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Abstract

Gaussian mixture models (GMMs) are fundamental to machine learning due to
their flexibility as approximating densities. However, uncertainty quantification
of GMMs remains a challenge as differential entropy lacks a closed form. This
paper explores polynomial approximations, specifically Taylor and Legendre, to
the GMM entropy from a theoretical and practical perspective. We provide new
analysis of a widely used approach due to Huber et al. (2008) and show that
the series diverges under simple conditions. Motivated by this divergence we
provide a novel Taylor series that is provably convergent to the true entropy of
any GMM. We demonstrate a method for selecting a center such that the series
converges from below, providing a lower bound on GMM entropy. Furthermore, we
demonstrate that orthogonal polynomial series result in more accurate polynomial
approximations. Experimental validation supports our theoretical results while
showing that our method is comparable in computation to Huber et al. We also
show that in application, the use of these polynomial approximations, such as
in Nonparametric Variational Inference, rely on the convergence of the methods
in computing accurate approximations. This work contributes useful analysis
to existing methods while introducing novel approximations supported by firm
theoretical guarantees.

1 Introduction
Entropy is a natural measure of uncertainty and is fundamental to many information-theoretic quanti-
ties such as mutual information (MI) and Kullback-Leibler (KL) divergence [8]. As a result, entropy
plays a key role in many problems of ML including model interpretation [7], feature selection [6],
and representation learning [27]. It is often used in the data acquisition process as in active learn-
ing [25, 26], Bayesian optimal experimental design [17, 5, 3], and Bayesian optimization [13]. Yet,
despite its important role entropy is difficult to calculate in general.

One such case is the Gaussian mixture model (GMM), where entropy lacks a closed form and is the
focus of this paper. GMMs are fundamental to machine learning and statistics due to their property as
universal density approximators [18]. However, the lack of a closed-form entropy requires approxima-
tion, often via Monte Carlo expectation. Such stochastic estimates can be undesirable as computation
becomes coupled with sample size and a deterministic approach is often preferred. Simple determinis-
tic bounds can be calculated via Jensen’s inequality or Gaussian moment matching [14]. Such bounds
are often too loose to be useful, leading to other options such as variational approximations [21, 10]
and neural network-based approximation [2]. Yet, these deterministic estimators do not allow a
straightforward tradeoff of computation and accuracy as in the Monte Carlo setting.

Polynomial series approximations are both deterministic and provide a mechanism for computation-
accuracy tradeoff by varying the polynomial degree. In this paper we focus on three such polynomial
approximations of the GMM entropy. We begin with the widely used approximation of Huber et
al. (2008). While this approximation yields good empirical accuracy in many settings, a proof of
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convergence is lacking. In this work we show that the Huber et al. approximation in fact does
not converge in general, and we provide a divergence criterion (Theorem 3.1). In response to the
divergent behavior, we propose two alternative polynomial approximations, a Taylor and Legendre
series approximation of GMM entropy that are provably convergent. We establish in Theorem 4.2
and Theorem 4.5 that each series converges everywhere under conditions on the center point or
interval, respectively. In Theorem 4.4 we provide a simple mechanism for choosing a value to ensure
that these series converge everywhere. We additionally establish, in Theorem 4.3, that our Taylor
approximation is a convergent lower bound on the true entropy for any finite poynomial order.

The complexity of both Huber et al. and our proposed methods have similar computation largely
driven by polynomial order. To address this we propose an approximation that estimates the higher-
order terms by fitting a polynomial regression. This approach requires the evaluation of only three
consecutive polynomial orders to approximate higher order series. In this way we can obtain more
accurate estimates without the computational overhead of evaluating higher order polynomial terms.

We conclude with an empirical comparison of all polynomial approximations that produce the diver-
gent behavior of the Huber et al. approximation while our propsed methods maintain convergence.
We also compare accuracy and compuation time for each method accross a varaitey of dimensions,
number of GMM components, and polynomial orders. Finally, we show an application of our methods
in Nonparametric Variational Inference [11] where the guarantees of convergence play a large role in
the accuracy of posterior approximation via GMMs.

2 Preliminaries
We briefly introduce required notation and concepts, beginning with a definition of the Gaussian
mixture entropy. We will highlight the challenges that preclude efficient computation of entropy. We
conclude by defining notation that will be used for discussion of polynomial approximations.

2.1 Gaussian Mixture Entropy
The differential entropy of a continuous-valued random vector x ∈ Rd with a probability density
function p(x) is given by,

H(p(x)) = −
∫

p(x) log p(x)dx = E[− log p(x)]. (1)

The differential entropy is in [−∞,∞] for continuous random variables. It is a measure of uncertainty
in the random variable in the sense that its minimum is achieved when there is no uncertainty in the
random vector, i.e., a Dirac delta, and approaches the maximum as the density becomes uniformly
distributed.

Gaussian mixtures are ubiquitous in statistics and machine learning due to their property as universal
density approximators [18]. However, despite this flexibility, the entropy of a Gaussian mixture
requires computing the expectation of the log-sum operator, which lacks a closed form. Many
approximations and bounds are used in practice. A simple upper bound is given by the entropy of a
single Gaussian with the same mean and covariance as the mixture [14], and a lower bound can be
obtained by Jensen’s inequality. Though efficient, these bounds are very loose in practice, leading
to more accurate methods being used, such as various Monte Carlo approximations, deterministic
sampling [12], and numerous variational bounds and approximations [21, 10].

2.2 Taylor Polynomials
In this paper we explore entropy approximation using Taylor polynomials. The nth-order Taylor
polynomial of a function f(x) with evaluation point c is given by,

Tf,n,c(x) =

n∑
i=0

f (n)(c)

n!
(x− c)n, (2)

where f (n)(c) denotes the nth derivative of f evaluated at point c. The Taylor series has a region
of convergence which determines the range of x-values where the series accurately represents the
original function. It depends on the behavior of the function and its derivatives at the expansion
point. Analyzing the region of convergence is crucial for ensuring the validity of the Taylor series
approximation. Various convergence tests, such as the ratio test, help determine the x-values where
the Taylor series provides an accurate approximation.
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2.3 Orthogonal Polynomials
Taylor series are versatile approximations, however predominately behave well near the center point
chosen. We ideally would like an approximation that performs well across a range of values. To
achieve this, we consider series approximation via orthogonal polynomials. A set of orthogonal
polynomials on the range [a, b] is an infinite sequence of polynomials P0(x), P1(x), . . . where Pn(x)
is an nth degree polynomial and for any pair of polynomials satisfies

⟨Pi(x), Pj(x)⟩ =
∫ b

a

Pi(x)Pj(x)dx = ciδij (3)

where δij is the Kronecker delta function and ci is some constant. Orthogonal polynomials can be
used to approximate a function, f(x), on their interval, [a, b], by finding the projection of f(x) onto
each polynomial in the series Pi(x).

f(x) =

∞∑
i=1

⟨f(x), Pi(x)⟩
⟨Pi(x), Pi(x)⟩

Pi(x) (4)

Any appropriate choice of orthogonal polynomials can be used. One might be interested in consid-
ering the Chebyshev polynomials for their property of minimizing interpolation error or Legendre
polynomials for their versatility and ease of computation.

3 Convergence of Polynomial Approximations
To estimate the entropy H(p) = Ep[− log(p(x))] using a polynomial approximation one may ap-
proximate either the log-density log(p(x)) or just the logarithm log(y). We will show that estimating
log(p(x)) has convergence issues and that it can be complicated to compute due to tensor arithmetic
in higher dimensions. Both of these issues will be addressed by simply approximating log(y) and
computing the exact p(x). All proofs are deferred to the Appendix for space.

3.1 Divergence of Huber et al. Approximation
We begin our exploration with a widely used approximation of the GMM entropy due to [15]. Let p(x)
be a GMM and the log-GMM h(x) = log(p(x)). Huber et al. provides a Taylor series approximation
of the GMM entropy given by,

log(p(x)) = −
M∑
i=1

wi

∞∑
n=0

h(n)(µi)

n!
(x− µi)

n, (5)

The series is M individual Taylor series evaluated at each component mean, µi. The equality in
Eqn. (5) only holds if the series converges, which we will show is not the case in general.

