
A Extended background: KL divergence with the Wiener process plan

This section illustrates that (7) holds. Consider a process T ∈ F(P0), i.e., T is a probability
distribution on Ω with the marginal P0 at t = 0.

Let W ϵ be the Wiener process with variance ϵ starting at P0, i.e., it satisfies dXt =
√
ϵdWt with

X0 ∼ P0. Hence, πW ϵ

(y|x) is the normal distribution dπWϵ
(y|x)

dy = N (y|x, ϵI). Then KL(πT ||πW ϵ

)

between joint distributions at times t = 0 and t = 1 of these processes is given by:

KL(πT ||πW ϵ

) = −
∫
X×Y

log
dπW ϵ

(x, y)

d[x, y]
dπT (x, y)+

∫
X×Y

log
dπT (x, y)

d[x, y]
dπT (x, y)︸ ︷︷ ︸

=−H(πT)

, (18)

where dπ(x,y)
d[x,y] denotes the joint density of distribution π. We derive

−
∫
X×Y

log
dπW ϵ

(x, y)

d[x, y]
dπT (x, y) = −

∫
X×Y

log
dπW ϵ

(y|x)
dy

dπW ϵ

(x)

dx
dπT (x, y) =

−
∫
X×Y

log
dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X

∫
Y
log

dπW ϵ

(x)

dx
dπT (y|x)

dπT
0 (x)︷ ︸︸ ︷

dP0(x) =

−
∫
X×Y

log
dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X
log

dπW ϵ

(x)

dx

[∫
Y
1dπT (y|x)

]
dP0(x) =

−
∫
X

∫
Y
log

dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X
log

dπW ϵ

(x)

dx
dP0(x) =

−
∫
X

∫
Y
log

dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X
log

dP0(x)

dx
dP0(x) =

−
∫
X×Y

log
dπW ϵ

(y|x)
dy

dπT (x, y) +H(P0) =

−
∫
X×Y

log

(
(2πϵ)

−D
2 exp

(
−||x− y||

2

2ϵ

))
dπT (x, y) +H(P0) =

+
D

2
log(2πϵ) +

∫
X×Y

||x− y||2

2ϵ
dπT (x, y) +H(P0).

After substituting this result into (18), one obtains:

KL(πT ||πW ϵ

) =

∫
X×Y

||x− y||2

2ϵ
dπT (x, y)−H(πT) +

D

2
log(2πϵ) +H(P0)︸ ︷︷ ︸

=C in (7)

. (19)

B Proofs

In this section, we provide the proof for our main theoretical results (Theorems 4.1 and 4.3). The
proofs require several auxiliary results which we formulate and prove in MB.1 and MB.2.

In MB.1, we show that entropic OT can be reformulated as a maximin problem. This is a technical
intermediate result needed to derive our main maximin reformulation of SB (Theorem 4.1). More
precisely, in MB.2, we show that these maximin problems for entropic OT and SB are actually
equivalent. By using this observation and related facts, in MB.3, we prove our Theorems 4.1 and 4.3.

B.1 Relaxation of entropic OT

To begin with, we recall some facts regarding EOT and SB. Recall the definition of EOT (2):

inf
π∈Π(P0,P1)

∫
X×Y

||x− y||2

2
dπ(x, y)− ϵH(π). (20)

14

Henceforth, we assume that P0 and P1 are absolutely continuous. The situation when P0 or P1 is
not absolutely continuous is not of any practical interest: there is no π ∈ Π(P0,P1) for which the
differential entropy H(π) is finite which means that (20) equals to +∞ for every π ∈ Π(P0,P1),
i.e., every plan is optimal. In turn, when P0 and P1 are absolutely continuous, the OT plan is unique
thanks to the strict convexity of entropy (on the set of absolutely continuous plans).

Recall equation (19) for KL(π||πW ϵ

):

KL(π||πW ϵ

) =

∫
X×Y

||x− y||2

2ϵ
dπ(x, y)−H(π) + C. (21)

We again note that

inf
π∈Π(P0,P1)

KL(π||πW ϵ

) =
1

ϵ
inf

π∈Π(P0,P1)

{∫
X×Y

||x− y||2

2
dπ(x, y)− ϵH(π)

}
+ C,

i.e., problems (20) and (21) can be viewed as equivalent as their minimizers are the same. For
convenience, we proceed with infπ∈Π(P0,P1) KL(π||πW ϵ

) and denote its optimal value by L∗, i.e.,

L∗ def
= inf

π∈Π(P0,P1)
KL(π||πW ϵ

).

For a given β ∈ Cb,2(Y), we define an auxiliary joint distribution dπβ(x, y) = dπβ(y|x)dP0(x),
where dπβ(y|x) is given by

dπβ(y|x) = 1

Cx
β

exp(β(y))dπW ϵ

(y|x),

where Cx
β (x)

def
=

∫
Y exp(β(y))dπW ϵ

(y|x). Note that Cx
β <∞ since β ∈ Cb,2(Y) is upper bounded.

Before going further, we need to introduce several technical auxiliary results.

Proposition B.1. For ν ∈ P2(Y) and x ∈ X it holds that

KL(ν||πW ϵ

(·|x))−
∫
Y
β(y)dν(y) = KL(ν||πβ(·|x))− logCx

β . (22)

Proof of Proposition B.1. We derive

KL(ν||πW ϵ

(·|x))−
∫
Y
β(y)dν(y) =

∫
Y
log

dν(y)

dπW ϵ(y|x)
dν(y)−

∫
Y
β(y)dν(y) =∫

Y
log

dν(y)

exp(β(y))dπW ϵ(y|x)
dν(y) =

∫
Y
log

Cx
βdν(y)

Cx
β exp(β(y))dπW ϵ(y|x)

dν(y) =∫
Y
log

dν(y)

dπβ(y|x)
dν(y)− logCx

β = KL(ν||πβ(·|x))− logCx
β .

