Appendix

A Graphsage (with Graph formulation)

We aim at learning universal weights, similar to GraphSAGE Hamilton *et al.* [2017], which will signify the importance of a neighbour based on some known node values and edge weights. Here we define node values as the value of the pollutant PM2.5 while the edges are created using latitude, longitude and datetime features. Firstly, a graph is created from the train dataset, aggregating all inputs within 500m and 30 minutes of each other into a single node. An edge is created between two nodes if they lie within 2 hours of each other. The graph then goes through two graph-based layers to learn the required weights where embeddings are learnt using the max and mean aggregation layers, followed by 3 fully connected neural network layers to predict the final pollutant value.

Let $G = (V, E, \sigma, A)$ be a Directed Graph with V vertices/nodes, E edges, A attributes and σ as the label mapping, where

 $\sigma:V\to \mathcal{L}$

 \mathcal{L} being the set of PM_{2.5} values.

V corresponds to the spatiotemporal locations where $PM_{2.5}$ values are known (S: Red) or desired (U: Blue), i.e. V=S+U. E ($e \in E$) connects the V ($v \in V$) such that

 $e_{ij} = (v_i, v_j) | v_i \in S \land v_j \in (S \lor U) \text{ and } t_{ij} \leq TimeLimit, \text{ where } t_{ij} = abs(v_i^t - v_j^t)$

The Graph G comprises of separate connected components for different days.

 $e_{ij} = (v_i, v_j) \mid v_i \in Day_p \text{ and } v_j \in Day_q \Rightarrow p = q$

Weight of each edge is inversely proportional to the spatial distance between the two nodes across the edge.

 $w_{ij} = \frac{1}{1+d_{ij}}$, if e_{ij} exists, where d_{ij} =haversine (v_i, v_j)

Edges exist from all S nodes to each U node. No S to S edges exist.

$$e_{ij} = (v_i, v_j) \mid v_i \in S \text{ and } v_j \in U \Rightarrow |e_{ij} \forall i| = |S| \forall j$$

The graph G is of two types:

Train Graph G_{Train} : It is used for training Graphsage Neural Network.

 $v \in Day_{Train} \Rightarrow v \in S \lor U \Rightarrow |v \in S| > 0 \text{ and } |v \in U| > 0$

The RMSE loss on the nodes $v \in U$ is used for model training.

Test Graph G_{Test} : It is used for evaluating the trained Graphsage model on unseen test day data (Day_{Test}) along with full data from known days.

 $v \in Day_{Test} \Rightarrow v \in S \lor U \Rightarrow |v \in S| > 0 \text{ and } |v \in U| > 0$

The v is formed by taking the corresponding $PM_{2.5}$ label L and an indicator variable I.

$$v_i = L_i | I_i$$

$$L_i \leftarrow PM_{2.5}, I_i \leftarrow = 1 \forall v \in S$$

$$L_i \leftarrow 0, I_i \leftarrow = 0 \forall v \in U$$

The 2 layer mean-pool and max-pool model graphsage architecture is shown in Fig. 8.

The RMSE loss of the nodes $v \in U$ (or $v \in P$ in particular) is used as the reporting metric.

For Graphsage based evaluation, out the 80% training data in 5-fold cross validation, we use 40% as *visible* set, 40% as *held-out* set, to manage edges between these two sets.

Figure 8: Graphsage model architecture.

B Complete ML Benchmarks

Table 3 shows the complete benchmark for Spatio-temporal Interpolation for different train and input configurations. An important subset of these benchmarks is presented in Fig. 5 and discussed in § 4.4 in the main paper.

Algo	Co	nfig	Delhi (Day)	Canada	(Day)	Canada	(Year)	USA ((Day)
11180	Train	Input	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
MeanPred	-	С	65.80	2.44	3.13	1.14	5.66	1.13	13.85	3.02
IDW	ACT AC	ACT AC	39.94 351.73	2.51 2.85	2.56 2.66	0.95 0.95	4.56 7.33	1.05 1.61	10.24 23.21	2.57 5.29
	С	С	25.83	2.77	2.31	0.98	4.35	0.91	10.32	2.60
RF	ACT AC C	ACT AC C	22.24 77.30 22.25	2.81 2.67 2.77	2.37 2.69 2.34	0.95 0.98 0.89	4.18 6.05 4.12	0.68 0.93 0.68	10.73 13.93 10.82	2.89 3.20 2.85
XGBoost	ACT AC C	ACT AC C	33.24 65.04 29.73	2.87 2.55 2.76	2.55 2.90 2.71	0.95 0.98 1.05	4.62 6.03 4.09	1.01 0.84 0.67	11.51 14.19 11.66	3.05 3.32 3.16
NSGP	ACT ACT AC AC C	ACT C AC C C	29.11 194.96 69.75 37.46 170.99	3.84 1.63 3.65 4.63 9.31	2.57 13.02 2.89 3.17 12.74	1.09 0.72 0.90 1.12 0.55	4.41 14.68 5.99 5.25 13.51	0.89 0.63 0.95 1.22 0.72	10.39 27.11 13.42 22.14 27.81	2.69 3.25 3.09 3.46 3.67
Graphsage	AC C	C C	38.63 38.68	3.89 4.12	2.96 3.13	1.25 1.24	5.37 5.68	1.13 1.46	11.66 12.75	3.29 4.06

Table 3: Spatiotemporal Interpolation RMSE for different configurations (* denotes partial experiments).

Table 4 shows the complete benchmark for Spatio-temporal Missing data Imputation for different train and input configurations. Missing data imputation is briefly discussed in § 4.4 in the main paper. The traditional and powerful RF (Random Forest) algorithm outperforms all other algorithms and methods.

Algo	Co	nfig	Delhi (Day)	Canada	(Day)	Canada	(Year)	USA ((Day)
11180	Train	Input	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
MeanPred	-	С	65.80	2.44	3.13	1.14	5.66	1.13	13.85	3.02
IDW	ABCT ABC	ABCT ABC	40.06 399.44	2.51 1.14	2.56 2.69	0.95 0.93	4.56 7.92	1.05 1.47	10.19 68.63	2.57 8.00
RF	ABCT ABC	ABCT ABC	22.26 78.90	2.85 2.71	2.34 2.70	0.93 0.96	4.22 6.21	0.67 0.96	9.42 14.09	2.60 3.13
XGBoost	ABCT ABC	ABCT ABC	33.46 67.66	2.87 2.55	2.53 2.94	0.91 0.96	4.63 6.19	1.02 0.87	10.23 13.84	2.74 3.12
NSGP	ABCT ABC ABC ABCT ABT AB	ABCT ABC C C C C C	29.06 71.27 171.94 194.98 195.86 37.63	3.64 3.16 8.08 1.55 3.00 3.87	2.52 2.81 12.71 12.90 13.03 4.15	0.95 0.91 0.53 0.60 0.61 0.92	4.40 6.09 13.29 14.58 14.68 5.43	$\begin{array}{c} 0.85 \\ 0.88 \\ 0.94 \\ 0.68 \\ 0.95 \\ 1.09 \end{array}$	9.62 13.38 21.76 26.80 27.28 23.19	2.46 2.97 3.18 3.08 2.99 3.10
Graphsage	ABC AB	C C	38.53 38.48	2.94 2.86	3.15 3.13	1.30 1.25	5.46 5.41	1.11 1.08	11.78 11.59	3.56 3.15

Table 4: Missing Data Imputation RMSE for different configurations.

Table 5 shows the complete benchmark for Spatio-temporal Forecasting for different configurations. A subset of these benchmarks is presented in Fig. 7 and discussed in § 4.4 in the main paper.

Algo	Config	Delhi (Day)	Canada (Day)	Canada (Year)	USA (Day)
IDW	ABT	86.52	5.65	8.31	14.61
	AB	270.73	5.73	11.23	69.20
RF	ABT	110.49	5.90	8.45	14.23
	AB	89.54	6.11	10.80	14.58
XGBoost	ABT	102.68	6.69	8.23	14.25
	AB	84.15	6.51	9.84	14.52
NSGP	ABT	95.83	5.76	8.01	13.65
	AB	86.34	6.08	10.22	14.34
ARIMA	ABT	148.86	13.87	12.85	20.12
nBeats	ABT	106.41	10.88	11.84	17.05

Table 5: Forecasting RMSE for different configurations.

NSGP Variance

Non-stationary GP models provides us with uncertainty (variance) values around the expected mean PM2.5 value for each expected spatio-temporal location. We find that the average variance value for Delhi dataset is huge as compared to Canada (Day) experiments. It is more challenging for a model or algorithm to correctly understand and predict the PM values for Delhi dataset. Even the USA dataset with data over a big region does not exhibit such complexity for the algorithms.

	Table 0. INS	OF variance.		
	Delhi (Day)	Canada (Day)	Canada (Year)	USA (Day)
Spatio-temporal Interpolation	118.73	17.29	72.94	76.34
Missing Data Imputation	142.51	20.34	113.37	72.58
Forecasting	77.38	19.96	60.89	59.76

Table 6: NSGP Variance.

C Anova Tests Analysis for Low Cost Sensor

In continuation to the data quality analysis presented in § 3.2, we performed Anova Tests over the data collected by DustTrak and our Low Cost Mobile sensor devices at the same location. ANOVA Navidi [2009], Analysis of Variance, is a strong statistical factorial technique which involves one dependent variable known as response variable and one or more independent variables known as factors. The factors have different levels called treatments. The ANOVA tests compare two types of variation, the variation between the sample means and the variation within the samples.

Two-way ANOVA test between DustTrak reference sensor and our low-cost mobile sensor

In relation to our low cost sensor scenario, the observed $PM_{2.5}$ values are dependent on the sensor *Type* (DustTrak vs Low Cost) and the time(*Day*) of observation. As we have two factors, we need to perform two-way ANOVA test. For the *Day* factor, we take the hourly $PM_{2.5}$ mean samples grouped over each day (24 hours) of observations.

Two-way ANOVA tests three null hypotheses

- (a) the means of observations grouped by factor *Type* are same
- (b) the means of observations grouped by factor *Day* are same
- (c) there is no interaction between the two factors Type and Day

Two-way ANOVA Assumptions

We make the standard assumptions of completeness, balanced design, normal distribution, similar variance, and sufficient replicates per treatment for validating ANOVA hypotheses. We take one device per sensor *Type* and same number (11) of *Day* as treatments under the two factors, with each *Type* and *Day* containing $PM_{2.5}$ samples. Fig. 9 shows the box-plot diagram with similar standard deviation for the DustTrak and our Low cost mobile sensors.

Figure 9: Mean and Standard Deviation for DustTrak and our Low Cost Mobile sensors.

Interpreting two-way ANOVA results

Table 7 shows the two-way ANOVA test results for DustTrak and our Low Cost Mobile sensor. As per Seltman [2018], the *SumSq* column represents the sum of squared deviations for each *Source* of variation. Each *Source* has a *df* (degrees of freedom) which is a measure of the number of independent pieces of information present in the deviations that are used to compute the corresponding *SumSq*. Each *MeanSq* is a variance estimate and the *SumSq* divided by the *df* for that *Source*.

Each *F*-statistic is the ratio of two *MeanSq* values. For the main effects, *Type* and *Day*, the denominators are all MSE which are pure estimates of group variance, unaffected by the validity of the null hypothesis. Each *F*-statistic is compared against it's null sampling distribution to compute a *p*-value. Interpretation of each of the *p*-values depends on the corresponding null hypothesis.

Table 7: Two-way ANOVA test for DustTrak Reference Sensor vs Our Low Cost Sensor Mobile Sensor 1

Effect	Source	df	SumSq	MeanSq	F	p-value	Significance
Main	Type Day Type*Day	1 10	197.84 30204.98 261.76	197.84 3020.50	2.36 36.10	0.1248 < 0.0001	Holds hypo (a) Reject hypo (b)
Error	<i>Type*Day</i> Residual	444	37147.11	20.18 83.66	0.51	0.9778	Holds hypo (c)

In the presence of an interaction (*Type*Day*), the *p-value* for the interaction is most important and the main effects *Type* and *Day* p-values would be ignored if the interaction is significant. This is mainly because if the interaction is significant, then some changes in both explanatory variables (*Type* and *Day*) must have an effect on the outcome PM_{2.5}, regardless of the main effect *p-values*. The null hypothesis for the interaction *F*-statistic supports an additive relationship between the two explanatory variables, *Type* and *Day*, in their effects on the outcome PM_{2.5}. If the *p-value* for the interaction is less than α (usually 0.05), then we have a statistically significant interaction.

As we have a non-significant interaction $F_{1,10} = 0.31$ with *p*-value = 0.9778 which is greater than $\alpha = 0.05$, the null hypothesis (c) holds and the *p*-values for the main effects are valid for consideration. So, we can see that the *Day* has a significant *p*-value and thus it rejects the null hypothesis (b) meaning that there is impact of different *Day*'s observation on the observed PM_{2.5} sample. This outcome aligns with a common understanding regarding the varying pollution across different days.

The analysis for the main effect sensor *Type* is more encouraging. It has a non-significant *p*-value = 0.1248 which holds the null hypothesis (a) that the means of the observations of the two device *Types*, DustTrak and our Low Cost Mobile sensor, are same. Hence, our Low Cost Mobile device can be effectively used to collect PM_{2.5} observations in place of the expensive DustTrak sensors.

One-way ANOVA test between DustTrak reference sensor and our low-cost mobile sensor

Though the two-way ANOVA results hold for the main effects, we still perform one-way ANOVA test for the main effect *Type* (DustTrak vs Low Cost) for the observed $PM_{2.5}$ values. We ignore the *Day* factor in this analysis, so the $PM_{2.5}$ samples are only attributed with the *Type* factor. One-way ANOVA tests for the hypothesis (a) as of two-way ANOVA and with the standard assumptions of normal distribution and similar variance.

Table 8: One-way ANOVA test for DustTrak Reference Sensor vs Our Low Cost Sensor Mobile Sensor 1

Effect	Source	df	SumSq	MeanSq	F	p-value	Significance
Main Error	<i>Type</i> Residual	1 464	197.84 67613.85	197.84 145.72	1.36	0.2445	Holds hypothesis (a)

Table 8 presents the results for one-way ANOVA, which too shows *Type* factor to have a non-significant p-value = 0.2445 which holds the null hypothesis (a). Hence with similar means of the observations, our Low Cost Mobile device can replace the expensive DustTrak sensors.

Two-way ANOVA test for our Low Cost device replaceability

We also show that our Low Cost Mobile devices are replaceable by each other. We perform two-way ANOVA tests between our Low Cost Mobile devices and the results are presented in Table 9.

As the *p-value* for the interaction is non-significant, main effects are valid. Likewise *Day* factor rejects hypothesis (b) and importantly *Type* factor holds hypothesis (a), allowing our Low Cost devices to replace each other as applicable.

