
Jaccard Metric Losses: Optimizing the Jaccard Index
with Soft Labels

Zifu Wang1∗ Xuefei Ning2 Matthew B. Blaschko1

1 ESAT-PSI, KU Leuven, Leuven, Belgium
2 Department of Electronic Engineering, Tsinghua University, Beijing, China

Abstract

Intersection over Union (IoU) losses are surrogates that directly optimize the
Jaccard index. Leveraging IoU losses as part of the loss function have demonstrated
superior performance in semantic segmentation tasks compared to optimizing pixel-
wise losses such as the cross-entropy loss alone. However, we identify a lack of
flexibility in these losses to support vital training techniques like label smoothing,
knowledge distillation, and semi-supervised learning, mainly due to their inability
to process soft labels. To address this, we introduce Jaccard Metric Losses (JMLs),
which are identical to the soft Jaccard loss in standard settings with hard labels
but are fully compatible with soft labels. We apply JMLs to three prominent use
cases of soft labels: label smoothing, knowledge distillation and semi-supervised
learning, and demonstrate their potential to enhance model accuracy and calibration.
Our experiments show consistent improvements over the cross-entropy loss across 4
semantic segmentation datasets (Cityscapes, PASCAL VOC, ADE20K, DeepGlobe
Land) and 13 architectures, including classic CNNs and recent vision transformers.
Remarkably, our straightforward approach significantly outperforms state-of-the-
art knowledge distillation and semi-supervised learning methods. The code is
available at https://github.com/zifuwanggg/JDTLosses.

1 Introduction

The Jaccard index, also known as the intersection over union (IoU), is a widely used metric in the
evaluation of semantic segmentation models. Its appeal lies in its scale invariance and its superior
ability to reflect the perceptual quality of a model compared to pixel-wise accuracy [17, 40]. In line
with the principles of empirical risk minimization in statistical learning theory, the metric used for
evaluation should also be optimized during training [60]. Consequently, directly optimizing IoU via
differentiable surrogates has found considerable attention in the literature [46, 49, 2, 72, 17, 73].

Notably, IoU is only defined when both predictions and ground-truth labels are discrete binary
values, i.e., they reside on the vertices of a p-dimensional hypercube {0, 1}p. However, the output
of neural networks are soft probabilities that are in the interior of the hypercube [0, 1]p. To extend
the value of IoU from vertices to the entire hypercube, two popular strategies are currently in use.
The first strategy relaxes set counting with norm functions, exemplified by the soft Jaccard loss (SJL)
[46, 49] and the soft Dice loss (SDL) [57, 17]. The second strategy computes the Lovasz extension
of the IoU, such as the Lovasz hinge loss [72] and the Lovasz-Softmax loss (LSL) [2]. These losses
facilitate a plug-and-play use and have significantly enhanced the performance of segmentation
models, outperforming pixel-wise losses such as the cross-entropy loss (CE) and the focal loss [35].
For instance, Rakhlin et al. [50] won the land cover segmentation task of the DeepGlobe Challenge
[12] utilizing LSL. Additionally, SDL is becoming increasingly prominent in recent segmentation
works [5, 9, 8, 29], such as Segment Anything [29]. Moreover, SJL and SDL are now the standard
for training medical imaging models [17, 27].

∗Correspondence to: zifu.wang@kuleuven.be

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/zifuwanggg/JDTLosses

Despite their widespread application, current IoU losses lack the flexibility needed to accommodate
key training techniques. Specifically, while these losses relax predictions from {0, 1}p to [0, 1]p,
they neglect the possibility of labels residing in [0, 1]p, making them incompatible with soft labels.
Soft labels have been employed in numerous state-of-the-art models and have proven effective
in enhancing network accuracy [37, 68, 62] and calibration [20, 44, 42, 82]. For example, label
smoothing (LS) [58] generates soft labels by taking a weighted average of one-hot hard labels and a
uniform distribution over labels. In knowledge distillation (KD) [22], class probabilities generated by
a teacher network serve as soft labels to guide a student model. In semi-supervised learning (SSL)
such as MixMatch [4], k views of an unlabeled image are fed to a classifier, and the predictions are
averaged to create soft labels.

Motivated by the limitation of existing IoU losses, particularly their inability to accommodate
soft labels and, consequently, techniques like LS, KD, and SSL, we propose two variants of SJL,
termed Jaccard metric losses (JMLs) since they are metrics on [0, 1]p. JMLs yield the same value as
SJL on hard labels but are fully compatible with soft labels. Therefore, we can safely replace the
existing implementation of SJL with JMLs without affecting the performance on hard labels. To
embed our losses with use cases (LS, KD, SSL), we first introduce boundary label smoothing (BLS)
which facilitates the integration of label smoothing into the segmentation task. BLS can be used
independently and also synergizes with KD and SSL. Subsequently, we present a confidence-based
scheme for selecting classes to contribute to the loss computation, thereby enhancing performance in
KD. We conduct extensive experiments on 4 datasets (Cityscapes [11], PASCAL VOC [18], ADE20K
[81], DeepGlobe Land [12]) across 13 architectures, including classic CNNs [21, 54] and recent
vision transformers [69]. Our results demonstrate significant improvements over the cross-entropy
loss. Moreover, our straightforward approach outperforms state-of-the-art segmentation KD and SSL
methods by a substantial margin.

2 Methods

2.1 Preliminaries

Given a segmentation output ẋ ∈ {1, ..., C}p and a ground-truth ẏ ∈ {1, ..., C}p where C is the
number of classes, for each class c, we define the set of predictions as xc = {ẋ = c}, the set of
ground-truth as yc = {ẏ = c}, the union as uc = xc ∪ yc, the intersection as vc = xc ∩ yc, the
symmetric difference (the set of mispredictions) as mc = (xc \ yc)∪ (yc \ xc), and the Jaccard index
as IoUc = |vc|/|uc|. For multi-class segmentation, IoUc are averaged across classes, yielding the
mean IoU (mIoU). In the sequel, we will encode sets as binary vectors xc, yc, uc, vc,mc ∈ {0, 1}p
where p is the number of pixels, and denote |xc| =

∑p
i=1 x

c
i the cardinality of the corresponding set.

For simplicity, we will drop the superscript c in the following.

In order to optimize IoU in a continuous setting, we need (almost everywhere) differentiable interpo-
lations of this discrete score. In particular, we want to extend the IoU loss

∆IoU : x ∈ {0, 1}p, y ∈ {0, 1}p 7→ 1− |v|
|u|

=
|m|

|y ∪m|
(1)

with ∆IoU so that it attains a value with any vector of predictions x̃ ∈ [0, 1]p. In what follows, when
the context is clear, we will use x and x̃ interchangeably.

The soft Jaccard loss (SJL) [46, 49] generalizes IoU by realizing that when x, y ∈ {0, 1}p, |v| =
⟨x, y⟩ and |u| = |x| + |y| − |v| = ∥x∥1 + ∥y∥1 − ⟨x, y⟩. Therefore, SJL replaces the set notation
with vector functions:

∆SJL,L1 : x ∈ [0, 1]p, y ∈ {0, 1}p 7→ 1− ⟨x, y⟩
∥x∥1 + ∥y∥1 − ⟨x, y⟩

. (2)

The L1 norm can be replaced with the squared L2 norm [17]:

∆SJL,L2 : x ∈ [0, 1]p, y ∈ {0, 1}p 7→ 1− ⟨x, y⟩
∥x∥22 + ∥y∥22 − ⟨x, y⟩

. (3)

2

2.2 The Limitation of Existing IoU Losses

The primary shortcoming of current IoU losses is that they do not necessarily have desired properties
when presented with soft labels, i.e., when y ∈ [0, 1]p. This limitation impedes their application in
crucial training techniques like LS, KD, and SSL.

Consider the case of ∆SJL,L1 , and for simplicity, a single pixel scenario: ∆SJL,L1 = 1− xy
x+y−xy . It is

easy to confirm that for any y > 0, ∆SJL,L1 is minimized at x = 1 since it monotonically decreases as
a function of x. Hence, ∆SJL,L1 is in general not minimized when x = y, a basic property anticipated
from a loss function. Further analysis for high-dimensional cases and additional experiments on real
datasets are provided in Appendix C and E, respectively.

∆SJL,L2 does not exhibit this issue, since ∆SJL,L2 = 0 ⇔ |x|22 + |y|22 − 2⟨x, y⟩ = 0 ⇔ x = y.
However, it is known to yield inferior results compared to its L1 counterpart, possibly due to its flatter
nature around the minimum [17]. In practice, it is rarely used. For instance, in SMP [25], a popular
open-source semantic segmentation project, only the L1 version is implemented. Our evaluations in
Appendix E confirm its inferior performance relative to the L1 version. Additionally, the approach of
substituting set notation with the L1 norm is widely utilized in numerous other works, including the
soft Dice loss [57, 17], the soft Tversky loss [53], the focal Tversky loss [1], and others. The soft Dice
loss is also included in the formulation of the PQ loss [61] which is used in panoptic segmentation
[28]. Consequently, all of them struggle with soft labels.

Losses based on the Lovasz extension, such as the Lovasz-Softmax loss [2], the Lovasz hinge loss
[72], and the PixIoU loss [73], cannot handle soft labels as the Lovasz extension is not well-defined
for y ∈ (0, 1)p. More details and comparisons with the Lovasz-Softmax loss can be found in
Appendix D and E, respectively. Automatically searched loss functions, such as Auto Seg-Loss [33]
and AutoLoss-Zero [32], also fail to accommodate soft labels as their search space is confined to
integral labels.

In summary, despite their widespread adoption in recent works on semantic segmentation [17, 27, 9,
8, 29] and panoptic segmentation [5, 61, 74, 75], these losses all exhibit a common shortcoming: an
inability to handle soft labels. In this paper, we specifically concentrate on re-designing SJL. Other
losses, including the soft Dice loss, the soft Tversky loss, and the focal Tversky loss, are addressed in
our subsequent work [66].

2.3 Jaccard Metric Losses

We can rewrite the intersection |v| and the union |u| as a function of the set difference |m|:

|v| = 1

2
(|x|+ |y| − |m|) and |u| = |v|+ |m|. (4)

Note that |m| = ∥x− y∥1. Combining these yields:

|v| = ⟨x, y⟩ = 1

2
(∥x+ y∥1 − ∥x− y∥1), (5)

|u| = ⟨x, y⟩+ ∥x− y∥1 =
1

2
(∥x+ y∥1 + ∥x− y∥1), (6)

where the equalities hold when x, y ∈ {0, 1}p.