Lemma B.2. For π ∈ Π(P0), i.e., probability distributions π ∈ P2(X × Y) whose projection to X
equals P0, we have

KL(π||πW ϵ

)−
∫
Y
β(y)dπ(y) = KL(π||πβ)−

∫
X
logCx

βdP0(x). (23)

Proof of Lemma B.2. For each x ∈ X , we substitute ν = π(·|x) to (22) and integrate over x ∼ P0.
For the left part, we obtain the following:∫

X

(
KL(π(·|x)||πW ϵ

(·|x))−
∫
Y
β(y)dπ(y|x)

)
dP0(x) =∫

X
KL(π(·|x)||πW ϵ

(·|x))dP0(x)−
∫
X×Y

β(y)dπ(y|x)dP0(x) =

15

∫
X

∫
Y
log

dπ(y|x)
dπW ϵ(y|x)

dπ(y|x)dP0(x)−
∫
Y
β(y)dπ1(y) =∫

X

∫
Y
log

dπ(y|x)dP0(x)

dπW ϵ(y|x)dP0(x)
dπ(y|x)dP0(x)−

∫
Y
β(y)dπ1(y) =∫

X×Y
log

dπ(x, y)

dπW ϵ(x, y)
dπ(x, y)−

∫
Y
β(y)dπ1(y) =

KL(π||πW ϵ

)−
∫
Y
β(y)dπ1(y).

For the right part, we obtain: ∫
X

{
KL(π(·|x)||πβ(·|x))− logCx

β

}
dP0(x) =∫

X
KL(π(·|x)||πβ(·|x))dP0(x)−

∫
X
logCx

βdP0(x) =∫
X

∫
Y
log

dπ(y|x)
dπβ(y|x)

dπ(y|x)dP0(x)−
∫
X
logCx

βdP0(x) =∫
X

∫
Y
log

dπ(y|x)dP0(x)

dπβ(y|x)dP0(x)
dπ(y|x)dP0(x)−

∫
X
logCx

βdP0(x) =∫
X×Y

log
dπ(x, y)

dπβ(x, y)
dπ(x, y)−

∫
X
logCx

βdP0(x) =

KL(π||πβ)−
∫
X
logCx

βdP0(x).

Hence, the equality (23) holds.

Now we introduce the following auxiliary functional L̃:

L̃(β, π) def
= KL(π||πW ϵ

)−
∫
Y
β(y)dπ1(y) +

∫
Y
β(y)dP1(y).

Recall that π1 denotes the second marginal distribution of π. We use this functional to derive the
saddle point reformulation of EOT.
Lemma B.3 (Relaxation of entropic optimal transport). It holds that

L∗ = inf
π∈Π(P0,P1)

KL(π||πW ϵ

)= sup
β

inf
π∈Π(P0)

L̃(β, π), (24)

where sup is taken over potentials β ∈ Cb,2(Y) and inf over π ∈ Π(P0).

Proof of Lemma B.3. We obtain

inf
π∈Π(P0,P1)

KL
(
π||πW ϵ)

= inf
π∈Π(P0,P1)

{∫
X

KL
(
π(y|x)||πW ϵ

(y|x)
)
dP0(x)

}
=

inf
π∈Π(P0,P1)

∫
X
C
(
x, π(y|x)

)
dP0(x), (25)

where C
(
x, ν

) def
= KL

(
ν||πW ϵ

(y|x)
)
. The last problem in (25) is known as weak OT [7, 20] with a

weak OT cost C. For a given β ∈ Cb,2(Y), consider its weak C-transform given by:

βC(x)
def
= inf

ν∈P2(Y)

{
C(x, ν)−

∫
Y
β(y)dν(y)

}
. (26)

Since C : X × P2(Y)→ R is lower bounded (by zero), convex in the second argument and jointly
lower semi-continuous, the following equality holds [7, Theorem 1.3]:

L∗ = inf
π∈Π(P0,P1)

∫
X
C
(
x, π(y|x)

)
dP0(x) = sup

β

{∫
X
βC(x)dP0(x) +

∫
Y
β(y)dP1(y)

}
, (27)

16

where sup is taken over β ∈ Cb,2(Y). We use our Proposition B.1 to note that

βC(x) = inf
ν∈P2(Y)

{
KL

(
ν||πW ϵ

(y|x)
)
−

∫
Y
β(y)dν(y)

}
=

inf
ν∈P2(Y)

{
KL(ν||πβ(·|x))− logCx

β} = − logCx
β .

This allows us to derive ∫
X
βC(x)dP0(x) +

∫
Y
β(y)dP1(y) = (28)

−
∫
X
logCx

βdP0(x) +

∫
Y
β(y)dP1(y) =

=0︷ ︸︸ ︷{
inf

π∈Π(P0)
KL(π||πβ)

}
−
∫
X
logCx

βdP0(x) +

∫
Y
β(y)dP1(y) =

inf
π∈Π(P0)

{
KL(π||πβ)−

Do not depend on π︷ ︸︸ ︷∫
X
logCx

βdP0(x) +

∫
Y
β(y)dP1(y)

}
=

inf
π∈Π(P0)

{
KL(π||πW ϵ

)−
∫
Y
β(y)dπ(y) +

∫
Y
β(y)dP1(y)

}
= inf

π∈Π(P0)
L̃(β, π). (29)

Here in transition to line (29), we use our Lemma B.2. It remains to take supβ in equality between
(28) and (29) and then recall (27) to finish the proof and obtain desired (24).

Thus, we can obtain the value L∗ (8) by solving maximin problem (24) with only one constraint
π ∈ Π(P0). Moreover, our following lemma shows that in all optimal pairs (β∗, π∗) which solve
maximin problem (24), π∗ is necessary the unique entropic OT plan between P0 and P1.

Lemma B.4 (Entropic OT plan solves the relaxed entropic OT problem). Let π∗ be the entropic OT
plan between P0 and P1. For every optimal β∗ ∈ argsupβ infπ∈Π(P0) L(β, π), we have

π∗ = arginf
π∈Π(P0)

L̃(β∗, π). (30)

Proof of Lemma B.4. Since β∗ is optimal, we know from Lemma B.3 that infπ∈Π(P0) L(β∗, π) = L∗.
Thanks to π∗ ∈ Π(P0,P1), we have π∗

1 = P1. We substitute π∗ to L(β∗, π) and obtain

L(β∗, π∗) = KL(π∗||πW ϵ

) +

∫
Y
β(y)dP1(y)−

∫
Y
β(y)

=dP1(y)︷ ︸︸ ︷
dπ∗

1(y) = KL(π∗||πW ϵ

) = L∗. (31)

The functional π 7→ L(β∗, π) is strictly convex (in the convex subset of Π(P0) of distributions π for
which KL(π||πW ϵ

) <∞). Thus, it has a unique minimizer, which is π∗.

