∥w(t)

0 − w∗∥2 +
32NL2η5t

3M
σ2
∗ +

4Nη3t
M

σ2
∗

+
8NL2η3t
Mn

∥w(t)
0 − w∗∥2 +

16NL2η5t
Mn

σ2
∗,

where we apply the derivations from Lemma 3. Now noting that ηt ≤ 1
2L , n ≤ 1 and rearranging the

terms we get:

∥w(t)
n − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+

(
8L2

3
+

16NL2

3M
+

8NL2

M

)
η3t ∥w

(t)
0 − w∗∥2

+

(
2

M
+ 1 +

1

3L2
+

1

2L2
+

2N

3ML2
+

N

ML2
+

N

ML2

)
ηtσ

2
∗

Since w
(t)
n = w

(t+1)
0 = w̃t, we have the desired result in (24).
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C.2 Proof of Lemma 2

Proof. From (24) where B1 and B2 are defined in (25), we have

∥w(t+1)
0 − w∗∥2

≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2 +B2ηtσ
2
∗

(a)

≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

+
ηtγ

2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))−∇f(w
(t)
0 ;π(t)(i))∥2 +B2ηtσ

2
∗

(2)
≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

+
ηtγL

2

2M

1

n

n∑
i=1

∥w(t)
i−1 − w

(t)
0 ∥2 +B2σ

2
∗

(22)
≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

+
η3t γL

2

2M

(
8L2

3
∥w(t)

0 − w∗∥2 +
16L2σ2

∗
3

· η2t + 2σ2
∗

)
+B2ηtσ

2
∗

=

(
1 +B1η

3
t +

4η3t γL
4

3M

)
∥w(t)

0 − w∗∥2 +
(
B2 +

η2t γL
2

M
+

8η4t γL
4

3M

)
ηtσ

2
∗

− γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

(5)
≤
(
1 + η3t

(
B1 +

4γL4

3M

))
∥w(t)

0 − w∗∥2 +
(
B2 +

η2t γL
2

M
+

8η4t γL
4

3M

)
ηtσ

2
∗

− γ

γ + 1

2µηt
2M

1

n

n∑
i=1

[f(w
(t)
0 ;π(t)(i))− f∗

i ]

(3)
≤
(
1 + η3t

(
B1 +

4γL4

3M

))
∥w(t)

0 − w∗∥2 +
(
B2 +

η2t γL
2

M
+

8η4t γL
4

3M

)
ηtσ

2
∗

− γ

γ + 1

µηt
M

[F (w
(t)
0 )− F∗]

(b)

≤
(
1 + η3t

(
B1 +

4γL4

3M

))
∥w(t)

0 − w∗∥2 +
(
B2 +

γ

4M
+

γ

6M

)
ηtσ

2
∗

− γ

γ + 1

µηt
M

[F (w
(t)
0 )− F∗],

where (a) follows since −∥b∥2 ≤ γ∥a−b∥2− γ
γ+1∥a∥

2 for any γ > 0 and (b) follows since ηt ≤ 1
2L .

Since w
(t+1)
0 = w̃t, we obtain the desired result in (14).

C.3 Proof of Theorem 2

Proof. For t = 1, . . . , T = λ
ε3/2

for some λ > 0

ηt = (1 + C1D
3ε3/2)ηt−1 = (1 + C1D

3ε3/2)tη0 ≤ (1 + C1D
3ε3/2)T η0

= (1 + C1D
3ε3/2)λ/ε

3/2

η0 = (1 + C1D
3ε3/2)λ/ε

3/2 D
√
ε

(1 + C1D3ε3/2) exp(λC1D3)

≤ D
√
ε

(1 + C1D3ε3/2)
≤ min

{
n

2M
,
1

2L

}
, (27)
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since (1 + x)1/x ≤ e, x > 0. From (14), we have

[F (w̃t−1)− F∗] ≤
1

C3

(
1

ηt
+ C1η

2
t

)
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗. (28)

We proceed to prove the following inequality for t = 1, . . . , T ,

1

ηt
+ C1η

2
t ≤ 1

ηt−1
. (29)