After eliminating erroneous combinations that have the same issue as SJL, we are left with two
candidates ∆JML,1,∆JML,2 : [0, 1]p × [0, 1]p → [0, 1] that are defined as:

∆JML,1 = 1− ∥x+ y∥1 − ∥x− y∥1
∥x+ y∥1 + ∥x− y∥1

, (7)

∆JML,2 = 1− ⟨x, y⟩
⟨x, y⟩+ ∥x− y∥1

. (8)

It is a well-known result that ∆IoU is a metric on {0, 1}p [30]. In Theorem 2.1 (see Appendix F for
the proof), we show that both ∆JML,1 and ∆JML,2 are also metrics on [0, 1]p. Therefore, we call them
Jaccard Metric Losses (JMLs).

3

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

va
lue

CE
JML

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0
CE
JML

Figure 1: Loss value vs. prediction with y = 0.1 (left) and y = 0.9 (right).

Theorem 2.1. Both ∆JML,1 and ∆JML,2 are metrics on [0, 1]p. Neither ∆SJL,L1 nor ∆SJL,L2 is a metric
on [0, 1]p.

Recall the definition of a metric:
Definition 2.2 (Metric [14]). A mapping f : M × M → R is called a metric on M if for all
a, b, c ∈ M , it satisfies the following conditions: (i) (reflexivity). f(a, a) = 0. (ii) (positivity).
a ̸= b =⇒ f(a, b) > 0. (iii) (symmetry). f(a, b) = f(b, a). (iv) (triangle inequality). f(a, c) ≤
f(a, b) + f(b, c).

Having a loss function ∆ that is a metric carries numerous benefits. Reflexivity and positivity
collectively imply that ∀x, y ∈ [0, 1]p, x = y ⇔ ∆ = 0, meaning that ∆ would be compatible with
soft labels. The triangle inequality also provides insightful guidance. Applied to KD, it yields:

∆(S,L) ≤ ∆(S, T) + ∆(T, L). (9)

Here, S represents the student model, T the teacher model, and L the ground-truth labels. In the KD,
we initially train the teacher model using the ground-truth labels, and then minimize the loss between
the teacher and the student model. Equation (9) suggests that if we adhere to this process—equivalent
to minimizing the right-hand side of the equation—we also minimize the upper bound on the student
model’s loss with respect to the ground-truth labels.

Furthermore, as Theorem 2.3 shows (see Appendix G for the proof), when only hard labels are
involved, ∆JML,1,∆JML,2 and ∆SJL,L1 are identical. Hence, we can safely replace the existing
implementation of SJL with JMLs. When soft labels are introduced, ∆JML,1 and ∆JML,2 might
yield different values. We discuss their distinctions in Appendix H. From both theoretical and
empirical perspectives, we find that ∆JML,1 is slightly more favorable than ∆JML,2. As a default in our
experiments, we use ∆JML,1.

Theorem 2.3. ∀x ∈ [0, 1]p, y ∈ {0, 1}p and x ∈ {0, 1}p, y ∈ [0, 1]p, ∆JML,1 = ∆JML,2 = ∆SJL,L1 .
∃x, y ∈ [0, 1]p,∆JML,1 ̸= ∆JML,2 ̸= ∆SJL,L1 .

Figure 1 plots the loss value of ∆JML,1 and the cross-entropy loss (CE) for soft labels y = 0.1 (left)
and y = 0.9 (right). Typically, the model is randomly initialized, resulting in a low initial confidence.
Although the gradient of CE is substantial at the beginning, it plateaus as training progresses and the
prediction is close to the target. Conversely, ∆JML,1 offers effective supervision later in the process.
However, when y is extremely small (e.g., y = 0.1), ∆JML,1 can become overly steep, potentially
causing problems in KD. This issue will be explored in greater detail in Section 2.4.2.

2.4 Use Cases

Soft labels find wide-ranging applications. In this paper, we investigate three of the most common
use cases: label smoothing (LS), knowledge distillation (KD) and semi-supervised learning (SSL).
We leave the discussion on SSL in Appendix I.

2.4.1 Label Smoothing

In LS [58], the one-hot encoding is combined with a uniform distribution under a smoothing coef-
ficient ϵ, resulting in soft labels SLϵ. In JML-LS, a network H is trained with the following loss:

4

LJML-LS = λCELCE, LS + λJMLLJML, LS (10)
such that LCE, LS = CE(H,SLϵ) and LJML, LS = JML(H,SLϵ).

LS provides a regularization effect during training. However, when we regard semantic segmentation
as a pixel-wise classification task and apply LS to every pixel in the image without distinction, we fail
to consider spatial differences. This is particularly evident with SegFormer-B3 on ADE20K, which
achieves an overall pixel-wise accuracy of 81.91±0.02%, but drops to 47.98±0.01% in the boundary
region. These areas, due to their inherent ambiguity, require stronger regularization. Moreover, our
empirical findings suggest that smoothing non-boundary regions only yields marginal improvements.
Therefore, we introduce boundary label smoothing (BLS), which only applies smoothing to labels
near the boundary. We refer to the resulting loss as JML-BLS. Specifically, for every pixel i, we
examine its k × k neighborhood Ni, and the pixel i is regarded as a boundary pixel if there exists
a pixel j ∈ Ni such that their ground-truth labels are different: yi ̸= yj . This can be efficiently
computed by applying a max pooling layer to the one-hot encoding.

2.4.2 Knowledge Distillation

In KD [22], besides the ground-truth label L, a student model S is trained to minimize the discrepancy
to a teacher network T simultaneously:

LCE, KD = µLLCE, L + µTLCE, T (11)

where LCE, L = CE(S,L) and LCE, T = CE(S, T).

In JML-KD, we add additional supervision from JML:

LJML, KD = νLLJML, L + νTLJML, T (12)

where LJML, L = JML(S,L) and LJML, T = JML(S, T).

Combining these, we have

LJML-KD = λCELCE, KD + λJMLLJML, KD. (13)

Existing segmentation KD methods rely on pixel-wise supervision either in the output [36, 70] or
in the feature space [64, 55]. Our LJML, T, however, enables direct distillation of the teacher’s IoU
information to the student which aligns with the final evaluation metric.

Moreover, recall that JMLs are averaged for each class, making it crucial to determine which
classes contribute to the loss value at each iteration. We refer to these classes as active classes. In
KD, the student uses information from non-target classes to learn the class relationship from the
teacher [59, 77]. However, a teacher network may also include noisy and unhelpful predictions for
unimportant classes. Therefore, we propose to filter out unimportant classes based on the confidence
level of the teacher network. Specifically, JMLs are computed only over classes where the teacher’s
confidence exceeds a predefined threshold. This approach has two benefits: first, the student will not
be distracted by irrelevant classes, aiding in generalization. Second, as shown in Figure 1, we find
that the loss value of JMLs can become excessively steep around the target when the ground-truth is
low (e.g. y = 0.1). Therefore, ignoring these classes can stabilize the training process.

We have also observed that the student benefits from a teacher trained with JML-BLS. In contrast,
in classification tasks, it has been found that a teacher trained with LS can detrimentally affect the
student’s performance [44]. This is often cited as a counterexample to the notion that a more accurate
teacher will necessarily distill a better student. We believe that the teacher, trained through JML-BLS,
acquires intricate boundary information, and this "dark knowledge" is implicitly passed to the student,
resulting in a more accurate student.

3 Experiments

Experimental setups. We adopt Pytorch Image Models (timm) [67], which provides implemen-
tations and ImageNet [13] pre-trained weights for various backbones. In our experiments, CNN
backbones include ResNet-101/50/18 [21] and MobileNetV2 [54]; transformer backbones contain
MiT-B5/B3/B1/B0 [69]. Segmentation methods consist of DeepLabV3+ [7], DeepLabV3 [6], PSPNet

5

[78], UNet [51] and SegFormer [69]. We evaluate models on Cityscapes [11], PASCAL VOC [18],
ADE20K [81] and DeepGlobe Land [12]. In summary, 13 models and 4 datasets are studied in the
sequel. More details of each model are in Appendix A and training recipes are in Appendix B.

Evaluation metrics. To provide a comprehensive comparison, we report both overall pixel-wise
accuracy (Acc) and mean intersection over union (mIoU). To evaluate the effects of our methods on
calibration, we present the expected calibration error (ECE) [20] and the ECE computed only over
the boundary region, denoted as BECE. For Cityscapes, PASCAL VOC, and ADE20K, we repeat the
experiments 3 times (except for SSL experiments that are single runs) and report performance on the
validation set. For DeepGlobe Land, we conduct 5-fold cross-validation. All results are presented in
the format of mean±standard deviation. We do not apply any test-time augmentation.

3.1 Results on Accuracy

We report results on Cityscapes (Table 1), PASCAL VOC (Table 2), ADE20K (Table 3), and
DeepGlobe Land (Table 13, Appendix J). Key takeaways from our results are as follows:

JML significantly improves accuracy (Acc and mIoU). Compared to training with CE alone,
incorporating JML as part of the loss function can significantly enhance a model’s mIoU. The
improvement is typically more than 2% on Cityscapes, PASCAL VOC, and ADE20K. Additionally,
it can also increase a model’s Acc. This suggests that the benefits of JML are not solely due to its
alignment with the evaluation metric (mIoU), but also because it aids the overall optimization process.

JML benefits more from soft labels. For instance, the improvements of mIoU for DL3-R101 on
PASCAL VOC are 0.48% (CE vs. CE-BLS) and 1.25% (JML vs. JML-BLS), respectively. We
adopted training procedures that are heavily optimized for CE, which might explain why JML requires
stronger regularization. More qualitative results can be found in Figure 7 and Figure 8 (Appendix L).

KD is more effective than BLS, while BLS performs well on datasets with simple boundary
condition. Both BLS and KD consistently improve the model’s accuracy. Despite its simplicity, BLS
can yield significant improvements, especially on PASCAL VOC where boundary condition is less
complex. As boundary condition becomes more intricate, as in Cityscapes and ADE20K, KD, seen
as learned label smoothing [76], typically outperforms BLS.

SOTA results on segmentation KD. Without bells and whistles, our simple approach that only
uses soft labels greatly exceeds SOTA segmentation KD methods, as shown in Table 4. Indeed, the
model trained only with hard labels in JML already achieves a comparable result as some of these
methods. For example, on PASCAL VOC, DL3-R18 achieves 74.42± 0.52% mIoU while CIRKD
[70], a complex distillation method only attains 74.50% mIoU. Note that our baseline is not stronger
than theirs: our DL3-R18 trained with CE has 72.47± 0.33% mIoU while their number is 73.21%
(because we use a smaller batch size, see Appendix B).

SOTA results on segmentation SSL. By incorporating JML-BLS with AugSeg [80] (refer to
Appendix I for further details), we achieve SOTA segmentation SSL results as illustrated in Table 11
(Appendix I). Notably, improvements are particularly significant on smaller splits - exceeding a 4%
enhancement over AugSeg on the 92 split.