Theorem 3.1 (Divergence Criterion for Huber et al.). Let p(x) =
∑M

i=1 wiN (x | µi,Σi) and
consider the Taylor series presented in Eqn. (5). If any mean component, µi, satisfies the condition
p(µi) <

1
2max(p(x)), then the series diverges, otherwise it converges.

Theorem 3.1 provides us with the condition that Huber et al.’s approximation Eqn. (5) will diverge.
This means that the entropy approximation will be inaccurate for any GMM with any of its modes
less than half the probability of any other point, as illustrated in Fig. 1.

3.2 Taylor Series Approximation of the Logarithm

Motivated by the divergence of the previous Taylor series we propose a different approach that is
provably convergent. While Huber et al. perform a Taylor decomposition of the log-GMM PDF, our
approach decomposes only the log(y) function using a Taylor series of the function centered about
the point a. It is well-known that this series converges for values |y − a| < a [28] and is given by,

log(y) = log(a) +

∞∑
n=1

(−1)n

nan
(y − a)n. (6)

Note the change of c to a as the Taylor series center. This change highlights the difference in function
domains. In particular, the former series is computed on values of the random vector x, whereas ours
is computed on the PDF y = p(x). Choosing any center a > 1

2max(p(x)) will ensure that the series
converges everywhere.
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Figure 1: Divergence of Huber et al. and convergence of our polynomial series approximation are plotted
for the Gaussian mixture, p(x) = .35N (x | −3, 2) + .65N (x | 0, .2). In the left graph, the log-GMM is
plotted, which is what each series is defined for. The right plot is the exponential of the series so we can see
how each converge in the more familiar framework of a GMM. Notice that the Huber et al. is centered on the
first component mean µ1 = −3 and diverges around the mean of the second component µ2 = 0 as supported
by Theorem 3.1 since the mode µ1 is less than half the probability at the mode µ2. Both of our methods are
convergent, the Taylor series is a bound (Theorem 4.3) while the Legendre series has a lower global error.

Lemma 3.2 (Convergent Taylor Series of Log). If a > 1
2max(p(x)), then for all x

log(p(x)) = log(a) +

∞∑
n=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kp(x)k (7)

The proof of Lemma 3.2 is a simple ratio test. The only assumption on p(x) is that it has a finite
maximum, which is true for any non-degenerate GMM with positive definite component covariances.
As a result, the Taylor series converges for all x regardless of the GMM form.

3.3 Legendre Series Approximation of the Logarithm
For the orthogonal polynomial approximation, we consider the Legendre polynomials, specifically
the shifted Legendre polynomials [4] which are orthogonal on [0, a],

Pn(y) = L[0,a],n(y) =

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
yk (8)

Lemma 3.3 (Convergent Legendre Series of Log). If a > max(p(x)), and consider the shifted
Legendre polynomials on the interval [0, a] in Eqn. (8). Then for x a.e.

log(p(x)) =

∞∑
n=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2
L[0,a],n(p(x)) (9)

Again, all that is assumed about this approximation is that the max of a GMM can be bounded, so
this approximation converges for all GMMs regardless of structure.

4 GMM Entropy Approximations
Having established multiple polynomial approximations in Sec. 3, we now consider applying them to
the definition of entropy for a GMM. We can directly substitute the series approximation into the
entropy definition, H(p(x)) = Ep [− log(p(x))], and push the expectation through the summations.
4.1 Huber et al. Entropy approximation
Applying Huber et al.’s Taylor series approximation of the log(p(x)), we see the GMM entropy can
be approximated by,

H(p(x)) = −
m∑
i=1

wi

∞∑
n=0

h(n)(µi)

n!
Eqi [(x− µi)

n] , (10)

where qi(x) = N (x | µi,Σi) is shorthand for the ith Gaussian component. The attractive feature of
Eqn. (10) is that it simplifies the expected value of a log-GMM to the nth central moments of the ith
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component which, is exactly zero when n is odd and has a closed form when n is even. However,
Theorem 3.1 shows that this approximation is not guaranteed to converge, which is supported by
experimental results in Sec. 6. Furthermore, in higher dimensions, h(n)(µi) =

∂nh(µi)

∂x
j1
1 ...∂xjn

d

, where

j1 + · · ·+ jd = n which grows rapidly, is an n dimensional tensor. This is cumbersome to compute
and is difficult to deal with the tensor arithmetic required beyond a Hessian. In practice, this limits
Eqn. (10) to only second order approximations for random vectors.

4.2 Taylor Series Entropy Approximation
Having established the convergent Taylor series of the logarithm in Lemma 3.2, we can apply the
approximation and push the expectation through the summations. This reduces the computation of the
entropy to computing Ep[p(x)

k] for all k < n where n is the order of the polynomial approximation.

Lemma 4.1 (Closed form expectation of powers of GMMs). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) be a
GMM and k be a non-negative integer. Then

Ep[p(x)
k] =

∑
j1+···+jM=k

(
k

j1, . . . , jM

) M∑
i=1

wi

(
N (0|µi,Σi)

N (0|µ,Σ)

M∏
t=1

(wtN (0|µt,Σt)
jt)

)
(11)

where Σ = (Σ−1
i +

∑M
t=1 jtΣ

−1
t )−1 and µ = Σ(Σ−1

i µi +
∑M

t=1 jtΣ
−1
t µt).

While Eqn. (11) may seem complicated at first glance, it is straightforward to compute. All terms
are Gaussian densities, polynomial functions, and binomial coefficients. Lemma 4.1 is defined for
Ep[p(x)

k] but an analogous definition holds for Ep[q(x)
k] allowing us to apply all the following

results not only to entropy, but cross-entropy, KL and MI of GMMs. This is not the focus of this
paper, however a discussion can be found in A.4 for completeness. Using Lemma 3.2 and Eqn. (11),
we can obtain the following approximation,

ĤT
N,a(p(x)) = − log(a)−

N∑
n=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kEp[p(x)

k] (12)

To ensure the expected value can be pushed through the infinite sum of the series, we check that our
finite order entropy approximation does still converge to the true entropy.

Theorem 4.2 (Convergence of ĤT
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and

choose a Taylor center such that a > 1
2max(p(x)). Then, for ĤT

N,a(p(x)) defined in Eqn. (12)

lim
N→∞

ĤT
N,a(p(x)) = H(p(x)) (13)

Having established convergence of our estimator, it remains to provide a method for selecting a
Taylor center that meets the convergence criterion a > 1

2max(p(x)). In fact, we show in Theorem 4.3
that selecting a looser condition a > max(p(x)) ensures convergence from below, thus yielding a
lower bound on the true entropy.

Theorem 4.3 (Taylor Series is Lower Bound of Entropy). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) and
a > max(p(x)). Then, for all finite N ,

ĤT
N,a(p(x)) ≤ H(p(x)) (14)

We have now established that the Taylor center chosen as a > max(p(x)) is both convergent and
yields a lower bound. In fact, it is easy to find such a point by upper bounding the maximum of a
GMM as given in Theorem 4.4.
Theorem 4.4 (Upper bound on maximum of a GMM). Let p(x) =

∑M
i=1 wiN (x|µi,Σi), then

max(p(x)) ≤ a =

M∑
i

wi |2πΣi|−
1
2 (15)

In our experience choosing a center closer to the convergence criterion a > 1
2max(p(x)) yields

slightly more accurate estimates, but not significantly so.
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4.3 Legendre Entropy Approximation
Now, starting with the convergent Legendre approximation considered in Lemma 3.3 and Eqn. (11),
we can obtain the following approximation,

ĤL
N,a(p(x)) = −

N∑
n=0

(2n+1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2
L[0,a],n

(
Ep[p(x)

k]
)

(16)

Again, we verify that taking the expectation of our series does not effect convergence.

