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Abstract

This paper focuses on the data-insufficiency problem in multi-task learning within
an episodic training setup. Specifically, we explore the potential of heterogeneous
information across tasks and meta-knowledge among episodes to effectively tackle
each task with limited data. Existing meta-learning methods often fail to take ad-
vantage of crucial heterogeneous information in a single episode, while multi-task
learning models neglect reusing experience from earlier episodes. To address the
problem of insufficient data, we develop Heterogeneous Neural Processes (HNPs)
for the episodic multi-task setup. Within the framework of hierarchical Bayes,
HNPs effectively capitalize on prior experiences as meta-knowledge and capture
task-relatedness among heterogeneous tasks, mitigating data-insufficiency. Mean-
while, transformer-structured inference modules are designed to enable efficient
inferences toward meta-knowledge and task-relatedness. In this way, HNPs can
learn more powerful functional priors for adapting to novel heterogeneous tasks in
each meta-test episode. Experimental results show the superior performance of the
proposed HNPs over typical baselines, and ablation studies verify the effectiveness
of the designed inference modules.

1 Introduction

Deep learning models have made remarkable progress with the help of the exponential increase in
the amount of available training data [1]. However, many practical scenarios only have access to
limited labeled data [2]. Such data-insufficiency sharply degrades the model’s performance [2, 3].
Both meta-learning and multi-task learning have the potential to alleviate the data-insufficiency issue.
Meta-learning can extract meta-knowledge from past episodes and thus enables rapid adaptation
to new episodes with a few examples only [4–7]. Meanwhile, multi-task learning exploits the
correlation among several tasks and results in more accurate learners for all tasks simultaneously [8–
11]. However, the integration of meta-learning and multi-task learning in overcoming the data-
insufficiency problem is rarely investigated.

In episodic training [4], existing meta-learning methods [4–7, 12, 13] in every meta-training or
meta-test episode learn a single-task. In this paper, we refer to this conventional setting as episodic
single-task learning. This setting restricts the potential for these models to explore task-relatedness
within each episode, leaving the learning of multiple heterogeneous tasks in a single episode under-
explored. We consider multiple tasks in each episode as episodic multi-task learning. The crux
of episodic multi-task learning is to generalize the ability of exploring task-relatedness from meta-
training to meta-test episodes. The differences between episodic single-task learning and episodic
multi-task learning are illustrated in Figure 1. To be specific, we restrict the scope of the problem
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Figure 1: Illustration of episodic multi-task learning. Each row corresponds to a meta-training
or meta-test episode. Different colors represent different label spaces among episodes; the same
color with different shades represents different categories in the same task. Compared with episodic
single-task learning, episodic multi-task learning simultaneously handles several related tasks in a
single episode.

setup to the case where tasks in each meta-training or meta-test episode are heterogeneous but also
relate to each other by sharing the same target space.

The neural process (NP) family [12, 13], as typical meta-learning probabilistic models [14], efficiently
quantifies predictive uncertainty with limited data, making it in principle well-suited for tackling
the problem of data-insufficiency. However, in practice, it is challenging for vanilla NPs [12] with a
global latent variable to encode beneficial heterogeneous information in each episode. This issue is
also known as the expressiveness bottleneck [15, 16], which weakens the model’s capacity to handle
insufficient data, especially when faced with diverse heterogeneous tasks.

To better resolve the data-insufficiency problem, we develop Heterogeneous Neural Processes (HNPs)
for episodic multi-task learning. As a new member of the NP family, HNPs improve the expressiveness
of vanilla NPs by introducing a hierarchical functional space with global and local latent variables.
The remainder of this work is structured as follows: We introduce our method in Section (2). Related
work is overviewed in Section (3). We report experimental results with analysis in Section (4), after
which we conclude with a technical discussion, existing limitations, and future extensions. In detail,
our technical contributions are two-fold:

• Built on the hierarchical Bayes framework, our developed HNPs can simultaneously gen-
eralize meta-knowledge from past episodes to new episodes and exploit task-relatedness
across heterogeneous tasks in every single episode. This mechanism makes HNPs more
powerful when encoding complex conditions into functional priors.