Effect	Source	df	SumSq	MeanSq	F	p-value	Significance
Main Interaction Error	<i>Type</i> <i>Day</i> <i>Type*Day</i> Residual	$ \begin{array}{r} 1 \\ 10 \\ 10 \\ 450 \end{array} $	145.65 31204.66 148.46 39632.11	145.65 3120.47 14.85 88.07	1.65 35.43 0.17	0.1991 < 0.0001 0.9982	Holds hypothesis (a) Reject hypothesis (b) Holds hypothesis (c)

Table 9: Two-way ANOVA test for Our Low Cost Sensor Mobile Sensor 1 vs 2

D Spatio-temporal Correlation and Covariance Analysis

To analyze the temporal correlation over the $PM_{2.5}$ values for different locations, we split the data in grids of 1km x 1km x 1hr and average the $PM_{2.5}$ values in each grid to get a representative value¹.

We observe high autocorrelation for different spatial grid locations, for 1 hour lag. In Fig. 10, we show the autocorrelation for 12 spatial grid locations, denoted as locations A-L, with the corresponding Latitude-Longitude marked alongside in the titles. The X and Y axis represent the $PM_{2.5}$ values for without lag (y(t)) and with 1 hour lag (y(t+1)) respectively.

Figure 10: autocorrelation for 12 grid locations for 1 hour lag (the titles contain the latitude-longitude of the grid locations).

The autocorrelation decreases for lags of 2 hour or more at individual grid locations.

Figure 11: autocorrelation for 12 grid locations up to 1.5 days lags.

¹This dataset version is available at https://huggingface.co/datasets/sachin-iitd/ DelhiPollDataset/tree/main/4.Grid(PM+Met)

We further analyze the hourly data for 1.5 days for individual locations, and observe patterns of high and low autocorrelation. Fig. 11 shows autocorrelation for the same 12 grid locations for 36 hours. We observe a high autocorrelation at 24 hour period indicating similar pollution traits at the same time next day. We further observe that most locations (except A and B) exhibit a local high autocorrelation in the sub 12 or 8 hour periods as well, indicating repeated traffic patterns, like similar pollution characteristics around the morning and evening periods.

Figure 12: autocorrelation for A and C grid locations for up to 7 days lags. The autocorrelation decreases with increasing the lag.

The locations A and B seem to exhibit behaviour different from other locations, with low autocorrelation in the sub 12 hours period. Both these locations are adjacent to *Kushak Nalla Bus Depot* which hosts the buses for stopping between the runs and for overnight stopping while the bus services are down. Hence more data is collected here for longer periods which shows different pollution traits compared to all other grid locations. For grid locations A and C, Fig. 12 shows the autocorrelation for the two distinct behaviour for 7 days lags. The autocorrelation for 7 days for grid locations A and C is also presented as heat-map in Fig. 13.

Figure 13: autocorrelation for A and C grid locations for up to 7 days lags as heat-map. The autocorrelation decreases with increasing the lag.

We also analyze the covariance among the spatial grid locations. In Fig. 14, we observe low or different covariances for locations at same distance from the base location. Hence there are different pollution traits at different locations, which sometimes match with neighboring locations due to common local/global factors, and sometimes differ due to some local factors.

Figure 14: Interpolated empirical covariance between a base locations and other (99) grid locations in Delhi dataset. In the first plot, all the locations around the base location A has very low covariance with A. In the second plot, the locations at same distance from the base location G have different covariance w.r.t. G.

E Meteorological Factors (Temperature, Relative Humidity, Wind Speed) Analysis

A recent research Yang *et al.* [2020] focuses the effect of meteorological factors on the pollution traits in Shenyang, China to understand temporal-spatial characteristics of particles and analyze the causality factors. Similarly, we analyzed the given dataset for the impact of the collected meteorological parameters - Temperature and Relative Humidity (RH).

We also purchased Wind Speed (WS) data for the 3 months (Nov 2020 - Jan 2021) from www. windfinder. com, and received data with half-hourly frequency for IGI Airport. Data has wind speed in knots varying from 0 to 19, with maximum daily average being \sim 7 knots. This wind data is not very fine, it has compromised precision with integer values only with some values missing. Still we could use this to analyze the effect of wind speed on the pollution.

	Temperature	Relative Humidity (RH)	Wind Speed (WS)
PM_1	-0.305	0.323	-0.508
$PM_{2.5}$	-0.303	0.332	-0.480
PM_{10}	-0.317	0.335	-0.477

Table 10: Correlation of Temperature, RH and WS with PM values.

Table 10 shows the correlation of temperature, humidity and WS with PM values. Overall we observe a negative correlation of PM with temperature, positive correlation of PM with RH, and negative correlation of PM with WS. Other researchers, like Yang *et al.* [2020]; Liu *et al.* [2020]; Avdakovic *et al.* [2016], have also observed similar positive and negative correlations, which is intuitive as temperature expands the air reducing PM per unit volume, humidity/moisture intensifies it, and wind blows it away. However, at a given time, which meteorological factor among these three will dominate needs more complex ML modeling.

Figure 15: Meteorological factors vs $PM_{2.5}$ over the 3 months. The orange vertical lines show the relation of high or low $PM_{2.5}$ with WS, temperature and RH. The red box shows the situation of very high $PM_{2.5}$ which is explained with non-meteorological causes.

Fig.15 shows the average wind speed, temperature and humidity for the 3 months with the corresponding average $PM_{2.5}$ values. We observe high WS with low PM on Nov 16 and low WS with high PM on Nov 24 and Jan 19, which matches the intuition. But there are adverse situations of high WS with high PM on Dec 6, and low WS with low PM on Jan 21 which doesn't match the intuition.

The initial days of November show very high pollution spikes with stable winds. As per Weather [2020], there was *high moisture, calm winds and stubble burning around the beginning of November 2020*. As per HT [2020], in 2020, Delhi had six consecutive *severe* days from November 5-10, the longest *severe* spell seen in the city since 2016. A combination of multiple factors affected this, including a prolonged and intensive stubble burning season that started early on and in high incidence, the firecracker bursting festival and unfavourable meteorological conditions.

Due to such severe pollution situation in Delhi-NCR around winters, CAQM [2022] revised their action plan for (a) *Very Poor* Air Quality to avoid dust generating construction activities during months of October to January, and (b) *Severe* Air Quality to instruct individual house owners to provide electric heaters to security staff to avoid open burning.

Besides the meteorological parameters provided with the dataset, external data like below can be useful while modeling -

- Meteorological data from ERA5: https://cds.climate.copernicus.eu/cdsapp#!/ dataset/reanalysis-era5-single-levels
- 2. NASA Fire count (VIIRS): https://firms.modaps.eosdis.nasa.gov/active_fire
- 3. Pollution Data from other sources: OpenAQ: (openaq.org), CPCB: (cpcb.nic.in)
- 4. Photochemical modelling: www.camx.com
- 5. Planetary boundary layer height: www.nrsc.gov.in/readmore_atmosphere_planet
- 6. Traffic Data from the dataset duration: delhi-trafficdensity-dataset.github.io
- 7. ClimateLearn: state-of-the-art climate-data/ML-models framework: Nguyen et al. [2023b]
- 8. ClimaX: flexible and generalizable weather/climate deep learning model: Nguyen et al. [2023a]

F Bus Route Analysis

We analyzed the Delhi dataset based on the different (13) bus routes available in the data. This is shown in Fig. 16 with the overall $PM_{2.5}$ colour-map.

Figure 16: PM_{2.5} distribution for the bus-routes followed over 3 months.

The title of each subplot shows the last 4 characters of the bus-route number from the dataset, with Latitude on Y-axis and Longitude on the X-axis. In different routes, there are sub-routes which showed high $PM_{2.5}$ concentrations in this duration, which can be due to high traffic concentrations

and or other local factors. Such route level $PM_{2.5}$ concentrations can be used to recommend people which routes to choose for commute/travel. Such and many other pollution traits can be further analyzed by using our dataset in conjunction with other open source data.

We further checked the daily $PM_{2.5}$ concentrations across the 13 routes. Fig. 17 shows the mean $PM_{2.5}$ values per day, with $PM_{2.5}$ levels on the Y-axis and day number on the X-axis. The number on the right axis in each subplot denotes the bus-route number.

Figure 17: Daily $PM_{2.5}$ averages (denoted on left axis) for the different routes (mentioned on right axis) for the 3 months (x-axis). We observe some common low and high pollution periods, due to sharing of sub-routes by the buses.

As observed around the vertical lines in orange colour in Fig. 17, the different bus-routes seem to exhibit similar pollution traits due to the common paths tracked by them. We also observe the difference among different routes and hence a formal correlation analysis was performed to get better characteristics on the behaviour.

Figure 18: autocorrelation for the 13 bus-routes, for upto 2 days (48 hours) lags over hourly $PM_{2.5}$ averages. We observe positive autocorrelation in the bus-routes.

We performed the autocorrelation for the 13 bus-routes separately for hourly $PM_{2.5}$ averages. Similar to the combined route analysis done in Appendix D, we observe autocorrelation for separate bus-routes for 24 hour lags. As seen in Fig. 18, the level of autocorrelation is not same for all bus-routes, highlighting influence of local factors affecting pollution in their transit paths. Similar to overall correlation in Appendix D, we also find correlations at sub 12 hour lags as well for some of the bus-routes. autocorrelation for the 3 types of bus-routes, for upto 7 days lags over hourly $PM_{2.5}$ averages is shown in Fig. 19. We observe both positive and negative correlation in bus-route 3, almost no long-term correlation in bus-route 6 and varying but positive correlation in bus-route 11.

In contrast to the grid level autocorrelation analysis performed in Appendix D, we observed less negative autocorrelation for most of the bus-routes, which seems due to the same paths being traversed at same time each day by the buses.

Figure 19: autocorrelation for the 3 types of bus-routes, for upto 7 days lags over hourly $PM_{2.5}$ averages. Both positive and negative correlation in bus-route 3, almost no long-term correlation in bus-route 6, varying but positive correlation in bus-route 11.

Figure 20: Buses share sub-routes hence some level of correlation exists between different bus routes.

Encouraged with the autocorrelation among different routes, we check the covariance among them, taking hourly $PM_{2.5}$ averages similar to autocorrelation. In Fig. 20, we can observe some average covariance among the different routes, while some of them show very low covariance. As Buses transit through different areas of the city, their corresponding data may contain peculiar characteristics for the area. A thorough analysis to understand those peculiar characteristics in contrast with other areas can reveal significant spatial traits for the Delhi region.

G Anomaly Detection

This dataset has been created using a novel IoT network with low cost sensor platform, deployed in public buses in a developing country, the first of its kind. There are many points of faults — sensors can be faulty, internet connection can be shaky, buses might be down the faults can affect the quantity of data as well as quality. Detecting such anomalies for quick fixes is a necessity. We applied statistical analysis to detect anomalies, which involves many heuristics with manually tuned thresholds. Our findings can serve as anomaly ground truth for this dataset. Automating this process with ML based methods (instead of manually tuned thresholds) can open up new avenues of anomaly detection in mobile and IoT networks. ML researchers can try and automate the fault detection process using our dataset and the ground truth anomalies. They can also modify our released code, to change our empirical thresholds for more or less aggressive anomaly definition. Additionally unsupervised learning methods perhaps would change the anomalies detected manually by us. We describe next the different anomaly metrics that we compute on the dataset using statistical analysis and empirically determined thresholds.

Figure 21: (a) Sampling rate i.e. number of samples recorded per minute for 3.12.2020. This helps us in finding out if any device isn't sampling properly. (b) Illustration of a sample box plot and process of collecting median, 25^{th} percentile and 75^{th} percentile in metric 1 and 2.

Anomaly metric 1: Samples recorded per minute: This metric checks for faulty devices which might be sampling more or less than expected rate. Fig. 21a shows ideal samples collected per minute should be around 20. If it deviates too much, that device is anomalous. The amount of deviation allowed is calculated statistically by observing the distributions for several days. Our algorithm (detailed in the supplementary section) finds the upper bounds and lower bounds of the median ($\Theta_{50}^L, \Theta_{50}^U$), 25^{th} percentile ($\Theta_{25}^L, \Theta_{25}^U$) and 75^{th} percentile ($\Theta_{75}^L, \Theta_{75}^U$) of the expected distribution. Anomaly is reported if any two of the three bounds are violated.

Anomaly metric 2: Number of minutes each device is active in an hour: A device can be active for all the 60 minutes of an hour or less based on time of the day/lunch break, stoppage at bus depots etc. So again we tried plotting the box plots for the distributions across the days and devices. We observe that ideally device should be active for 60 minutes of an hour, if the bus was taking a trip in that hour. So we used the same technique used in Metric 1: find the upper bounds and lower bounds of the median ($\Theta_{50}^L, \Theta_{50}^U$), 25^{th} percentile ($\Theta_{25}^L, \Theta_{25}^U$) and 75^{th} percentile ($\Theta_{75}^L, \Theta_{75}^U$) of the expected distribution. Anomaly is reported if any two of the three bounds are violated.

Anomaly metric 3 : Number of active hours in a day: An active hour for a particular sensor is any hour in which the sensor sends at least a fixed number(γ) of samples. The number of active hours should ideally be greater than a threshold value(τ). But it is hard to fix one τ across all sensors, as different buses have different schedules and frequencies, which also can change over time. This is shown by the bar plots of number of active hours in Fig 22.

So, we define τ or ideal number of active hours for every sensor as the maximum of 10 active hours and 15^{th} percentile of the sensor's previous 15 days' active hours. This ensures that τ is appropriately chosen for every sensor depending on its particular bus's recent schedule. If the number of active hours for a sensor on any day doesn't satisfy the threshold (τ), it is reported as anomalous for the day.

Figure 22: Number of active hours for different devices on two different days as shown by two different plots. We can see that the number of active hours on both days for each device are different.

Anomaly metric 4: Samples recorded per region: It is important to check whether daily around same number of data points are collected or not in an area. This metric detects situations where bus may not complete its scheduled trip due to mechanical breakdowns or high traffic resulting in less recording of data points in some areas. We divided the area covered by buses into 16 square regions. Given total number of data points collected in each region on a day, a region is reported as anomalous if its value deviates from past seven days average of that region by at least δ %. The value of δ is calculated by observing the data of several days.

Anomaly metric 5: Inter-sensor PM values variation: Ideally the PM values measured by different sensors should lie in a close range if the measurements were carried out at the same location and time. Every night from 0 AM IST to 5 AM IST all the buses remain parked at the same bus depot. We have used the PM value data from this time period to find devices whose PM 2.5 value measurements deviate from the general PM value trend of majority devices. For each hour, we have a box plot describing PM value distributions of all the devices as shown in Fig. 23a. Let Θ_{25} and Θ_{75} represents 25th and 75th percentile of distribution of PM values of a device during an hour. Interquartile range (IQR) is defined as $(\Theta_{75}, \Theta_{25})$. Given a box plot, a device is flagged for possible anomalous behaviour if it's IQR is very high (e.g. device e6811 in Fig. 23a). In order to define how much IQR should be considered high to be flagged, we define a threshold max_IQR which is set as 90 percentile of all the IQRs of all the devices in training set. Secondly, if a box (middle 50% data) of a device in the plot varies in a range different than the range of other devices then also the device is flagged (e.g. device bc0b0 in Fig 23a). To find such anomalies, we first find a range in which boxes of majority devices lie, then all those devices which are out of this range are flagged. A parameter called 'buffer' is defined statistically based on training data for finding the range. Given a PM value distribution of an hour, we iteratively calculate candidate range as $[\Theta_{25}$ -buffer, Θ_{75} +buffer] for each device. The candidate range which contains the boxes of maximum number of devices is considered as the final range. The devices whose box does not fit completely in this range are flagged for that hour. Finally a device is reported as anomalous if its get flagged for at least three hours in a day.