From our Lemmas B.3 and B.4 it follows that to get the OT plan π∗ one may solve the maximin
problem (24) to obtain an optimal saddle point (β∗, π∗). Unfortunately, it is challenging to estimate
KL(π||πW ϵ

) from samples, which limits the usage of this objective in practice.

B.2 Equivalence of EOT and DSB relaxed problems

Below we show how to relax SB problem (11) and link its solution to the relaxed entropic OT (24).

For a given β ∈ Cb,2(Y), we define an auxiliary process T β such that its conditional distributions are
T β
|x,y =W ϵ

|x,y and its joint distribution πTβ

at t = 0, 1 is given by πβ .

To simplify many of upcoming formulas, we introduce Cβ
def
=

∫
X logCx

βdP0(x). Also, we introduce
F(P0) to denote the set of processes starting at P0 at time t = 0.

17

Lemma B.5 (Inner objectives of relaxed EOT and SB are KL with T β and πTβ

). For π ∈ Π(P0)
and T ∈ F(P0), the following equations hold:

L̃(β, π) = KL(π||πTβ

)− Cβ +

∫
Y
β(y)dP1(y), (32)

L(β, T) = KL(T ||T β)− Cβ +

∫
Y
β(y)dP1(y). (33)

Note that the last two terms in each line depend only on β but not on π or T .

Proof of Lemma B.5. The first equation (32) directly follows from Lemma B.2. Now we prove (33):

L(β, T)−
∫
Y
β(y)dP1(y) = KL(T ||W ϵ)−

∫
β(y)dπT

1 (y) =

KL(πT ||πW ϵ

) +

∫
X×Y

KL(T|x,y||W ϵ
|x,y)dπ

T (x, y)−
∫
β(y)dπT

1 (y) = (34)

KL(πT ||πTβ

)− Cβ +

∫
X×Y

KL(T|x,y||W ϵ
|x,y)dπ

T (x, y) =

KL(πT ||πTβ

)− Cβ +

∫
X×Y

KL(T|x,y||T β
|x,y)dπ

T (x, y) = KL(T ||T β)− Cβ . (35)

In the transition to line (34), we use the disintegration formula (6). In line (35), we use the definition
of T β , i.e., we exploit the fact that T β

|x,y =W ϵ
|x,y and again use (6).

As a result of Lemma B.5, we obtain the following important corollary.
Corollary B.6 (The solution to the inner problem of relaxed SB is a diffusion). Consider the problem

inf
T∈F(P0)

L(β, T). (36)

Then T β is the unique optimizer of (36) and it holds that T β ∈ D(P0), i.e., it is a diffusion process:

T β = arginf
T∈F(P0)

L(β, T) = arginf
Tf∈D(P0)

L(β, Tf). (37)

Proof. Thanks to (33), we see that T β is the unique minimizer of (36). Now let Q def
= πTβ

1 . Then

T β = arginf
T∈F(P0)

L(β, T) = arginf
T∈F(P0)

[
KL(T ||W ϵ)−

∫
Y
β(y)dπT

1 (y)
]
=

arginf
T∈F(P0,Q)

[
KL(T ||W ϵ)−

∫
Y
β(y)dπT

1 (y)︸ ︷︷ ︸
=Const, since πT

1 =πTβ
1 =Q

]
= arginf

T∈F(P0,Q)

KL(T ||W ϵ) =

arginf
Tf∈D(P0,Q)

KL(Tf ||W ϵ) = arginf
Tf∈D(P0,Q)

1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)||2dt]. (38)

In transition to (38), we use the fact that the process solving the Schrödinger Bridge (this time
between P0 and Q) with the Wiener Prior is a diffusion process (see Dynamic SB problem in M2.2
for details). As a result, we obtain T β ∈ D(P0,Q) ⊂ D(P0) and finish the proof.

Below we show that for a given β, minimization of the SB relaxed functional L(β, Tf) over Tf is
equivalent to the minimization of relaxed EOT functional L̃(β, π) (24) with the same β.
Lemma B.7 (Equivalence of the inf values of the relaxed functionals). It holds that

inf
Tf∈D(P0)

L(β, Tf) = inf
π∈Π(P0)

L̃(β, π) = −Cβ +

∫
β(y)dP1(y). (39)

Moreover, the unique minimizers are given by T β ∈ D(P0) and πTβ ∈ Π(P0), respectively.

18

Proof of Lemma B.7. Follows from Lemma B.5 and Corollary B.6.

Finally, we see that both the maximin problems are equivalent.
Corollary B.8 (Equivalence of EOT and DSB maximin problems). It holds that

L∗ = sup
β

inf
Tf∈D(P0)

L(β, Tf) = sup
β

inf
π∈Π(P0)

L̃(β, π) (40)

Proof of Corollary B.8. We take supβ of both parts in equation (39).

Also, it follows that the maximization of infTf∈D(P0) L(β, Tf) over β allows to solve entropic OT.

B.3 Proofs of main results

Finally, after long preparations, we prove our main Theorem 4.1.

Proof of Theorem 4.1 and Corollary 4.2. From our Lemma B.7 and Corollary B.8 it follows that

β∗∈argsup
β

inf
Tf∈D(P0)

L(β, Tf)⇔ β∗∈argsup
β

inf
π∈Π(P0)̃

L(β, π),

i.e., both maximin problems share the same optimal β∗. Thanks to our Lemma B.7, we already know
that the process T β∗ ∈ D(P0) and the plan πTβ∗

∈ Π(P0) are the unique minimizers of problems

inf
Tf∈D(P0)

L(β∗, Tf) = inf
π∈Π(P0)̃

L(β∗, π),

respectively. Therefore, Tf∗ = T β∗
and, in particular, πTf∗ = πTβ∗

. Moreover, since (β∗, πTf∗) is
an optimal saddle point for L̃, from Lemma B.4 we conclude that πTf∗ = π∗, i.e., πTf∗ is the EOT
plan between P0 and P1. In particular, πTf∗ ∈ Π(P0,P1) which also implies that Tf∗ ∈ D(P0,P1).
The last step is to derive

L∗ = L(β∗, Tf∗) = KL(Tf∗ ||W ϵ) +

∫
Y
β∗(y)dP1(y)−

∫
Y
β∗(y)

=dP1(y)︷ ︸︸ ︷
dπ

Tf∗

1 (y)︸ ︷︷ ︸
=0 since Tf∗∈D(P0,P1)

= KL(Tf∗ ||W ϵ).

which concludes that Tf∗ is the solution to SB (5).