• We design transformer-structured inference modules to infer the hierarchical latent variables,
capture task-relatedness, and learn a set of tokens as meta-knowledge. The designed modules
can fuse the meta-knowledge and heterogeneous information from context samples in a
unified manner, boosting the generalization capability of HNPs across tasks and episodes.

Experimental results show that the proposed HNPs together with transformer-structured inference
modules, can exhibit superior performance on regression and classification tasks under the episodic
multi-task setup.

2 Methodology

Notations 2. We will now formally define episodic multi-task learning. For a single episode τ ,
we consider M heterogeneous but related tasks I1:M

τ = {Im
τ }Mm=1. Notably, the subscript denotes

an episode, while superscripts are used to distinguish tasks in this episode. In the episodic multi-
task setup, tasks in a single episode are heterogeneous since they are sampled from different task
distributions {p(Im)}Mm=1, but are related at the same time as they share the target space Yτ .

2 For ease of presentation, we abbreviate a set {(·)m}Mm=1 as (·)1:M , where M is a positive integer. Likewise,
{(·)o}

O
o=1 is abbreviated as (·)1:O . For convenience, the notation table is provided in Appendix B.
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To clearly relate to the modeling of vanilla neural processes [12], this paper follows its nomenclature
to define each task. Note that in vanilla neural processes context and target are often respectively
called support and query in conventional meta-learning [4, 5]. Each task Im

τ contains a context
set with limited training data Cm

τ = {x̄m
τ,i, ȳ

m
τ,i}

NC
i=1 and a target set T m

τ = {xm
τ,j , y

m
τ,j}

NT
j=1, where

NC and NT are the numbers of context samples and target samples, respectively. x̄m
τ,i and xm

τ,j
represent features of context and target samples; while ȳmτ,i, y

m
τ,j ∈ Yτ are their corresponding targets,

where i = 1, 2, ..., NC ; j = 1, 2, .., NT ;m = 1, 2, ...,M . For simplicity, we denote the set of target
samples and their corresponding ground-truths by xm

τ = {xm
τ,j}

NT
j=1, ym

τ = {ymτ,j}
NT
j=1. For an episode

τ , episodic multi-task learning aims to perform simultaneously well on each corresponding target set
T m
τ ,m = 1, 2..,M , given the collection of context sets C1:M

τ .

For classification, this paper follows the protocol of meta models [4, 5, 17], such as O-way K-shot
setup, clearly suffering from the data-insufficiency problem. Thus, episodic multi-task classification
can be cast as a M-task O-way K-shot supervised learning problem. An episode has M related
classification tasks, and each of them has a context set with K different instances from each of the O
classes [5]. It is worth mentioning that the target spaces of meta-training episodes do not overlap
with any categories in those of meta-test episodes.

2.1 Modeling and Inference of Heterogeneous Neural Processes

We now present the proposed heterogeneous neural process. The proposed model inherits the
advantages of multi-task learning and meta-learning, which can exploit task-relatedness among
heterogeneous tasks and extract meta-knowledge from previous episodes. Next, we characterize the
generative process, clarify the modeling within the hierarchical Bayes framework, and derive the
approximate evidence lower bound (ELBO) in optimization.

Generative Processes. To get to our proposed method HNPs, we extend the distribution over a
single function p(fτ ) as used in vanilla NPs to a joint distribution of multiple functions p(f1:M

τ ) for
all heterogeneous tasks in a single episode τ . In detail, the underlying multi-task function distribution
p(f1:M

τ ) is inferred from a collection of context sets C1:M
τ and learnable meta-knowledge ω, ν1:M .