3.2 Results on Calibration

CE-BLS and CE-KD sometimes hurt calibration. Contrary to the common belief in classification
[44, 42, 82], we find that both CE-BLS and CE-KD can sometimes deteriorate model calibration. For
instance, in Cityscapes experiments, the lowest ECE is usually obtained with CE only. Nevertheless,
CE-BLS can still improve model calibration near the boundary.

JML compromises calibration. Although the soft Dice loss can significantly improve a model’s
segmentation performance, it is well known to yield poorly calibrated models [41, 3]. We confirm that
this is also the case for JML. Interestingly, while models trained with JML exhibit inferior top-class
calibration as measured by ECE, they actually achieve better multi-class calibration as indicated by
the static calibration error (SCE). We provide more detailed results on calibration in Appendix K.

JML-BLS and JML-KD consistently improve calibration. Although JML presents challenges
in model calibration, these can be greatly mitigated by training models with soft labels. In JML
experiments, both JML-BLS and JML-KD reliably enhance model calibration.

6

Table 1: Results on Cityscapes (%). Best results within CE and JML groups are highlighted in red
and green, respectively. Best results across CE and JML groups are underscored.

Model Metric CE CE-BLS CE-KD JML JML-BLS JML-KD

DL3-R101

Acc ↑ 96.10 ± 0.02 96.11 ± 0.03 - 96.10 ± 0.04 96.25 ± 0.03 -
mIoU ↑ 78.67 ± 0.32 78.70 ± 0.26 - 80.29 ± 0.17 80.66 ± 0.24 -
ECE ↓ 0.76 ± 0.05 0.97 ± 0.04 - 2.74 ± 0.03 2.09 ± 0.02 -

BECE ↓ 16.14 ± 0.22 11.59 ± 0.12 - 30.78 ± 0.19 21.20 ± 0.07 -

DL3-R50

Acc ↑ 95.77 ± 0.08 95.83 ± 0.08 - 95.93 ± 0.04 96.05 ± 0.02 -
mIoU ↑ 76.45 ± 0.68 77.02 ± 0.82 - 78.68 ± 0.42 79.10 ± 0.35 -
ECE ↓ 0.62 ± 0.02 1.00 ± 0.03 - 2.84 ± 0.02 2.18 ± 0.01 -

BECE ↓ 16.23 ± 0.16 11.67 ± 0.18 - 31.12 ± 0.10 20.51 ± 0.12 -

DL3-R18

Acc ↑ 95.28 ± 0.02 95.31 ± 0.05 95.40 ± 0.04 95.46 ± 0.04 95.49 ± 0.05 95.59 ± 0.02
mIoU ↑ 72.88 ± 0.44 73.14 ± 0.12 74.09 ± 0.28 75.55 ± 0.13 76.26 ± 0.17 76.68 ± 0.33
ECE ↓ 0.68 ± 0.06 0.88 ± 0.01 0.98 ± 0.03 3.07 ± 0.01 2.49 ± 0.05 2.47 ± 0.01

BECE ↓ 17.28 ± 0.19 13.25 ± 0.16 16.26 ± 0.18 32.10 ± 0.08 22.66 ± 0.10 22.57 ± 0.17

DL3-MB2

Acc ↑ 95.24 ± 0.01 95.28 ± 0.03 95.30 ± 0.04 95.45 ± 0.02 95.51 ± 0.04 95.56 ± 0.03
mIoU ↑ 72.19 ± 0.12 72.54 ± 0.26 72.88 ± 0.15 75.32 ± 0.42 75.81 ± 0.14 75.94 ± 0.24
ECE ↓ 0.69 ± 0.05 0.96 ± 0.03 0.99 ± 0.04 3.09 ± 0.02 2.43 ± 0.04 2.50 ± 0.03

BECE ↓ 17.64 ± 0.15 13.14 ± 0.20 16.55 ± 0.10 32.08 ± 0.29 21.61 ± 0.09 22.57 ± 0.04

PSP-R18

Acc ↑ 95.13 ± 0.05 95.07 ± 0.03 95.14 ± 0.02 95.25 ± 0.02 95.30 ± 0.02 95.39 ± 0.01
mIoU ↑ 72.61 ± 0.34 72.43 ± 0.05 72.79 ± 0.15 74.96 ± 0.16 75.31 ± 0.13 75.75 ± 0.31
ECE ↓ 0.68 ± 0.07 0.97 ± 0.01 1.08 ± 0.05 3.17 ± 0.01 2.44 ± 0.02 2.52 ± 0.01

BECE ↓ 17.54 ± 0.24 13.61 ± 0.20 16.96 ± 0.21 32.65 ± 0.07 22.30 ± 0.15 23.17 ± 0.08

Table 2: Results on PASCAL VOC (%). Best results within CE and JML groups are highlighted in
red and green, respectively. Best results across CE and JML groups are underscored.

Model Metric CE CE-BLS CE-KD JML JML-BLS JML-KD

DL3-R101

Acc ↑ 94.68 ± 0.02 94.75 ± 0.05 - 94.97 ± 0.13 95.34 ± 0.08 -
mIoU ↑ 78.39 ± 0.09 78.87 ± 0.44 - 80.26 ± 0.45 81.52 ± 0.41 -
ECE ↓ 2.33 ± 0.03 2.01 ± 0.04 - 3.97 ± 0.10 3.20 ± 0.04 -

BECE ↓ 20.54 ± 0.12 17.25 ± 0.14 - 32.70 ± 0.09 22.30 ± 0.02 -

DL3-R50

Acc ↑ 94.23 ± 0.05 94.28 ± 0.06 - 94.60 ± 0.02 94.87 ± 0.02 -
mIoU ↑ 76.93 ± 0.32 77.23 ± 0.18 - 78.97 ± 0.12 79.76 ± 0.15 -
ECE ↓ 2.05 ± 0.03 1.77 ± 0.08 - 4.19 ± 0.02 3.25 ± 0.02 -

BECE ↓ 20.95 ± 0.13 17.30 ± 0.15 - 33.07 ± 0.10 20.41 ± 0.01 -

DL3-R18

Acc ↑ 92.96 ± 0.05 93.17 ± 0.09 93.13 ± 0.07 93.28 ± 0.14 93.72 ± 0.05 93.75 ± 0.05
mIoU ↑ 72.47 ± 0.33 72.99 ± 0.42 72.96 ± 0.30 74.42 ± 0.52 75.60 ± 0.24 75.89 ± 0.29
ECE ↓ 1.83 ± 0.12 1.26 ± 0.08 1.68 ± 0.05 4.92 ± 0.14 3.79 ± 0.03 3.94 ± 0.07

BECE ↓ 21.83 ± 0.29 17.87 ± 0.08 19.42 ± 0.04 34.35 ± 0.09 22.45 ± 0.08 22.15 ± 0.19

DL3-MB2

Acc ↑ 92.47 ± 0.12 92.45 ± 0.02 92.54 ± 0.04 92.74 ± 0.07 93.13 ± 0.11 93.21 ± 0.01
mIoU ↑ 70.14 ± 0.54 70.36 ± 0.27 70.54 ± 0.10 72.35 ± 0.32 73.25 ± 0.18 73.55 ± 0.27
ECE ↓ 1.92 ± 0.14 1.46 ± 0.09 1.78 ± 0.03 5.19 ± 0.05 4.14 ± 0.08 4.24 ± 0.01

BECE ↓ 22.65 ± 0.34 19.62 ± 0.45 20.62 ± 0.34 35.10 ± 0.17 23.38 ± 0.19 23.09 ± 0.11

PSP-R18

Acc ↑ 92.93 ± 0.12 93.09 ± 0.09 93.13 ± 0.18 93.20 ± 0.08 93.65 ± 0.04 93.60 ± 0.10
mIoU ↑ 72.10 ± 0.55 72.76 ± 0.52 72.84 ± 0.57 74.20 ± 0.24 75.04 ± 0.22 74.93 ± 0.36
ECE ↓ 1.92 ± 0.22 1.40 ± 0.16 1.81 ± 0.16 4.76 ± 0.04 3.70 ± 0.01 3.99 ± 0.07

BECE ↓ 22.39 ± 0.39 18.95 ± 0.12 20.55 ± 0.47 34.72 ± 0.06 23.45 ± 0.20 23.53 ± 0.37

Table 3: Results on ADE20K (%). Best results within CE and JML groups are highlighted in red and
green, respectively. Best results across CE and JML groups are underscored.

Model Metric CE CE-BLS CE-KD JML JML-BLS JML-KD

SegFormer-B5

Acc ↑ 82.48 ± 0.09 82.53 ± 0.06 - 82.72 ± 0.11 82.80 ± 0.10 -
mIoU ↑ 48.17 ± 0.35 48.50 ± 0.26 - 49.95 ± 0.28 50.22 ± 0.32 -
ECE ↓ 5.94 ± 0.05 5.14 ± 0.15 - 11.84 ± 0.06 9.12 ± 0.15 -

BECE ↓ 19.98 ± 0.11 14.59 ± 0.17 - 34.78 ± 0.19 19.88 ± 0.28 -

SegFormer-B3

Acc ↑ 81.91 ± 0.02 82.04 ± 0.11 - 82.31 ± 0.13 82.54 ± 0.12 -
mIoU ↑ 46.51 ± 0.29 46.88 ± 0.24 - 48.68 ± 0.27 49.24 ± 0.24 -
ECE ↓ 5.56 ± 0.12 4.56 ± 0.13 - 11.57 ± 0.13 10.63 ± 0.22 -

BECE ↓ 19.98 ± 0.23 4.56 ± 0.13 - 34.47 ± 0.07 28.17 ± 0.36 -

SegFormer-B1

Acc ↑ 78.75 ± 0.05 78.92 ± 0.11 78.96 ± 0.03 79.41 ± 0.10 79.53 ± 0.12 79.62 ± 0.04
mIoU ↑ 38.79 ± 0.20 38.95 ± 0.25 39.29 ± 0.16 41.70 ± 0.17 42.03 ± 0.29 42.52 ± 0.17
ECE ↓ 4.18 ± 0.04 3.18 ± 0.16 4.90 ± 0.05 11.33 ± 0.08 10.46 ± 0.18 10.50 ± 0.12

BECE ↓ 18.70 ± 0.09 13.89 ± 0.20 19.23 ± 0.09 33.25 ± 0.05 27.38 ± 0.25 26.29 ± 0.33

SegFormer-B0

Acc ↑ 75.49 ± 0.06 76.37 ± 0.02 76.48 ± 0.02 76.85 ± 0.04 76.98 ± 0.11 76.99 ± 0.06
mIoU ↑ 30.49 ± 0.15 33.48 ± 0.07 34.54 ± 0.11 36.65 ± 0.13 36.78 ± 0.08 37.05 ± 0.11
ECE ↓ 2.61 ± 0.12 2.10 ± 0.20 3.56 ± 0.04 10.77 ± 0.12 9.88 ± 0.17 10.22 ± 0.04

BECE ↓ 17.61 ± 0.17 13.33 ± 0.12 17.53 ± 0.13 31.84 ± 0.28 26.09 ± 0.29 24.99 ± 0.14

Table 4: Comparing with SOTA segmentation KD methods on Cityscapes and PASCAL VOC. All
results are mIoU (%). JML-KD: we increase the batch size to 16 for Cityscapes experiments to
match training details in [70, 23, 24].