Proof of Theorem 4.3. Part 1. From Lemma B.5 and Corollary B.6 it follows that that infTf
L(β̂, Tf)

has the unique minimizer T β̂ whose conditional distributions are T β̂
|x,y =W ϵ

|x,y . Therefore,

ϵ1 = L(β̂, Tf̂)− inf
Tf

L(β̂, Tf) =[
KL(Tf̂ ||T

β̂)− Cβ̂ +

∫
Y
β̂(y)dP1(y)

]
−
[
− Cβ̂ +

∫
Y
β̂(y)dP1(y)

]
= KL(Tf̂ ||T

β̂). (41)

Part 2. Now we consider ϵ2. We know that

L∗ = KL(Tf∗ ||W ϵ) =

KL(πTf∗ ||πW ϵ

) +

∫
X×Y

KL(Tf∗|x,y||W ϵ
|x,y)dπ

Tf∗ (x, y) = KL(πTf∗ ||πW ϵ

).

From Lemma B.5 and Corollary B.6, we also know that

inf
Tf

L(β̂, Tf) = −Cβ̂ +

∫
β̂(y)dP1(y).

Therefore:

ϵ2 = L∗ − inf
Tf

L(β̂, Tf∗) = KL(πTf∗ ||πW ϵ

) + Cβ̂ −
∫
β̂(y)dP1(y) =

19

KL(πTf∗ ||πWϵ) +

∫
X
logCx

β̂
dP0(x)−

∫
β̂(y)dP1(y) =∫

X
KL(πTf∗ (·|x)||πW ϵ

(·|x))dP0(x) +

∫
X
logCx

β̂
dP0(x)−

∫
β̂(y)dP1(y) =∫

X
KL(πTf∗ (·|x)||πW ϵ

(·|x))dP0(x) +

∫
X
logCx

β̂
dP0(x)−

∫
β̂(y)dπTf∗ (y|x)dP0(x) =∫

X

{
KL(πTf∗ (·|x)||πW ϵ

(·|x)) + logCx
β̂
−

∫
Y
β̂(y)dπTf∗ (y|x)

}
dP0(x) =∫

X

{
KL(πTf∗ (·|x)||πT β̂

(·|x))− logCx
β̂
+ logCx

β̂

}
dP0(x) =∫

X
KL(πTf∗ (·|x)||πT β̂

(·|x))dP0(x) = KL(πTf∗ ||πT β̂

) =

KL(πTf∗ ||πT β̂

) +

∫
X×Y

KL(Tf∗|x,y||T β̂
|x,y)dπ

Tf∗ (x, y)︸ ︷︷ ︸
=0, since Tf∗|x,y=T β̂

|x,y
=W ϵ

|x,y

= KL(Tf∗ ||T β̂). (42)

Thus, we obtain ϵ2 = KL(Tf∗ ||T β̂).

Part 3. By summing (41) and (42) and using the Pinsker inequality, we obtain

ϵ1 + ϵ2 = KL(Tf̂ ||T
β̂) + KL(Tf∗ ||T β̂) ≥ 2ρ2TV(Tf̂ , T

β̂) + 2ρ2TV(Tf∗ , T β̂) ≥[
ρTV(Tf̂ , T

β̂) + ρTV(Tf∗ , T β̂)
]2 ≥ ρ2TV(Tf̂ , Tf∗). (43)

Here we use the triangle inequality in line (43). Therefore, ρTV(Tf̂ , Tf∗) ≤
√
ϵ1 + ϵ2.

Part 4. By summing (41) and (42) and using the Pinsker inequality, we obtain

ϵ1 + ϵ2 = KL(Tf̂ ||T
β̂) + KL(Tf∗ ||T β̂) =

KL(πTf̂ ||πT β̂

) +

∫
X×Y

KL(Tf̂ |x,y||T
β̂
|x,y)dπ

Tf̂ (x, y) +

KL(πTf∗ ||πT β̂

) +

∫
X×Y

KL(Tf∗|x,y||T β̂
|x,y)dπ

Tf∗ (x, y) ≥

KL(πTf̂ ||πT β̂

) + KL(πTf∗ ||πT β̂

) ≥ 2ρ2TV(π
Tf̂ , πT β̂

) + 2ρ2TV(π
Tf∗ , πT β̂

) ≥[
ρTV(π

Tf̂ , πT β̂

) + ρTV(π
Tf∗ , πT β̂

)
]2 ≥ ρ2TV(π

Tf̂ , πTf∗).

Thus, ρTV(π
Tf∗ , πT β̂

) ≤
√
ϵ1 + ϵ2.

C Euler-Maruyama

In our Algorithm 1, at both the training and the inference stages, we use the Euler-Maruyama
Algorithm 2 to solve SDE.

D Drift Norm Constant Multiplication Invariance

Our Algorithm 1 aims to solve the following optimization problem:

sup
β

inf
Tf∈D(P0)

{
ETf

[

∫ 1

0

C||f(Xt, t)||2dt] +
∫
Y
β(y)dP1(y)−

∫
Y
β(y)dPTf

1 (y)

}
︸ ︷︷ ︸

def
=LC(β,Tf)

,

with C = 1. At the same time, we use C = 1
2ϵ in our theoretical derivations (12). We emphasize that

the actual value of C > 0 does not affect the optimal solution Tf∗ to this problem. Specifically, if

20

Algorithm 2: Euler-Maruyama algorithm
Input :batch of initial states X0 at time moment t = 0;

SDE drift network fθ : RD × [0, 1]→ RD;
number of steps for the SDE solver N ≥ 1;
noise variance ϵ ≥ 0.