Note that ω represents the shared meta-knowledge for all tasks, and νm denotes the task-specific
meta-knowledge corresponding to the task distribution p(Im). Hence, we can formulate the predictive
distribution for every single episode as follows:

p(T 1:M
τ |C1:M

τ ;ω, ν1:M ) =

∫
p(y1:M

τ |x1:M
τ , f1:M

τ )p(f1:M
τ |C1:M

τ ;ω, ν1:M )df1:M
τ , (1)

where p(f1:M
τ |C1:M

τ ;ω, νm) denotes the data-dependent functional prior for multiple tasks of the
episode τ . The functional prior encodes context sets from all heterogeneous tasks and quantifies
uncertainty in the functional space. Nevertheless, it is less optimal to characterize multi-task function
generative processes with vanilla NPs, since the single latent variable limits the capacity of the latent
space to specify the complicated functional priors. This expressiveness bottleneck in vanilla NPs is
particularly severe for our episodic multi-task learning since each episode has diverse heterogeneous
tasks with insufficient data.

Figure 2: Graphical model of the proposed
HNPs in a single episode. Filled shapes indi-
cate observations. Probabilistic and deterministic
variables are indicated by unfilled circles and dia-
monds, respectively.

Modeling within the Hierarchical Bayes
Framework. To mitigate the expressiveness
bottleneck of vanilla NPs, we model HNPs
by parameterizing each task-specific function
within a hierarchical Bayes framework. As il-
lustrated in Figure 2, HNPs integrate a global
latent representation zmτ and a set of local latent
parameters wm

τ,1:O to model each task-specific
function fm

τ . Specifically, the latent variables
are introduced at different levels: zmτ encodes
task-specific context information from Cm

τ and
νm in the representation level. wm

τ,1:O encode
prediction-aware information for a task-specific
decoder from C1:M

τ and ω in the parameter level,
where O is the dimension of the decoder. For
example, the dimension is the size of the target space when performing classification tasks.
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Notably, each local latent parameter is conditioned on the global latent representation, which controls
access to all context sets in the episode for the corresponding task. Our method differs from previous
hierarchical architectures [16, 18–20] in the NP family since the local latent parameters of our HNPs
are prediction-aware and explicitly constitute a decoder for the subsequent inference processes.

In practice, we assume that distributions of each task-specific function are conditionally independent.
Thus, with the introduced hierarchical latent variables for each task in the episode, we can factorize
the prior distribution over multiple functions in Eq. (1) into:

p(f1:M
τ |C1:M

τ ;ω, ν1:M ) =

M∏
m=1

p(zmτ |Cm
τ ; νm)p(wm

τ,1:O|zmτ , C1:M
τ ;ω), (2)

where p(zmτ |Cm
τ ; νm) and p(wm

τ,1:O|zmτ , C1:M
τ ;ω) are prior distributions of the global latent represen-

tation and the local latent parameters to induce the task-specific function distribution.

By integrating Eq. (2) into Eq. (1), we rewrite the modeling of HNPs in the following form:

p(T 1:M
τ |C1:M

τ ;ω, ν1:M ) =

M∏
m=1

∫ {∫
p(ym

τ |xm
τ ,wm

τ,1:O)

p(wm
τ,1:O|zmτ , C1:M

τ ;ω)dwm
τ,1:O

}
p(zmτ |Cm

τ ; νm)dzmτ ,

(3)

where p(ym
τ |xm

τ ,wm
τ,1:O) is the function distribution for the task Im

τ in HNPs. This distribution is
obtained by the matrix multiplication of xm

τ and all local latent parameters wm
τ,1:O.

Compared with most NP models [12, 16, 18, 19] employing only latent representations, HNPs infer
both latent representations and parameters in the hierarchical architecture from multiple heterogeneous
context sets and learnable meta-knowledge. Our model specifies a richer and more intricate functional
space by leveraging the hierarchical uncertainty inherent in the context sets and meta-knowledge.
This theoretically yields more powerful functional priors to induce multi-task function distributions.

Moreover, we claim that the developed model constitutes an exchangeable stochastic process and
demonstrate this via Kolmogorov Extension Theorem [21]. Please refer to Appendix B for the proof.