Dataset Model CE SKD [36] IFVD [64] CD [55] CIRKD [70] MasKD [24] DIST [23] JML-KD

CS
DL3-R18 72.88 75.42 75.59 75.55 76.38 77.00 77.10 77.91 ± 0.16
DL3-MB2 72.19 73.82 73.50 74.66 75.42 75.26 - 77.53 ± 0.20
PSP-R18 72.61 73.29 73.71 74.36 74.73 75.34 76.31 77.33 ± 0.38

VOC DL3-R18 72.47 73.51 73.85 74.02 74.50 - - 75.89 ± 0.29
PSP-R18 72.10 74.07 73.54 73.99 74.78 - - 74.93 ± 0.36

7

4 Ablation Studies

4.1 JML Weights

It is common in recent works [5, 9, 8, 29] to balance CE and the Dice loss with equal weights. For
JML, we adopt 0.25/0.75 in all our experiments and find it slightly superior than 0.5/0.5.

Table 5: Ablating different values of λCE/λJML on PASCAL VOC using DL3-R101 and DL3-R18.
All results are mIoU (%). Red: the best in a row. Green: the worst in a row.

Model 0.10/0.90 0.25/0.75 0.50/0.50 0.90/0.10 1.00/0.00
DL3-R101 79.80 ± 0.40 80.26 ± 0.45 79.92 ± 0.12 78.73 ± 0.30 78.39 ± 0.09
DL3-R18 73.67 ± 0.39 74.42 ± 0.52 74.30 ± 0.29 73.21 ± 0.23 72.47 ± 0.33

4.2 JML-BLS

Although BLS is sensitive to the choice of ϵ, it effectively increases model accuracy and calibra-
tion. The effect of the smoothing coefficient ϵ on PASCAL VOC with DL3-R101/50/18 is shown
in Figure 5 (Appendix L). Interestingly, for DL3-R50 and DL3-R18, the optimal ϵ that achieves the
highest mIoU also yields the lowest ECE.

We need a strong smoothing coefficient near the boundary. The optimal ϵ for different kernel size
k on PASCAL VOC with DL3-R18 is shown in Figure 4 (Appendix L). Note that k = ∞ implies LS
is applied to every pixel, i.e. vanilla LS. Generally, as k increases, we need to decrease the strength of
smoothing. The best result is obtained when we only smooth a small region near the boundary with a
strong smoothing coefficient (k = 3 and ϵ = 0.50).

4.3 JML-KD

Loss terms. We examine the contribution of each loss term in Table 6 using a DL3-R18 student.
Adding JML terms significantly improves the student’s performance.

Table 6: Evaluating different losses terms on Cityscapes and PASCAL VOC using a DL3-R18 student.
LJML-BLS means we train the teacher with JML-BLS. All results are mIoU (%). Red: the best in a
column.

LCE, L LJML,L LCE, KD LJML, KD LJML-BLS CS VOC
✓ - - - - 72.88 ± 0.44 72.47 ± 0.33
✓ ✓ - - - 75.55 ± 0.13 74.42 ± 0.52
✓ ✓ ✓ - - 75.74 ± 0.25 74.65 ± 0.42
✓ ✓ ✓ ✓ - 76.16 ± 0.37 75.05 ± 0.31
✓ ✓ ✓ ✓ ✓ 76.68 ± 0.33 75.89 ± 0.29

Filtering out unimportant classes based on teacher’s confidence is useful. We examine the impact
of active classes on PASCAL VOC with DL3-R18 in Table 7. In particular, we propose to ignore
classes where the soft label, i.e. teacher’s confidence, is low (marked as LABEL). And in ALL, we
include all classes. In PRESENT, we select the class with the maximum confidence from the teacher’s
prediction in the class dimension. In PROB, we skip classes where the student itself is not confident.
In BOTH, we take both the teacher’s and student’s confidences into account. The code to compute
active classes is in Figure 6 (Appendix L).

We observe that using ALL classes in JML-KD can misguide the student. In most of the teacher’s
output classes, the confidence is usually very low. It can be challenging and potentially detrimental
for the student to precisely mimic these numbers. With PRESENT, the performance remains similar
to that without soft labels. This is because the effectiveness of using soft labels come from the
non-argmax classes. PROB and BOTH achieve similar performance, but both are worse than LABEL.

Table 7: Comparing active classes on PASCAL VOC using DL3-R18. All results are mIoU (%).
Active Classes ALL PRESENT PROB BOTH LABEL (Ours)

JML-KD 75.21 ± 0.33 74.50 ± 0.25 75.51 ± 0.53 75.39 ± 0.31 75.89 ± 0.29

Teacher’s calibration is beneficial. In Sec. 2.4.2, we suggest that a teacher trained with JML-BLS
offers more boundary information to the student. But what exactly is this boundary information? We

8

believe it relates to the teacher’s calibration. The student, with less capacity, often struggles to mimic
a more powerful teacher, especially near ambiguous boundary regions. However, if the teacher is
more calibrated and outputs a less peaked distribution, the student will learn this uncertainty rather
than attempting to match an unrealistic distribution that it lacks the capacity to replicate.

In Table 8, we compare three teachers with various accuracy and calibration on PASCAL VOC. In
particular, both T2 and T3 are trained with JML-BLS but with different smoothing parameter ϵ, while
T1 is not. T2, although having a lower mIoU, is more calibrated than T1. Consequently, T2’s student
is more accurate and better calibrated than T1’s.

Table 8: Comparing 3 teachers of different accuracy and calibration on PASCAL VOC (%). Prefix T
stands for the teacher and prefix S the student. Red: the best in a row.

Metrics T1 T2 T3
T ECE ↓ 4.20 3.47 3.24

T BECE ↓ 33.17 20.73 20.42
T mIoU ↑ 79.09 78.75 79.82
S ECE ↓ 4.76 ± 0.09 4.01 ± 0.07 3.94 ± 0.07

S BECE ↓ 33.86 ± 0.10 22.21 ± 0.06 22.15 ± 0.05
S mIoU ↑ 75.05 ± 0.31 75.43 ± 0.35 75.89 ± 0.29

5 Related Works

IoU is a commonly employed metric in semantic segmentation, and IoU losses strive to optimize this
metric directly. IoU only obtains values when both predictions and ground-truth labels are discrete
binary vectors {0, 1}p, but the neural network often predicts soft probabilities (after the softmax or
sigmoid layer) in [0, 1]p. Interpolating IoU values from {0, 1}p to [0, 1]p has primarily followed two
routes. One involves relaxing set counting as norm functions, as seen in the soft Jaccard loss [46, 49],
the soft Dice loss [57], the soft Tversky loss [53] and the focal Tversky loss [1]. The other capitalizes
on the fact that IoU is submodular [72], allowing for the application of the convex Lovasz extension
of submodular functions. For instance, the Lovasz-Softmax loss [2], the Lovasz hinge loss [72] and
the PixIoU loss [73]. Nevertheless, as IoU values are extended for predictions from {0, 1}p to [0, 1]p,
the fact that labels can also fall within [0, 1]p is often overlooked. As a result, these IoU losses are
incompatible with soft labels.

Besides semantic segmentation, IoU is adopted across a wide spectrum of fields. Due to its discrete
nature, its probabilistic extensions [56] have found use in object detection [19], medical imaging [16]
and information retrieval [26, 43].

6 Discussion

6.1 How to tune the hyper-parameters of JML?

In this section, we delve into some critical hyper-parameters of JML. For a comprehensive list, please
refer to the accompanying code.

mIoUD/mIoUI/mIoUC (default: 1.0/0.0/0.0): the weight of the loss to optimize mIoUD/mIoUI/mIoUC

[65]. The appropriate choice is mainly dependent on the targeted evaluation metrics. Given that the
prevailing metric is mIoUD (per-dataset mIoU), we recommend to set mIoUD to 1.0 and mIoUI/mIoUC

to 0.0. However, it is imperative to acknowledge the inherent trade-offs when using JML to optimize
different metrics [65].

alpha/beta (default: 1.0/1.0): the coefficient of false positives/negatives in the Tversky loss. For
instance, when alpha and beta are both set to 1.0, the configuration corresponds to JML. Conversely,
an alpha and beta value of 0.5 each leads to DML [66]. When the evaluation metric is IoU, JML
is advised, while it is the Dice score, DML is more appropriate. The general Tversky loss is useful
when separate weights are required for false positives/negatives.

active_classes_mode (default: PRESENT for hard labels and ALL for soft labels): the mode to compute
active classes. With hard labels, it is suggested to use PRESENT, since the loss aligns more effectively
with the evaluation metric, especially when (i) the dataset contains a large number of classes (e.g.
ADE20K), and/or (ii) evaluated with fine-grained mIoUs [65]. With soft labels, the optimal choice
varies based on specific applications (see Table 7).

9

6.2 How to use JML?

Combine JML with CE. Our findings suggest that incorporating CE, particularly during the initial
stage of training, can expedite convergence (as illustrated in Figure 1). Consequently, relying solely
on JML is not recommended. For a discussion on the balancing weights, please consult Section 4.1.

Tune the hyper-parameters of JML. We have endeavored to minimize the necessity of extensive
tuning. In the majority of scenarios, default hyper-parameter values (as illustrated above) should
suffice. However, some situations might benefit from further refinement. In particular, pay attention
to active_classes_mode when dealing with soft labels.

Tune the hyper-parameters of training settings. Current training recipes have been heavily
optimized for CE. Although we find JML generally aligns with these hyper-parameters, due diligence
is required. Notably, one of the advantages of JML is its ability to speed up convergence in the later
training phase (as depicted in Figure 1). As a consequence, training with a combination of CE and
JML often converges in considerably fewer epochs compared to training with CE alone. Please refer
to [65] for a comparison of the number of epochs with those in MMSegmentation.

Be careful with distributed training. In our concurrent work [65], we observe that the loss presents
trade-offs when optimizing different mIoU variants. If the per-GPU batch size is small (which is
often the case) and the loss is computed on each GPU independently, the loss may inadvertently
optimize for mIoUI (per-image mIoU). This can lead to suboptimal outcomes when evaluated with
mIoUD (per-dataset mIoU).

Be careful with extremely class-imbalance. Aligned with mIoU, JML is designed to compute the
loss on a per-class basis and subsequently average these individual losses. In preliminary experiments
on some medical datasets, we identified instances of severe class imbalances. In such scenarios, the
class-wise loss may inadvertently amplify the significance of underrepresented classes, potentially
disturb the training process. To address this, one might consider (i) oversampling the minority classes,
and/or (ii) adopting a class-agnostic loss computation, where the intersection and union are calculated
over all pixels.