From (27), and ηt = Kηt−1 where K = (1 + C1D
3ε3/2), we have

C1η
2
t = C1K

2η2t−1 = C1K
2 η

3
t−1

ηt−1

≤ C1K
2 D

3ε3/2

K3ηt−1
=

C1D
3ε3/2

Kηt−1
since ηt−1 ≤ D

√
ε

K

=
K − 1

K

1

ηt−1
=

1

ηt−1
− 1

Kηt−1
since K = (1 + C1D

3ε3/2)

=
1

ηt−1
− 1

Kηt−1
=

1

ηt−1
− 1

ηt
, since ηt = Kηt−1.

for t = 1, . . . , T . Hence, from (28), we have

[F (w̃t−1)− F∗] ≤
1

C3

(
1

ηt
+ C1η

2
t

)
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗

≤ 1

C3ηt−1
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗.

Averaging the statement above for t = 1, . . . , T , we have

1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤
1

C3η0T
∥w̃0 − w∗∥2 +

C2

C3
σ2
∗

(a)
=

K exp(λC1D
3)

C3D
√
ε

ε3/2

λ
∥w̃0 − w∗∥2 +

C2

C3
σ2
∗

=
K exp(λC1D

3)

C3Dλ
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗,

where (a) follows since η0 = D
√
ε

K exp(λC1D3) and T = λ
ε3/2

.

C.4 Proof of Corollary 1

Proof. Choose γ = 1
L2 , we have

C1 = 8L2

3 + 14NL2

M + 4L2

3M ,

C2 = 2
M + 1 + 5

6L2 + 8N
3ML2 + 5

12ML ,

C3 = 1
L2+1

µ
M .

Note that K = 1 + C1D
3ε3/2 and C1D

3 = 1/λ, we get that K = 1 + 1/T ≤ 2. We continue from
the statement of Theorem 2 and the choice C1D

3λ = 1:

1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤
K exp(λC1D

3)

C3Dλ
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗

≤ 2

C1D3λ
· C1D

2 exp(λC1D
3)

C3
· ∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗ since K ≤ 2

≤ 2C1D
2e

C3
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗ since C1D

3λ = 1
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≤ 2C1D
2e

C3
∥w̃0 − w∗∥2 · ε+

C2

C3
Pε equation (9)

≤
(
2C1D

2e

C3
∥w̃0 − w∗∥2 +

C2P

C3

)
ε = Gε

with

G =
2C1D

2e

C3
∥w̃0 − w∗∥2 +

C2P

C3
.

Let 0 < ε ≤ 1 and choose ε̂ = Gε. Then the number of iterations T is

T =
λ

ε3/2
=

λG3/2

ε̂3/2

=
1

ε̂3/2C1D3

(
2C1D

2e∥w̃0 − w∗∥2 + C2P

C3

)3/2

=
1

ε̂3/2
· 1

C1D3C
3/2
3

(
2C1D

2e∥w̃0 − w∗∥2 + C2P
)3/2

=
1

ε̂3/2
·

(
2D2e∥w̃0 − w∗∥2

(
8L2

3 + 14NL2

M + 4L2

3M

)
+
(
2+M
M + 5

6L2 + 8N
3ML2 + 5

12ML

)
P
)3/2

(
8L2

3 + 14NL2

M + 4L2

3M

)
D3
(

1
L2+1

µ
M

)3/2
to guarantee

min
1≤t≤T

[F (w̃t−1)− F∗] ≤
1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤ ε̂.

Hence, the total complexity (number of individual gradient computations needed to reach ε̂ accuracy)
is O

(
n

ε̂3/2

)
.

If we further assume that L,M,N > 1:

T =
1

ε̂3/2
·

(
2D2e∥w̃0 − w∗∥2

(
8ML2

3 + 14NL2 + 4L2

3

)
+
(
2 +M + 5M

6L2 + 8N
3L2 + 5

12L

)
P
)3/2

(
8L2

3 + 14NL2

M + 4L2

3M

)
D3
(

µ
L2+1

)3/2
≤ 1

ε̂3/2
·
(
O((M +N)L2)

)3/2 · O (1/L2
)
·
(
L2 + 1

µ

)3/2

= O
(
L4(M +N)3/2

µ3/2
· 1

ε̂3/2

)
and the complexity is O

(
L4(M+N)3/2

µ3/2 · n
ε̂3/2

)
.
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