Output :batches {Xn}Nn=0 of intermediate states at t = n
N simulating the proccess

dXt=f(Xt, t)dt+
√
ϵdWt;

batches {fn}Nn=0 of drift values f(Xn, tn) at t = n−1
N simulating the process;

∆t← 1
N ;

for t = 1, 2, . . . , N do
for i = 1, 2, . . . , |X0| do

Sample noise W from N (0, I) ;
ft−1,i ← f(Xt−1, t− 1) ;
Xt,i ← Xt−1,i + ft−1,i∆t+

√
ϵ∆tW ;

(β∗, Tf∗) is the optimal point for the problem with C = 1, then (C̃β∗, Tf∗) is the optimal point for
C = C̃. Indeed, for a pair (β, Tf) it holds that

L1(β, Tf) = ETf
[

∫ 1

0

||f(Xt, t)||2dt] +
∫
Y
β(y)dP1(y)−

∫
Y
β(y)dPTf

1 (y) =

1

C̃

{
ETf

[

∫ 1

0

C̃||f(Xt, t)||2dt] +
∫
Y
C̃β(y)dP1(y)−

∫
Y
C̃β(y)dPTf

1 (y)

}
=

1

C̃

{
ETf

[

∫ 1

0

C̃||f(Xt, t)||2dt] +
∫
Y
β̃(y)dP1(y)−

∫
Y
β̃(y)dPTf

1 (y)

}
=

1

C̃
LC̃(β̃, Tf), (44)

where we use β̃ def
= C̃β. Hence problems supβ infTf

L1(β, Tf) and supβ̃ infTf
LC̃(β̃, Tf) can be

viewed as equivalent in the sense that one can be derived one from the other via the change of
variables and multiplication by C̃ > 0. For completeness, we also note that the change of variables
β ↔ β̃ actually preserves the functional class of β, i.e., β ∈ Cb,2(Y)⇐⇒ β̃ ∈ Cb,2(Y).

For convenience, we get rid of dependence on ϵ in the objective (12) and consider L1 for optimization,
i.e., use C = 1 in Algorithm 1. Still the dependence on ϵ remains in supβ infTf

L1(β, Tf) as
Tf ∈ D(P0) is a diffusion process with volatility ϵ. Interestingly, this point of view (optimizing
L1 instead of L 1

2ϵ) technically allows to consider even ϵ = 0. In this case, the optimization is
performed over deterministic trajectories Tf determined by the velocity field f(Xt, t). The problem
supβ infTf

L1(β, Tf) may be viewed as a saddle point reformulation of the unregularized OT with
the quadratic cost in the dynamic form, also known as the Benamou-Brenier formula [43, M6.1]. This
particular case is out of scope of our paper (it is not EOT/SB) and we do not study the properties of
L1 in this case. However, for completeness, we provide experimental results for ϵ = 0.

E ENOT for Toy Experiments and High-dimensional Gaussians

In 2D toy experiments, we consider 2 tasks: Gaussian → 8 gaussians and Gaussian → Swiss roll.
Results for the last one (Figure 5) are qualitatively similar to results of the first one (Figure 2), which
we discussed earlier (M5.1). For both tasks, we parametrize the SDE drift function in Algorithm 1
by a feedforward neural network fθ with 3 inputs, 3 linear layers (100 hidden neurons and ReLU
activations) and 2 outputs. As inputs, we use 2 coordinates and time value t (as is). Analogically,
we parametrize the potential by a feedforward neural network βϕ with 2 inputs, 3 linear layers (100
hidden neural and ReLU activations) and 2 outputs. In all the cases, we use N = 10 discretization
steps for solving SDE by Euler-Maruyama Algorithm 2, Adam with lr = 10−4, batch size 512. We
train the model for 20000 total iterations of βϕ, and on each of them, we do Kf = 10 updates for the
SDE drift function fθ.

21

(a) Input and target samples (b) ENOT (ours), ϵ = 0 (c) ENOT (ours), ϵ = 0.01 (d) ENOT (ours), ϵ = 0.1

Figure 5: Gaussian→ Swiss roll, learned stochastic process with ENOT (ours).

In the experiments with high-dimensional Gaussians, we use exactly the same setup as for toy 2D
experiments but chose N = 200 discretization steps for SDE, all hidden sizes in neural networks
are 512, and we train our model for 10000 iterations. To illustrate the stability of the algorithm, we
provide the plot of BW2

2-UVP (%) between the ground truth EOT plan π∗ and the learned plan π of
ENOT during training for DIM = 128 in Figure 6.

Figure 6: BW2
2-UVP ↓ (%) between the the EOT plan π∗ and the learned plan π of ENOT and

MLE-SB during the training (DIM = 128).

F ENOT for Colored MNIST and Unpaired Super-resolution of Celeba Faces

For the image tasks (M5.3, M5.4), we find out that using the following reparametrization of Euler-
Maruyama Algorithm 2 considerably improves the quality of our Algorithm 1. In the Euler-Maruyama
Algorithm 2, instead of using a neural network to parametrize drift function f(Xt, t) and calculating
the next state as Xt+1 = Xt + f(Xt, t)∆t+

√
ϵ∆t, we parametrize g(Xt, t) = Xt + f(Xt, t)∆t

by a neural network gθ, and calculate the next state as Xt+1 = gθ(Xt, t) +
√
ϵ∆t. In turn, the drift

function is given by f(Xt, t) =
1
∆tg(Xt, t)−Xt. Also, we do not add noise at the last step of the

Euler-Maruyama simulation because we find out that it provides better empirical performance.

22

Figure 7: Trajectories from our learned ENOT (ours) for colored MNIST for different ϵ.

We use WGAN-QC discriminator’s ResNet architecture 5 for the potential β. We use UNet 6 as
gθ(Xt, t) of SDE in our model. To condition it on t, we first obtain the embedding of t by using
the positional embedding 7. Then we add conditional instance normalization (CondIN) layers after
each UNet’s upscaling block 8. We use Adam with lr = 10−4, batch size 64 and 10:1 update ratio
for fθ/βϕ. For ϵ = 0 and ϵ = 1 our model converges in ≈ 20000 iterations, while for ϵ = 10 it
takes ≈ 70000 iteration to convergence. The last setup takes more iterations to converge because
adding noise with higher variance during solving SDE by Euler-Maruyama Algorithm 2 increases the
variance of stochastic gradients.

In the unpaired super-resolution of Celeba faces, we use the same experimental setup as for the
colored MNIST experiment. It takes ≈ 40000 iterations for ϵ = 0 and ≈ 70000 iterations for ϵ = 1
and ϵ = 10 to converge. In Figures 7, 1 we present trajectories provided by our algorithm for Colored
MNIST and Celeba experiments.