7 Limitation

In both this study and our subsequent work [66], the focus is to extend the losses in the field of
image segmentation. It would be intriguing to apply these losses to other tasks, such as long-tailed
classification [34]. Moreover, although we adopt these losses in the label space, they present potential
in quantifying the similarity between two feature vectors [24], potentially serving as an alternative to
the Lp norm or cosine similarity.

8 Conclusion

This paper is driven by the observation that current IoU losses fall short when dealing with soft labels,
which substantially limits their adaptability to crucial training techniques. To address this limitation,
we introduce the Jaccard metric losses (JMLs). While these losses are identical to the soft Jaccard
loss in a conventional hard-label setting, they offer full compatibility with soft labels.

Our results demonstrate that integrating JMLs with label smoothing, knowledge distillation, and
semi-supervised learning leads to notable improvements in both accuracy and calibration. This is
consistent across a spectrum of datasets and network architectures, encompassing classic CNNs as
well as recent vision transformers. Remarkably, the proposed methods, which are simple and solely
rely on soft labels, surpass state-of-the-art segmentation knowledge distillation and semi-supervised
learning techniques by a significant margin.

In our follow-up study [66], we delve into the extensions of various other losses, including the
soft Dice loss, soft Tversky loss, and focal Tversky loss. Given their equivalence to their original
counterparts in a standard hard-label context and their enhanced compatibility with soft labels, we
recommend to replace the existing implementations with ours.

10

Acknowledgements

We acknowledge support from the Research Foundation - Flanders (FWO) through project numbers
G0A1319N and S001421N, and funding from the Flemish Government under the Onderzoekspro-
gramma Artificiële Intelligentie (AI) Vlaanderen programme. The resources and services used in
this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research
Foundation - Flanders (FWO) and the Flemish Government.

We thank Ilya Bogdanov for his help on the proof.

References
[1] Nabila Abraham and Naimul Mefraz Khan. A Novel Focal Tversky Loss Function with

Improved Attention U-Net for Lesion Segmentation. ISBI, 2019.

[2] Maxim Berman, Amal Rannen Triki, and Matthew B. Blaschko. The Lovasz-softmax loss: A
Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural
Networks. CVPR, 2018.

[3] Jeroen Bertels, David Robben, Dirk Vandermeulen, and Paul Suetens. Theoretical analysis and
experimental validation of volume bias of soft Dice optimized segmentation maps in the context
of inherent uncertainty. MIA, 2021.

[4] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. MixMatch: A Holistic Approach to Semi-Supervised Learning. NeurIPS, 2019.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-End Object Detection with Transformers. ECCV, 2020.

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking Atrous
convolution for semantic image segmentation. arXiv, 2017.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with Atrous separable convolution for semantic image segmentation. ECCV,
2018.

[8] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar.
Masked-attention Mask Transformer for Universal Image Segmentation. CVPR, 2022.

[9] Bowen Cheng, Alexander G Schwing, and Alexander Kirillov. Per-Pixel Classification is Not
All You Need for Semantic Segmentation. NeurIPS, 2021.

[10] MMSegmentation Contributors. MMSegmentation: OpenMMLab Semantic Segmentation
Toolbox and Benchmark, 2020.

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for Semantic
Urban Scene Understanding. CVPR, 2016.

[12] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat Basu,
Forest Hughes, Devis Tuia, and Ramesh Raskar. DeepGlobe 2018: A Challenge to Parse the
Earth through Satellite Images. CVPR Workshop, 2018.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. CVPR, 2009.

[14] Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer, 2009.

[15] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Niethammer. Local Temperature Scaling for
Probability Calibration. ICCV, 2021.

[16] Reuben Dorent, Thomas Booth, Wenqi Li, Carole H. Sudre, Sina Kafiabadi, Jorge Cardoso,
Sebastien Ourselin, and Tom Vercauteren. Learning joint segmentation of tissues and brain
lesions from task-specific hetero-modal domain-shifted datasets. MIA, 2020.

11

[17] Tom Eelbode, Jeroen Bertels, Maxim Berman, Dirk Vandermeulen, Frederik Maes, Raf Biss-
chops, and Matthew B. Blaschko. Optimization for medical image segmentation: Theory and
Practice When Evaluating With Dice Score or Jaccard Index. TMI, 2020.

[18] Mark Everingham, Luc Van Gool, Christopher K I Williams, John Winn, and Andrew Zisserman.
The Pascal Visual Object Classes (VOC) Challenge. IJCV, 2009.

[19] Di Feng, Zining Wang, Yiyang Zhou, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer,
Masayoshi Tomizuka, and Wei Zhan. Labels are Not Perfect: Inferring Spatial Uncertainty in
Object Detection. TITS, 2022.

[20] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. ICML, 2017.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CVPR, 2016.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
NeurIPS Workshop, 2015.

[23] Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge Distillation from A
Stronger Teacher. NeurIPS, 2022.

[24] Tao Huang, Yuan Zhang, Shan You, Fei Wang, Chen Qian, Jian Cao, and Chang Xu. Masked
Distillation with Receptive Tokens. ICLR, 2023.

[25] Pavel Iakubovskii. Segmentation models pytorch, 2019.

[26] Sergey Ioffe. Improved Consistent Sampling, Weighted Minhash and L1 Sketching. ICDM,
2010.

[27] Fabian Isensee, Paul F. Jaeger, Simon A. A. Kohl, Jens Petersen, and Klaus H. Maier-Hein.
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods, 2021.

[28] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar. Panoptic
Segmentation. CVPR, 2019.

[29] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment Anything. ICCV, 2023.

[30] Sven Kosub. A note on the triangle inequality for the Jaccard distance. PRL, 2019.

[31] Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable Calibration Measures For Neural
Networks From Kernel Mean Embeddings. ICML, 2018.

[32] Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao Huang, and Xizhou Zhu. AutoLoss-Zero:
Searching Loss Functions from Scratch for Generic Tasks. CVPR, 2022.

[33] Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, and Jifeng Dai. Auto Seg-Loss:
Searching Metric Surrogates for Semantic Segmentation. ICLR, 2021.

[34] Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu, and Jiwei Li. Dice Loss for
Data-imbalanced NLP Tasks. ACL, 2020.

[35] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense
Object Detection. TPAMI, 2018.

[36] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, and Jingdong Wang. Structured
Knowledge Distillation for Semantic Segmentation. CVPR, 2019.

[37] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A ConvNet for the 2020s. CVPR, 2022.

12

[38] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. ICLR, 2019.

[39] Xingchen Ma and Matthew B Blaschko. Meta-Cal: Well-controlled Post-hoc Calibration by
Ranking. ICML, 2021.

[40] Lena Maier-Hein et al. Metrics Reloaded: Recommendations for image analysis validation.
arXiv, 2023.

[41] Alireza Mehrtash, William M. Wells, Clare M. Tempany, Purang Abolmaesumi, and Tina
Kapur. Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image
Segmentation. TMI, 2020.

[42] Hossein Mobahi, Mehrdad Farajtabar, and Peter L Bartlett. Self-Distillation Amplifies Regular-
ization in Hilbert Space. NeurIPS, 2020.

[43] Ryan Moulton and Yunjiang Jiang. Maximally Consistent Sampling and the Jaccard Index of
Probability Distributions. ICDM Workshop, 2018.

[44] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When Does Label Smoothing Help?
NeurIPS, 2019.

[45] Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Jeremiah Liu, Linchuan
Zhang, and Dustin Tran. Measuring Calibration in Deep Learning. CVPR Workshop, 2019.

[46] Sebastian Nowozin. Optimal Decisions from Probabilistic Models: the Intersection-over-Union
Case. CVPR, 2014.

[47] Teodora Popordanoska, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, and Matthew B.
Blaschko. On the relationship between calibrated predictors and unbiased volume estimation.
MICCAI, 2021.

[48] Teodora Popordanoska, Raphael Sayer, and Matthew B Blaschko. A Consistent and Differen-
tiable Lp Canonical Calibration Error Estimator. NeurIPS, 2022.

[49] Md Atiqur Rahman and Yang Wang. Optimizing intersection-over-union in deep neural networks
for image segmentation. ISVC, 2016.

[50] Alexander Rakhlin, Alex Davydow, and Sergey Nikolenko. Land Cover Classification from
Satellite Imagery With U-Net and Lovász-Softmax Loss. CVPR Workshop, 2018.

[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. MICCAI, 2015.

[52] Axel-Jan Rousseau, Thijs Becker, Jeroen Bertels, Matthew B. Blaschko, and Dirk Valkenborg.
Post training uncertainty calibration of deep networks for medical image segmentation. ISBI,
2021.

[53] Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour. Tversky loss function for
image segmentation using 3D fully convolutional deep networks. MICCAI Workshop, 2017.

[54] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. CVPR, 2018.

[55] Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, and Chunhua Shen. Channel-wise
Knowledge Distillation for Dense Prediction. ICCV, 2021.

[56] H. Späth. The minisum location problem for the Jaccard metric. OR Spektrum, 1981.

[57] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sébastien Ourselin, and M Jorge Cardoso. Gen-
eralised Dice overlap as a deep learning loss function for highly unbalanced segmentations.
MICCAI Workshop, 2017.

[58] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision. CVPR, 2016.

13

[59] Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H Chi, and Sagar Jain.
Understanding and Improving Knowledge Distillation. arXiv, 2020.

[60] Vladimir N Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[61] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. MaX-DeepLab:
End-to-End Panoptic Segmentation with Mask Transformers. CVPR, 2021.

[62] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu,
Tong Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, and Yu Qiao. InternImage: Exploring
Large-Scale Vision Foundation Models with Deformable Convolutions. CVPR, 2023.

[63] Yuchao Wang, Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Guoqiang Jin, Liwei Wu, Rui
Zhao, and Xinyi Le. Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels.
CVPR, 2022.

[64] Yukang Wang, Wei Zhou, Tao Jiang, Xiang Bai, and Yongchao Xu. Intra-class Feature Variation
Distillation for Semantic Segmentation. ECCV, 2020.

[65] Zifu Wang, Maxim Berman, Amal Rannen-Triki, Philip H.S. Torr, Devis Tuia, Tinne Tuytelaars,
Luc Van Gool, Jiaqian Yu, and Matthew B. Blaschko. Revisiting Evaluation Metrics for
Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union.
NeurIPS, 2023.

[66] Zifu Wang, Teodora Popordanoska, Jeroen Bertels, Robin Lemmens, and Matthew B. Blaschko.
Dice Semimetric Losses: Optimizing the Dice Score with Soft Labels. MICCAI, 2023.

[67] Ross Wightman. Pytorch Image Models, 2019.