Approximate ELBO. Since both exact functional posteriors and priors are intractable, we apply
variational inference to the proposed HNPs in Eq. (3). This results in the approximate ELBO:

LHNPs(ω, ν
1:M , θ, ϕ) =

M∑
m=1

{
Eqθ(z

m
τ |T m

τ ;νm)

{
Eqϕ(wm

τ,1:O
|zmτ ,T 1:M

τ ;ω)[log p(y
m
τ |xm

τ ,wm
τ,1:O)]

− DKL[qϕ(w
m
τ,1:O|zmτ , T 1:M

τ ;ω)||pϕ(wm
τ,1:O|zmτ , C1:M

τ ;ω)]
}
− DKL[qθ(z

m
τ |T m

τ ; νm)||pθ(zmτ |Cm
τ ; νm)]

}
,

(4)
where qθ(zmτ |T m

τ ; νm) and qϕ(w
m
τ,1:O|zmτ , T 1:M

τ ;ω) are variational posteriors of their corresponding
latent variables. θ and ϕ are parameters of inference modules for zmτ and wm

τ,1:O, respectively.
Following the protocol of vanilla NPs [12], the priors use the same inference modules as variational
posteriors for tractable optimization. In this way, the KL-divergence terms in Eq. (4) encourage
all latent variables inferred from the context sets to stay close to those inferred from the target
sets, enabling effective function generation with few examples. Details on the derivation of the
approximate ELBO and its tractable optimization are attached in Appendix C.

2.2 Transformer-Structured Inference Module

In order to infer the prior and variational posterior distributions in Eq. (4), it is essential to develop well-
designed approximate inference modules. This is non-trivial and closely related to the performance
of HNPs. Here we adopt a transformer structure as the inference module to better exploit task-
relatedness from the meta-knowledge and the context sets in the episode. More specifically, the
previously mentioned meta-knowledge ω = ω1:O and ν1:M are instantiated as learnable tokens to
induce the distributions of hierarchical latent variables in the proposed model.

Without loss of generality, in the next, we provide an example of transformer-structured inference
modules for prior distributions in classification scenarios. Details of the inference modules in
regression scenarios can be found in Appendix D. In Figure 3, a diagram of the transformer-structured
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Figure 3: A diagram of transformer-structured inference modules of HNPs for the first meta-
training episode in Figure 1 under the 3-task 5-way 1-shot setting. For clarity, we display the
inference process of the local latent parameters specific to the third task in the episode.

inference modules is displayed under the 3-task 5-way 1-shot setting. In this case, the number
of context samples is the same as the size of the target space, and thus we have Cm

τ = {x̄m
τ,o, ȳ

m
τ,o}Oo=1,

where O is set as 5. In episodic training, labels in context sets are always available during inference.

Transformer-Structured Inference Module {θ, νm} for zmτ . In the proposed HNPs, each global
latent representation encodes task-specific information relevant to the considered task in the episode
as pθ(zmτ |Cm

τ ; νm). The learnable token νm preserves the meta-knowledge from previous episodes
for specific tasks, which are sampled from the corresponding task distribution p(Im). The role of νm
is to help the model adapt efficiently to such specific tasks in meta-test episodes.

In detail, we set the dimension of the learnable token νm to the same as that of the features x̄m
τ,1:O.

Then the transformer-structured inference module θ fuses them in a unified manner by taking
[x̄m

τ,1:O; ν
m] as the input. The module θ outputs the mean and variance of the corresponding prior

distribution. The inference steps for the global latent representation zmτ are:

[x̃m
τ,1:O; ν̃

m] = MSA(LN([x̄m
τ,1:O; ν

m])) + [x̄m
τ,1:O; ν

m], (5)

[x̂m
τ,1:O; ν̂

m] = MLP(LN([x̃m
τ,1:O; ν̃

m])) + [x̃m
τ,1:O; ν̃

m], (6)

pθ(z
m
τ |Cm

τ ; νm) = N (zmτ ;µzm
τ
, σzm

τ
), (7)

where µzm
τ
= MLP(ν̂m), σzm

τ
= Softplus(MLP(ν̂m)). The transformer-structured inference module

includes a multi-headed self-attention (MSA) and three multi-layer perceptrons (MLP). The layer
normalization (LN) is "pre-norm" as done in [22]. Softplus is the activation function to output the
appropriate value as the variance of the prior distribution [23].