Computational complexity. In the most challenging task (M5.4), ENOT converges in one week on
2× A100 GPUs.

G Details of the baseline methods

In this section, we discuss details of the baseline methods with which we compare our method.

G.1 Gaussian case (M5.2).

SCONES [14]. We use the code from the authors’ repository

https://github.com/mdnls/scones-synthetic

for their evaluation in the Gaussian case. We employ their configuration blob/main/config.py.

LSOT [45]. We use the part of the code of SCONES corresponding to learning dual OT potentials
blob/main/cpat.py and the barycentric projection blob/main/bproj.py in the Gaussian case
with configuration blob/main/config.py.

FB-SDE-J [10]. We utilize the official code from

https://github.com/ghliu/SB-FBSDE

with their configuration blob/main/configs/default_checkerboard_config.py for the
checkerboard-to-noise toy experiment, changing the number of steps of dynamics from 100 to
200 steps. Since their hyper-parameters are developed for their 2-dimensional experiments, we
increase the number of iterations for dimensions 16, 64 and 128 to 15 000.

FB-SDE-A [10]. We also take the code from the same repository as above. We base our configura-
tion on the authors’ one (blob/main/configs/default_moon_to_spiral_config.py) for the
moon-to-spiral experiment. As earlier, we increase the number of steps of dynamics up to 200. Also,
we change the number of training epochs for dimensions 16, 64 and 128 to 2,4 and 8 correspondingly.

5github.com/harryliew/WGAN-QC
6github.com/milesial/Pytorch-UNet
7github.com/rosinality/denoising-diffusion-pytorch
8github.com/kgkgzrtk/cUNet-Pytorch

23

https://github.com/mdnls/scones-synthetic
https://github.com/ghliu/SB-FBSDE

DiffSB [15]. We utilize the official code from

https://github.com/JTT94/diffusion_schrodinger_bridge

with their configuration blob/main/conf/dataset/2d.yaml for toy problems. We increase the
amount of steps of dynamics to 200 and the number of steps of IPF procedure for dimensions 16, 64
and 128 to 30, 40 and 60, respectively.

MLE-SB [48]. We use the official code from

https://github.com/franciscovargas/GP_Sinkhorn

with hyper-parameters from blob/main/notebooks/2D Toy Data/2d_examples.ipynb. We
set the number of steps to 200. As earlier, we increase the number of steps of IPF procedure for
dimensions 16, 64 and 128 to 1000, 3500 and 5000, respectively.

G.2 Colored MNIST (M5.3)

SCONES [14]. In order to prepare a score-based model, we use the code from

https://github.com/ermongroup/ncsnv2

with their configuration blob/master/configs/cifar10.yml. Next, we utilize the code of
SCONES from the official repository for their unpaired Celeba super-resolution experiment
(blob/main/scones/configs/superres_KL_0.005.yml). We adapt it for 32×32 ColorMNIST
images instead of 64×64 celebrity faces.

DiffSB [15]. We use the official code with their configuration blob/main/conf/mnist.yaml
adopting it for three-channel ColorMNIST images instead of one-channel MNIST digits.

G.3 CelebA (M5.4)

SCONES [14]. For the SCONES, we use their exact code and configuration from
blob/main/scones/configs/superres_KL_0.005.yml. As for the score-based model for
celebrity faces, we pick the pre-trained model from

https://github.com/ermongroup/ncsnv2

It is the one used by the authors of SCONES in their paper.

Augmented Cycle GAN [2]. We use the official code from

https://github.com/NathanDeMaria/AugmentedCycleGAN

with their default hyper-parameters.

ICNN [38]. We utilize the reworked implementation by

https://github.com/iamalexkorotin/Wasserstein2Benchmark.

which is a non-minimax version [26] of ICNN-based approach [38]. That is, we use
blob/main/notebooks/W2_test_images_benchmark.ipynb and only change the dataloaders.

H Mean-Field Games

This appendix discusses the relation between the Mean-Field Game problem and Schrödinger Brdiges.

H.1 Intro to the Mean-Field game.

Consider a game with infinitely many small players. At time moment t = 0, they are distributed
according to X0 ∼ ρ0. Every player controls its behavior through drift α of the SDE:

dXt = α(Xt, t, ρt)dt+
√
2νdWt

24

https://github.com/JTT94/diffusion_schrodinger_bridge
https://github.com/franciscovargas/GP_Sinkhorn
https://github.com/ermongroup/ncsnv2
https://github.com/ermongroup/ncsnv2
https://github.com/NathanDeMaria/AugmentedCycleGAN
https://github.com/iamalexkorotin/Wasserstein2Benchmark

Here ρt is the distribution of all the players at the time moment t. When we consider a specific player,
we consider ρt as a parameter. Each player aims to minimize the quantity:

E[
∫ T

0

(L(Xt, αt, ρt) + f(Xt, ρt))dt+ g(XT , ρT)].

Here L(x, α, ρ) is similar to the Lagrange function in physics and describes the cost of moving in
some direction given the current position and the other players’ distribution. The additional function
f(Xt, ρt) is interpreted as the cost of the player’s interaction at coordinate x with all the others. Now
we can introduce the value function ϕ(x, t), which for position x and start time t returns the cost in
case of the optimal control:

ϕ(x, t)
def
= inf

α
E[
∫ T

t

(L(Xt, αt, ρt) + f(Xt, ρt))dt+ g(XT , ρT)].

Before considering the Mean-Field game, we need to define an additional function H(x, p, ρ). It is
similar to the Hamilton function and is defined as the Legendre transform of Lagrange function L:

H(x, p, ρ)
def
= sup

α
[−αp− L(x, α, ρ)].

Mean-Field game implies finding the Nash equilibrium for all players of such the game. It is known
[1] that the Nash equilibrium is the solution of the system of Hamilton-Jacobi-Bellman (HJB) and
Fokker-Planck (FP) PDE equations. For two functions H(x, p, ρ) and f(x, ρ), Mean-Field game
formulates as a system of two PDE with two constraints:

−∂tϕ− ν∆ϕ+H(x,∇ϕ, ρ) = f(x, ρ) (HJB)

−∂tρ− ν∆ρ− div(ρ∇pH(x,∇ϕ)) = 0 (FP)

s.t. ρ(x, 0) = ρ0 , ϕ(x, T) = g(x, ρ(·, T))

The solution of this system is two functions ρ(x, t) and ϕ(x, t), which describe all players’ dynamics.
Also, in Nash equilibrium, the specific player’s behavior is described by the following SDE:

dXt = −∇pH(Xt,∇ϕ(Xt, t), ρ)dt+
√
2νdWt.