Theorem 4.5 (Convergence of ĤL
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and

choose an interval such that a > max(p(x)). Then for ĤL
N,a(p(x)) defined in Eqn. (16)

lim
N→∞

ĤL
N,a(p(x)) = H(p(x)) (17)

Now having established converge criterion for the Legendre series approximation, we need to choose
an upper point of the interval for the Legendre series. We need to choose a > max(p(x)) which is
satisfied by the same a found in Lemma 4.4.

4.4 Approximation of Taylor Series Limit
Computing the series in Eqn. (12) for higher orders can be computationally prohibitive. In particular,
the sum

∑
j1+...+jM=n is over M integers summing to n, which is O((n+M − 1)!). In this section,

we provide an approximation that avoids explicit computation of this sum for higher orders. We
employ a method (similar to Richardson extrapolation [22]) that is based on a polynomial fit of the
convergence rate for the lower bound property discussed in Theorem 4.3. From Taylor’s theorem,
we know that a function can be represented as f = Tn + Rn, where Tn is the nth order Taylor
polynomial and Rn = O(αn) is the remainder. Rewriting this in terms of the Taylor polynomial, we
observe that Tn = −Rn + f = βαn + η. We take β < 0 to represent the negative scale factor in
front of the remainder, and 0 < α < 1 to model the decay of the remainder.

ĤT
n,a(p(x)) = β · αn + η (18)

We require three consecutive orders of our Taylor series approximation, ĤT
n,a(p(x)), Ĥ

T
n+1,a(p(x)),

and ĤT
n+2,a(p(x)), to solve for the three unknown parameters:

ĤT
n,a(p(x)) =β · αn + η

ĤT
n+1,a(p(x)) =β · αn+1 + η

ĤT
n+2,a(p(x)) =β · αn+2 + η.

Since 0 < α < 1, limn→∞ βαn = 0, indicating that we aim to solve for η as our approximation of
the limit of the Taylor series entropy.

ĤTL
N,a(p(x)) = η = ĤT

N−2,a(p(x))−
(ĤT

N−1,a(p(x))− ĤT
N−2,a(p(x)))

2

ĤT
N,a(p(x))− 2ĤT

N−1,a(p(x)) + ĤT
N−2,a(p(x))

(19)

This approach assumes that the Taylor series converges according to Eqn. (18), which is not the case
in general. Identifying the exact rate of convergence is a topic of future work. Nevertheless, this
simple approximation has shown higher accuracy in practice with negligible additional computation,
as demonstrated in the experiments of Sec. 6. With a slight abuse of terminology, we refer to this
approach as the Taylor limit. We do not apply this method to the Legendre approximation (Eqn. (16))
as it doesn’t maintain a lower bound during its convergence. Although equivalent methods have
been considered to model potential oscillation convergence, in practice, we do not find an increase in
accuracy.

5 Related Work
Numerous approximation methods exist in the literature for estimating entropy and related information
measures, such as mutual information and Kullback-Leibler divergence, in the context of Gaussian
Mixture Models (GMMs). Monte Carlo estimation, deterministic bounds using Jensen’s inequality,
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Figure 2: Scalar GMM example is plotted on the left. The variance of a component of a two component GMM is
varied between σ2

2 ∈ (0, 1] as in theory according to Theorem 3.1, the example will be divergent where σ2
2 < .46

and convergent above. We plot the fourth order of each method and see that Huber et al.’s approximation does
diverge where the theory predicts. Two dimensional GMM with five components is consider on the right. Here
the mean of a single component is shifted from µ5 = [−3,−3]T to µ5 = [3, 3]T . We consider the third order
approximation of each method and see that Huber et al. is poorly behaved. In both examples, we see that our
Taylor method is a lower bound (Theorem 4.3), the Taylor limit provides higher accuracy, and Our Legendre
method is a highly accurate approximate.

best-fit moment matched Gaussians, and numerical integral approximations based on the unscented
transform have been explored [16, 14, 15]. This paper focuses on the Taylor approximation by Huber
et al., an alternative Taylor approximation is proposed by Sebastiani [24], which assumes a shared
covariance matrix among GMM components in the high variance setting. However, neither Huber
et al. or Sebastiani provide theoretical analysis or convergence guarantees offered in our present
work. An analysis conducted by Ru et al. [23] explores the efficiency of Huber et al.’s method and
demonstrates that deterministic quadrature methods can be equally fast and accurate in a single
dimension, however quadrature methods scale poorly with dimension, at O(ND) where N is the
number of quadrature points per dimension and D is the dimension of the problem.

Variational approximations and bounds are also widely explored for estimating entropy and mutual
information (MI). Much of this work is motivated by the use of Gibbs’ inequality, which leads to
bounds on entropy and MI [1]. Later work explored similar techniques for upper and lower bounds
on MI [21, 10]. More recent work uses artificial neural networks (ANNs) as function approximators
for a variety of information-theoretic measures based on differential entropy. The MI neural estimator
(MINE) uses such an approach for representation learning via the information bottleneck [2] based on
the Donsker-Varadhan (DV) lower bound on KL [9]. Related methods use ANNs for optimizing the
convex conjugate representation of Nguyen et al. [20]. McAllester and Stratos [19] show that many of
these distribution-free approaches based on ANN approximation rely on Monte Carlo approximations
that have poor bias-variance characteristics which they provide their own Difference of Entropies
(DoE) estimator that achieves the theoretical limit on estimator confidence.

6 Experiments
We consider two experiments, a synthetic GMM section where we look at divergence of Huber et
al. approximation (Eqn. (10)) and convergence of our three methods, our Taylor (Eqn. (12)), Taylor
limit (Eqn. (19)), and our Legendre (Eqn. (16)). Furthermore, we give comparisons of accuracy and
computation time across a variety of setting of approximation order, number of GMM components,
and dimension for all methods. We then show our how our methods can be applied in practice to
Nonparametric Variational Inference [11] where the convergence guarantees of the estimators has a
noticeable accuracy improvement on their algorithm.

6.1 Synthetic Multivariate GMM

To highlight the theoretical properties, such as convergence, divergence, accuracy, and lower-bound
of methods as discussed in Sec. 4, we will consider some synthetic GMMs. We create two GMMs
similar to the example published in [15] (original experiment recreated in A.5). We consider a single
and multi-dimensional dimensional case that satisfy the divergence criterion in Theorem 3.1. We also
look at a time and accuracy analysis versus dimension, components, and polynomial order.
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Figure 3: Dimension (left) of a two-component GMM varies from zero to fifty, for the second order of each
method. Our methods show comparable accuracy and computation time to Huber, regardless of dimension.
Number of components (middle) in a two-dimensional GMM is considered for the second order approximation
of all methods. Huber et al. and our Legendre approximations are nearly equivalent in accuracy, while the Taylor
series and Taylor limit serve as lower bounds. Computation time for all our methods is identical and comparable
to Huber et al., deviating only at high numbers of components. Order (right) of each approximation is varied
for a three-dimensional, two-component GMM. Huber et al. is plotted up to order three, as higher orders are
restrictive due to tensor arithmetic and Taylor limit starts at order two as it requires three consecutive terms.

Scalar GMM In this experiment, we consider a scalar GMM as fourth order and above cannot
be easily computed in higher dimensions for Huber et al. due to tensor arithmetic. We use a simple
two-component GMM with parameters w1 = 0.35, w2 = 0.65, µ1 = −2, µ2 = −1, σ2

1 = 2, and
σ2
2 ∈ (0, 1]. We are changing the variance of the second Gaussian, σ2

2 , in the range (0, 1] because
the condition for divergence in Theorem 3.1 (p(x = µ1) <

1
2p(x = µ2)) is satisfied approximately

when σ2
2 < 0.46 meaning this experiment should have regions of both convergence and divergence

for Huber et al. approximation. Fig. 2 (left) shows the fourth order approximations of all methods.
We see that the Huber et al. approximations diverges as expected in the range where σ2

2 < .46. Our
Taylor method remains convergent and accurate for all values while maintaining a lower bound.
Again, our limit method gains us some accuracy and still manages to be lower bound. In this case,
we see that the Legendre approximation is a near perfect fit for the entropy.