Transformer-Structured Inference Module {ϕ, ω1:O} for wm
τ,1:O. Likewise, each learnable token

ωo corresponds to a local latent parameter wm
τ,o. With the learnable tokens ω1:O, we reformulate the

prior distribution of local latent parameters as pϕ(wm
τ,1:O|zmτ , C1:M

τ ;ω1:O). In this way, we learn the
shared knowledge, inductive biases across all tasks, and their distribution at a parameter level, which
in practical settings can capture epistemic uncertainty.

To be specific, the prior distribution can be factorized as
∏O

o=1 pϕ(w
m
τ,o|zmτ , C1:M

τ ;ωo), where all local
latent parameters are assumed to be conditionally independent. For each local latent parameter wm

τ,o,
the transformer-structured inference module ϕ takes [x̄1:M

τ,o , ωo] as input and outputs the corresponding
prior distribution, where x̄1:M

τ,o are deep features from the same class o in the episode and ωo is the
corresponding learnable token. Here the inference steps for wm

τ,o are as follows:

[x̃1:M
τ,o ; ω̃o] = MSA(LN([x̄1:M

τ,o ;ωo])) + [x̄1:M
τ,o ;ωo], (8)
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[x̂1:M
τ,o ; ω̂o] = MLP(LN([x̃1:M

τ,o ; ω̃o])) + [x̃1:M
τ,o ; ω̃o], (9)

pϕ(w
m
τ,o|zmτ , C1:M

τ ;ωo) = N (wm
τ,o;µwm

τ,o
, σwm

τ,o
), (10)

where µwm
τ,o

= MLP(ω̂o, z
m
τ

(i)), σwm
τ,o

= Softplus(MLP(ω̂o, z
m
τ

(i))). zmτ
(i) is a Monte Carlo sample

from the variational posterior of the corresponding global latent representation during meta-training.

Both transformer-structured inference modules use the refined tokens ν̂m and ω̂o to obtain a global
latent representation and a local latent parameter, respectively. The introduced tokens preserve the
specific meta-knowledge for each latent variable during inference. Compared with the θ-parameterised
inference module exploring the intra-task relationships, the ϕ-parameterised inference module enables
the exploitation of the inter-task relationships to reason over each local latent parameter. Thus, the
introduced tokens can be refined with relevant information from the heterogeneous context sets. By
integrating meta-knowledge and heterogeneous context sets, HNPs can reduce the negative transfer
of task-specific knowledge among heterogeneous tasks in each episode. Please refer to Appendix E
for algorithms.

3 Related Work

Multi-Task Learning. Multi-task learning can operate in various settings [9]. Here we roughly
separate the settings of MTL into two branches: (1) Single-input multi-output (SIMO) [24–30], where
tasks are defined by different supervision information for the same input. (2) Multi-input multi-output
(MIMO) [11, 10, 31–34], where heterogeneous tasks follow different data distributions. This work
considers the MIMO setup of multi-task learning with episodic training.

In terms of modeling methods, from a processing perspective, existing MTL methods can be roughly
categorized into two groups: (1) Probabilistic MTL methods [11, 19, 35–41], which employ the
Bayes framework to characterize probabilistic dependencies among tasks. (2) Deep MTL models
[10, 32, 24–26, 42–48], which directly utilize deep neural networks to discover information-sharing
mechanisms across tasks. However, deep MTL models rely on large amounts of training data and tend
to overfit when encountering the data-insufficiency problem. Meanwhile, previous probabilistic MTL
methods consider a small number of tasks that occur at the same time, limiting their applicability in
real-world systems.