H.2 Relation to our work.

In recent work [34], the authors show that the Schrodinger Bridger problem could be formulated as a
Mean-Field game with hard constraints on distribution ρ(·, T) = ρtarget(·, T) via choosing proper
function g(x, ρ(·, T)) such as:

g(x, ρ(·, T)) =
{
∞, if ρ(·, T) ̸= ρtarget(·, T)
0, ρ(·, T) = ρtarget(·, T)

Also, the authors proposed an extension of DiffSB [34] algorithm for the Mean-Field game problem.

In [33], the authors in their experiments consider only soft constraints on the target density. More
precisely, they consider only simple constraints such as g(x, ρ) = ||x− xtarget||2, where xtarget is a
given shared target point for every player, and every player is penalized for being far from this. Such
soft constraint force players to have delta distribution at point xtarget.

To solve the Mean-Field problem, the authors parameterize value function ϕ(x, t) by a neural network
and use different neural network Nθ to sample from ρt. The authors penalize the violation of
Mean-Field game PDEs for optimizing these networks. After the convergence, one can sample
from the distribution ρt by using neural network Nθ. Approach [33] has the advantage that authors
do not need to use SDE solvers, which require more steps with growing parameter ν of diffusion
operator. However, computation of Laplacian and divergence for high-dimensional spaces (e.g.,
space 12228-dimensional space of 3x64x64 images) at each iteration of the training step may be
computationally hard, restricting the applicability of their method to large-scale setups.

25

In our approach, we initially work with the SDE:

dXt = α(Xt, t, ρt)dt+
√
2νdWt,

which describes the player’s behavior and use a neural network to parametrize the drift α. We consider
only hard constraints on the target distribution, f(Xt, ρt) = 0 and L(Xt, αt, ρt) =

1
2 ||αt||2 since

this variant of Mean-Field game is also the particular case of Schrodinger Bridge problem and is
equivalent to the entropic optimal transport. Since we do not need to compute Laplacian or divergence,
our approach scales better with the dimension. However, for high values of diffusion parameter ν
(which is equal to the 1

2ϵ in our notation, where ϵ is the entropic regularization strength), our approach
needs more steps for accurate solving of the SDE to provide samples, as we mentioned in limitations.

I Extending ENOT to other costs

In the main text, we focus only on EOT with the quadratic cost c(x, y) = 1
2∥x− y∥

2 which coincides
with SB with the Wiener prior W ϵ. However, one could use a different prior Qv instead of W ϵ in (5):

Qv : dXt = v(Xt, t)dt+
√
ϵdWt,

and solve the problem

inf
Tf∈D(P0,P1)

KL(Tf ||Qv) = inf
Tf∈D(P0,P1)

1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)− v(Xt, t)||2dt].

Here we just use the known expression (6) for KL(Tf ||Qv) between two diffusion processes through
their drift functions. Using the same derivation as in the main text M2.2, it can be shown that this new
problem is equivalent to solving the EOT with cost c(x, y) = − log πQv (y|x), where πQv (y|x) is a
conditional distribution of the stochastic process Qv at time t = 1 given the starting point x at time
t = 0. For example, for W ϵ (which we consider in the main text) we have

c(x, y) = − log πW ϵ

(y|x) = 1

2ϵ
(y − x)T (y − x) + Const,

i.e., we get the quadratic cost. Thus, using different priors for the Schrodinger bridge problem makes
it possible to solve Entropic OT for other costs. We conjecture that most of our proofs and derivations
can be extended to arbitrary prior process Qv just by slightly changing the minimax functional (12):

sup
β

inf
Tf

(
1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)− v(Xt, t)||2dt] +
∫
Y
βϕ(y)dP1(y)−

∫
Y
βϕ(y)dπ

Tf

1 (y)

)
.

We conduct a toy experiment to support this claim and consider Qv with ϵ = 0.01 and v(x, t) =
∇ log p(x), where log p(x) is a 2D distribution with a wave shape, see Figure 8. Intuitively, it means
that trajectories should be concentrated in the regions with a high density of p. In Figure e 8, there
the grey-scale color map represents the density of p, start points (P0) are green, target points (P1) are
red, obtained trajectories are pink and mapped points are blue.

J ENOT for the unregularized OT (ϵ = 0)

Our proposed algorithm is designed to solve entropic OT and the equivalent SB problem. This
implies that ϵ > 0. Nevertheless, our algorithm technically allows using even ϵ = 0, in which case
it presumably computes the unegularized OT map for the quadratic cost. Here we present some
empirical evidence supporting this claim as well some theoretical insights.

EMPIRICAL EVIDENCE. We consider the experimental setup with images from the continuous
Wasserstein-2 benchmark [28, M4.4]. The images benchmark provides 3 pairs of distributions (Early,
Mid, Late) for which the ground truth unregularized OT map for the quadratic cost is known by the
construction. Hence, we may compare the map learned with our method (ϵ = 0) with the true one.

We train our method with ϵ = 0 on each of 3 benchmark pairs and present the quantitative results
in Table 6. We use the same L2-UVP metric [28, M4.2] as the authors of the benchmark. As the
baselines, we include the results of MM:R method from [28] and the method from [3]. Both methods
are minimax and have some similarities with our approach. As we can see, ENOT with ϵ = 0

26

Figure 8: Toy example with ENOT (ours) for the complex prior Qv : dXt = v(Xt, t)dt+
√
ϵdWt.

Benchmark Early Mid Late
[28]* 1.4 0.4 0.22
[3]* 0.61 0.20 0.09

ENOT (ours) 0.77 0.21 0.09

Table 6: Comparison on W2 benchmark. *Results are taken from [3, Table 2].

works better than the MM:R solver but slightly underperforms compared to [3]. This evaluation
demonstrates that our method recovers the unregularized OT map for the quadratic cost with the
comparable quality to the existing saddle point OT methods.

THEORETICAL INSIGHTS. We see that empirically our method with ϵ = 0 recovers the unregularized
OT map. At the same time, this is not supported by our theoretical results as they work exclusively
for ϵ > 0 and rely on the properties of the KL divergence.