Figure 23: (a) shows a box plot of PM value distributions of various devices on 2020-12-20 4:00 AM IST. Red lines indicate the majority PM range. Device bc0b0 is flagged as it is out of majority PM range while device e6811 is flagged as its IQR exceeds max_IQR. They will be declared as anomaly if they show this behaviour in at least two more hours. (b) shows PM value distributions of the device f0aa8 on 2021-01-16. The device is reported as anomaly as its PM value measurements are highly varying across several hours.

Anomaly metric 6: Intra-sensor PM values variation: Similar to the above metric, intra sensor analysis verifies that the variation in a device's PM value recordings across consecutive hours is not very high. Given a device's PM value recordings during 0 AM IST to 5 AM IST, it is flagged for further checks if IQR of the device during any hour is greater than max_IQR or if at least three boxes lie out of majority PM range. The majority PM range is the PM value range which contains the maximum number of boxes computed similarly as described in the above metric except that the value of buffer here is computed based on intra senor PM value distributions. Finally a device is reported as anomalous only if its get flagged for at least three hours in a day. Figure 23b shows one such anomaly.

We detail the heuristics for computing the above six anomaly metrics, the thresholds and summary statistics of all anomalies found, in the supplementary section and the website. The anomalies found in the paper were cross-checked with the platform vendor Aerogram and the deployment partner, the public bus company DIMTS, for correctness and usefulness. All cases on inter-sensor and intra-sensor variations (metrics 5 and 6) were caused by local electrical maintenance work in a particular bus at the depot, whose sensor readings deviated from other buses in the depot. Lack of samples per minute or per hour (metrics 1 and 2) are helping to understand 4G networking issues. Finally the metrics for active hours per day and spatial coverage consistency (metrics 3 and 4) are helping to gain insights on unpredictable public bus behavior in Delhi, especially during Covid-19 induced lockdowns, where bus schedules and routes are seeing significant variations. Thus all these anomalies are highly important to gain insights about a live IoT network deployment. Defining these metrics and the multiple thresholds for them has been cumbersome, and more automated ML methods using this dataset and our findings as ground-truth, will be immensely valuable.

H Miscellaneous

We also observed the output of Spatio-temporal Interpolation using Random Forest (RF) algorithm to see the distribution of RMSE for the predictions. Fig. 24 shows some locations with large error, which needs indicates need of special handling.

Figure 24: RMSE of the Spatio-temporal Interpolation using RF. (a) bigger circle denotes bigger RMSE for the spatial location while modeling. (b) shows the RMSE distribution. Few locations are hard to model.

I Letters of Approval / Certifications from authorities

I.1 ICAT EMC certification

ICAT EMC certification of our instrument verifying that it doesn't interfere with the bus's electromechanical properties.

IN		[A Divisi	on of NATRiP Impl	ementation Society	(NATIS), GOVI. OF	mulaj	
						Non-Transferabl	е
AN				TEST REPORT			_
ULRI	No.: T	C 5 3	6 0 1 9	0 5 0 0 0 0) 3 9 6 F	Date: 12-09-2019	*
Test	Report No.:	С	D 0 M 0 0	4 7 4			
1.0	NAME AN	D ADDRESS	OF THE CUSTOMER	: Computer Scie Room 514, Bhar	nce Department II ti Building IIT Delh	IT Delhi i Hauz Khas New De	elhi-11001
0	011070145	D DEFENSION	or	New Delhi INDIA	C70648: Datad: 17	07 2019	
2.0	DESCRIPTI	ON OF TEST	CE F PROPERTY :		C70648; Dateu. 17	1-07-2019	
1	DUT Name	: Aerogram	1				
	Model Nar	ne : Aerogra	am				
0	Part No. : (stem: 24V D	C		· - ·		
X	Drawing N	o : EzioMoti	v – V1.0		1		
3.0	DATE OF R	ECEIPT OF	TEST PROPERTY: 03	-09-2019			
4.0	TEST OBJE	CTIVE: To c	onduct tests as men	tioned in Sr. No. 13 on	DUT as per AIS00	4 - Part 3 as amend	ed up to
	April 2015	10000000					
	riprii LOLO	• • • • • •					
6.0	TEST MET	HOD: As per	r AISOO4 - Part 3 as a	mended up to April 20	015.		
6.0 7.0 8.0	TEST MET	HOD: As per ATION OR E	r AISOO4 - Part 3 as a XCLUSION FROM TE ATION: DUT was po	amended up to April 20 EST METHOD: NA wered on with 27 V D	015. C (24 V DC system))for all tests as per	AIS 004-
6.0 7.0 8.0	TEST MET ANY DEVIA FUNCTION 3 as amen	HOD: As per ATION OR E IAL VERIFIC ded up to A	r AIS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po April 2015. Performa	amended up to April 20 EST METHOD: NA wered on with 27 V Do ance was observed by	015. C (24 V DC system) monitoring data st)for all tests as per . rings before and af	AIS 004- ter each
6.0 7.0 8.0	TEST MET ANY DEVIA FUNCTION 3 as amen test and d	HOD: As per ATION OR E IAL VERIFIC ded up to A uring the te	r AIS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o	EXAMPLE A STATE OF THE STATE OF	015. C (24 V DC system) monitoring data st tored.)for all tests as per rings before and af	AIS 004- ter each
6.0 7.0 8.0 9.0	TEST MET ANY DEVIN FUNCTION 3 as amen test and d CONCLUSI as amende	HOD: As per ATION OR E IAL VERIFIC ded up to A uring the te ON: The co	r AlS004 - Part 3 as a EXCLUSION FROM TH ATION: DUT was po upril 2015. Performa st, and power LED o mponent mentioner ril 2015.	mended up to April 20 EST METHOD: NA wered on with 27 V Dunce was observed by f the device was monit d in Sr. No. 2 above m	015. C (24 V DC system) monitoring data st tored. leets the requirem)for all tests as per rings before and af nents as per AIS004	AIS 004- ter each - Part 3
6.0 7.0 8.0 9.0 10.0	TEST MET ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC	HOD: As per ATION OR E IAL VERIFIC ded up to A uring the te ON: The co d up to Apr RIPTION: E	r AlS004 - Part 3 as a EXCLUSION FROM TRA ATION: DUT was po spril 2015. Performa st, and power LED o imponent mentione ril 2015. MC/EMI testing as p	mended up to April 20 ST METHOD: NA wered on with 27 V Di nice was observed by f the device was monif d in Sr. No. 2 above m wer AlS004 - Part 3 as a	015. C (24 V DC system) monitoring data st tored. neets the requirem mended up to Apr)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT.	AIS 004- ter each - Part 3
6.0 7.0 8.0 9.0 10.0 11.0	TEST METI ANY DEVIJ FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F	HOD: As per ATION OR E IAL VERIFIC ded up to A uring the te ON: The co ed up to Apr RIPTION: E 'ERFORMAI	r AlS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po pril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CATEMIC LAB. Mark	Immended up to April 20 EST METHOD: NA wered on with 27 V Di nice was observed by i f the device was monit d in Sr. No. 2 above m ver AIS004 - Part 3 as a -2019 - 10-09-2019	D15. C (24 V DC system) monitoring data st tored. Leets the requirem mended up to Apr Cellence)for all tests as per rings before and af rents as per AIS004 il 2015 on the DUT.	AIS 004- ter each - Part 3
6.0 7.0 8.0 9.0 11.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESU	HOD: As per ATION OR E IAL VERIFIC ded up to A uring the te ON: The co ad up to Apr RIPTION: E VERFORMAN I OF TEST: IC ILTS:	r AlS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po pril 2015. Performa st, and power LED o imponent mentione ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane	mended up to April 20 EST METHOD: NA wered on with 27 V Di ance was observed by a f the device was monif d in Sr. No. 2 above m ver AIS004 - Part 3 as a -2019 - 10-09-2019 sar	D15. C (24 V DC system) monitoring data st tored. leets the requirem mended up to Apr Cellence)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT.	AIS 004- ter each - Part 3
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amended TEST DESC DATE OF F LOCATION TEST RESL Sr. No.	HOD: As per ATION OR E VAL VERIFIC ded up to A uring the te ON: The co ad up to Api XRIPTION: E VERFORMAT I OF TEST: 10 ILTS:	r AlS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner il 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE	mended up to April 20 EST METHOD: NA wered on with 27 V Di ince was observed by if the device was monit d in Sr. No. 2 above m ver AIS004 - Part 3 as a -2019 - 10-09-2019 sar SAMPLE ID	015. C (24 V DC system) monitoring data st tored. neets the requirem mended up to Apr Cellence REF. STD.)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT. OBSERVATIONS/R	AIS 004- ter each - Part 3 ESULTS
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1	HOD: As per ATION OR E NAL VERIFIC ded up to A uring the te ON: The co ed up to Ap RIPTION: E VERFORMAR I OF TEST: 10 ILTS:	r AlS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE Lated Emission	mended up to April 20 EST METHOD: NA wered on with 27 V Di nce was observed by 1 f the device was monit d in Sr. No. 2 above m ver AIS004 - Part 3 as a -2019 - 10-09-2019 sar SAMPLE ID	D15. C (24 V DC system) monitoring data st tored. leets the requirem mended up to Apr Cellence REF. STD. AlSO04- Part 3: 2009 as)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT. OBSERVATIONS/R Refer Annexur Refer Annexur	AIS 004- ter each - Part 3 ESULTS 'e-1
6.0 7.0 8.0 9.0 10.0 11.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSSI as amende TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3	HOD: As per ATION OR E NAL VERIFIC ded up to A uring the te ON: The co ed up to Apr XRIPTION: E YERFORMAN I OF TEST: IC JLTS: Radii Radii Conducted	r AlS004 - Part 3 as a EXELUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentione ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission	mended up to April 20 EST METHOD: NA wered on with 27 V Di nce was observed by 1 f the device was monit d in Sr. No. 2 above m ver AIS004 - Part 3 as a -2019 - 10-09-2019 sar SAMPLE ID ICAT/EMC/70648/01	215. C (24 V DC system) monitoring data st tored. eets the requirem mended up to Apr Cellence <u>REF. STD.</u> AISO4- Part 3: 2009 as amended up to)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT. OBSERVATIONS/R Refer Annexur Refer Annexur Refer Annexur	AIS 004- ter each - Part 3 ESULTS 'e-I e-II e-III
6.0 7.0 8.0 9.0 10.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSSI as amended TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ed up to Apr SRIPTION: E FRFORMAN I OF TEST: IG JLTS: Radii Conducted Conducted	r AlS004 - Part 3 as a EXELUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentione ril 2015. MC/EMI testing as p MC/EMI testing as p MCC OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity	sar SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID	C (24 V DC system) monitoring data st tored. mended up to Apr Cellence REF. STD. AISO4-Part 3: 2009 as amended up to April 2015)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT. OBSERVATIONS/R Refer Annexur Refer Annexur Refer Annexur Refer Annexur	AIS 004- ter each - Part 3 ESULTS 'e-I e-II e-III e-III e-IV
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSSI as amended TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Am	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ed up to Apr RIPTION: E VERFORMAN I OF TEST: IO ILTS: Conducted Conducted NEXURE-V for	r AlS004 - Part 3 as a EXELUSION FROM TE CATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE Tated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot	mended up to April 20 CST METHOD: NA wered on with 27 V Dunce was observed by 16 the device was monif d in Sr. No. 2 above m her AISO04 - Part 3 as a -2019 - 10-09-2019 (Sar SAMPLE ID ICAT/EMC/70648/01 ographs.	C (24 V DC system) monitoring data st tored. mended up to Apr Cellence REF. STD. AlSO04-Part 3: 2009 as amended up to April 2015)for all tests as per rings before and af nents as per AISOO4 il 2015 on the DUT. OBSERVATIONS/RI Refer Annexur Refer Annexur Refer Annexur Refer Annexur Refer Annexur	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-II e-II e-IV
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Am	HOD: As per ATION OR E IAL VERIFIC ded up to A uring the te ON: The co ed up to Apr RIPTION: E VERFORMAN I OF TEST: IO ILTS: Conducted Conducted Conducted	r AlS004 - Part 3 as a XCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCC FOF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot	Internet of the device was monified on with 27 V Durince was observed by if the device was monified on Sr. No. 2 above more AISO04 - Part 3 as a -2019 - 10-09-2019 (ISAR) (ICAT/EMC/70648/01	C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr cellence <u>REF. STD.</u> AlS004- Part 3: 2009 as amended up to April 2015)for all tests as per rings before and af nents as per AIS004 il 2015 on the DUT. OBSERVATIONS/Ri Refer Annexur Refer Annexur Refer Annexur	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-IV
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co dup to Apr RIPTION: E VERFORMAN I OF TEST: IO JLTS: Conducted Conducted Nexure-V fr	r AlS004 - Part 3 as a XCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCC FOT TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Emission I Transient Immunity or test setup phot	Internet de up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by f the device was monit d in Sr. No. 2 above m her AlS004 - Part 3 as a -2019 - 10-09-2019 isar SAMPLE ID ICAT/EMC/70648/01 Ographs.	C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr cellence <u>REF. STD.</u> AIS004- Part 3: 2009 as amended up to April 2015	offor all tests as per rings before and af tents as per AIS004 and a sents as per AIS004 and a sents as per AIS004 and a sents as per AIS004 and a sent sent sent sent sent sent sent sent	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-IV E-IV
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVI, FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESU Sr. No. 1 2 3 4 Refer Ann Prepar	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co dup to Api RIPTION: E 'ERFORMAN I OF TEST: IO JLTS: Conducted Conducted Conducted Conducted Conducted Conducted Conducted Conducted	r AlS004 - Part 3 as a XCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCC FOT TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission Transient Immunity or test setup phot Marked Setup Setup Setup Setup Setup Setup Setup Setu	Internet de up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by f the device was monit d in Sr. No. 2 above m her AlS004 - Part 3 as a -2019 + 10-09-2019 isar SAMPLE ID ICAT/EMC/70648/01 Ographs.	C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr Cellence REF. STD. AlS004- Part 3: 2009 as amended up to April 2015	oved By	AIS 004- ter each - Part 3 ESULTS e-1 e-1 e-11 e-11 e-11 e-1V
6.0 7.0 8.0 9.0 10.0 11.0 13.0 13.0	TEST METI ANY DEVI, FUNCTION 3 as amen test and d CONCLUSI as amender TEST DESC DATE OF F LOCATION TEST RESU ST. No. 1 2 3 4 Refer Ann Prepar	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ol up to App RIPTION: E PERFORMAN I OF TEST: IO JLTS: Radii Conductee Conductee Conducteed Mexure-V for an a	r AlS004 - Part 3 as a XCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NC FOT TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot Market Setup Setup Setup Setup Setup Checked By	Internet de up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by f the device was monif d in Sr. No. 2 above m her AlS004 - Part 3 as a -2019 - 10-09-2019 ICAT/EMC/70648/01 Ographs.	C (24 V DC system) monitoring data st tored. mended up to Apr Cellence REF. STD. AlS004- Part 3: 2009 as amended up to April 2015	oved By	AIS 004- ter each - Part 3 ESULTS e-1 e-11 e-11 e-11 e-11 e-11 e-11 e-11
6.0 7.0 8.0 9.0 10.0 11.0 13.0 13.0	TEST METI ANY DEVI, FUNCTION 3 as amen test and d CONCLUSI as amender TEST DESC DATE OF F LOCATION TEST RESU Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te 'ON: The co dup to Api RiPTION: E 'ERFORMAN I OF TEST: IO JLTS: Radii Radii Conductee Conductee Conductee Conductee Conductee	r AlS004 - Part 3 as a XCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentione ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot	Amended up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by if the device was monif d in Sr. No. 2 above m ver AlS004 - Part 3 as a -2019 - 10-09-2019 isar SAMPLE ID ICAT/EMC/70648/01 Ographs.	215. C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr Cellence REF. STD. AlS004- Part 3: 2009 as amended up to April 2015	oved By	AIS 004- ter each - Part 3 ESULTS e-1 e-11 p-1V
6.0 7.0 8.0 9.0 10.0 11.0 13.0 13.0	TEST METI ANY DEVI, FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESU. Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te don: The co ed up to Api REFORMAN I OF TEST: IC JLTS: Radii Radii Conductee Conductee Conductee	r AlS004 - Part 3 as a XCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentione ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot	Amended up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by f the device was monil d in Sr. No. 2 above m ver AlS004 - Part 3 as a -2019 - 10-09-2019 ICAT/EMC/70648/01 ICAT/EMC/70648/01 Ographs.	215. C (24 V DC system) monitoring data st tored. neets the requirem mended up to Apr Cellence REF, STD. AISO04- Part 3: 2009 as amended up to April 2015)for all tests as per rings before and af nents as per AlS004 il 2015 on the DUT. OBSERVATIONS/R Refer Annexur Refer Annexur Refer Annexur Refer Annexur Refer Annexur	AIS 004- ter each - Part 3 ESULTS e-I e-II p-III g-IV
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amende TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ed up to Api REFORMAN I OF TEST: IO JLTS: Radii Radii Conductee Conductee Conductee Conductee	r AlS004 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o mponent mentioner ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Emission I Transient Immunity or test setup phot	Amended up to April 20 EST METHOD: NA wered on with 27 V Di nnce was observed by f the device was monit d in Sr. No. 2 above m her AlSO04 - Part 3 as a -2019 - 10-09-2019 (Sar ICAT/EMC/70648/01 Ographs.	215. C (24 V DC system) monitoring data st tored. neets the requirem mended up to Apr Cellence REF. STD. AIS004- Part 3: 2009 as amended up to April 2015	oved By	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-IV
6.0 7.0 8.0 9.0 10.0 11.0 13.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amender TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ed up to Apu SRIPTION: E FRFORMAN I OF TEST: IO JLTS: Conducted Conducted nexure-V for a standard and a standard and standard and a standard and standard and standard and standard and standard and standard and standard and standard a	r AlSOO4 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCC OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Emission Checked By Checked By	Amended up to April 20 EST METHOD: NA wered on with 27 V Di nnce was observed by f the device was monit d in Sr. No. 2 above m her AlS004 - Part 3 as a -2019 - 10-09-2019 (sar SAMPLE ID ICAT/EMC/70648/01 Ographs.	215. C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr Cellence REF. STD. AISO4-Part 3: 2009 as amended up to April 2015	oved By	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-IV
6.0 7.0 8.0 9.0 10.0 11.0 13.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amender TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ed up to Api RIPTION: E FERFORMAN I OF TEST: IO ILTS: Conducted Conducted nexure-V for a standard and a standard and conducted nexure-V for a standard and conducted nexure-V for a standard and a standard and a standard and a standard and conducted nexure-V for a standard and conducted nexure-V for a standard and conducted	r AlSOO4 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot	Amended up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by f the device was monif d in Sr. No. 2 above m her AlSO04 - Part 3 as a -2019 + 10-09-2019 (sar SAMPLE ID ICAT/EMC/70648/01 Ographs.	215. C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr Cellence REF. STD. AlSO4-Part 3: 2009 as amended up to April 2015	offor all tests as per and af teents as per AlS004 and after the DUT.	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-IV
6.0 7.0 8.0 9.0 10.0 11.0 13.0 13.0	TEST METI ANY DEVIA FUNCTION 3 as amen test and d CONCLUSI as amender TEST DESC DATE OF F LOCATION TEST RESL Sr. No. 1 2 3 4 Refer Ann	HOD: As per ATION OR E JAL VERIFIC ded up to A uring the te ON: The co ed up to Api RIPTION: E FERFORMAN I OF TEST: IO ILTS: Conducted Conducted nexure-V for any any any any any any conducted nexure-V for any any any any any any any conducted nexure-V for any any any any any any any conducted nexure-V for any	r AlSOO4 - Part 3 as a EXCLUSION FROM TE ATION: DUT was po opril 2015. Performa st, and power LED o imponent mentioner ril 2015. MC/EMI testing as p NCE OF TEST: 09-09 CAT EMC LAB, Mane TEST TITLE lated Emission ated Immunity d Transient Emission I Transient Immunity or test setup phot	Amended up to April 20 EST METHOD: NA wered on with 27 V Du nce was observed by f the device was monit d in Sr. No. 2 above m her AlSO04 - Part 3 as a -2019 + 10-09-2019 (sar SAMPLE ID ICAT/EMC/70648/01 Ographs.	215. C (24 V DC system) monitoring data st tored. meets the requirem mended up to Apr Cellence REF. STD. AlSO4-Part 3: 2009 as amended up to April 2015	oved By	AIS 004- ter each - Part 3 ESULTS e-I e-II e-II e-II e-IV

