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1 1 Proof of Theorem 4.1]

2 We start by decomposing the error |+ 71" | f(6)) — 7(f)] into three parts

];f (O) —m( ‘S‘i Z f(ak)*% Z fe(Wm‘

k=041 k=¢+1

Z few?) = m(f)| + 2||f||oo

k £+1

S

= (D) + (1) + 22l

s We first upper bound (7).

4 Lemma 1 (Upper bound of (7); adapted from Lemma 6.1.4 of|Chen|(2011)). If the transition map
5 is a contraction with parameter p and if f is 1-Lipschitz, then

[fe(wi?) = £(60)] < (max 16:l] + Ex [|<9||]) o

6 Proof of Lemmall] Note that
Fowl?) = 1601 < [ 170, 91)) = el wl))m(0)
< [10el.w) = @alOrr () n(00)
< b [ M1 O W) = s O wl ) r(00)

gpe/HO—@kfeH?T(d@)
<p (max 16:] + Ex [101]])-

s Tobound (IT), note that —, >, fg(W,f)) is estimating

E [er(W(e))] = /W(@W“))W(d@)dw(m =:wP(f).
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Here, 7P, denote the distribution of the ¢-step state 6, starting from 6y ~ 7. So we have the further
decomposition

i< |- 3 ) f)‘+||f|oo

k=(+1

< Ir() = mPAPI+ | S Rl mP)] + — Il

2 o+1
14
<D +In"+ — .
< (1Y + (11" 4+ |l
The first term (1)’ is due to the discretization in time. The second term (/7)” is the numerical
integration error.

To bound (I1)’, we use the following result.

Lemma 2 (Upper bound on discretization error (I1)"). Under Assumption |I} we have for [ I-
Lipschitz,

m(f) — TP (f)| < M 2L 1h%d.

Proof of Lemma[2] We let 6(t) be the continuous-time Langevin diffusion with 6(0) = 6y ~ ,
Wior = We, = Vhéi11, where &1 w N(0,1,), t,, = kh. So we have

Oltun) =0(t) ~ [ VUO)ds + VERE

123

and
0k+1 == ak - hVU(ek) + Vv 2h£k+1.
Combing the previous two equations gives

O(tks1) — Oky1 = 0(tg) — 0, — R[VU(0(t)) — VU (0r)] — / o VU (0(s)) — VU(O(tr))ds.

tr

Let Ay = 0(tx) — 0k. The last display reads

Awpt = A — WIVU (B + Ay) — VU (6,)] — / " SU0(s)) — VUO(t)ds.

ty

By the contracting property (6) in the main paper,
1Ak = h[VU (0 + Ar) = VU (O)]]] < pll Axll.

Taking expectation and use L-smoothness of U, we have

E [} Awstl] < 2E [|Ac]] + L / TUE[16(s) — 6(t4) ] ds

tr
By Lemma 3 of |Dalalyan and Karagulyan|(2019), E [[[VU(8)||3] < Ld. So we have E [||[VU (6)]] <
dE [[[VU(6)|13] < v/Ld. Because 0(t) is a stationary process,

bt h
/ E[16(s) — 6(t)[]ds = / E[[6(t) - 6(0)] dt

k / {n/ vU(# ds+\th||} dt
/ / (VU (0())]] dsdt—i—/ VIE [ W] dt

:Eﬁw / VIE [|1& ] dt
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Note that

_ sl(d/2+1)2) d+1.1,5
EH|§1|”_\/§T/2)S\/§(T)/ =+Vd+1.

Thus,
Pkt 1 2
/ E [16(s) — 6(10)][1ds < 5 LV*Hd + 3\2—fh3/2d1/2
ty
< Qh3/2d+ 3—\2/§h3/2d1/2

< 3fh3/2d

Denote r = B—‘Q/ELhWQd. So

k
E [|As1]] < pE [|ARl] +7 < pFEAoll) + D pir

=0
T 3\f L

h1/2d
1—p

Therefore, for any k > 1,

7() — TP = [E [F(0(t)) — E [£00)]) < E [ FO(t) — (00
<Efad) < 22 Ly

O

Theorem 1.1 (Theorem 9.8 of Niederreiter| (1992)). Let vy, v1, ... be an LFSR with offset s and
period n. = 2™ — 1 which satisfy gcd(m,n) = 1. Then the sequence {u;}7—; C [0,1]* with
w; = (U4, Vit1, - .., Virs—1) has, on average, star-discrepancy

O(n~t(logn)?* ! loglogn)
with an implied constant depending only on d and the average is taken over all primitive polynomials
over GF(2) of degree m.
Proof of Theorem The error on the left-hand-side is bounded by

(D) + D' + (10" + *Hflloo

Lemmashows that (1) < (maxo<i<n ||0i||+Ex [10])p* < (maxo<i<n ||0:|| +Ex [||9||])h1/2 since
= [(1/2)log, h]. Lemmashows that (I7) < Lfﬁdhl/z_ Denote Cy = maxo<;<n ||0:] +
E. (0] + 22 Ed. So (I) + (II)' < Cyht/2.

By Theorem u and the condition that ged(d?¢,n) = 1, the star-discrepancy D*({wk )}k>1) is
upper bounded by O(n~!(logn)%*!loglogn). Finally, by Koksma-Hlawka inequality, we have

(1" < || felli - D*({@{” }x1). Thus, (I1)” + 2|\ f|lsc < Cin~'*, where & hides the poly-
logarithmic terms in logn and C; depends on d, ¢, || fo||uk-

Therefore, the upper bound becomes

(I)+ (1) + (D) + %g”f”m < Oin 10 4 Cynt/2.
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