Overall, it seems like for ϵ = 0 our method yields a saddle point reformulation of the Benamou-
Brenier (BB) [8] problem which is also known as the dynamic version of the unregularized OT
(ϵ = 0) with the quadratic cost. This problem can be formulated as follows:

inf
Tf

{
1

2
ETf

[

∫ 1

0

||f(Xt, t)||2dt]
}

s.t. Tf : dXt = f(Xt, t)dt, X0 ∼ P0, X1 ∼ P1, (45)

i.e., the goal is to find the process Tf of the minimal energy which moves the probability mass of P0

to P1. BB (45) is very similar to DSB (11) but there is no multiplier 1
ϵ , and the stochastic process Tf

is restricted to be deterministic (ϵ = 0). It is governed by a vector field f . Just like the DSB (11) is
equivalent to EOT (2), it is known that BB (45) is equivalent to unregularized OT with the quadratic
cost (ϵ = 0). Namely, the distribution πTf∗ is the unregularized OT plan between P0 and P1.

In turn, our Algorithm 1 for ϵ = 0 optimizes the following saddle point objective:

sup
β

inf
Tf

L(β, Tf)
def
= sup

β
inf
Tf

{
1

2
ETf

[

∫ 1

0

||f(Xt, t)||2dt]+
∫
Y
β(y)dP1(y)−

∫
Y
β(y)dPTf

1 (y)

}
, (46)

where Tf : dXt = f(Xt, t)dt with X0 ∼ P0 (the constraint X1 ∼ P1 here is lifted) and β ∈ C2,b(Y).
Just like in the Entropic case, functional L can be viewed as the Lagrangian for BB (45) with β
playing the role of the Lagrange multiplier for the constraint dπTf

1 (y) = dP1(y). Naturally, it is
expected that the value (45) coincides with (46), and we provide a sketch of the proof of this fact.

Overall, the proof logic is analogous to the Entropic case but the actual proof is much more technical
as we can not use the KL-divergence machinery which helps to avoid non-uniqueness, etc.

Step 1 (Auxiliary functional, analog of Lemma B.3). We introduce an auxiliary functional

L̃(β,H)
def
=

∫
X

1

2
∥x−H(x)∥2dP0(x)−

∫
X
β(H(x))dP0(x) +

∫
Y
β(y)dP1(y),

27

where β is a potential and H : RD → RD is a measurable map. This functional is nothing but the
well-known max-min reformulation of static OT problem (in Monge’s form) with the quadratic cost
[3, Eq. 4], [28, Eq.9]. Hence,

sup
β

inf
H
L̃(β,H) = inf

H♯P0=P1

∫
X

1

2
||x−H(x)||2dP0(x)︸ ︷︷ ︸

def
=L∗

.

Step 2 (Solution of the inner problem is always an OT map). An existence of some minimizer
H = Hβ in infH L̃(β,H) can be deduced from the measurable argmin selection theorem, e.g., [21,

Theorem 18.19]. For this Hβ we consider P′ def
= Hβ♯P0. Recall that

Hβ ∈ arginf
H

L̃(β,H) = arginf
H

∫
X

{∥x−H(x)∥2

2
− β(H(x))

}
dP0(x).

Here we may add the fictive constraint H♯P0 = P′ which is anyway satisfied by Hβ and get

Hβ ∈ arginf
H♯P0=P′

∫
X

{∥x−H(x)∥2

2
− β(H(x))

}
dP0(x) = arginf

H♯P0=P′

∫
X

∥x−H(x)∥2

2
dP0(x).

The last equality holds since
∫
β(H(x))dP0(x) =

∫
β(y)dP′(y) does not depend on the choice of

H due to the constraint H♯P0 = P′. The latter is the OT problem between P and P′ and we see that
Hβ is its solution.

Step 3 (Equivalence for inner objective values). Since Hβ is the OT map between P0,P′ (it
is unique as P0 is absolutely continuous [43]), it can be represented as an ODE solution Tfβ to
the Benamour Brenier problem between P0,P′, i.e., Tfβ : dXt = fβ(Xt, t)dt and Hβ(X0) =

X0 +
∫ 1

0
fβ(Xt, t)dt. Furthermore, in this case, ∥X0 −Hβ(X0)∥2 =

∫ 1

0
||fβ(Xt, t)||2dt. Hence, it

can be derived that
inf
H
L̃(β,H) = inf

Tf

L(β, Tf).

Step 4 (Equivalence of the saddle point objective). Take sup over β ∈ Cb,2(Y) and get the final
equivalence:

sup
β

inf
H
L̃(β,H) = sup

β
inf
H
L(β, Tf) = L∗.

Step 5 (Dynamic OT solutions are contained in optimal saddle points). Pick any optimal β∗ ∈
argsupβ infH L(β, Tf∗) and let Tf∗ be any solution to the Benamou-Brenier problem. Checking
that T ∗ ∈ infH L(β∗, Tf) can be done analogously to [31, Lemma 4], [42, Lemma 4.1]. □

The derivation above shows the equivalence of objective values of dynamic unregularized OT (45)
and our saddle point reformulation of BB (45). Additionally, it shows that solutions Tf∗ can be
recovered from some optimal saddle points (β∗, Tf∗) of our problem. At the same time, unlike the
EOT case (ϵ > 0), it is not guaranteed that for all the optimal saddle points (β∗, Tf∗) it holds that
Tf∗ is the solution to the BB problem. This aspect seems to be closely related to the fake solutions
issue in the saddle point methods of OT [30] and may require further studies.

28

	Extended background: KL divergence with the Wiener process plan
	Proofs
	Relaxation of entropic OT
	Equivalence of EOT and DSB relaxed problems
	Proofs of main results

	Euler-Maruyama
	Drift Norm Constant Multiplication Invariance
	ENOT for Toy Experiments and High-dimensional Gaussians
	ENOT for Colored MNIST and Unpaired Super-resolution of Celeba Faces
	Details of the baseline methods
	Gaussian case ("4D5.2).
	Colored MNIST ("4D5.3)
	CelebA ("4D5.4)

	Mean-Field Games
	Intro to the Mean-Field game.
	Relation to our work.

	Extending ENOT to other costs
	ENOT for the unregularized OT (=0)