0	5	3	6	(0 1	9	0	5	0	0	0	0	3	9	6	F	Date: 12-09-2019		
	0	м	0		0 4	1 7	4						1					Innovation	
1	14.0	CLAS	SIFIC	Δ.	TION	OF FI	INCT	ION	AL ST		US:							milovadon	- Gervice - L
	14.0	ASSIE	ICAT	10	N OF	FUNCT	TION/	AL ST	ATUS	AS	PER	(A.4)	ANNE	X-A	, ISO	7637	-2:2004:		
		CLASS	ES	T										DES	CRIPT	ION			
		CLASS	<u>A</u>		All fui	nctions	of the	devid	ce/syst	em	perfo	orm as	desig	ned	during	and	after the test.		
	-	CLASS	5 B		All fui	nctions	of the	devid	ce/syst	em	perfo	orm as	desig	ned	during	the t	est. However, one or more	may go be	eyond the
	- in			-	Specif	r more	funct	ions c	unctio	ns re	eturn /syste	autor	not ne	ily to	mas	h nor lesign	ned during the test but retu	rn automa	tically to
		CLASS	<u>5 C</u>		norm	al oper	ation	after t	he exp	iosu	ire is	remov	ved.		in do .		ied daiming the terr terr terr		
		CLASS	S D		One o	or more	funct	ions c	of a dev	ice,	/syste	em do	not pe	erfor	rm as	design	ned during the exposure and	d do not re	eturn to
			_	+	norm	al oper	ation (until e	exposu	re is	s rem	oved a	and the	e dev	vice/s	/stem	is reset by simple operato	r/use action	on. mot be
		CLAS:	<u>S E</u>		retur	ned to i	proper	oper	ation	vith	out r	epairi	ng or r	epla	cing t	ne de	vice/system.	ine and car	inor be
	· L		157			1					2		10 10	214		11.1			
	15.0	LIST	OF E	Q	UIPN	IENTS	USE	D IN	THE 1	ES	TAN	ID CA	ALIBR	ATI	OND	ETA	ILS:		
		L	ab ID)			Nam	e of	Instru	me	nts		N	/lan	ufact	urer	Model (S. No.)	Ca	alib. due
												Rac	liated	Em	ission	۱	FCU 0 (400200)		02/05/202
	-	ICAT/E	MC/TI	R - (01		E	MI Tes	st Recei	ifier	s		RO	DK R	and Sc F Solut	ions	PA-02-001-100 (12105	4)	03/05/20
	-	CAT/E	AC/CF	-M-1	04	Bic	onical	Antenr	na with	pola	rizatio	on		DK P	E Solut	lone	PRA2030 (120819)	-	09/05/20
	-	CAT/EP	WC/OF	DA	-04			ad	aptor					DK	or calu	lors	PLD 2002 (120818)		09/05/20
	-	ICAT/EN	MC/OF	BA	-05	Br	oadba	na Log	period	IC AI	ntenna		1	Sch	warzbe	ck	NNBM8124 (8124-649	3)	03/05/20
	E	ICAT/E	MC/A	N-0	02			l	ISN	24				Sch	warzbe	ck	NNBM8124 (8124-650))	03/05/20
					11.0	51				, V		Rad	liated	Imr	nunit	y			20/2:15
	-	ICAT/	EMC/S	G-0	01			Signal	Genera	tor			Ag	ilent	Techno	ologies	SMR100A (102955)	.3)	29/04/20
	-	ICAT/	EMC/	SG-	-03		-					1	Ag	Scł	hwarzb	eck	NNBM8124 (8124-64	(9)	03/05/20
		ICAT/	EMC/	AN-	-02			6	LISN		- 259	120		Sch	hwarzb	eck	NNBM8124 (8124-65	(0)	03/05/20
		ICAT/	EMC/0	CIP	-02		Cu	rrent in	njection	pro	be	_		TOK	FCC	tions	F -140 (130055)		
		CAT/E	MC/OF	BA	A-07		v	Horn	Antenr	a	la		1	TDK I	RF Solu	tions	ATH800M5GA (033734	18)	
		ICAT/	EMC/P	M-	01		(REPON	ver Me	er	0		Ag	ilent	Techn	ologies	5 N1914A (MY5000049	9)	30/04/20
		ICAT/	MC/P	M-	03			NF FOV	WEI IVIE		-	entitina -	Ag	ilent	Techn	ologie	s N1912A (MY5401001)	7)	30/04/20
		CAT/E	MC/AI	MP	-01			An	nolifier				1	10000 1000	AR	1	2500A225, Sr. No. 3387	773	
	-	ICAT/E	MC/AI	MP	-03				ipiner		Kener	un Al	Restant		AR		500T1G2 (0336388)	-	A
		ICAT/E	MC/A	PS-	-01		Ave	erage I	Power s	enso	or	20.00	Ag	ilent	Techn	ologie	s E9304 (S.No. MY510200)21)	30/04/20
		ICAT/E	EMC/A	PS-C	-02 01			(96	IZ-6GHZ	DII	0	Ser	Ag	ilent	Techn	ologie	s N1921A (MY5338001	7)	30/04/20
		ICAT/	EMC/F	PS-0	02		Power	Senso	r (50Mł	lz-18	8GHz)		Ag	ilent	Techn	ologie	s N1921A (MY5338002	0)	30/04/20
		ICAT/	EMC/F	FP-(06			Fiel	d Probe	-	Car	duat	od Tro	mai	AR	nicel	FL7018 (0334718)		30/09/20
	-	ICAT/	EMC/	DG/	05		Vol	tage d	ron sim	ulat	or	auct		ICISIE F	EM tes	mssic	VDS 200N100		21/01/20
		ICAT/E	MC/D	SO,	/01		Digita	I Stora	age Osc	lloso	cope			E	EM tes	t	DSO9254A		21/01/20
		ICAT/	EMC/A	AN/	'01		Single	line a	rtificial	net	work		20	E	EM tes	1	AN 200N100		21/01/20
	-	ICAT/	EMC/S	MR/	/01	Match	ing rea	Electro	onic swi	tch	gene	rators			EM tes	t	CAISO		21/01/20
		ichi/i	Line/N		51	mater					Con	ducte	d Tra	nsie	ent Im	mun	ity	1	
		ICAT/	EMC/F	PG/	02		Ultr	a-Com	pact Si	nula	tor			I	EM tes	t	UCS 200N100	1.1.1	21/01/20
	_	ICAT/	EMC/F	PG/	05	N. N.	Vo	tage d	rop sim	ulat	or				EM tes	t	VDS 200N100		21/01/20
		ICAI/	EIVIC/F	-6/	05		LO	au uur	np sin	andit					LIVI LES				
			P	rej	pared	By								+	-		Checked By		- 10 m
		(5	y,	ser				TULEY	The second second	RE FOR	AUTOMO	AF TECHNOL				Chrower		Pag 2 of
			T	FF	VANE	PAL								F	111-	-	NIKHIL GROVER		+ Dwg.
				- 14 T	W GALW P												MINING ONOTEN		Durg.