[68] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and
Saining Xie. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders.
CVPR, 2023.

[69] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
Former: Simple and Efficient Design for Semantic Segmentation with Transformers. NeurIPS,
2021.

[70] Chuanguang Yang, Helong Zhou, Zhulin An, Xue Jiang, Yongjun Xu, and Qian Zhang. Cross-
Image Relational Knowledge Distillation for Semantic Segmentation. CVPR, 2022.

[71] Lihe Yang, Lei Qi, Litong Feng, Wayne Zhang, and Yinghuan Shi. Revisiting Weak-to-Strong
Consistency in Semi-Supervised Semantic Segmentation. CVPR, 2023.

[72] Jiaqian Yu and Matthew B. Blaschko. The Lovász Hinge: A Novel Convex Surrogate for
Submodular Losses. TPAMI, 2018.

[73] Jiaqian Yu, Jingtao Xu, Yiwei Chen, Weiming Li, Qiang Wang, Byung In Yoo, and Jae-Joon
Han. Learning generalized intersection over union for dense pixelwise prediction. ICML, 2021.

[74] Qihang Yu, Huiyu Wang, Dahun Kim, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hartwig
Adam, Alan Yuille, and Liang-Chieh Chen. CMT-DeepLab: Clustering Mask Transformers for
Panoptic Segmentation. CVPR, 2022.

[75] Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins, Yukun Zhu, Hatwig Adam, Alan
Yuille, and Liang-Chieh Chen. k-means Mask Transformer. ECCV, 2022.

[76] Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting Knowledge
Distillation via Label Smoothing Regularization. CVPR, 2020.

[77] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled Knowledge
Distillation. CVPR, 2022.

[78] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid Scene
Parsing Network. CVPR, 2017.

14

[79] Zhen Zhao, Sifan Long, Jimin Pi, Jingdong Wang, and Luping Zhou. Instance-specific and
Model-adaptive Supervision for Semi-supervised Semantic Segmentation. CVPR, 2023.

[80] Zhen Zhao, Lihe Yang, Sifan Long, Jimin Pi, Luping Zhou, and Jingdong Wang. Augmentation
Matters: A Simple-yet-Effective Approach to Semi-supervised Semantic Segmentation. CVPR,
2023.

[81] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene Parsing Through ADE20K Dataset. CVPR, 2017.

[82] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian
Zhang. Rethinking Soft Labels for Knowledge Distillation: A Bias-Variance Tradeoff Perspec-
tive. ICLR, 2021.

15

A Architectures

Our study includes 13 models, comprising both classic CNNs and recent vision transformers. Details
of each model are presented in Table 9. FLOPs computations are based on an input size of 512×1024.
Inference latency measurements are conducted with the same input size on a NVIDIA A100. We
estimate the training memory requirements using a ground-truth size of 8 × 19 × 512 × 1024
(batch_size, num_classes, H, W), also on a NVIDIA A100.

Table 9: Details of each model.
Method Backbone #Params (M) FLOPs (G) Latency (ms) Memory (GB)

DeepLabV3+ [7] ResNet101 [21] 62.58 528.32 26.47 42.68
DeepLabV3 [6] ResNet101 [21] 87.10 714.73 26.20 33.99
DeepLabV3 [6] ResNet50 [21] 68.11 559.14 17.48 21.02
DeepLabV3 [6] ResNet18 [21] 13.98 121.29 4.93 6.43
DeepLabV3 [6] MobileNetV2 [54] 3.79 31.68 5.89 16.74

PSPNet [6] ResNet18 [21] 12.79 109.90 4.82 6.26
UNet [51] ResNet50 [21] 76.07 409.35 18.09 24.76
UNet [51] ResNet18 [21] 14.49 46.42 6.15 7.76
UNet [51] MobileNetV2 [54] 4.06 22.63 8.15 11.16

SegFormer [69] MiTB5 [69] 83.77 198.37 43.32 41.99
SegFormer [69] MiTB3 [69] 46.40 124.52 26.15 28.29
SegFormer [69] MiTB1 [69] 15.48 63.85 11.07 15.99
SegFormer [69] MiTB0 [69] 5.01 45.46 8.98 13.45

B Training Details

By default, we adopted the training details outlined in [70, 23, 24], except for the reduction of the
batch size to 8. In particular, we utilize SGD with a weight decay of 0.0005 and a momentum of
0.9. The initial learning rate is 0.01, and is decayed according to (1− iter

total iters)
0.9. The number of

iterations is 40K for Cityscapes [11] and PASCAL VOC [18], 10K for DeepGlobe Land [12]. The
crop size is 512× 1024 for Cityscapes [11], 512× 512 for PASCAL VOC [18] and DeepGlobe Land
[12]. In Table 4, for a fair comparison with the baselines, we increase the batch size of JML-KD to
16 in Cityscapes experiments, and all other parameters retain at their default values.

For experiments with vision transformers, we adhered to the training recipes in [10]. Specifically,
we use AdamW [38] with a weight decay of 0.01. We begin with an initial learning rate of 0.00006,
and is decayed by (1− iter

total iters)
1. The number of iterations is 40K and the crop size is 512× 512 for

ADE20K [81]. The batch size is 8.

For semi-supervised learning, we follow training details in [80]. In particular, we use SGD with a
weight decay of 0.0001 and a momentum of 0.9. The initial learning rate is 0.001, and is decayed
according to (1− iter

total iters)
0.9. The number of epochs is 80 and the crop size is 512×512 for PASCAL

VOC [18]. The batch size is 16.

For JML experiments, we set µL/µT/νL/νT/ηS/ηU/θS/θU to 0.5 and λCE/λJML to 0.25/0.75.

C More analysis of ∆SJL,L1

For x, y ∈ [0, 1]p, let us rewrite ∆SJL,L1 for a particular pixel i:

∆SJL,L1 = 1− xiyi + b

xi + yi − xiyi + a
(14)

such that

a =
∑
j ̸=i

xj +
∑
j ̸=i

yj −
∑
j ̸=i

xjyj , (15)

b =
∑
j ̸=i

xjyj . (16)

Assume ab ̸= 0 and predictions are independent from each other. Take the derivative with respect to
xi:

d∆SJL,L1

dxi
= − y2i + (a+ b)yi − b

(xi + yi − xiyi + a)2
. (17)

16

The numerator has two roots:

r1 =
−(a+ b)−

√
(a+ b)2 + 4b

2
, (18)

r2 =
−(a+ b) +

√
(a+ b)2 + 4b

2
. (19)

It is easy to see that r1 ≤ 0 ≤ r2 ≤ 1. Therefore we have

d∆SJL,L1

dxi

{
≤ 0 if yi ≥ r2,

> 0 otherwise.
(20)

That is, ∆SJL,L1 will push xi towards either 1 if yi > r2, or 0 if yi < r2, rather than making it close to
yi. In practice, predictions are not independent from each other, hence the exact behavior of ∆SJL,L1

is a complex process. However, the above analysis still provides an insight of how ∆SJL,L1 will react
to soft labels.

D The Lovasz-Softmax Loss

Based on the fact that IoU is submodular [72], the Lovasz-Softmax loss (LSL) [2] computes the
convex Lovasz extension of IoU. Specifically, for each prediction xi ∈ [0, 1], mispredictions are
computed as

mi =

{
1− xi if yi = 1,

xi otherwise.
(21)

The Lovasz extension can be applied such that

∆LSL : m ∈ [0, 1]p, y ∈ {0, 1}p 7→
p∑

i=1

migi(m)

where gi(m) = ∆IoU({π1, ..., πi}) − ∆IoU({π1, ..., πi−1}) and π is a permutation ordering of m
such that mπ1

≥ ... ≥ mπp
.

Loss functions that rely on the Lovasz extension, such as LSL [2], the Lovasz hinge loss [72] and
the PixIoU loss [73] cannot handle soft labels because they need to compute gi(m) and it requires
y ∈ {0, 1}p.

E JMLs vs. other IoU Losses

In Table 10, we evaluate the performance of ∆JML,1, ∆JML,2, ∆SJL,L1 , ∆SJL,L2 and ∆LSL on Cityscapes
and PASCAL VOC using DL3-R18.

As elaborated in Appendix C, ∆SJL,L1 is equivalent to ∆JML in the context of hard labels. Nevertheless,
with soft labels, ∆SJL,L1 has a tendency to push predictions towards vertices, rather than optimizing
for the ideal x = y scenario. Our experiments on PASCAL VOC reveal that models trained with
∆SJL,L1 using soft labels are outperformed by their hard-label counterparts. In fact, predictions
for multiple classes might be simultaneously pushed towards 1, creating a conflict and potentially
destabilizing the training process.

Conversely, ∆SJL,L2 is free from the aforementioned issue, as highlighted in Section 2.2. Nevertheless,
it is found to be less effective than ∆SJL,L1 when employed with hard labels, possibly due to its
flattened behavior near the minimum [17]. Our empirical results further substantiate that it is
surpassed by ∆JML on Cityscapes and PASCAL VOC, for both hard and soft labels.

Lastly, ∆LSL cannot take soft labels as input, given its reliance on the Lovasz extension. Our
evaluations indicate that its performance is similar to that of ∆JML with hard labels.

17

Table 10: Comparing ∆JML,1, ∆JML,2, ∆SJL,L1 , ∆SJL,L2 and ∆LSL on Cityscapes and PASCAL VOC
using DL3-R18. All results are mIoU (%). Red: the best in a column.

Dataset Loss Hard BLS KD

CS

∆JML,1 75.55 ± 0.13 76.26 ± 0.17 76.68 ± 0.33

∆JML,2 75.55 ± 0.13 76.31 ± 0.23 76.45 ± 0.26

∆SJL,L1 75.55 ± 0.13 75.78 ± 0.34 75.83 ± 0.43

∆SJL,L2 75.28 ± 0.26 75.51 ± 0.38 75.87 ± 0.52

∆LSL 75.53 ± 0.26 - -

VOC

∆JML,1 74.42 ± 0.52 75.60 ± 0.24 75.89 ± 0.29

∆JML,2 74.42 ± 0.52 75.31 ± 0.31 75.49 ± 0.35

∆SJL,L1 74.42 ± 0.52 74.13 ± 0.20 74.24 ± 0.61

∆SJL,L2 73.72 ± 0.30 74.87 ± 0.38 74.83 ± 0.32

∆LSL 74.45 ± 0.36 - -

F Proof of Theorem 2.1

Proof. (i) ∆JML,1 is a metric on [0, 1]p. The proof was given in [56]. Here we provide a sketch
for the proof of the triangle inequality. Recall the definition of ∆JML,1:

∆JML,1 = 1− ∥x∥1 + ∥y∥1 − ∥x− y∥1
∥x∥1 + ∥y∥1 + ∥x− y∥1

=
2∥x− y∥1

∥x∥1 + ∥y∥1 + ∥x− y∥1
. (22)

Given a fixed point a ∈ [0, 1]p, the key is to define a new function d′:

d′(x, y) =

{
0 if x = y = a,

d(x,y)
d(x,a)+d(y,a)+d(x,y) otherwise;

(23)

and show that if d is a metric on [0, 1]p, then d′ is also a metric on [0, 1]p. The proof can be
found in [56].