Multivariate GMM To demonstrate that divergence is not limited to single dimension or higher
orders, we consider a five-component, two-dimensional GMM with the parameters wi = .2 ∀i,
µ1 = [0, 0]T , µ2 = [3, 2]T , µ3 = [1,−.5]T , µ4 = [2.5, 1.5]T , µ5 = c[1, 1]T for c ∈ [−3, 3],
Σ1 = .25I2, Σ2 = 3I2, and Σ3 = Σ4 = Σ5 = 2I2 where I2 is the two dimensional identity
matrix. This examples shifts the mean of the fifth component to show that simply the location of
components can make the Huber et al. approximation behave poorly. Fig. 2 (right) shows the third
order approximation of each method. We see that Huber et al. is clearly not well behaved in this case
even with low order approximation. Furthermore, we continue to see a lower bound by our Taylor
method, an increased accuracy from out limit method, and that the Legendre approximation is very
close to the true entropy.

6.1.1 Computation Time
In this experiment we empirically analyze the computation time of each method as a function of
Gaussian dimension, number of Gaussian components, and the order of each polynomial approxima-
tion. The baseline of each method will be compared to the Monte Carlo estimation of entropy using
L = 1000 samples {xj}Lj=1 ∼ p. The Monte Carlo estimator is given by Ĥ = 1

L

∑
j(− log p(xj)).

Dimension In Fig. 3 (left), we evaluate the accuracy and computation time for 30 two-component
GMMs per dimension in the range of [1, 50]. Comparing second order approximations of all methods
against the Monte Carlo estimator, our polynomial approximations demonstrate similar accuracy and
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nearly identical computation time. The results are comparable to Huber, indicating that our methods
preserve accuracy and computation efficiency while providing convergence guarantees.

GMM Components In Fig. 3 (middle), accuracy and computation time are presented for 30
two-dimensional GMMs with varying numbers of components (from 1 to 20) using second order
approximations. Legendre and Huber methods show slightly higher accuracy compared to our
Taylor approximation and Taylor limit. Notice, Huber’s standard deviation also increases with more
components, due to the increased likelihood of satisfying the divergence condition in Theorem 3.1.
Computation time remains similar for all methods, but is more prohibitive for higher components.

Polynomial Order Fig. 3 (right) shows as the order of the polynomial approximation increases for
two-component GMMs in three dimensions. Legendre and Huber methods show higher accuracy
compared to Taylor approximation and Taylor limit. Huber is limited to order 3 due to Tensor
arithmetic, while Taylor limit starts at order 2 as it requires multiple orders. Computation times are
similar across all methods. Notice no accuracy is gained from zero to first order and from second to
third order in Huber’s approximation due to relying on odd moments of Gaussians which are zero.

6.2 Nonparametric Variational Inference
Consider a target density p(x,D) with latent variables x and observations D. The NPV approach [11]
optimizes the evidence lower bound (ELBO), log p(x,D) ≥ maxq Hq(p(x,D))−Hq(q(x)) ≡ L(q)
w.r.t. an m-component GMM variational distribution q(x) = 1

N

∑m
i=1 N (x|µi, σ

2
i Id). The GMM

entropy lacks a closed-form so NPV applies Jensen’s lower bound as an approximation, ĤJ
q (q(x)).

The cross entropy also lacks a closed-form, so NPV approximates this term using the analogous
Huber et al. Taylor approximation. Specifically, NPV expands the log density around the means of
each GMM component as,

Hq(p(x)) ≈ −
M∑
i=1

wi

N∑
n=0

∇2 log(p(µi))

n!
Eqi [(x− µi)

n
] = ĤH

N,q(p(x)) (20)

However, Eqn. (20) is subject to the divergence criterion of Theorem 3.1 if 2p(µi) ≤ max(p(x)).
By replacing the entropy terms with our convergent series approximations we observe significant
improvements in accuracy.
In our approach, we will highlight and address two problems with the NPV algorithm; the potential
divergence of ĤH

N,q(p(x)) and the poor estimation of the GMM entropy via ĤJ
q (q(x)). To address

the potential divergence of ĤH
N,q(p(x)), we will take motivation from the results found in [23] and

use a 2 point Gauss-Hermite quadrature method to approximate Hq(p(x)). This method will be
a limiting factor in scaling the NPV algorithm in dimension, however it guarantees that the cross-
entropy approximation will not diverge. This alteration leads to a solution for the inconsistency of
the ELBO approximations. Then, Jensen’s inequality is a very poor approximation for entropy in
general, instead we will use the three methods we have introduced, our Taylor, Taylor limit, and our
Legendre, as the GMM entropy approximations for higher accuracy. Fig. 4 shows an approximation
of a two dimensional, three component mixture Student T distribution using a five component GMM
in the traditional NPV, our modified NPV algorithm with our Taylor and Legendre approximation.
The results, as seen in Fig. 5, highlight the accuracy of each method versus the number of components,
the order of our polynomial approximation, and the dimension of the GMM. In each experiment,
we are approximating a multivariate mixture T distribution, p(x). We randomize the parameters
of p(x) and the initialization parameters of the variational GMM, q(x), for optimization. The KL
is approximated using a 100000 Monte Carlo approximation after convergence of each algorithm.
We see that in all cases of components, order, and dimension, our method achieves significant
accuracy improvements. We see that we can use low order approximations to receive substantial
approximation improvement (Fig. 5 (middle)). We see all methods gain accuracy as number of
components increase (Fig. 5 (left)) however our methods see most of the accuracy improvements with
only a few components, whereas NPV has substantially worse approximations with low components.
Finally, we see we maintain a lower variance and KL than NPV with all our methods as the dimension
grows (Fig. 5 (right)). For further discussion of the experiment, see A.6.

7 Limitations

Our Taylor and Legendre methods ensure convergence and deliver comparable accuracy to that of
Huber et al. However, the computational complexity of these methods grows with the number of
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Figure 4: A three component mixture Student T distribution PDF (far-left) is approximated by a five component
GMM using traditional NPV (left), our algorithm using a 6th order Taylor polynomial (right), and Legendre
polynomial (far-right). We see that NPV both has issues with finding correct placement of means and sets the
variances of the GMM components to be too narrow. Our methods do a better job of assigning means and the
Legendre method seems to set the variances slightly better than our Taylor.
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Figure 5: The above figures show the accuracy of each method across varying components, orders, and
dimensions in approximating a multivariate mixture T distribution with a GMM. Our method consistently
improves accuracy significantly. Low order of the convergent estimators provide substantial approximation
improvement (middle). Most accuracy improvements are achieved with a small number of components, unlike
NPV (left) which continues to need higher number of components to see good accuracy return. The guaranteed
convergence of the approximation in higher dimensions seems to have a drastic improvement on accuracy ().

components, M , in the GMM, following an O((n+M − 1)!) time complexity, where n represents
the order of the approximating polynomial. This summation comprises only scalar terms and is
amenable to parallelization but may become prohibitively expensive for large M and n values.
Furthermore, our polynomial methods are specifically tailored to the entropy, Hp(p(x)), and cross-
entropy, Hp(q(x)), where both p(x) and q(x) are GMMs. In contrast, Huber et al.’s approximation
can be more readily extended to cross-entropy scenarios where q(x) pertains to any distribution
amenable to the construction of a second-order Taylor polynomial. This limitation hinders the broader
applicability of our approximation.