-	C 5	3	6	0	1	. 9	0	5	0	0	0	0	3	9	6	F	Date:	12-0	-201	9	Ċ	
Γ	D 0	M	0	0	4	1 7	4															VC/
-	1.1.1			-vini-	-		-				1	Anr	nevi	ire	-1						Innova	ation • Service
											-	-4888	ICA		-							
	1.0	Meas	urem	ent	of	Radia	ted E	missi	ions													
	1.1	lest Co	onditi	on:									h 4 11									
	Op	eratin	g Con	ditio	n			Pow	ered	ON	۷			1.	W515							
	1.2	lest Sp	pecific	atio	ns:		1								Line -		I.					
	Fre	quenc	y Ran	ige	-			301	/IHZ -	10	001/1	Hz			-					-	100	
	Ba	ndwidt	th			1	7 18	120	kHz				- 10	n nar		-			1820	mi sarr		in the second
	Me	easure	ment	time	3	de un		5m:	s			A.015					ne l					
	An	tenna					174	301	ЛНz -	30	OMH	z: Bi	-conic	al ant	enna,	3001	1Hz - 1	1000	1Hz: L	og-Pe	eriodic	antenna
	An	tenna	Polar	ion	on			Hor In f	ront	of c	entr	e of l	cai harne	55	-				No.			
	An	tenna	Dista	nce				1 m	eter				indiffic	55				10.5			1	
	De	tector	1.72					Pea	k an	d Av	verag	ge										
	На	rness l	ength	1		1.20		170	0mn	n				-						and all		
	1 2	Tort G	ranhe																			
	1.5	iest G	rapns	Gr	an	h for	Horiz	ontal	Dat	а		<u></u>		1	nver.		Gr	aph f	or Ve	ertica	l Data	a
	177									ĨIJ			1967								-	a station
	Elor	uir Field Stren	nath (dRu)V/r	n)										Electri	ic Field Stren	th (dBuV/n	0					
	1	0.00			ГТ	T		1	T	T	-			10	0.00	TT	TT			-		TIT
		80.00						-		+	RE_AIS	004-3_Pea	k_Limit	8	0.00	++	+					RE AIS DO
		60.00								-	PF AIS	001.3 Av	i Limit	0	0.00						1	RE AIS OF
		1000		-				I ALLER AND						4	0.00		++		-			
							(1											
		20.00				Marth		-	A	1 - 1 1 - 1	Ç lem	Andies	MAN						helad	white the	2	WILLIAM MINUT
		0.00-404M	and constrained	ushanny	the second	A how we have	alger Press	NW MAR		, i	Contraction of the local data		and the second		0.00-14 M	entreman	and marken	-	heres	No.N. Population	-	
		20.00			H		2000000	Electron and Sectors		0459-525 0029-525			ones une metere	-2	0.00	10 1207 10 1000000 0						
		30.00	IN FIR OF			100.00	In	Pred added	atio	on	•	Ser	Vice of	3 0	30,00 C	elle	nce	100.00		Freq (A	MHz)	
	-	(AV	G) EMI (H)							-	1	- Umit 2	2	-	Um	12						
									1.1		115	41	Y Loo					a n		Parts.		
				eme		1. 4.		10.000				11 11										
	14	Tost R	onur		nte																	
	1.4	Test R Radiate	equir ed Em	nissio	nts ons	: measu	ured s	hould	be v	vith	in lin	nits o	define	d in A	15004	- Part	3: 200)9 as	amen	ded u	p to A	pril 2015.
	1.4	Test R Radiate	equir ed Em	nissio	nts ons	measu	ured s	hould	be v	vith	in lin	nits c	define	d in A	15004	- Part	3: 200)9 as	amen	ded u	ip to Aj	pril 2015.
	1.4	Test R Radiate	equir ed Em bserv	nissio vatio	nts ons ns /	: measu 'Resul	ured s ts:	hould	be v	vith	in lin	nits c	define	d in A	15004	- Part	3: 200)9 as	amen	ded u	ip to A	pril 2015.
	1.4 1.5	Test Ro Radiato Test O Radiato	equir ed Err bserv ed Err	nissio ation nissio	nts ons ns / ons	: measu /Resul measu	ured s ts: ured a	hould re wit	be v :hin l	vith imi1	in lin ts.	nits c	define	d in A	15004	- Part	3: 200)9 as	amen	ded u	ip to A	pril 2015.
	1.4	Test Re Radiate Test O Radiate	ed Em bserv ed Em	nissio P atio nissio	nts ons ns , ons	: measu /Resul measu	ured s ts: ured a	hould re wit	be v :hin l	vith imi1	in lin ts.	nits c	define	d in A	15004	- Part	3: 200)9 as	amen	ded u	ıp to Aı	pril 2015.
	1.4	Test R Radiate Test O Radiate	ed Em bserv ed Em	nissio ation nissio	nts ons ns , ons	: meası /Resul meası	ured s ts: ured a	hould re wit	be v	imi	in lin ts.	nits o	define	d in A	.IS004	- Part	3: 200)9 as	amen	ded u	ip to A	pril 2015.
	1.4	Test R Radiate Test O Radiate	equir ed Err bserv ed Err	nissio ration nissio	nts ons ns , ons	: measu measu ŀy	ured s ts: ured a	hould re wit	be v	imi	in lin ts.	nits c	define	d in A	IS004	- Part	3: 200)9 as necked	amen By	ded u	ip to A	pril 2015.
	1.4	Test Ro Radiate Test O Radiate	ed Em bserv ed Em	nissio nissio	nts ons ns , ons ed E	: measu /Resul measu	ured s ts: ured a	hould	be v	vith	in lin	nits d	define	d in A	.15004	- Part	3: 200	09 as necked	amen By	ded u	ip to A	pril 2015.
	1.4	Test R Radiate Test O Radiate	ed Err bserv ed Err Pr	nissio nissio	nts ons ns , ons	: meası /Resul meası	ured s ts: ured a	hould	be v	vith	in lin ts.	nits o	define	d in A	.15004	- Part	3: 200	09 as	amen By	ded u	ip to A	pril 2015.
	1.4	Test R Radiate	ed Err bserv ed Err	nissio nissio	nts ons ns , ons ed E	: meası /Resul meası	ured s ts: ured a	hould	be v	vith	ts.	nits o	define	d in A	.15004	- Part	3: 200	09 as necked	By	ded u	ip to A	pril 2015.
	1.4	Test R Radiato Test O Radiato	ed Err bserv ed Err	nissic ation nissic	nts ns ns ons ed E	: measu measu By	ared s ts: ared a	nould	be v	imit	ts.	nits o	define	d in A	.15004	- Part	3: 200	09 as necked	By	ded u	ip to A	pril 2015.
	1.4	Test R Radiate Test O Radiate	equir ed Err ed Err	nissic ation nissic	nts ons ns , ons	: measu /Resul measu 3y	ared s ts: ared a	hould	be v	vith	ts.	Automotion of the second	define	d in A	.15004	- Part	3: 200	99 as	By	ded u		pril 2015.
	1.4	Test R Radiate Test O Radiate	equir ed Err ed Err Pi	nissic nissic	nts ons ns ons ed E	: measu measu By	ured s ts: ured a	hould	be v	vith	ts.	Nits c	define	d in A	115004	- Part	3: 200 <u>C</u>)9 as	amen	ded u		pril 2015.
	1.4	Test R Radiato Test O Radiato	equin bserv ed Em Pr	repart	nts ons ns , ons ed I	: meası meası	ured s ts: ured a	hould	be v	vith	ts.	Altronomer	define	d in A	15004	- Part	3: 200)9 as	amen By	ded u		pril 2015.
	1.4	Test R Radiatu Test O Radiatu	equin bserv ed Em	nissic ation nissic	ed H	: measu measu 3y	ured s ts: ured a	hould	be v	vith	ts.	AUTORIC	define	d in A		- Part	3: 200	99 as	amen By	ded u		pril 2015.
	1.4	Test R Radiatu Test O Radiatu	equin bserv ed Em	nissic ration nissic	nts ons ns, ons ed I	: measu /Resul measu 3y	ured s ts: ured a	hould	be v	vith	EFOR		define	d in A		- Part	3: 200 <u>c</u>	99 as	By	ded u		pril 2015.
	1.4	Test Radiato	equin ed Em bserv ed Em Pr		nts ons ns ons ed E	: measu measu 3y	ured s ts: ured a	hould	be v	vith	ts.	AUTOPHICA STATE	define	d in A		- Part	3: 200 C	99 as	By OVEH	ded u		pril 2015.