Substitute the definition of the L1 norm as d and let a = 0. Since the L1 norm is a metric
on [0, 1]p, we can conclude that ∆JML,1 is also a metric on [0, 1]p.

(ii) ∆JML,2 is a metric on [0, 1]p. Conditions (i) - (iii) are obvious. To show the triangle inequality,
note that

⟨b, c⟩ =
∑
i

bici (24)

=
∑
i

(
(bi − ai)ci + aici

)
(25)

≤
∑
i

|bi − ai|+
∑
i

aici (26)

= ∥a− b∥1 + ⟨a, c⟩. (27)
Similarly,

⟨a, b⟩ ≤ ∥b− c∥1 + ⟨a, c⟩. (28)
Hence

∆JML,2(a, b) + ∆JML,2(b, c) (29)

=
∥a− b∥1

∥a− b∥1 + ⟨a, b⟩
+

∥b− c∥1
∥b− c∥1 + ⟨b, c⟩

(30)

≥ ∥a− b∥1
∥a− b∥1 + ∥b− c∥1 + ⟨a, c⟩

+
∥b− c∥1

∥a− b∥1 + ∥b− c∥1 + ⟨a, c⟩
(31)

=
∥a− b∥1 + ∥b− c∥1

∥a− b∥1 + ∥b− c∥1 + ⟨a, c⟩
(32)

≥ ∥a− c∥1
∥a− c∥1 + ⟨a, c⟩

(33)

= ∆JML,2(a, c). (34)
Note that if p ≥ q > 0, r ≥ 0, we have p

p+r ≥ q
q+r . The last inequality follows from

∥a− b∥1 + ∥b− c∥1 ≥ ∥a− c∥1.

18

(iii) ∆SJL,L1 is not a metric on [0, 1]p. For instance, if a = 0.5,∆SJL,L1(a, a) = 2/3 ̸= 0.

(iv) ∆SJL,L2 is not a metric on [0, 1]p. For instance, if a = 0.8, b = 0.4, c = 0.2, it does not
satisfy the triangle inequality.

G Proof of Theorem 2.3

Proof. (i) ∀x ∈ [0, 1]p, y ∈ {0, 1}p and x ∈ {0, 1}p, y ∈ [0, 1]p, ∆SJL,L1 = ∆JML,1 =

∆JML,2. Due to symmetry, we only need to prove the first part. Note that

∥x∥1 =
∑
i

xi =
∑
i

1(yi=0)xi +
∑
i

1(yi=1)xi (35)

∥y∥1 =
∑
i

yi =
∑
i

1(yi=1) (36)

⟨x, y⟩ =
∑
i

xiyi =
∑
i

1(yi=1)xi (37)

∥x− y∥1 =
∑
i

|xi − yi| =
∑
i

1(yi=0)xi −
∑
i

1(yi=1)xi +
∑
i

1(yi=1). (38)

Combine these, we have

∆SJL,L1 = ∆JML,1 = ∆JML,2 =

∑
i 1(yi=1)xi∑

i 1(yi=0)xi +
∑

i 1(yi=1)
. (39)

(ii) ∃x, y ∈ [0, 1]p,∆SJL,L1 ̸= ∆JML,1 ̸= ∆JML,2. For instance, if x = 0.8, y = 0.5,∆SJL,L1 ̸=
∆JML,1 ̸= ∆JML,2.

H ∆JML,1 vs. ∆JML,2

Definition H.1 (Convex Closure). The convex closure of a set function f : x ∈ {0, 1}p → [0, 1] is

Cf : [0, 1]p → [0, 1] =min
α

p∑
i=1

αif(xi), (40)

s.t.
p∑

i=1

αi = 1, (41)

p∑
i=1

αixi = x, (42)

αi ≥ 0. (43)

The convex closure extends a set function that is only defined at the vertices {0, 1}p to the whole
hypercube [0, 1]p by linearly interpolating the values at these vertices. We plot the loss value of
∆JML,1,∆JML,2 and the convex closure of ∆SJL,L1 in Figure 2 when y = 0.5. Note that ∆JML,1

overlaps with the convex closure at [0, 0.5]. We can see that ∆JML,1 ≤ ∆JML,2 and ∆JML,1 is closer to
the convex closure. Generally, we have
Theorem H.2. ∀x, y ∈ [0, 1]p,∆JML,1 ≤ ∆JML,2.

Proof.
∆JML,1 ≤ ∆JML,2 (44)

⇒ ∥x∥1 + ∥y∥1 − ∥x− y∥1
∥x∥1 + ∥y∥1 + ∥x− y∥1

− ⟨x, y⟩
⟨x, y⟩+ ∥x− y∥1

≥ 0 (45)

⇒ (∥x∥1 + ∥y∥1)∥x− y∥1 − ∥x− y∥21 − 2⟨x, y⟩∥x− y∥1 ≥ 0. (46)

19

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

va
lue

JML, 1

JML, 2

Convex Closure

Figure 2: Comparing ∆JML,1,∆JML,2 and the convex closure with y = 0.5.

We can switch the element of x and y whenever xi ≤ yi for some i. Doing this, each term in the
last inequality remains the same. Let us denote the new variable as x′, y′ such that x′

i ≥ y′i for all i.
Hence

(∥x∥1 + ∥y∥1)∥x− y∥1 − ∥x− y∥21 − 2⟨x, y⟩∥x− y∥1 (47)

=(∥x′∥1 + ∥y′∥1)∥x′ − y′∥1 − ∥x′ − y′∥21 − 2⟨x′, y′⟩∥x′ − y′∥1 (48)

=(∥x′∥1 + ∥y′∥1)(∥x′∥1 − ∥y′∥1)− (∥x′∥1 − ∥y′∥1)2 − 2⟨x′, y′⟩(∥x′∥1 − ∥y′∥1) (49)

=2(∥x′∥1 − ∥y′∥1)(∥y′∥1 − ⟨x′, y′⟩) (50)

=2
∑
i

(x′
i − y′i)

∑
i

(1− x′
i)y

′
i ≥ 0. (51)

Theorem H.3. Given a set function l : {0, 1}p → [0, 1] and two concave functions f, g :
[0, 1]p → [0, 1]. If ∀x ∈ {0, 1}p, l(x) = f(x) = g(x) and ∀x ∈ [0, 1]p, f(x) ≤ g(x), then
∀x ∈ [0, 1]p, |f(x)− Cl(x)| ≤ |g(x)− Cl(x)|.

Proof. It suffices to show ∀x ∈ [0, 1]p, f(x) ≥ Cl(x). ∀x ∈ [0, 1]p, we have x =
∑p

i=1 αixi such
that αi ≥ 0,

∑p
i=1 αi = 1 and xi ∈ {0, 1}. Therefore

f(x) = f(

p∑
i=1

αixi) (52)

= f
(
(1− αp)

∑p−1
i=1 αixi

1− αp
+ αpxp

)
(53)

≥ (1− αp)f(

∑p−1
i=1 αixi

1− αp
) + αpf(xp) (54)

= (1− αp)f(
1− αp − αp−1

1− αp

∑p−2
i=1 αixi

1− αp − αp−1
+

αp−1

1− αp
xp−1) + αpf(xp) (55)

≥ (1− αp − αp−1)f(

∑p−2
i=1 αixi

1− αp − αp−1
) + αp−1f(xp−1) + αpf(xp) (56)

≥ ... ≥
p∑

i=1

αif(xi) (57)

=

p∑
i=1

αil(xi) (58)

≥ Cl(x). (59)

20

a b

cd

y

x x′

Figure 3: A counterexample that both ∆JML,1 and ∆JML,2 are not piece-wise concave in 2D.

Although both ∆JML,1 and ∆JML,2 are not concave as Figure 2 shows, if we can divide the hypercube
into several sub-spaces such that ∆JML,1 and ∆JML,2 are equal at the vertices and concave at each
sub-space, then we can still apply Theorem H.3. However, the fact that both of them are piece-wise
concave in 1D does not hold in higher dimension. Indeed, we can find a counterexample in 2D. Let
y = [0.5, 0.5], x = [0.4087, 0.7855], x′ = [0.6285, 0.7551]. Both x and x′ are in the sub-space yab
and

0.5∆JML,1(x, y) + 0.5∆JML,1(x
′, y) > ∆JML,1(0.5x+ 0.5x′, y), (60)

0.5∆JML,2(x, y) + 0.5∆JML,2(x
′, y) > ∆JML,2(0.5x+ 0.5x′, y). (61)

How do they perform empirically? In Table 10, we compare ∆JML,1 and ∆JML,2 on Cityscapes and
PASCAL VOC using DL3-R18. We find ∆JML,1 is slightly superior to ∆JML,2.

I Semi-supervised Learning

We focus on augmentation-based semi-supervised learning approaches [4, 80]. Broadly speaking, in
their approaches, the data consists of both supervised and unsupervised images, and a model H is
trained to minimize the following loss:

LCE, SSL = ηSLCE, S + ηULCE, U (62)

such that LCE, S = CE(H(As(xs)), L(As(xs))) and LCE, U = CE(H(Au(xu)), T (Au(xu))).

Here, As and Au are data augmentations applied to labeled images xs and unlabeled images xu,
respectively. L is the ground-truth label and T is usually the exponential moving averaging of the
model weights.

In JML-SSL, we introduce additional supervision from JML:

LJML, SSL = θSLJML, S + θULJML, U (63)

where LJML, S = JML(H(As(xs)), L(As(xs))) and LJML, U = JML(H(Au(xu)), T (Au(xu))).

Combining these yields

LJML-SSL = λCELCE, SSL + λJMLLJML, SSL. (64)

To further harness the power of soft labels, we follow the pipelines of AugSeg [80] and stack BLS
on top of their augmentations: As(xs) = BLS(As,AugSeg(xs)) and Au(xu) = BLS(Au,AugSeg(xu)).

21

Here, As,AugSeg and Au,AugSeg denote augmentations applied to labeled and unlabeled images in
AugSeg, respectively. We refer readers to their paper for more details.

As shown in Table 11, we achieve SOTA results on semi-supervised learning. In Table 12, we ablate
the role of each loss term on PASCAL VOC using DL3+-R101.

Table 11: Comparing with SOTA segmentation SSL methods on PASCAL VOC of various splits
using DL3+-R101. All results are mIoU (%). Red: the best in a column.