8 Discussion

We have provided novel theoretical analysis of the convergence for the widely used Huber et al. Taylor
approximation of GMM entropy and established that the series diverges under conditions on the
component means. We address this divergence by introducing multiple novel methods which provably
converge. We wish to emphasize that the Huber et al. approximation tends to yield accurate results
when it is convergent and the intention of this work is not to dissuade the use of this approximator.
Quite the contrary, this work encourages the use of either Huber et al. or our own estimator by
providing a solid theoretical foundation for both methods. We acknowledge that there are contexts in
which one method may be preferred over the other, for example when bounds are preferred, or when
convergence criteria are provably satisfied.

There are several areas that require further investigation. For example, one limitation of both methods
is that they scale poorly with polynomial order and number of components. In fact, Huber et al. cannot
easily be calculated for fourth order and above, due to tensor arithmetic. Our approximation works
well in practice, but is limited solely to GMM densities. Further work is necessary to efficiently apply
our convergent series to situations of cross-entropy’s that contain non-GMM distributions.
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A Appendix

A.1 Section 3 Proofs

Theorem 3.1 (Divergence Criterion for Huber et al.). Let p(x) =
∑M

i=1 wiN (x | µi,Σi) be a GMM
and consider the Taylor series presented by Huber et al. in Eqn. (5). If any mean component, µi,
satisfies the condition p(µi) <

1
2max(p(x)), then Huber et al.’s approximation diverges, otherwise it

converges.

Proof. Let f(y) = log(y), g(x) = p(x), and h(x) = f(g(x)) = log(p(x)). Huber et al. creates the
Taylor series in Eqn. (5) with N th order approximation

M∑
i=1

wiTh,N,µi(x) =

M∑
i=1

wi

N∑
n=0

h(n)(µi)

n!
(x− µi)

n, (21)

Let us consider just a single one of the Taylor series in Eqn. (21)

Th,N,µi(x) =

N∑
n=0

h(n)(µi)

n!
(x− µi)

n, (22)

By Theorem 3.4 in Lang1, the Taylor series of a composition of function is equivalent to the
composition of each components Taylor series, i.e., Th,N,µi(x) = Tf,N,g(µi) ◦ Tg,N,µi

(x) where ◦ is
the composition operation. Since p(x) is a GMM, is the sum of entire functions, and thus itself is
entire, meaning it’s Taylor series, Tg,N,µi

(x), converges everywhere. We turn our attention to the
Taylor approximation of log, Tf,N,g(µi),

Tf,N,p(µi)(x) = log(p(µi)) +

N∑
n=1

(−1)n−1

np(µi)n
(y − p(µi))

n, (23)

We can look at the nth term in the series, bn = (−1)n−1

np(µi)n
(y − p(µi))

n, and use the ratio test to define
convergence.

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n

(n+ 1)p(µi)n+1
(y − p(µi))

n+1 np(µi)
n

(−1)n−1)
(y − p(µi))

−n

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)n

(−1)n−1

np(µi)
n

(n+ 1)p(µi)n+1

(y − p(µi))
n+1

(y − p(µi))n

∣∣∣∣
= lim

n→∞

∣∣∣∣ n

(n+ 1)p(µi)
(y − p(µi))

∣∣∣∣
= lim

n→∞

n

(n+ 1)

∣∣∣∣y − p(µi)

p(µi)

∣∣∣∣ = ∣∣∣∣y − p(µi)

p(µi)

∣∣∣∣ = L

The ratio test states that the series converges if the limit, L, is strictly less than 1. However, setting
L = 1 and some simple manipulation, we find∣∣∣∣y − p(µi)

p(µi)

∣∣∣∣ < 1 ⇒ |y − p(µi)| < p(µi) ⇒ y < 2p(µi) (24)

This only converges if all y < 2(p(µi). Consider the maximum, max(p(x)), if it satisfies this
condition, so will every other point, if it doesn’t satisfy this point, then the series is divergent by the
ratio test. So we have the convergent criterion max(p(x)) < 2p(µi), or written in terms of divergence
criterion, we diverge if p(µi) <

1
2max(p(x)).

Lemma 3.2 (Convergent Taylor Series of Log). If a > 1
2max(p(x)), then for all x

log(p(x)) = log(a) +

∞∑
n=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kp(x)k (25)

1Lang, Serge. Complex Analysis. 4th ed. Springer, 2013. ISBN 978-1-4757-3083-8.
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Proof. Consider the nth term in the sum

bn =
(−1)n−1

nan
(p(x)− a)n

The ratio test says if the limit of the absolute value of successive terms converges to a value strictly
less than one, then the series converges

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n

(n+ 1)an+1
(p(x)− a)n+1 nan

(−1)n−1
(p(x)− a)−n

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)n

(−1)n−1

nan

(n+ 1)an+1

(p(x)− a)n+1

(p(x)− a)n

∣∣∣∣
= lim

n→∞

∣∣∣∣ n

(n+ 1)a
(p(x)− a)

∣∣∣∣
= lim

n→∞

n

(n+ 1)

∣∣∣∣p(x)− a

a

∣∣∣∣ = ∣∣∣∣p(x)− a

a

∣∣∣∣ = L

We see that L < 1 ∀x iff a > 1
2max(p(x)) in which case the series converges everywhere.

Lemma 3.3 (Convergent Legendre Series of Log). If a > max(p(x)), and consider the nth shifted
Legendre polynomial on the interval [0, a] in Eqn. (8). Then for x a.e.

log(p(x)) =

∞∑
n=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2
L[0,a],n(p(x)) (26)

Proof. Orthogonal polynomials can approximate any function a.e. that is continuous and square-
integrable (see Trefethen and Bau2 and Gustafson3). In out case, L[0,a],n(y) live on L2([0, a])
(referring to the second Lebesgue space on the interval [0, a]). This means all we have to show is that
log(y) lives in this domain which means ∥log(y)∥22 < ∞

∥log(y)∥22 =

∫ a

0

log(y)2dy = a((log(a)− 2) log(a) + 2) < ∞ (27)

So we see that log(y) ∈ L2([0, a]) and therefore it’s Legendre series is convergent.

For completeness, we now derive the Legendre series for log(y). We will appeal to Eqn. (8),

L[0,a],n =
∑n

k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
yk, and

〈
L[0,a],n(y), L[0,a],n(y)

〉
= a

2n+1 as found in [4]

log(p(x)) =

∞∑
n=0

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

a

∫ a

0

log(y)

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
ykdyL[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

a

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak

∫ a

0

log(y)ykdyL[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

a

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
ak+1 ((k + 1) log(a)− 1)

(k + 1)2
L[0,a],n(p(x))

=

∞∑
n=0

2n+ 1

n∑
k=0

(−1)n+k(n+ k)! ((k + 1) log(a)− 1)

(n− k)!((k + 1)!)2
L[0,a],n(p(x))

which we know is convergent from the above discussion
2Trefethen, Lloyd N., and David Bau III. Numerical Linear Algebra. SIAM, 1997.
3Grant B. Gustafson Differential Equations and Linear Algebra. 1999-2022.
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A.2 Section 4 Proofs

Lemma 4.1 (Closed form expectation of powers of GMMs). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) be a
GMM and k be a non-negative integer. Then

Ep[p(x)
k] =

∑
j1+···+jM=k

(
k

j1, . . . , jM

) M∑
i=1

wi

(
N (0|µi,Σi)

N (0|µ,Σ)

M∏
t=1

(wtN (0|µt,Σt)
jt)

)
(28)

where Σ = (Σ−1
i +

∑M
t=1 jtΣ

−1
t )−1 and µ = Σ(Σ−1

i µi +
∑M

t=1 jtΣ
−1
t µt).