Annexure – II An	Annexure – II Annexure – III Annexure – IIII Annexure – III Annexure – IIIIII Annexure – III																
2.0 Badlated Immunity Test: 2.1 Bulk Current Injection (BCI): 2.1.1 Test Condition: Operating Mode Powered ON 2.1.2 Test Specifications: Frequency Range Trequency Range 20MHz - 80MHz Step Size 5% Current Specifications: Current Specifications: Trequency Range 100mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1 Test Observations (Results: S. No. Frequency Range Modulation S. No. Frequency Bange Modulation No deviation (pen loop) No deviation observed during test 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Set Condition: Deservation/Result Constraing Mode Powered ON 2.2 Test Specifications: Frequency Range Step Size 80-400MHz - 2000MHz: 2% Freid Severity Level 30/m Deverity Level 30/m Modulation with 1 kHz modulation with 1 kHz modulating frequency and 80 % modulation depth. Antenna Polarization Werkeal Step Size 80-400MHz: Nog 0.2000MHz: 2% Frequency Range Step Size 80MHz - 1000MHz: Mix fir front of centre of harnesis, 1000MHz: Horn antenna Anten	2.0 Badiated Immunity Test: 2.1 Bulk Current Injection (BCI): 2.1.1 Test Condition: Operating Mode Powered ON 2.1.2 Test Specifications: Frequency Range 20MHz - 80MHz Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations (Results: 5. No. Frequency Range Modulation No deviation in performance of DUT No deviation 1. 20MHz to 80MHz Amplitude Modulation Current probe position: Deprating Mode Powered ON 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Specifications: Frequency Range 80MHz - 2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 12700mm Antenna Polarization Vertical Antenna Distance 1 meter Test Method Substitution 80MHz - 1000MHz: Infront of centre of harnels; 1000MHz: Horn antenna Antenna Distance 1 meter Test Wethod Substitution 80MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Condition in performance of 201 should be observed abover and 80 % Modulation Model Amplitude Modulation No deviation in performance Of DUT Antenna Distance 1 meter Test Method Substitution 80MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations (Results: Sr. Frequency Range Modulation No deviation in No deviation depth 0. 800MHz to 1000MHz Amplitude Modulation No deviation in Modulation No deviation in Modulation depth 1. 800MHz to 1000MHz Pulse Modulation No deviation in No deviation in Signa Amplitude Modulation No deviation in No deviation in Modulation depth 1. 800MHz to 1000MHz Amplitude Modulation No deviation in No deviation in			ning of States and							A	nn	exu	<u>re – II</u>			
2.1 Bulk Current Injection (BCI): 2.1.1 Test Condition: Operating Mode Powered ON 2.1.2 Test Specifications: Frequency Range 5% Current Trobe position 1200mm Ourrent probe position Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: Acceptance Criteria Observation/Result 2.2.1 Test Observations /Results: Acceptance of UT No deviation in performance of DUT No deviation in observed during test 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz Stop Size 80-400MHz: 5%, 400-2000MHz: 2% Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30//m Dwell Time 2.5 Harness length 1700mm Antenna Datization Vertical SMHz - 2000MHz: Viag array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Datization 80MHz - 2000MHz: Viag array antenna, 1000MHz - 2000MHz: Horn antenna Note Nation of DUT Antenna Datization 80MHz - 2000MHz: Wing array antenna, 1000MHz - 2000MHz: Horn antenna Note Nation of	2.1 Buk Current Injection (BCI): 2.1.1 Test Condition: Operating Mode Prequency Range 20MHz – 80MHz Step Size 20ment Step Size Current Severity Level 60mA Dowell Time 2.5 Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 1.1 20MHz to 80MHz Anny Frequency Range Modulation No Evigence of During Mode Operating Mode Powered ON 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz Step Size 80-0400MHz; 5%, 40-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2.5 Antenna Bolarization Vertical Antenna Bolarization 80MHz - 1000MHz: Vlog array antenna, 1000MHz - 2000MHz: In front	2.0 F	Radi	ated Imm	unity	Test:											
21.1 Test Gondition: Operating Mode Powered ON 2.1.2 Test Specifications: Frequency Range Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S.No. Frequency Range S.No. Frequency Range Modulation Acceptance Criteria Observation/Result 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 est Specifications: Prequency Range 80MHz 2000MHz 5%, 400-2000MHz: 2% Frequency Range Step Size 80-400MHz: 5%, 400-2000MHz: 2% Frequency Range 80MHz - 2000MHz Paterna bistance 1 1 100MHz - 2000MHz: Vig array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical 80MHz - 1000MHz: Vig array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization 80MHz - 2000MHz: Amplitude modulation: Ton: 577µs, period: 4600µs	2.1.1 Test Schollton: Operating Mode Powered ON 2.1.2 Test Specifications: Frequency Range Frequency Range 20MHz - 80MHz Step Size 5% Current Severity Level 60mA Dweil Time 2s Harness length 1700mm Current Severity Level 60mA Observations / Results: Step Size S.No. Frequency Range Modulation Amplitude Modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations / Results: Step Size S.No. Frequency Range Modulation And Step Size Amplitude Modulation No deviation in performance of DUT No deviation in performance of DUT No deviation should be observed during test .2.2.1 Test Condition: Devered ON 2.2.2.1 Test Specifications: Frequency Range 80MHz - 2000MHz: St, 400-2000MHz: 2% Fled Severity Level 30/m Dwell Time 2s Harness length 1700mm Harness length Tofoman Antenna Dotarization 80MHz - 1000MHz: Viog array antenna, 10000MHz - 2000MHz: In front of DU Antenna Ant	2.1 E	Bulk	Current In	njectio	on (B	CI):										
Operating Mode Powered ON 2.1.2 Test Spedifications: Frequency Range 20MHz - 80MHz Step Size 5% Current Severity Level 60mA Dwell Time 25 Harness length 1700mm Current Severity Level 60mA Description 150mm from DUT Current probe position 150mm from DUT Current probe position 150mm from DUT Current probe position Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 1.1 2.1.3 Test Observations /Results: Step Size Observation/Result 2.1.4 Test Condition: Operating Mode Powered ON 2.2.1 Test Spedifications: Coperating Mode Powered ON 2.2.2 Test Spedifications: Frequency Range 80MHz - 2000MHz Step Size 80.400MHz: 5%, 400-2000MHz: 2% Step Size Pares: length 1700mm Antenna 80MHz - 2000MHz: Vig array antenna, 1000MHz - 2000MHz: Horn antenna Antenna 80MHz - 2000MHz: Vig array antenna, 1000MHz - 2000MHz: Horn antenna Antenna 80MHz - 2000MHz: Vig array antenna, 1000MHz - 2000MHz: Infront of DUT Antenna 80MHz - 2	Operating Mode Powered ON 21.2 Test Specifications: Frequency Range Frequency Range 20MHz - 80MHz Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current Severity Level 60mA Outrant Severity Level 60mA Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations / Results: Acceptance Criteria S. No. Frequency Range Modulation Amplitude Modulation No deviation in preformance of DUT No deviation in preformance of DUT 1. 20MHz to 80MHz Amplitude Modulation Should be observed during test 2.2. Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Operating Mode Powered ON 2.2.1 Test Condition: Operating Mode Cuperating Mode Powered ON 2.3.1 Test Condition: Operating Mode Devel Time 2.5 Should be observed DMHz: 2% Should be observed DMHz: 2% Field Severity Level 30V/m Dwell Time 2.5 Harness length 170mm Antenna 80MHz - 2000MHz: V log array antenna, 1000MHz - 2000MHz: In front of DUT Antenna D	2.1.1	. Tes	t Condition	:					112			ny n				
21.1 Zets Specifications: Frequency Range 20MHz - 80MHz Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S. S. No. Frequency Range Modulation 1 20MHz to 80MHz Amplitude Modulation No deviation in performance of DUT No. Frequency Range 80MHz - 2000MHz Should be observed during test observed 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Prequency Range 80MHz - 2000MHz: 5%, 400-2000MHz: 2% Frequency Range 80MHz - 2000MHz: 5%, 400-2000MHz: 2% Frequency Range 80MHz - 2000MHz: 5%, 400-2000MHz: 2% Frequency Range Automation Patterna antenna Antenna Polarization Vertical Antenna Antenna a 80MHz - 1000MHz: 1% from tof centre of harnesis, 1000MHz - 2000MHz: 1% from tof DUT Antenna automation Step Size Step Size Step Size Step Size Step Size	21.2 Test Specifications: Frequency Range 20MHz - 80MHz Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 KHz modulating frequency and 80 % modulation depth. 21.3 Test Observations /Results: S. No. Frequency Range Modulation Acceptance Criteria Observation/Re 1 20MHz to 80MHz Amplitude Modulation (AW) should be observed during test 22.4 Absorber Lined Shielded Enclosure (ALSE) method: 22.2 Test Specifications: Frequency Range 80MHz - 2000MHz: 5%, 400-2000MHz: 2% Frequency Range 80.400MHz: 5%, 400-2000MHz: 2% Frederey Level 30V/m Dwell Time 2s Harness length 1700mmi Antenna Polarization Vertical Antenna 1080MHz: 1000MHz: Vlog array antenna, 1000MHz - 2000MHz: In front of DUT Antenna Distance 1 meter Test Method Substitution 80MHz - 2000MHz: Pulse modulation with 1 kHz modulating frequency and 80 % Modulation epth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations/ Results: Step Step Step Step Modulation Polarization No deviation in 800MHz - 2000MHz: Pulse Modulation 2.3 1000MHz to 800MHz Amplitude Modulation 2.3 1000MHz to 800MHz Amplitude Modulation 2.3 1000MHz to 800MHz Pulse Modulation 2.3 1000MHz to 800MHz Pulse Modulation 2.4 800MHz to 800MHz Pulse Modulation 3. 1000MHz to 800MHz Amplitude Modulation 3. 1000MHz to 800MHz Pulse Modulation 3. 1000MHz to 800MHz Amplitude Modulation 3. 1000MHz to 800MHz Amplitude Modulation 3. 1000MHz to 800MHz Amplitude Modulation 3. 1000MHz to 800MH	Ope	erati	ng Mode		P	owe	red O	N								
Frequency Range 20MHz Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1 Test Observations /Results: Should be observed during test 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Condition: Powered ON 2.2.2 Test Specifications: Frequency Range Frequency Range 80MHz - 2000MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harress length 1700mm Antenna 80MHz - 1000MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Antenna Polarization Vertical Antenna Bolarization Vertical Antenna Bolarization 80MHz - 1000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation SobotHz to	Frequency Range 20MHz Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S. No. S. No. Frequency Range Modulation A cceptance Criteria Observation/Re 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.2 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dowell Time 2s Harness length 1700mm Antenna 80MHz-2000MHz: Vlog array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Location 80MHz-2000MHz: Vlog array antenna, 1000MHz - 2000MHz: In front of DUT Antenna Bolarization Vertical No deviation with 1 kHz modulating frequency and 80 % modulation depth Modulation SubMHz-2000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth	2.1.2	Test	Specification	ns:												
Step Size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current Severity Level 50mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S.No. Prequency Range Modulation Amplitude Modulation No deviation in performance of DUT Operating Mode Powered ON 2.2.1 Test Condition: Operating Mode Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range Frequency Range 80MHz Step Size 80-400MHz: S%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mn Antenna Polarization Vertical Antenna Distance 1 meter Test Method Substitution Stater 1 meter Test Method Substitution Modulati	Step size 5% Current Severity Level 60mA Dwell Time 2s Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations/Results: S.No. S.No. Frequency Range Modulation Amplitude Modulation No deviation in performance of DUT (AM) No deviation in performance of DUT No deviation observed 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 2.2.1 Test Condition: Devered ON Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range Frequency Range 80MHz - 2000MHz Step Size 80-400MHz: Sy, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna 80MHz - 2000MHz: Maplitude modulation with 1 kHz modulating frequency and 80 % Modulation 80MHz - 2000MHz: Amplitude modulati	Free	quer	ncy Range		2	OMH	lz – 8	OMH:	z				91011			
Current proven 25 Harness length 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations (Results: Status S. No. Frequency Range Modulation No deviation in performance of DUT No deviation in performance of DUT No. Frequency Range Modulation AMM Amplitude Modulation No deviation in performance of DUT No deviation in performance of DUT No deviation Observation/Result 2.2.1 Test Condition: Operating Mode Powered ON Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz 2% Field Severity Level 30V/m Devell Time 25 Harness length 1700mm Antenna Polarization Paresting Home Antenna Polarization Vertical Antenna Aotazion 80MHz - 1000MHz: front of centre of harness, 1000MHz - 2000MHz: In front of DUT Antenna Polarization Keetu StotHution 80MHz - 2000MHz: Amplitude modulation with 1 kHz modulating freque	Luiteni Seveni Viewei Jolink Dwell Time 2s Harness length 1700mm Current probe position Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Fest Observations/Results: Observation/Re S. No. Frequency Range Modulation A.13 Fest Observations/Results: Observation/Re 2.2 Absorber Lined Shielded Enclosure (ALSE) method: Step Size 2.2.1 Test Condition: Operating Mode Operating Mode Powerd ON 2.2.2 Test Specifications: Frequency Range Frequency Range 80-MHz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30//m Antenna 80-MHz - 1000MHz: 1000MHz: 2% Harness length 1700mm Antenna Polarization Vertical Antenna Polarization SolMHz - 1000MHz: 1000MHz: 1000MHz - 2000MHz: 10 front of Centre of harnesis; 1000MHz - 2000MHz: In front of DU Antenna Distance 1 meter Test Method Substitution 800MHz - 2000MHz: Amplitude modulation: Ton: 577 µs, period: 4600µs	Step	p Siz	e Sovority Lo	wal	- 5	% 0m A									-	
Display 1700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.1 Test Observations /Results: Modulation 2.2 Absorber Lined Shielded Enclosure (ALSE) method: No deviation in performance of DUT No deviation observed 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Specifications: Frequency Range 80MHz - 2000MHz Frequency Range 80MHz - 2000MHz Sk, 400-2000MHz: 2% Field Severity Level 30V/m Duewell Time Dwell Time 2s Harness length 1700mm Antenna Polarization Vertical Not deviation with 1 kHz modulating frequency and 80 % modulation of DUT Antenna Polarization Vertical Note deviation with 1 kHz modulating frequency and 80 % Modulation 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: In or of DUT Antenna Polarization Antenna Polarization Vertical No deviation for of DUT Antenna Dolarization 800MHz - 2000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 %	Display 2700mm Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: Observations /Results: S. No. Frequency Range Modulation Amplitude Modulation No deviation in performance of DUT No deviation observed 2.2.4 Disorber Lined Shielded Enclosure (ALSE) method: 2.2.2 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz ~ 2000MHz 2% Field Severity Level 30V/m Dowell Time 2.5 Harness length 1/200mHz: Vlog array antenna, 1000MHz ~ 2000MHz: In front of DUT Antenna Polarization Antenna Polarization Wettical Modulation with 1 kHz modulating frequency and 80 % Modulation 80MHz ~ 2000MHz: Vlog array antenna, 1000MHz ~ 2000MHz: In front of DUT Antenna Polarization Antenna Polarization 80MHz ~ 300MHz ~ Modulation with 1 kHz modulating frequency and 80 % Modulation depth S0MHz ~ 300MHz ~ 2000MHz: Nuplitude modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results:	Dw	ell Ti	ime	VEI	2	s	`									
Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S. No. Frequency Range Modulation Acceptance Criteria Observation/Result 1. 200Hlz to 80MHz Amplitude Modulation No deviation in performance of DUT No deviation 2.2 Absorber Lined Shielded Enclosure (ALSE) method:	Current probe position 150mm from DUT Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S.No. Frequency Range Modulation Acceptance Criteria Observation/R 1. 20MHz to 80MHz Amplitude Modulation No deviation in performance of DUT No deviation observed 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Step Step Cifications: Powered ON 2.2.1 Sets Specifications: Frequency Range 80MHz - 2000MHz Step Size Step Size Frequency Range 80MHz - 2000MHz Step Size Step Size Step OdoWHz: S%, 400-2000MHz: 2% Frequency Range 80MHz - 1000MHz: Vlog array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Antenna 80MHz - 1000MHz: Vlog array antenna, 1000MHz - 2000MHz: In front of DUT Antenna Location 80MHz - 300MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % Modulation modulation depth 800MHz - 800MHz: Amplitude modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range	Har	ness	length		1	700r	nm		¢.	-						
Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: Observations /Results: S. No. Frequency Range Modulation No deviation in performance of DUT No deviation is performance of DUT 1. 20MHz to 80MHz Amplitude Modulation No deviation is performance of DUT No deviation observed during test 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz Frequency Range 80MHz - 2000MHz Step Size 80-4000MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Antenna 80MHz - 1000MHz: N front of centre of harnels; 1000MHz - 2000MHz: In front of DUT Antenna 1 meter Test Method Substitution Modulation 800MHz - 2000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation No deviation in modulation depth 800MHz - 800MHz - 2000MHz Amplitude Modulation No deviation in per	Test Method Substitution (open loop) Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: Observations /Results: S. No. Frequency Range Modulation 1 20MHz to 80MHz Amplitude Modulation No deviation in performance of DUT No deviation observed during test 2.2 Absorber Lined Shielded Enclosure (ALSE) method: Image: Comparison of the comparison of the comparison observed during test Observation /Results: 2.2.1 Test Condition: Powered ON Image: Comparison observed observed during test Observation /Results: 7 Frequency Range 80MHz – 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Image: Comparison observed Field Severity Level 30V/m Dowell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: 1/s garay antenna, 1000MHz – 2000MHz: Horn antenna Antenna Location 80MHz – 2000MHz: Namplitude modulation with 1 kHz modulating frequency and 80 % modulation Modulation Modulation Sobstitution Sobstitution Sobstitution: Sobstitution Step Size SoubMHz – 2000MHz: Amplitude modulation: Ton: 577µs, period: 4600µs 2.3 Test Observations /Results: Step Size <td>Cur</td> <td>rent</td> <td>probe posi</td> <td>tion</td> <td>1</td> <td>50m</td> <td>m fro</td> <td>m Dl</td> <td>JT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cur	rent	probe posi	tion	1	50m	m fro	m Dl	JT							
Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations / Results: Modulation Acceptance Criteria Observation/Result 1. 20MHz to 80MHz Amplitude Modulation (AM) No deviation in performance of DUT should be observed during test Observation/Result 2.2.4 bosorber Lined Shielded Enclosure (ALSE) method:	Modulation Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth. 2.1.3 Test Observations /Results: S. No. Frequency Range Modulation Acceptance Criteria Observation/Rt No deviation in performance of DUT No deviation Source Criteria Observation/Rt Source Criteria Source Criteria<td>Tes</td><td>t Me</td><td>thod</td><td></td><td>S</td><td>ubsti</td><td>itutio</td><td>n (op</td><td>en</td><td>loop</td><td>)</td><td>- All and a second</td><td></td><td></td><td></td><td></td>	Tes	t Me	thod		S	ubsti	itutio	n (op	en	loop)	- All and a second				
2.1.3 Test Observations /Results: S. No. Frequency Range Modulation Acceptance Criteria Observation/Result 1. 20MHz to 80MHz Amplitude Modulation No deviation in performance of DUT should be observed during test No deviation observed 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2.5 Harness length 1700mm Antenna Polarization Vertical Antenna Polarization Vertical Antenna Polarization Vertical Modulation 80MHz - 1000MHz: In front of centre of harness; 1000MHz - 2000MHz: In front of DUT Antenna Distance 1 meter Test Method Substitution 800MHz - 2000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.3 Test Observations /Results: Antenna Acceptance Criteria Result No deviation	2.1.3 Test Observations /Results: Modulation Acceptance Criteria Observation/Re 1. 20MHz to 80MHz Amplitude Modulation (AM) No deviation in performance of DUT should be observed during test No deviation observed 2.2 Absorber Lined Shielded Enclosure (ALSE) method:	Mo	dula	tion	Inclusion of	A	mpli	itude	mod	ulat	ion	with	1 kHz	modulatir	ng frequency and 80 % m	odulatio	n depth.