Method 92 183 366 732 1464
Supervise 43.92 59.10 65.88 70.87 74.97
U2PL [63] 67.98 69.15 73.66 76.16 79.49
iMAS [79] 70.0 75.3 79.1 80.2 82.0

UniMatch [71] 75.2 77.2 78.8 79.9 81.2
AugSeg [80] 71.09 75.45 78.80 80.37 81.36

JML-SSL 76.43 78.47 79.16 81.21 82.27

Table 12: Ablating each loss term on PASCAL VOC using DL3+-R101. All results are mIoU (%).
Red: the best in a column.

Loss 92 183
LCE, S 43.92 59.10

+LCE, U 71.09 75.45
+LJML, S 72.89 76.20
+LJML, U 74.74 77.74

+BLS 76.43 78.47

J More Results on DeepGlobe Land

We provide additional results on DeepGlobe Land in Table 13. Furthermore, we present the outcomes
of BLS using DL3-R50 and KD using DL3-R18 across 5 folds of DeepGlobe Land in Table 14.
Given that DeepGlobe Land is a relatively small dataset, comprising only 803 images, results for
each fold can vary significantly. Nevertheless, when observing the differences between CE and JML,
the mean improvement exceeds twice the standard deviation.

Table 13: Results on DeepGlobe Land (%). Best results within CE and JML groups are highlighted
in red and green, respectively. Best results across CE and JML groups are underscored.

Model Metric CE CE-BLS CE-KD JML JML-BLS JML-KD

UNet-R50

Acc ↑ 86.89 ± 0.87 86.95 ± 0.99 - 86.59 ± 0.84 86.87 ± 0.79 -
mIoU ↑ 68.80 ± 1.07 68.86 ± 0.81 - 69.29 ± 0.87 69.73 ± 0.89 -
ECE ↓ 1.77 ± 0.52 1.68 ± 0.46 - 12.34 ± 1.18 11.68 ± 1.55 -

BECE ↓ 21.93 ± 0.83 21.90 ± 1.21 - 40.97 ± 0.90 39.22 ± 1.06 -

UNet-R18

Acc ↑ 84.99 ± 1.15 85.28 ± 0.97 85.51 ± 0.76 85.46 ± 0.56 85.53 ± 0.59 85.78 ± 0.66
mIoU ↑ 64.38 ± 1.50 64.93 ± 0.79 66.40 ± 0.86 66.95 ± 0.25 66.87 ± 0.30 67.62 ± 0.27
ECE ↓ 1.05 ± 0.48 1.47 ± 0.60 1.38 ± 0.61 10.32 ± 0.862 9.15 ± 0.79 9.83 ± 1.53

BECE ↓ 23.23 ± 0.54 22.32 ± 0.75 25.23 ± 0.75 40.17 ± 0.48 38.13 ± 0.63 39.24 ± 0.94

UNet-MB2

Acc ↑ 84.93 ± 1.11 84.92 ± 1.22 85.64 ± 1.02 85.54 ± 0.88 85.82 ± 0.66 85.90 ± 0.73
mIoU ↑ 64.38 ± 1.21 64.03 ± 1.73 66.29 ± 1.39 66.63 ± 0.73 67.04 ± 0.77 67.46 ± 0.99
ECE ↓ 1.64 ± 0.75 2.04 ± 0.74 1.52 ± 0.34 10.22 ± 1.37 10.01 ± 0.92 9.67 ± 0.86

BECE ↓ 21.15 ± 0.89 20.26 ± 0.74 24.76 ± 1.17 40.40 ± 0.89 39.28 ± 0.27 38.82 ± 1.12

Table 14: Results of BLS using DL3-R50 and KD using DL3-R18 on 5 folds of DeepGlobe Land.
All results are mIoU (%).

Method Loss 0 1 2 3 4 µ ± σ

BLS
CE 67.56 69.82 69.59 67.88 69.46 68.86 ± 0.81

JML 68.13 70.48 70.60 69.49 69.93 69.73 ± 0.89
Diff 0.57 0.66 1.01 0.61 1.47 0.86 ± 0.34

KD
CE 64.93 67.47 66.22 66.37 67.00 66.40 ± 0.86

JML 67.20 67.96 67.50 67.62 67.84 67.62 ± 0.27
Diff 2.27 0.49 1.28 1.25 0.84 1.22 ± 0.59

K More Results on Calibration

CE is a proper scoring rule [20], while the soft Dice loss is not [3]. Although the soft Dice loss can
significantly increase a model’s segmentation performance, it can hurt model calibration [41, 3]. We
observe the same phenomenon with JML and demonstrate a potential solution by training the model
with soft labels as delineated in Section 3.2. Calibration of the model can be further improved using
post-hoc [20, 15, 39, 47, 52] and trainable calibration methods [31, 48]. However, these methods
extend beyond the scope of this paper.

22

Besides, we find that models trained with JML, despite having poorer top-class calibration as
quantified by ECE, actually attain superior multi-class calibration as evaluated by the static calibration
error (SCE) [45]. In Table 15, we report both ECE and SCE on Cityscapes and PASCAL VOC using
DL3-R1012. It is crucial to highlight that models trained with soft labels may exhibit worse SCE.
On one side, soft labels provide an additional regularization during training, which is advantageous
for calibration [44]. However, on the flip side, soft labels can represent unrealistic distributions,
potentially detrimental for multi-class calibration.

Table 15: Calibration results on Cityscapes and PASCAL VOC using DL3-R101. Best results within
CE and JML groups are highlighted in red and green, respectively. Best results across CE and JML
groups are underscored.

Dataset Metric CE CE-BLS JML JML-BLS

CS

ECE (%) 0.76 ± 0.05 0.97 ± 0.04 2.74 ± 0.03 2.09 ± 0.02
SCE (‰) 2.18 ± 0.02 2.46 ± 0.04 2.08 ± 0.01 2.02 ± 0.01

BECE (%) 16.14 ± 0.22 11.59 ± 0.12 30.78 ± 0.19 21.20 ± 0.07
BSCE (‰) 23.81 ± 0.03 23.89 ± 0.04 23.40 ± 0.01 23.23 ± 0.01

VOC

ECE (%) 2.33 ± 0.03 2.01 ± 0.04 3.97 ± 0.10 3.20 ± 0.04
SCE (%) 2.57 ± 0.02 2.59 ± 0.04 2.40 ± 0.06 2.35 ± 0.03

BECE (%) 20.54 ± 0.12 17.25 ± 0.14 32.70 ± 0.09 22.30 ± 0.02
BSCE (%) 20.94 ± 0.04 20.89 ± 0.01 20.58 ± 0.01 24.81 ± 0.10

L Figures

Figure 4: The best ϵ and mIoU (%) for different k on PASCAL VOC using DL3-R18.

Figure 5: Effects of ϵ on PASCAL VOC using DL3-R101/50/18.

Figure 6: Code to compute active classes.

Figure 7: Qualitative results on Cityscapes.

Figure 8: Qualitative results on PASCAL VOC.

3 5 974.0

74.5

75.0

75.5

76.0

mI
oU

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0
mIoU

Figure 4: The best ϵ and mIoU (%) for different k on PASCAL VOC using DL3-R18.

2In our code, there was an error in the computation of SCE. As a result, values reported here differ from
those in our earlier arXiv version.

23

0 0.35 0.40 0.45 0.50 0.55 0.60 0.6579.5

80.0

80.5

81.0

81.5

82.0

82.5

mI
oU

 (%
)

(a) DL3-R101 mIoU (%)

0 0.35 0.40 0.45 0.50 0.55 0.60 0.652.5

3.0

3.5

4.0

4.5

EC
E

(%
)

(b) DL3-R101 ECE (%)

0 0.35 0.40 0.45 0.50 0.55 0.60 0.6578.5

79.0

79.5

80.0

80.5

mI
oU

 (%
)

(c) DL3-R50 mIoU (%)

0 0.35 0.40 0.45 0.50 0.55 0.60 0.653.0

3.5

4.0

4.5

EC
E

(%
)

(d) DL3-R50 ECE (%)

0 0.35 0.40 0.45 0.50 0.55 0.60 0.6573.5

74.0

74.5

75.0

75.5

76.0

76.5

mI
oU

 (%
)

(e) DL3-R18 mIoU (%)

0 0.35 0.40 0.45 0.50 0.55 0.60 0.653.5

4.0

4.5

5.0

5.5

EC
E

(%
)

(f) DL3-R18 ECE (%)

Figure 5: Effects of ϵ on PASCAL VOC using DL3-R101/50/18. ϵ = 0 is the baseline (no smoothing).
The highest and the lowest mean values are highlighted in red and green horizontal lines, respectively.

24

1 import torch
2 from torch.nn.modules.loss import _Loss
3

4

5 class JDTLoss(_Loss):
6 ...
7

8 # prob.shape = label.shape = (batch_size , num_classes , H * W)
9 def compute_active_classes(self ,

10 prob ,
11 label ,
12 active_classes_mode ,
13 num_classes):
14 if active_classes_mode == "ALL":
15 mask = torch.ones(num_classes , dtype=torch.bool)
16 elif active_classes_mode == "PRESENT":
17 mask = torch.argmax(label , dim=1).unique ()
18 elif active_classes_mode == "PROB":
19 mask = torch.amax(prob , dim=(0, 2)) > self.threshold
20 elif active_classes_mode == "LABEL":
21 mask = torch.amax(label , dim=(0, 2)) > self.threshold
22 elif active_classes_mode == "BOTH":
23 mask = torch.amax(prob + label , dim=(0, 2)) > self.

threshold
24

25 active_classes = torch.zeros(num_classes ,
26 dtype=torch.bool ,
27 device=prob.device)
28 active_classes[mask] = 1
29

30 return active_classes

Figure 6: Code to compute active classes. Please refer to our codebase for more details.

25

Image and GT Teacher Student with KD Student without KD

Figure 7: Qualitative results on Cityscapes. Confidence maps are in black and white. Predictions are
in RGB.

26

Image and GT Teacher Student with KD Student without KD

Figure 8: Qualitative results on PASCAL VOC. Confidence maps are in black and white. Predictions
are in RGB.

27

	Introduction
	Methods
	Preliminaries
	The Limitation of Existing IoU Losses
	Jaccard Metric Losses
	Use Cases
	Label Smoothing
	Knowledge Distillation

	Experiments
	Results on Accuracy
	Results on Calibration

	Ablation Studies
	JML Weights
	JML-BLS
	JML-KD

	Related Works
	Discussion
	How to tune the hyper-parameters of JML?
	How to use JML?

	Limitation
	Conclusion
	Architectures
	Training Details
	More analysis of SJL,L1
	The Lovasz-Softmax Loss
	JMLs vs. other IoU Losses
	Proof of Theorem 2.1
	Proof of Theorem 2.3
	JML,1 vs. JML,2
	Semi-supervised Learning
	More Results on DeepGlobe Land
	More Results on Calibration
	Figures