Meta-Learning. Meta-learning aims to find strategies to quickly adapt to unseen tasks with a
few examples [49, 4, 5, 50]. There exist a couple of branches in meta-learning methods, such as
metrics-based methods [6, 51–57] and optimization-based methods [5, 58–68]. Our paper focuses
on a probabilistic meta-learning method, namely neural processes, that can quantify predictive
uncertainty. Models in this family [7, 12, 13, 15, 16, 18, 69–73] can approximate stochastic processes
in neural networks. Vanilla NPs [12] usually encounter the expressiveness bottleneck because their
functional priors are not rich enough to generate complicated functions [15, 16]. [7] introduces
deterministic variables to model predictive distributions for meta-learning scenarios directly. Most
NP-based methods only focus on a single task during inference [7, 12, 15, 16, 14], which leaves
task-relatedness between heterogeneous tasks in a single episode an open problem.

This paper combines multi-task learning and meta-learning paradigms to tackle the data-insufficiency
problem. Our work shares the high-level goal of exploiting task-relatedness in an episode with [19,
74, 75]. Concerning the multi-task scenarios, the main differences are: [19, 74, 75] handles multiple
attributes and multi-sensor data under the SIMO setting, while our work performs for the MIMO
setting where tasks are heterogeneous and distribution shifts exist. Moreover, [76] theoretically
addresses the conclusion that MTL methods are powerful and efficient alternatives to gradient-based
meta-learning algorithms. However, our method inherits the advantages of multi-task learning
and meta-learning: simultaneously generalizing meta-knowledge from past to new episodes and
exploiting task-relatedness across heterogeneous tasks in every single episode. Thus, our method
is more suitable for solving the data-insufficiency problem. Intuitive comparisons with related
paradigms such as cross-domain few-shot learning [77–82], multimodal meta-learning [83–87, 56]
and cross-modality few-shot learning [88–90] are provided in Appendix A.
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4 Experiments

We evaluate the proposed HNPs and baselines on three benchmark datasets under the episodic
multi-task setup. Sec. 4.1 and Sec. 4.2 provide experimental results for regression and classification,
respectively. Ablation studies are in Sec. 4.3. More comparisons with recent works on extra datasets
are provided in Appendix F. Additional results under the convectional MIMO setup without episodic
training can be found in Appendix G & H.

4.1 Episodic Multi-Task Regression

Dataset and Settings. To evaluate the benefit of HNPs over typical NP baselines in uncertainty quan-
tification, we conduct experiments in several 1D regression tasks. The baselines include conditional
neural processes (CNPs [13]), vanilla neural processes (NPs [12]), and attentive neural processes
(ANPs [15]). As a toy example, we construct multiple tasks with different task distributions: each
task’s input set is defined on separate intervals without overlap.

Figure 4: Performance comparisons on the
episodic multi-task 1-D function regression us-
ing 5 context points (black dots) for each task.
Black curves are ground truth, and blue ones are
predicted results. The shadow regions are ±3 stan-
dard derivations from the mean [18].

Given four different tasks in an episode, their
input sets are x1:4

τ . Each input set contains
a few instances, drawn uniformly at random
from separate intervals, such as x1

τ ∈ [−4,−2),
x2
τ ∈ [−2, 0), x3

τ ∈ [0, 2), and x4
τ ∈ [2, 4).

All tasks in an episode are related by shar-
ing the same ground truth function. Follow-
ing [12, 18], function-fitting tasks are generated
with Gaussian processes (GPs). Here a zero
mean Gaussian process y(0) ∼ GP(0, k(·, ·))
is used to produce y1:4

τ for the inputs from all
tasks x1:4

τ . A radial basis kernel k(x, x′) =
σ2 exp(−(x − x′)2)/2l2), with l = 0.4 and
σ = 1.0 is used.

Results and Discussions. As shown in Fig-
ure 4, CNPs, ANPs, and our HNPs exhibit more
reasonable uncertainty than NPs in Figure 4:
lower variances are predicted around observed
(context) points with higher variances around
unobserved points. Furthermore, NPs and ANPs
detrimentally impact the smoothness of the pre-
dicted curves, whereas HNPs yield smoother
predictive curves with reliable uncertainty esti-
mation. These observations suggest that inte-
grating correlation information across related
tasks and meta-knowledge in HNPs can improve uncertainty quantification in multi-task regression.