S. No. Frequency Range Modulation Amplitude Modulation (AM) Acceptance Criteria Observation/Result No deviation should be observed during test 2.2. Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Condition: Operating Mode Powered ON 2.2.1 Test Specifications: Frequency Range 80MHz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2.5 Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Distance 1 meter Test Method Substitution 800MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz 0 2000MHz: 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.3 Test Observations /Results: Antenna Polarization Sr. Frequency Range Modulation 1. 800MHz 0 2000MHz: Pulse Modulation Vertical No deviation	S. No. Frequency Range Modulation (AM) Acceptance Criteria Observation/Ret No deviation observed 1. 20MHz to 80MHz Amplitude Modulation (AM) No deviation in performance of DUT should be observed during test No deviation observed 2.2. Absorber Lined Shielded Enclosure (ALSE) method:	2.1.3	Tes	t Observati	ions /P	tesult	s:										
1. 20MHz to 80MHz Amplitude Modulation (AM) No deviation in performance of DUT should be observed during test No deviation observed 2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80-400MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dowered ON Develop MHz Step Size Bio-400MHz: 5%, 400-2000MHz: 2% Frequency Range 80-400MHz: 5%, 400-2000MHz: 2% Harness length 1700mm Antenna Polarization Vertical Antenna Polarization Vertical Antenna Distance Test Method Substitution Modulation No deviation in performance of DUT Sould Modulation Antenna Location 80MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % Modulation No deviation in performance of DUT should Nould coloped	1. 20MHz to 80MHz Amplitude Modulation (AM) No deviation in performance of DUT should be observed during test No deviation observed 2.2 Absorber Lined Shielded Enclosure (ALSE) method:	S. N	lo.	Frequency	y Rang	e		Mo	dulat	tion				Accep	otance Criteria	Obser	vation/Result
Image: construction of the state of the	Image: Construct of the system of the sys	1		20MHz to	80MH	z	Am	plituc	le Mo	odul	latio	n	No	deviation i	in performance of DUT	No	deviation
2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications:	2.2 Absorber Lined Shielded Enclosure (ALSE) method: 2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Distance 1 meter Test Method Substitution Modulation 800MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range No. Frequency Range No. Prequency Range No. Pulse Modulation Vertical No deviation in performance of DUT should be observed No deviation in Pulse Modulation 2. 800MHz to 2000MHz Pulse Modulation Vertical Prepared By								(AM)				S	hould be d	observed during test		observed
2.2.1 Test Specifications: Frequency Range 80MHz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Polarization Vertical Antenna Iostance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation 1 800MHz to 800MHz Amplitude Modulation No deviation in performance of DUT should be observed 3 1000MHz to 2000MHz Pulse Modulation Vertical Prepared By Checked By	2.2.1 Test Condition: Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz - 1000MHz: In front of centre of harness; 1000MHz - 2000MHz: In front of DUT Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577 µs, period: 4600 µs 2.2.3 Test Observations /Results: Sr. Frequency Range No. Frequency Range No. Resultation 2. 800MHz - 1000MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed 3. 1000MHz Pulse Modulation Yertical Prepared By Checked By	2.2 4	Abso	orber Linea	d Shie	Ided	Encl	osur	e (Al	SE)	me	tho	:k				
Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80MHz – 2000MHz Step Size 80-400MHz 5%, 400-2000MHz: 2% Frequency Range 80V/m Dwell Time 2s Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Antenna 80MHz – 1000MHz: In front of centre of harness, 1000MHz – 2000MHz: In front of DUT Antenna Dotation 80MHz – 1000MHz: In front of centre of harness, 1000MHz – 2000MHz: In front of DUT Antenna Distance 1 meter Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Antenna Sr. Frequency Range Modulation No 600MHz to 800MHz Amplitude Modulation 1 800MHz to 800MHz Pulse Modulation 2 800MHz to 2000MHz Pulse Modulation 3 1000MHz to 2000MHz Pulse Modulation 3 1000MHz to 2000MHz Pulse Modulation Vert	Operating Mode Powered ON 2.2.2 Test Specifications: Frequency Range 80/Hiz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Frequency Range 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Exaction 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Dolarization Vertical Antenna Substitution Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation 1. 800MHz Amplitude Modulation No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Performance of DUT should be observed	2.2.1	. Tes	t Condition	r:												
St. Frequency Range 80MHz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz - 1000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth Substitution 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz - 2000MHz Pulse Modulation 2. 800MHz to 800MHz Amplitude Modulation 2. 800MHz to 800MHz Pulse Modulation 3. 1000MHz to 2000MHz Pulse Modulation Vertical Sterved No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Wertical Sterved By Checked By	St.2.2 Test Specifications: Frequency Range 80MHz - 2000MHz Step Size 80-400MHz; 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization 80MHz - 1000MHz: In front of centre of harness, 1000MHz - 2000MHz: in front of DU Antenna Location 80MHz - 1000MHz: In front of centre of harness, 1000MHz - 2000MHz: in front of DU Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 2000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation Polarization 2. 800MHz to 1000MHz Amplitude Modulation Vertical 3. 1000MHz to 2000MHz Auge Modulation Vertical 3. 1000MHz to 2000MHz Prepared By Checked By	Ope	erati	ng Mode	The offer	P	owe	red C	N		15 ¹¹ .0						
Frequency Range 80MHz - 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Dotarization Vertical Antenna Distance 1 meter Test Method Substitution Modulation 800MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz to 800MHz Amplitude Modulation 2. 800MHz to 2000MHz Pulse Modulation 3. 1000MHz to 2000MHz Pulse Modulation 2. 800MHz to 2000MHz Pulse Modulation 3. 1000MHz to 2000MHz Pulse Modulation Vertical Prepared By Checked By	Frequency Range 80MHz – 2000MHz Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz – 1000MHz: In front of centre of harness, 1000MHz – 2000MHz: In front of DU Antenna Distance 1 meter Test Method Substitution Modulation 800MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.3 2.2.3 Test Observations /Results: No Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz to 1000MHz Amplitude Modulation 2. 800MHz to 2000MHz Pulse Modulation 2. 800MHz to 2000MHz Pulse Modulation 3. 1000MHz Pulse Modulation 3. 1000MHz Pulse Modulation Yertical Be observed Observa <	2.2.2	Tes	t Specificat	ions:			6									
Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz - 1000MHz: V log array antenna, 1000MHz - 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Dotarization Vertical Antenna Distance 1 meter Test Method Substitution Modulation 800MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz to 800MHz Amplitude Modulation 2. 800MHz to 000MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Stop Stop Vertical Vertical Stop Modulation Vertical Be observed No deviation Stop Stop Stop	Step Size 80-400MHz: 5%, 400-2000MHz: 2% Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz – 1000MHz: in front of centre of harness, 1000MHz – 2000MHz: in front of DU Antenna Distance 1 meter Test Method Substitution Modulation 800MHz – 2000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation No. Frequency Range Modulation No deviation in performance of DUT should be observed No deviation in 2. 800MHz to 2000MHz Pulse Modulation Vertical Wertical No deviation is observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Be observed No deviation is observed Wortical Pulse Modulation Vertical Decked By De	Free	quer	ncy Range		8	OMF	lz − 2	000	ΛHz							
Field Severity Level 30//m Dwell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz – 1000MHz: in front of centre of harness, 1000MHz – 2000MHz: in front of DUT Antenna Location 80MHz – 1000MHz: Maplitude modulation with 1 kHz modulating frequency and 80 % modulation depth B00MHz – 800MHz: Pulse modulation: Ton: 577µs, period: 4600µs 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation No deviation in performance of DUT should be observed No deviatio observed 3 1000MHz 2000MHz Pulse Modulation Vertical No deviation observed Observation frequency and 80 % 1 80MHz to 800MHz Amplitude Modulation No deviation in performance of DUT should be observed No deviatio observed 3 1000MHz to 2000MHz Pulse Modulation Vertical Between the should be observed Page Observed	Field Severity Level 30V/m Dwell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz – 1000MHz: In front of centre of harness, 1000MHz – 2000MHz: In front of DU Antenna Distance 1 meter Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation No. 800MHz to 800MHz Amplitude Modulation Vertical No deviation in performance of DUT should be observed No devi 3. 1000MHz to 2000MHz Pulse Modulation Vertical Secreted By Checked By	Ste	p Siz	е		8	0-40	OMH	z: 5%	, 40	0-20	000N	Hz: 2	%			A Contract of
Dwell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz – 1000MHz: in front of centre of harness, 1000MHz – 2000MHz: in front of DUT Antenna Distance 1 meter Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 80MHz to 800MHz Amplitude Modulation 2. 800MHz to 1000MHz Pulse Modulation 3. 10000MHz Pulse Modulation 3. 1000MHz Pulse Modulation Yertical Berverd Wortical Wortical Prepared By Checked By Prepared By Checked By Page	Dwell Time 2s Harness length 1700mm Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Distance 1 meter Test Method Substitution Modulation 80MHz – 4000MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz to 800MHz Amplitude Modulation Vertical State to 2000MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Performance of DUT should be observed Vertical Vertical performance of DUT should be observed No devi 3. 1000MHz to 2000MHz Pulse Modulation Vertical Be observed Vertical Vertical performance of DUT should be observed No devi 3. 1000MHz to 2000MHz Vertical State devi Vere	Fiel	d Se	verity Level	1	3	0V/r	n)						
Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Location 80MHz – 1000MHz: in front of centre of harness, 1000MHz – 2000MHz: in front of DUT Antenna Location 80MHz – 1000MHz: in front of centre of harness, 1000MHz – 2000MHz: in front of DUT Antenna Distance 1 meter Test Method Substitution 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz hz 0800MHz Amplitude Modulation No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Performance of DUT should be observed Vertical Vertical Observation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Be observed Observed Vertical Checked By <	Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna 80MHz – 1000MHz: V log array antenna, 1000MHz – 2000MHz: Horn antenna Antenna Polarization Vertical Antenna Location 80MHz – 1000MHz: v log array antenna, 1000MHz – 2000MHz: In front of DU Antenna Distance 1 meter Test Method Substitution 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation No deviation in performance of DUT should be observed 1. 80MHz to 800MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Soberved Observed Vertical Vertical Experimenter Soberved Soberved Observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Soberved Soberved Vertical Vertical Experimance of DUT should be observed Soberved	Dwe	ell Ti	me		2	5			1000		-		- All			<u>k</u>
Antenna Polarization Vertical Antenna Location 80MHz - 1000MHz: In front of centre of harness, 1000MHz - 2000MHz: In front of DUT Antenna Location 80MHz - 1000MHz: In front of centre of harness, 1000MHz - 2000MHz: In front of DUT Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation 1. 800MHz to 1000MHz Amplitude Modulation No deviation in performance of DUT should be observed 2. 800MHz to 2000MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Be observed Page Checked By Prepared By Checked By Page Observation Modulation Prepared By Checked By	Antenna Polarization Vertical Antenna Location 80MHz ~ 1000MHz: in front of centre of harness, 1000MHz - 2000MHz: in front of DU Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation Polarization Acceptance Criteria Results: Sr. Frequency Range Modulation Vertical No deviation in 2. 800MHz to 1000MHz Pulse Modulation Vertical be observed be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical be observed b	Ant	ness		-	1	004	$\frac{1}{17} - 1$	0001	<u>лн</u> ,	·VI	ng ar	rav an	tenna 10	00MHz - 2000MHz: Horn	antenn	
Antenna Location 80MHz -> 1000MHz: in front of centre of harness, 1000MHz - 2000MHz: in front of DUT Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577 µs, period: 4600 µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz to 800MHz Amplitude Modulation No deviation in Polarization No deviation in Polarization 2. 800MHz to 1000MHz Pulse Modulation Vertical Performance of DUT should be observed No deviatio observed 3. 1000MHz Pulse Modulation Vertical Prepared By Checked By Checked By	Antenna Location 80MHz → 1000MHz: in front of centre of harness, 1000MHz – 2000MHz: in front of DU Antenna Distance 1 meter Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation 1. 800MHz Amplitude Modulation No deviation in polarization 2. 800MHz to 2000MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Results: Checked By	Ant	enna	a Polarizatio	on	1	ertic	cal		ietanden		<u> </u>	uy un	cerina, 10		ancenn	<u></u>
Antenna Distance 1 meter Test Method Substitution Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation No. Frequency Range Modulation 1. 800MHz to 800MHz Amplitude Modulation 2. 800MHz to 1000MHz Pulse Modulation Vertical performance of DUT should be observed No deviatio observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Prepared By Checked By	Antenna Distance 1 meter Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577 µs, period: 4600 µs 2.2.3 Test Observations /Results: Antenna Polarization Sr. Frequency Range Modulation 1. 800MHz Amplitude Modulation 2. 800MHz to 800MHz Amplitude Modulation 3. 1000MHz Pulse Modulation 3. 1000MHz Pulse Modulation Vertical Prepared By Checked By	Ant	enna	a Location		8	OMH	lz)∸/1	0001	/Hz	in f	ront	of cer	tre of har	ness, 1000MHz – 2000M	Hz: in fro	ont of DUT
Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs Sr. Frequency Range Modulation Antenna Polarization Acceptance Criteria Observation Result 1. 800MHz to 800MHz Amplitude Modulation Vertical No deviation in performance of DUT should be observed No deviation observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Performance of DUT should be observed No deviation observed Observed	Test Method Substitution Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.3 Test Observations /Results: Antenna Polarization Acceptance Criteria Observations / Results: 1. 800MHz to 800MHz Amplitude Modulation No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By Checked By	Ant	enn	a Distance		1	met	ter					La comercia				
Modulation 80MHz – 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.2.3 Test Observations /Results: Sr. Frequency Range Modulation Antenna Polarization Acceptance Criteria Observation Result 1. 800MHz to 800MHz Amplitude Modulation Vertical No deviation in performance of DUT should be observed No deviation observed 2. 800MHz to 2000MHz Pulse Modulation Vertical Checked By No deviation observed Observed	Modulation 80MHz - 800MHz: Amplitude modulation with 1 kHz modulating frequency and 80 % modulation depth 800MHz - 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs 2.3 Test Observations /Results: Antenna Polarization Acceptance Criteria Observa Results: 1. 800MHz to 800MHz Amplitude Modulation No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed No deviation 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By Checked By Checked By	Tes	t Me	thod		S	ubst	itutio	n								
Modulation And Polarization Acceptance Criteria Observation Results: Sr. Frequency Range Modulation Antenna Polarization Acceptance Criteria Observation Result 1. 800MHz to 800MHz Amplitude Modulation Vertical No deviation in performance of DUT should be observed No deviation observed 2. 800MHz to 2000MHz Pulse Modulation Vertical Checked By No deviation observed Prepared By Checked By Question Work Question Question Prepared By Checked By Question	Modulation Modulation depth 800MHz – 2000MHz: Pulse modulation: Ton: 577µs, period: 4600µs Sr. Frequency Range Modulation Antenna Acceptance Criteria Observa 1. 800MHz to 800MHz Amplitude Modulation Polarization No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed No deviation 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By Checked By Checked By					8	OMH	-1z - 8	00M	Hz:	Amp	olituc	e moo	dulation w	vith 1 kHz modulating free	luency a	ind 80 %
Sr. Frequency Range Modulation Antenna Polarization Acceptance Criteria Observation Result 1. 80MHz to 800MHz Amplitude Modulation Vertical No deviation in performance of DUT should be observed No deviation observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By Checked By Observed	2.2.3 Test Observations /Results: Sr. Frequency Range Modulation Polarization Acceptance Criteria Observa 1. 80MHz to 800MHz Amplitude Modulation 2. 800MHz to 1000MHz Pulse Modulation Vertical be observed No devi 3. 1000MHz to 2000MHz Pulse Modulation Checked By Checked By Checked By		uuia	uon		5	00M	114101 1Hz	2000	MH	7: PI	ilse i	nodul	ation: Ton	: 577us, period: 4600us		
Sr. Frequency Range Modulation Antenna Polarization Acceptance Criteria Observation Result 1. 80MHz to 800MHz Amplitude Modulation Vertical No deviation in performance of DUT should be observed No deviation observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By	Sr. Frequency Range Modulation Antenna Polarization Acceptance Criteria Observa Result 1. 80MHz to 800MHz Amplitude Modulation No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed No deviation in performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By	222	Tor	t Obcoructi	ione /E	Pocula							Toual				
No. Frequency Range Modulation Polarization Acceptance Criteria Result 1. 80MHz to 800MHz Amplitude Modulation No deviation in performance of DUT should be observed No deviation observed 3. 1000MHz to 2000MHz Pulse Modulation Vertical Checked By	No. Frequency Range Modulation Polarization Acceptance Criteria Rest 1. 80MHz to 800MHz Amplitude Modulation No deviation in No deviation in Performance of DUT should be observed No devi 3. 1000MHz to 2000MHz Pulse Modulation Vertical Performance of DUT should be observed No devi Prepared By Checked By Checked By Checked By Checked By	Sr			5113 / 1	count	-						A	ntenna		T	Observation
1. 80MHz to 800MHz Amplitude Modulation 2. 800MHz to 1000MHz Pulse Modulation 3. 1000MHz to 2000MHz Pulse Modulation Prepared By Checked By Operation Repared By	1. 80MHz to 800MHz Amplitude Modulation 2. 800MHz to 1000MHz Pulse Modulation 3. 1000MHz to 2000MHz Pulse Modulation Vertical No deviation in performance of DUT should be observed Other the second sec	No	b .	Frequer	ncy Rai	nge			viodu	llati	on		Pol	arization	Acceptance Criteri	a	Result
2. 800MHz to 1000MHz Pulse Modulation Vertical performance of DUT should be observed 3. 1000MHz to 2000MHz Pulse Modulation Checked By	2. 800MHz to 1000MHz Pulse Modulation Vertical performance of DUT should be observed obser 3. 1000MHz to 2000MHz Pulse Modulation Vertical performance of DUT should be observed obser			80MHz t	:0 8001	MHz	F	Ampli	tude	Mo	dula	tion	5-		No deviation in		No deviatio
3. 1000MHz to 2000MHz Pulse Modulation be observed Prepared By Checked By Quarter Quarter Prepared By Checked By	3. 1000MHz to 2000MHz Pulse Modulation be observed Prepared By Checked By Question Question Question Question	1.		800MHz t	o 1000	OMHz	-	Pul	se Mo	odu	latic	n	V	ertical	performance of DUT sh	nould	observed
Prepared By Checked By Checked By Page	Prepared By Checked By Checked By Checked By Checked By	1.	•	1000MHz	to 200	0MHz	:	Pul	se Mo	odu	latic	n			be observed		
Contraction Page	(Josefiner.	1. 2. 3.		Prepare	ed By			_	111		hu?				Checked By		
Contraction Page	(Josefrer.	1. 2. 3.	_											1.11.20			
Contraction Page	(Journer Bluover	1. 2. 3.															
Contraction Page	(Josefier, Chroner	1. 2. 3.								100		108					
Contraction Page	(Journer) Phrover	1. 2. 3.							,	TRE	ORAU	To					and the second
Contraction Page	(Journer Plurover Plurover	1. 2. 3.							100	NTRE	ORAU	TOMOT	8 ⁻		151/ 18 D		1. Charles Mar
Counting and Plurover Page	(Jorden Blurover	1. 2. 3.							TIONAL CO.	NTRE	ORAU	STROTTINE LEL			S Burner		
Phyon Page	(Ja) Omoral	1. 2. 3.			r.'				CENNATIONAL CC.	MTRE D	OR AU	COMP LEVENDO)				
Page				_(C ⁴	5				INTERNATIONAL C.	MAN MAN	OR AU	CANTEL LEWINGLAS)				
		<u>1</u> . <u>2</u> . <u>3</u> .	(- Jul Ca	51				INTERNATIONAL CO.	MITHE MAN	OR AU	SHOTHER LEWING)		Obvover)	
	JEEVAN PAL NIKHIL GROVER D	1. 2. 3.	(Jorge	12				ALLEBUATIONAL CO.	MINE OF ANAL	ISOR AU	AND LEWINGLA			Phrover		Page 4 of 6