Proof. We will prove this statement by directly expanding out each term

Ep[p(x)
k] =Ep

( m∑
t=1

wtN (x|µt,Σt)

)k


=Ep

 ∑
j1+···+jm=k

(
k

j1, . . . , jm

) m∏
t=1

(wtN (x|µt,Σt))
jt


=

∑
j1+···+jm=k

(
k

j1, . . . , jm

) m∏
t′=1

(wt′)
jt′

M∑
i=1

wi

∫
N (x|µi,Σi)

m∏
t=1

(N (x|µt,Σt))
jtdx

To combine the Gaussians under the integral, we appeal to the power of Gaussians (Lemma A.2.3)
and product of Gaussians (Lemma A.2.4)

=
∑

j1+···+jm=k

(
k

j1, . . . , jm

)
m∏

t′=1

(wt′)
jt′

M∑
i=1

wi

∫
N (x|µi,Σi)

m∏
t=1

N (x|µt,
1
jt
Σt)

|jt(2πΣt)jt−1|1/2
dx

=
∑

j1+···+jm=k

(
k

j1, . . . , jm

)
m∏

t′=1

(wt′)
jt′

|jt(2πΣt)jt−1|1/2
M∑
i=1

wi

∫ N (0|µi,Σi)
∏m

t=1 N (0|µt,
1
jt
Σt)

N (0|µ,Σ) N(x|µ,Σ)dx

=
∑

j1+···+jm=k

(
k

j1, . . . , jm

)
M∑
i=1

wi

(
N (0|µi,Σi)

N (0|µ,Σ)

m∏
t=1

(wtN (0|µt,Σt))
jt

)

where µ = Σ(Σ−1
i µi +

∑M
t=1 jtΣ

−1
t µt) as defined from Lemma A.2.4. We see that we are left with

no integral and a closed form of the expectation of the powers of the GMM.

Theorem 4.2 (Convergence of ĤT
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and

choose a Taylor center such that a > 1
2max(p(x)). Then, for ĤT

N,a(p(x)) defined in Eqn. (12)

lim
N→∞

ĤT
N,a(p(x)) = H(p(x)) (29)

Proof. We start out with the definition of entropy and introduce in the approximation discussed in
Lemma 3.2

H(p(x)) =−
∫ M∑

i=1

wiqi(x) log(p(x))dx = −
M∑
i=1

wi

∫
qi(x) log(p(x))dx

=−
M∑
i=1

wi

∫
qi(x)

(
log(a) +

∞∑
i=1

(−1)n−1

nan
(p(x)− a)n

)
dx

=−
M∑
i=1

wi

(
log(a) +

∫
qi(x)

∞∑
i=1

(−1)n−1

nan
(p(x)− a)ndx

)

=−
M∑
i=1

wi

(
log(a) +

∫ ∞∑
i=1

(−1)n−1

nan
qi(x)(p(x)− a)ndx

)
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We now wish to swap the order of integration and of the infinite summation as shown in Lemma A.2.1

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

∫
(−1)n−1

nan
qi(x)(p(x)− a)ndx

)

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

(−1)n−1

nan

∫
qi(x)(p(x)− a)ndx

)

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

(−1)n−1

nan

∫
qi(x)

n∑
k=0

(
n

k

)
(−a)n−k(p(x))kdx

)

=−
M∑
i=1

wi

(
log(a) +

∞∑
i=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kEqi(x)

[
(p(x))k

])

We can compute Eqi(x)

[
(p(x))k

]
using Lemma 4.1. The above term is equality for the Entropy,

simply truncating the infinite summation gives a convergent approximation.

ĤT
N,a(p(x)) = −

M∑
i=1

wi

(
log(a) +

N∑
i=1

(−1)n−1

nan

n∑
k=0

(
n

k

)
(−a)n−kEqi(x)

[
(p(x))k

])
(30)

Theorem 4.3 (Taylor Series is Lower Bound of Entropy). Let p(x) =
∑M

i=1 wiN (x|µi,Σi) and
a > max(p(x)). Then, for all finite N ,

ĤT
N,a(p(x)) ≤ H(p(x)) (31)

Proof. If a > max(p(x)), then we have the following lower bound

H(p(x)) =−
∫

p(x) log p(x)dx = −
∫

p(x)

(
log(a) +

∞∑
n=1

(−1)n−1

nan
(p(x)− a)n

)
dx

=−
∫

p(x)

(
log(a) +

∞∑
n=1

(−1)n−1(−1)n

nan
(a− p(x))n

)
dx

=− log(a)−
∫

p(x)

( ∞∑
n=1

−1

nan
(a− p(x))n

)
dx

=− log(a) +

∫
p(x)

( ∞∑
n=1

1

nan
(a− p(x))n

)
dx

≥− log(a) +

∫
p(x)

(
N∑

n=1

1

nan
(a− p(x))n

)
dx = ĤN (p(x))

since every term in the summation is positive due to a > p(x) ∀x, then truncating the series only
removes positive terms, leaving us with a lower bound.

Theorem 4.4 (Upper bound on maximum of a GMM). Let p(x) =
∑M

i=1 wiN (x|µi,Σi), then

max(p(x)) ≤ a =

M∑
i

wi |2πΣi|−
1
2 (32)

Proof. We need to find an upper bound on max(p(x))

max(p(x)) =max

(
M∑
i=1

wiN (x|µi,Σi)

)

≤
M∑
i=1

wimax (N (x|µi,Σi)) =

M∑
i=1

wi |2πΣi|−
1
2
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We simply have bound the maximum of the combination by combining the maximum of every
component in the GMM.

Theorem 4.5 (Convergence of ĤL
N,a(p(x))). Let p(x) =

∑M
i=1 wiN (x|µi,Σi) be a GMM and

choose an interval such that a > max(p(x)). Then for ĤL
N,a(p(x)) defined in Eqn. (16)

lim
N→∞

ĤL
N,a(p(x)) = H(p(x)) (33)

Proof. We start out with the definition of entropy and introduce in the approximation discussed in
Lemma 3.3

H(p(x)) =−
∫ M∑

i=1

wiqi(x) log(p(x))dx = −
M∑
i=1

wi

∫
qi(x) log(p(x))dx

=−
M∑
i=1

wi

∫
qi(x)

∞∑
i=0

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx

=−
M∑
i=1

wi

∞∑
i=0

∫
qi(x)

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx

We swapped the order of integration and of the infinite summation as shown in Lemma A.2.2. We
simplify computation that are recreated in Theorem 3.3

=−
∞∑
i=0

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉 M∑
i=1

wi

∫
qi(x)L[0,a],n(p(x))dx

=−
∞∑
i=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2

M∑
i=1

wiEqi(x)

[
n∑

k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak
p(x)k

]

=−
∞∑
i=0

(2n+ 1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak

M∑
i=1

wiEqi(x)

[
p(x)k

]
We can compute Eqi(x)

[
(p(x))k

]
using Lemma 4.1. Simply truncating the infinite summation gives

the approximation.

ĤL
N,a(p(x)) = −

N∑
i=0

(2n+1)

n∑
j=0

(−1)n+j(n+ j)!((j + 1) log(a)− 1)

(n− j)!((j + 1)!)2

n∑
k=0

(−1)n+k(n+ k)!

(n− k)!(k!)2ak

M∑
i=1

wiEqi(x)

[
p(x)k

]
which limN→∞ ĤL

N,a(p(x)) = H(p(x)) as the above series is exactly equal to the entropy.

Here, we address a few of the assumptions we made in the above derivations. We start with the ability
to swap the order of the integral and infinite sum for the Taylor series.
Lemma A.2.1 (Swapping Integral and Infinite Sum (Taylor)). Let a > 1

2max(p(x)), then∫ ∞∑
i=1

(−1)n−1

nan
qi(x)(p(x)− a)ndx =

∞∑
i=1

∫
(−1)n−1

nan
qi(x)(p(x)− a)ndx

Proof. For simplicity of notation, let c = sup
∣∣∣p(x)−a

a

∣∣∣ < 1 since a > 1
2max(p(x)). We then appeal

to Fubini-Tonelli theorem which states that if
∫ ∑

|fn(x)|dx < ∞ or if
∑∫

|fn(x)|dx < ∞, then∫ ∑
fn(x)dx =

∑∫
fn(x)dx.