Table 1: Average negative log-likelihoods over
target points from all tasks.

Methods CNPs NPs ANPs HNPs

Avg. NLL 0.0935 0.8649 -0.1165 -0.5207

To quantify uncertainty we use the average neg-
ative log-likelihood (the lower, the better). As
shown in Table 1, our HNPs achieve a lower
average negative log-likelihood than baselines,
demonstrating our method’s effectiveness in un-
certainty estimation.

4.2 Episodic Multi-task Classification

Datasets and Settings. We use Office-Home [91] and DomainNet [92] as episodic multi-task
classification datasets. Office-Home contains images from four domains: Artistic (A), Clipart (C),
Product (P) and Real-world (R). Each domain contains images from 65 categories collected from
office and home environments. Note that all domains share the whole target space. The numbers
of meta-training classes and meta-test classes are 40 and 25, respectively. There are about 15, 500
images in total. DomainNet has six distinct domains: Clipart, Infograph, Painting, Quickdraw, Real
and Sketch. It includes approximately 0.6 million images distributed over 345 categories. The
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Table 2: Comparative results (95% confidence interval) for episodic multi-task classification on
Office-Home and DomainNet. Best results are indicated in bold.

Office-Home DomainNet
4-task 5-way 4-task 20-way 6-task 5-way 6-task 20-way

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ERM [93] 66.04 ±0.61 73.62 ±0.55 39.25 ±0.24 47.14 ±0.18 59.95 ±0.52 68.52 ±0.44 38.62 ±0.22 47.85 ±0.20

VMTL [11] 49.71 ±0.48 65.75 ±0.47 27.50 ±0.14 42.82 ±0.13 42.24 ±0.39 57.37 ±0.43 18.05 ±0.11 31.38 ±0.15

MAML [5] 60.58 ±0.60 75.29 ±0.53 34.29 ±0.19 48.39 ±0.20 53.21 ±0.46 65.24 ±0.47 17.10 ±0.12 20.35 ±0.14

Proto. Net. [6] 57.19 ±0.53 74.97 ±0.46 32.72 ±0.18 49.75 ±0.16 53.71 ±0.48 68.80 ±0.42 31.90 ±0.19 47.59 ±0.18

DGPs [94] 65.89 ±0.53 79.96 ±0.38 31.48 ±0.18 49.46 ±0.18 50.93 ±0.42 63.32 ±0.38 25.46 ±0.15 38.63 ±0.17

CNPs [13] 43.33 ±0.56 55.07 ±0.63 10.57 ±0.10 12.02 ±0.11 37.90 ±0.45 40.53 ±0.44 5.12 ±0.10 5.14 ±0.10

NPs [12] 33.66 ±0.48 53.99 ±0.60 5.25 ±0.16 11.40 ±0.11 20.58 ±0.51 20.53 ±0.53 5.12 ±0.09 5.11 ±0.09

TNP-D [95] 65.49 ±0.53 78.94 ±0.43 41.61 ±0.22 59.19 ±0.21 49.10 ±0.42 67.39 ±0.40 28.83 ±0.17 47.69 ±0.18

HNPs 76.29 ±0.51 80.80 ±0.42 51.82 ±0.23 59.97 ±0.18 62.36 ±0.53 69.38 ±0.42 39.32 ±0.23 48.56 ±0.19

numbers of meta-training classes and meta-test classes are 276 and 69, respectively. Here one domain
corresponds to a specific task distribution in the episodic multi-task setting.

When it comes to the episodic multi-task classification, we compare HNPs with the following three
branches: (1) Multi-task learning methods: ERM [93] directly expands the training set of the current
task with samples of related tasks. VMTL [11] is one of the state-of-the-art under the MIMO setting
of multi-task learning. (2) Meta-learning methods: MAML [5], Proto.Net [6] and DGPs [94] address
each task separately with no mechanism to leverage task-relatedness in a single episode. (3) Methods
from the NP family: CNPs [13] and NPs [12] are established methods in the NP family. TNP-D [95]
is recent NP work in sequential decision-making for a single task in each episode.