Г	С	5	3	6	0	1	9	0	5	0	0	0	0	3	9	6	F	Date: 12-09-2019	TAT
с	D	0	м	0	0	4	7	4					•						Innovation • Service • Excellence

3.0 Measurement of Conducted Transient Emissions:

3.1 Test Condition: Operating Condition Powered ON 3.2 Test Observations/Results:

Sr. No.	Supply Polarity	Limits as per AIS 004:Part 3	Observation	Results
Fast transi	ent			
1.	DUT ON to OFF	Positive: +150V	Positive Transient: No Significant Transient Negative Transient: No SignificantTransient	Within Limits
2.	DUT OFF to ON	Negative: -400V	Positive Transient: 42.0 V NegativeTransient: No SignificantTransient	Within Limits
Slow trans	ient			
3.	DUT ON to OFF	Positive: +150V	Positive Transient: No Significant Transient Negative Transient: No Significant Transient	Within Limits
4.	DUT OFF to ON	Negative: -400V	Positive Transient:43.32V NegativeTransient: No SignificantTransient	Within Limits

Annexure – IV

4.0 Immunity to Transient Disturbances Conducted along Supply Lines as per AIS 004-3 as amended up to April 2015 following ISO 7637-2:2004:

4.1 DUT Condition:

Operating Condition Powered ON

4.2 Test Requirements and Observations/Results:

24V Syst	IV System:				
Test Pulse	Severity Level	Acceptance Criteria	Achieved Class	Observations	Results
Pulse 1		Class C	Class C	Reset Observed during pulse injection	Satisfactory
Pulse 2a		Class B	Class A	No deviation in performance observed	Satisfactory
Pulse 2b		Class C	Class C	Reset Observed during pulse injection	Satisfactory
Pulse 3a		Class A	Class A	No deviation in performance observed	Satisfactory
Pulse 3b		Class A	Class A	No deviation in performance observed	Satisfactory
Dulso A		Class C	Class C	Reset Observed during pulse injection	Satisfactory

05

I.2 Delhi Integrated Multi-Modal Transit System (DIMTS) letter of support

Ref: DIMTS/TP/2018/2756

Dated: June 21, 2018

To, Department of Science & Technology Delhi -

Subject : Letter of Support for the Proposed Research study.

On behalf of DIMTS, we will extend our support to Profs Pravesh Biyani and Rijurekha Sen for their research proposal related to "Vehicle mounted Particulate Matter (PM) sensing in Delhi-NCR".

DIMTS runs more than 1600 non air-conditioned cluster buses on various routes in the Delhi region. We will facilitate the use of some of the vehicle fleet as needed by the researchers for pilot studies as they build and test their vehicle mounted sensing system.

Pollution being a pressing problem in Delhi-NCR, partnering with this research effort in a meaningful way will be very exciting for DIMTS.

Thanking you.

Yours faithfully,

~ Charp

Samir Sharma Vice President - Transport Planning

DELHI INTEGRATED MULTI-MODAL TRANSIT SYSTEM LTD.

(A joint venture of the Govt. of NCT of Delhi and IDFC Foundation) An ISO 9001:2015, ISO 14001:2015, OHSAS 18001:2007 & ISO 27001 certified and CMMI appraised company CIN No. U60232DL2006PLC148406 REGD. OFF.: 1st FLOOR, MAHARANA PRATAP ISBT BUILDING, KASHMERE GATE, DELHI 110 006 (INDIA) Tel: +91 11 43090100 • Fax: +91 11 23860966 • Email: info@dimts.in • Web: www.dimts.in

I.3 Delhi Pollution Control Committee (DPCC) letter of Support

Delhi Pollution Control Committee 5th Floor I.S.B.T. Building Complex Kashmere Gate Delhi 110006 Visit us at :http://dpcc.delhigovt.nic.in

F. No. Dpcc (12)(1)(260) Lab(A) 2020 2203

Date: 27/1 2010

To,

Dr. Rijurekha Sen Department of Computer Science, IIT Delhi, Hauz Khaz, New Delhi-110016

Subject- Support Letter for Vehicle Mounted Low Cost PM Monitoring in Delhi

Madam,

With reference to your E-mail and telephonic discussion this organization is interested to know feasibility of Vehicle Mounted Low Cost PM Monitoring in Delhi and willing to share data generated by DPCC Ambient Air Quality Network to assess error percentage of Low Cost System.

(Dr. M. P. George) Scientist Dr. M. P. GEORGE Scientist

I.4 Delhi Ministry of Transport (MOT) Permission

GOVERNMENT OF NCT OF DELHI TRANSPORT DEPARTMENT (CLUSTER & DTC SECRETARIAT) 5/9, UNDER HILL ROAD, DELHI – 110 054

No. F.10/STA/Policy /Tpt./ 2011/333/4063

Date: 17/08/2020

То

The CEO, Delhi Integrated Multi Modal Transit System Ltd., 8th Floor, Block-1, Delhi Technology Park, Shastri Park, Delhi-110053.

Subject: Request for permission to install pollution sensing units in Cluster buses as a part of R&D Project by IIT, Delhi.

Sir,

Kindly refer to your letter no. DIMTS/Road Transport/2019/4398, dated 05.11.2019, on the abovementioned subject. DIMTS had requested for a formal approval to install pollution sensing units in 10 Cluster buses by CSE IIT, Delhi.

In this context, I am directed to convey the approval of Hon'ble Minister (Transport) for installing of pollution sensing units in 10 Cluster buses of the Kushak Nalah Depot by CSE, IIT Delhi.

Yours faithfully, (Subodh Kumar) **Deputy Commissioner**

(Cluster & DTC Sectt.)

Copy to:

1. Dy. Commissioner (PCD) with reference to U.O. NO. 23(1471)/CAP/TPT/PCD/ 2018/ 1595/87542 dated 26.11.2019.

2. Ms. Rijurekha Sen, Assistant Professor, CSE, IIT, Delhi.

3. M/s. Indraprastha Logistics Pvt. Ltd, 80/2, Ground Floor Govindpuri Kalkaji New Delhi-110019

1.5 Letter of funding: SCIENCE & ENGINEERING RESEARCH BOARD (SERB), INDIA

FILE NO. IMP/2018/001481 SCIENCE & ENGINEERING RESEARCH BOARD (SERB)

(A statutory body of the Department of Science & Technology, Government of India)

5 & 5A, Lower Ground Floor Vasant Square Mall Plot No. A, Community Centre Sector-B, Pocket-5, Vasant Kunj New Delhi-110070

Dated: 29-Mar-2019

ORDER

Domain: Information & Comm. Technology

Subject: Financial Sanction of the research project titled "Scalable Spatio-Temporal Measurement and Analysis of Air Pollution Data for Delhi-NCR using Vehicle-Mounted Sensors " under the guidance of Dr. Rijurekha Sen, Department of Computer Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, DELHI-110016 and by Dr. Pravesh Biyani, Assistant Professor, Ece Dept, Indraprastha Institute Of Information Technology and by Dr. Arnab Bhattacharya, Associate Professor, Department Of Computer Science And Engineering, Indian Institute Of Technology Kanpur and by Dr. Sayan Ranu, Assistant Professor, Computer Science And Engineering, Indian Institute Of Technology Delhi - Release of 1st grant.

Sanction of Science and Engineering Research Board (SERB) is hereby accorded to the above mentioned project at a total cost of Rs. 12746800/- (Rs. One Crore Twenty Seven Lakh Forty Six Thousand Eight Hundred Only) with break-up of Rs. 5500000/- under Capital (Non-recurring) head and Rs. 7246800/- under General (Recurring) head for a duration of 36 months. The items of expenditure for which the total allocation of Rs. 12746800/- has been approved are given below:

Head	Total (in Rs.)
Non-recurring	
Equipment -> Laptop -> Server -> Sensors	5500000
Total (Non-Recurring)	5500000
Recurring Items	
Recurring - I : (Manpower) Recurring - II : (Consumables, Travel, Contingencies) Recurring - III : Scientific Social Responsibility	3888000 2200000 0
Recurring - IV : (Overhead Charges)	1158800
Total (Becurring)	7246800
Total cost of the project (A' + B')	12746800
	Head Non-recurring Equipment -> Laptop >> Server -> Sensors Total (Non-Recurring) Recurring Items Recurring - I: (Manpower) Recurring - I: (Consumables, Travel, Contingencies) Recurring - II: (Consumables, Travel, Contingencies) Recurring - III: (Overhead Charges) Total (Recurring) Total cost of the project (A' + B')

2. Sanction of the SERB is also accorded to the payment of Rs. 5500000/- (Rupees Fifty Five Lakh only) under 'Grants for creation of capital assets' and Rs. 2415000/- (Rupees Twenty Four Lakh Fifteen Thousand only) under 'Grants-in-aid General' to IRD, Indian Institute Of Technology Delhi, Hauz Khas, New Delhi being the first installment of the grant for the year 2018-2019 for implementation of the said research project.

3. The expenditure involved is debitable to Fund for Science & Engineering Research (FSER) This release is being made under Impacting Research Innovation and Technology (IMPRINT-2). (PAC Information & Communication Technology)

4. The Sanction has been issued to Indian Institute Of Technology Delhi, Hauz Khas, New Delhi with the approval of the competent authority under delegated powers on 28 March, 2019 and vide Diary No. SERB/F/13078/2018-2019 dated 28 March, 2019

5. Sanction of the grant is subject to the conditions as detailed in Terms & Conditions available at website (www.serb.gov.in

6. Overhead expenses are meant for the host Institute towards the cost for providing infrastructural facilities and general administrative support etc. including benefits to the staff employed in the project.

7. While providing operational flexibility among various subheads under head Recurring-II, It should be ensured that not more than Rs. 450000 under Travel and Rs. 450000 under Contingency should be spent.

8. As per rule 211 of GFR, the accounts of project shall be open to inspection by sanctioning authority/audit whenever the institute is called upon to do so

9. The sanctioned equipment would be procured as per GFR and its disposal of the same would be done with prior approval of SERB

10. The release amount of Rs. 7915000/- (Rupees Seventy Nine Lakh Fifteen Thousand only) will be drawn by the Under Secretary of the SERB and will be disbursed by means of RTGS transaction as per their Bank details given below:

Account Name	IRD ACCOUNTS IITD
Account Number	10773572600
Bank Name & Branch	STATE BANK OF INDIA IIT BRANCH, IIT HAUZ KHAS, NEW DELHI - 110016
IFSC/RTGS Code	SBIN0001077
Email id of A/C Holder	arird@admin.iitd.ac.in
Email id of PI	riju@cse.iitd.ac.in

11.The institute will furnish to the SERB separate Utilization certificate(UCs) financial year wise to the SERB for Recurring (Grants-in-aid General) & Non-Recurring (Grants for creation of capital assets) and an audited statement of

accounts pertaining to the grant immediately after the end of each financial year.

12. The institute will maintain separate audited accounts for the project. A part or whole of the grant must be kept in an interest earning bank account which is to be reported to SERB. The interest thus earned will be treated as credit to the institute to be adjusted towards further installment of the grant.

13. The project File no. IMP/2018/001481 should be mentioned in all research communications arising from the above project with due acknowledgement of SERB.

14. The manpower sanctioned in the project, if any is co-terminus with the duration of the project and SERB will have no liability to meet the fellowship and salary of supporting staff if any. beyond the duration of the project

15. As this is the first grant being released for the project, no previous U/C is required.

16. The institute may refund any unspent balance to SERB by means of a Demand Draft favoring "FUND FOR SCIENCE AND ENGINEERING RESEARCH" payable at New Delhi.

17. The organization/institute/university should ensure that the technical support/financial assistance provided to them by the Science & Engineering Research Board should invariably be highlighted/ acknowledged in their media releases as well as in bold letters in the opening paragraphs of their Annual Report.

18. In addition, the investigator/host institute must also acknowledge the support provided to them in all publications, patents and any other output emanating out of the project/program funded by the Science & Engineering Research Board.

Nouika (Dr. Monika Agarwal) Scientist E ms.imprint@gmail.com

1.	The Principal Director of Audit, A.G.C.R.Building, IIIrd Floor I.P. Estate, Delhi-110002								
2.	Sanction Folder, SERB, New Delhi,								
3.	File Copy								
4.	Dr. Rijurekha Sen Department of Computer Science Indian Institute of Technology Delhi , Hauz Khas, New Delhi, DELHI-110016 Email: riju@cse.iitd.ac.in Mobile: 919810591052								
	Dr. Pravesh Biyani Ece Dept Indraprastha Institute Of Information Technology Dr. Arnab Bhattacharya Department Of Computer Science And Engineering Indian Institute Of Technology Kanpur Dr. Sayan Ranu Computer Science And Engineering Indian Institute Of Technology Delhi (Start date of the project may be intimated by name to the undersigned. For guidance, terms & Conditions etc. Please visit www.setb.gov.in.)								
5.	IRD, Indian Institute Of Technology Delhi, Hauz Khas, New Delhi (Receipt of Grant may be intimated by name to the undersigned)								
6.	Secretary, Department of Science & Technology Ministry of Science and Technology Technology Bhavan, New Mehrauli Road, New Delhi-110016 Email: dstsec@nic.in								
7.	Secretary (Higher Education) Ministry of Human Resource Development Shastri Bhavan, New Delhi- 110 001 Email: coord Morpia in								

(Dr. Monika Agarwal) Scientist E ms.imprint@gmail.com