∞∑
i=1

∫ ∣∣∣∣ (−1)n−1

nan
qi(x)(p(x)− a)n

∣∣∣∣ dx =

∞∑
i=1

1

n

∫
qi(x)

(
|p(x)− a|

a

)n

dx

≤
∞∑
i=1

1

n

∫
qi(x) (c)

n
dx

=

∞∑
i=1

cn

n

∫
qi(x)dx =

∞∑
i=1

cn

n
< ∞
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We know that
∑∞

i=1
cn

n < ∞ because of the ratio test again

lim
n→∞

∣∣∣∣ cn+1

n+ 1

n

cn

∣∣∣∣ = lim
n→∞

n

n+ 1
c = c < 1

So we see that Fubini-Tonelli holds so∫ ∞∑
i=1

(−1)n−1

nan
qi(x)(p(x)− a)ndx =

∞∑
i=1

∫
(−1)n−1

nan
qi(x)(p(x)− a)ndx

We now consider the case for the Legendre series
Lemma A.2.2 (Swapping Integral and Infinite Sum (Legendre)). Let a > max(p(x)), then∫

qi(x)

∞∑
i=1

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx =

∞∑
i=1

∫
qi(x)

〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))dx

Proof. We again appeal to Fubini-Tonelli. We will use that
∣∣∣∣ L[0,a],n(p(x))

⟨L[0,a],n(y),L[0,a],n(y)⟩

∣∣∣∣ ≤ 1 as it is the

orthonormal polynomials and then use Cauchy-Schwartz on the remaining term
∞∑
i=1

∫ ∣∣∣∣∣qi(x)
〈
log(y), L[0,a],n(y)

〉〈
L[0,a],n(y), L[0,a],n(y)

〉L[0,a],n(p(x))

∣∣∣∣∣ dx
=

∞∑
i=1

〈
log(y), L[0,a],n(y)

〉 ∫ ∣∣∣∣∣ qi(x)L[0,a],n(p(x))〈
L[0,a],n(y), L[0,a],n(y)

〉∣∣∣∣∣ dx
≤

∞∑
i=1

∥log(y)∥2
∥∥L[0,a],n(y)

∥∥2 ∫ qi(x)dx

=

∞∑
i=1

a((log(a)− 2) log(a) + 2)

(
a

2n+ 1

)2 ∫
N(x|µi,Σi)dx

=a3((log(a)− 2) log(a) + 2)

∞∑
i=1

1

(2n+ 1)2
< ∞

So we see that since the absolute value is finite, then Fubini-Tonelli applies and we can swap the
order of the integral and infinite summation.

The next thing we show is the relations we used for powers of Gaussians.
Lemma A.2.3. Powers of a Gaussian

N (x|µ,Σ)n =
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

n
Σ

)
Proof. We are going to do an inductive proof and rely on the well known relation of products of
Gaussians

N (x|a,A)N (x|b, B) = N (x|d,D)N (a|b, A+B)

Where D = (A−1 +B−1)−1 and d = D(A−1a+B−1b).
Base Case: n = 2

N (x|µ,Σ)2 =N (x|µ,Σ)N (x|µ,Σ) (34)

=N(x|µ, 1
2
Σ)N(µ|µ, 2Σ) = |2πΣ|−

1
2 N(x|µ, 1

2
Σ) (35)

In this case, we get that D = (Σ−1 + Σ−1)−1 = 1
2Σ and d = 1

2Σ(Σ
−1µ + Σ−1µ) = µ. We also

see that N(µ|µ, 2Σ) is being evaluated at its maximum, which just leaves the scaling term out front
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of the exponential in the Gaussian, |2πΣ|−
1
2 .

Inductive step: Assume that N(x|µ,Σ)n =
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

nΣ
)
, then we wish to show

that N(x|µ,Σ)n+1 = |(n+ 1)(2πΣ)n|−
1
2 N

(
x|µ, 1

n+1Σ
)

N(x|µ,Σ)n+1 =N(x|µ,Σ)nN(x|µ,Σ)

=
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

n
Σ

)
N(x|µ,Σ)

=
∣∣n(2πΣ)n−1

∣∣− 1
2 N

(
x|µ, 1

n+ 1
Σ

)
N(µ|µ, n+ 1

n
Σ)

=
∣∣n(2πΣ)n−1

∣∣− 1
2

∣∣∣∣2πn+ 1

n
Σ

∣∣∣∣− 1
2

N
(
x|µ, 1

n+ 1
Σ

)
= |(n+ 1)(2πΣ)n|−

1
2 N

(
x|µ, 1

n+ 1
Σ

)

Here, D =
((

1
nΣ
)−1

+Σ−1
)−1

= 1
n+1Σ and d = 1

n+1Σ
((

1
nΣ
)−1

µ+Σ−1µ
)
= µ.

We finally show the product of Gaussians that we used. We keep the exact same notation used in the
derivation of the entropy Taylor series so the terms may be more easily identified.

Lemma A.2.4. Product of a Gaussians

N (x|µi,Σi)

m∏
t=1

N
(
x|µt,

1

jt
Σt

)
= N (0|µi,Σi)

m∏
t=1

N
(
0 + µt,

1

jt
Σt

)
N(x|µ,Σ)
N(0|µ,Σ)

where Σ = (Σ−1 +
∑m

t=1 jtΣ
−1
t )−1 and µ = Σ

(
Σ−1

i µi +
∑m

t=1 jtΣ
−1
t µt

)
Proof. We will simply expand out the product of Gaussians, collect like terms, complete the square, and then
recollect exponentials into Gaussians evaluated at 0.

N (x|µi,Σi)

m∏
t=1

N
(
x|µt,

1

jt
Σt

)
= |2πΣi|−

1
2 exp

{
−

1

2
(x − µi)

T
Σ

−1
i (x − µi)

} m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2
(x − µt)

T
jtΣ

−1
t (x − µt)

}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T
Σ

−1
i x − 2x

T
Σ

−1
i µi + µ

T
i Σ

−1
i µi +

m∑
t=1

x
T
jtΣ

−1
t x − 2x

T
jtΣ

−1
t µt + µ

T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T

(
Σ

−1
i +

m∑
t=1

jtΣt

)
x − 2x

T

(
Σ

−1
i µi +

m∑
t=1

jtΣ
−1
t

)
+ µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

Now we let Σ = (Σ−1 +
∑m

t=1 jtΣ
−1
t )−1 and µ = Σ

(
Σ−1

i µi +
∑m

t=1 jtΣ
−1
t µt

)
= |2πΣi|−

1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T
Σ

−1
x − 2x

T
Σ

−1
µ + µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
x
T
Σ

−1
x − 2x

T
Σ

−1
µ + µ

T
Σµ − µ

T
Σµ + µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2

m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2 |2πΣ|1/2

|2πΣ|1/2
exp

{
−

1

2

(
(x − µ)

T
Σ

−1
(x − µ)

)}
exp

{
−

1

2

(
−µ

T
Σµ + µ

T
i Σ

−1
i µi +

m∑
t=1

µ
T
t jtΣ

−1
t µt

)}

= |2πΣi|−
1
2 exp

{
−

1

2

(
µ
T
i Σ

−1
i µi

)} m∏
t=1

∣∣∣∣ 2πjt Σt

∣∣∣∣− 1
2
exp

{
−

1

2

(
µ
T
t jtΣ

−1
t µt

)}
|2πΣ|1/2 exp

{
−

1

2

(
−µ

T
Σµ
)}

N (x|µ,Σ)

=N (0|µiΣi)

m∏
t=1

N
(
0|µt,

1

jt
Σt

) N (x|µ,Σ)

N (0|µ,Σ)
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Figure 6: Well-Behaved GMM example is plotted on the left. The entropy of a five-component, bivariate GMM
is plotted as a function of the location of the fifth component µ5 ∈ [−3, 3]. We show the true entropy, the 3rd

order of Huber et al.’s approximation and our two methods, along with our approximate limit.

A.4 Extensions to Cross-Entropy

Our main results on GMM entropy approximation also extend to the cross-entropy between
different GMMs. We can instead consider Hp(q(x)) = −Ep(x) [log(q(x))] where p(x) =∑M̃

i=1 w̃iN (x|µ̃i, Σ̃i) and q(x) =
∑M̂

i=1 ŵiN (x|µ̂i, Σ̂i). The series representations of log(·) stay
unchanged however we must choose a center point that allows the series to converge with respect
to the inner GMM, q(x). This means Theorem 3.2, Theorem 3.3, Theorem 4.2, Theorem 4.3, and
Theorem 4.5 need to be reformulated so that a > max(q(x)) (or the respective a > 1

2max(q(x)). We
do not formally restate these theorems here for brevity. We instead provide a sketch of how the results
extend to the cross-entropy setting. Choosing the bounding a of the max found in Theorem 4.4 can
simply be altered so that

max(q(x)) ≤ a =

M̂∑
i

ŵi

∣∣∣2πΣ̂i

∣∣∣− 1
2

The analogous proofs will all hold in this case. The final alteration that needs to be made is to
Theorem 4.1. Again, following the exact same proof, just switching notation and being careful, one
can find that

Ep[q(x)
k] =

∑
j1+···+j

M̂
=k

(
k

j1, . . . , jM̂

) M̂∑
i=1

w̃i

N (0|µ̃i, Σ̃i)

N (0|µ,Σ)

M̂∏
t=1

(ŵtN (0|µ̂t, Σ̂t)
jt)

 (36)

where Σ = (Σ̃i

−1
+
∑M̂

t=1 jtΣ̂t

−1
)−1 and µ = Σ(Σ̃i

−1
µ̃i +

∑M̂
t=1 jtΣ̂t

−1
µ̂t). The result is the

same form, however has much more convoluted notation and hence dropped from the main paper as
an attempt to bring clarity to the methods being discuss without unnecessary notation.

A.5 Recreation of Huber et al Experiment

Here we reproduce the experiment of [15] of a five-component bivariate GMM with uniform weights
wi = 0.2 for i = 1, . . . , 5, µ1 = [0, 0]T , µ2 = [3, 2]T , µ3 = [1,= 0.5]T µ4 = [2.5, 1.5]T ,
µ5 = c · [1, 1]T , Σ1 = diag(0.16, 1), Σ2 = diag(1, 0.16), and Σ3 = Σ4 = Σ5 = diag(0.5, 0.5).
We vary the position of the fifth mean (µ5) in the range [−3, 3]. Fig. 6 (left) reports the third order
Taylor approximations from both Taylor approximations, the Legendre approximation, as well as our
approximate limiting method.

Huber et al. is accurate in the well-behaved case, but does not have any convergence guarantees nor
is it a bound. Our proposed Taylor approximation sacrifices some accuracy, but is always a lower
bound (Theorem 4.3) and is convergent (Theorem 4.2). We also note that our naïve limit method does
gain us substantial accuracy and is still a lower bound–though we have not proven the bound property
for this approximation. We notice that our Legendre approximation has comparable accuracy to
that of Huber et al. in this well behaved case but has the advantage that it is guaranteed to converge
(Theorem 4.5) and that we can compute higher order approximations that are difficult to define for
the Huber et al. approximation.
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Figure 7: The above figures show the accuracy and computation time of each method across varying components,
orders, and dimensions in approximating a multivariate mixture T distribution with a GMM. Our method
consistently improves accuracy significantly. Higher order approximations do not increase computation time
(bottom middle), and even low order approximations provide substantial improvement (top middle). Most
accuracy improvements are achieved with a small number of component, unlike NPV (top left) which continues
to need higher number of components to see good accuracy return. Our computation time increases with
dimension due to less salable cross-entropy approximation with Gauss-Hermite quadrature (bottom right)
however the guaranteed convergence of the approximation seems to have a drastic improvement on accuracy
(top right).

A.6 Nonparametric Variational Inference

Consider a target density p(x,D) with latent variables x and observations D. The NPV approach [11]
optimizes the evidence lower bound (ELBO),

log p(x) ≥ max
q

Hq(p(x,D))−Hq(q(x)) ≡ L(q) (37)

w.r.t. a m-component GMM variational distribution q(x) = 1
N

∑m
i=1 N (x|µi, σ

2
i Id). The GMM

entropy lacks a closed-form so NPV applies Jensen’s lower bound as an approximation,

Hq(q(x)) = −Eq [log(q(x))] ≥ −
M∑
i=1

wi log (Eqi [q(x)]) = ĤJ
q (q(x)) (38)

The cross entropy also lacks a closed-form, so NPV approximates this term using the analogous
Huber et al. Taylor approximation. Specifically, NPV expands the log density around the means of
each GMM component as,

Hq(p(x)) ≈ −
M∑
i=1

wi

N∑
n=0

∇2 log(p(µi))

n!
Eqi [(x− µi)

n
] = ĤH

N,q(p(x)) (39)

However, Eqn. (20) is subject to the divergence criterion of Theorem 3.1 if 2p(µi) ≤ max(p(x)).
This approximation is often known as the multivariate delta method for moments. The authors use
these approximations of the entropy and cross entropy to create the following two approximation of
the ELBO.

L1(q) = ĤH
1,q(p(x))− ĤJ

q (q(x)) L2(q) = ĤH
2,q(p(x))− ĤJ

q (q(x)) (40)

Gershman et al. (2012) use the two approximations because optimizing ĤH
2,q(p(x)) with respect to

the mean components, µi requires computing a third order, multivariate derivative of log(p(x)) which
is computationally expensive. The authors iterate between optimizing the mean components, µi,
using L1(q) and optimizing the variance components, σ2

i , using L2(q) until the second approximate
appropriately converges δL2(q) < .0001.
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In our approach, we will highlight and address three problems with the NPV algorithm; the potential
divergence of ĤH

N,q(p(x)), the inconsistent ELBO approximations, and the poor estimation of the
GMM entropy via ĤJ

q (q(x)). To address the potential divergence of ĤH
N,q(p(x)), we will take

motivation from the results found in [23] and use a 2 point Gauss-Hermite quadrature method
to approximate Hq(p(x)). This method will be a limiting factor in scaling the NPV algorithm
in dimension, however it guarantees that the cross-entropy approximation will not diverge. This
alteration leads to a solution for the inconsistency of the ELBO approximations. Since the quadrature
method does not require any derivatives of log(p(x)) w.r.t. the mean components of the GMM,
we can now optimize the means and variances simultaneously on the same ELBO approximation.
Finally, Jensen’s inequality is a very poor approximation for entropy in general, instead we will use
the three methods we have introduced, Taylor, Taylor limit, and Legendre, as the GMM entropy
approximations for higher accuracy. Fig. 4 shows an approximation of a two dimensional, three
component mixture Student T distribution using a fiver component GMM in the traditional NPV,
using our Taylor approximation and our Legendre approximation.

The results, as seen in Fig. 5, highlight the accuracy and computation time of each method versus the
number of components used, the order of our polynomial approximation used, and the dimension of
the GMM. The accuracy is the same as seen in Section 6, the new information here is the computation
time of each method. We see that the order of the method has very little impact on the computation
time of our algorithm. We even see most of the accuracy improvement at around order 2 or 3 so
staying in a low order approximation seems advisable. We do see that the component does increase
our time by a bit compared to that of traditional NPV. The source of the computation time increase
in our methods comes from more iterations in the optimization. Each evaluation of the (ELBO)
approximator are near equivalent but since we are converging to a better optimum, this take more
iteration steps than NPV. Finally, we see that dimension does have a large impact on our method.
The source of this computation increase come from our Gauss-Hermite approximation of the cross
entropy. The number of quadrature points used 2 per dimension D, so we are computing with 2D

points, which clearly scale poorly with dimension. We are seeking better ways of computing the
cross-entropy of a GMM with any non-GMM function that is both convergent and computationally
fast, however this was not the focus of the paper and no method was considered yet.
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