Results and Discussions. The experimental results for episodic multi-task classification on
Office-Home and DomainNet are reported in Table 2. We use the average accuracy across all
task distributions as the evaluation metric. It can be seen that HNPs consistently outperform all
baseline methods, demonstrating the effectiveness of HNPs in handling each task with limited data
under the episodic multi-task classification setup.

NPs and CNPs do not work well under all episodic multi-task classification cases. This can be
attributed to their limited expressiveness of the global representation and the weak capability to
extract discriminative information from multiple contexts. In contrast, HNPs explicitly abstract
discriminative information for each task in the episode with the help of local latent parameters,
enhancing the expressiveness of the functional prior.

We also find that HNPs significantly surpass other baselines on 1-shot Office-Home and
DomainNet, both under the 4/6-task 5-way and 4/6-task 20-way settings. This further implies
that HNPs can circumvent the effect of the problem of data-insufficiency by simultaneously exploiting
task-relatedness across heterogeneous tasks and meta-knowledge among episodes.

4.3 Ablation Studies

Influence of Hierarchical Latent Variables. We first investigate the roles of the global latent
representation zmτ and the local latent parameters wm

τ,1:O by leaving out individual inference modules.
These experiments are performed on Office-home under the 4-task 5-way 1-shot setting. We
report the detailed performance for tasks sampled from a single task distribution (A/C/P/R) and the
average accuracy across all task distributions (Avg.) in Table 3. The variants without specific latent
variables are included in the comparison by removing the corresponding inference modules.

Table 3: Effectiveness of global latent representations
zmτ and local latent parameters wm

τ,1:O in the model.
✓ and ✗ denote whether the variants of HNPs have the corre-
sponding latent variable or not.

zmτ wm
τ,1:O A C P R Avg.

✗ ✗ 62.64 ±0.72 56.87 ±0.71 75.18 ±0.79 73.68 ±0.77 67.09 ±0.63

✗ ✓ 69.39 ±0.60 63.10 ±0.61 80.66 ±0.67 79.99 ±0.62 73.29 ±0.51

✓ ✗ 67.02 ±0.67 60.70 ±0.69 78.26 ±0.76 78.47 ±0.72 71.11 ±0.59

✓ ✓ 73.31 ±0.63 64.92 ±0.68 83.38 ±0.66 83.54 ±0.64 76.29 ±0.51

As shown in Table 3, both zmτ and
wm

τ,1:O benefit overall performance.
Our method with hierarchical latent
variables performs 9.20% better than
the variant without both latent vari-
ables, 3.00% better than the variant
without zmτ , and 5.18% better than the
variant without wm

τ,1:O. This indicates
that latent variables of HNPs comple-
ment each other in representing con-
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text sets from multiple tasks and meta-knowledge. The variant without wm
τ,1:O underperforms the

variant without zmτ by 2.18%, in terms of the average accuracy. This demonstrates that zmτ suffers
more from the expressiveness bottleneck than wm

τ,1:O, weakening the models’ discriminative ability.
For classification, local latent parameters are more crucial than a global latent representation in
revealing the discriminating knowledge from multiple heterogeneous context sets.

Influence of Transformer-Structured Inference Modules. To further understand our transformer-
structured inference modules (Trans. w learnable tokens), we examine the performance against
two other options: inference modules that solely utilize a multi-layer perceptron (MLP) and the
variants that do not incorporate any learnable tokens (Trans. w/o learnable tokens). We also compare
the probabilistic and deterministic versions of such inference modules. The deterministic variants
consider the deterministic embedding for the hierarchical latent variables.

Table 4: Performance comparisons between our trans-
former inference modules (Trans. w learnable tokens)
and other alternatives.

Inference networks 1-shot 5-shot

Deterministic
MLP 64.93 ±0.66 72.39 ±0.56

Trans. w/o learnable tokens 70.22 ±0.62 76.15 ±0.54

Trans. w learnable tokens 70.61 ±0.56 76.70 ±0.50

Probabilistic
MLP 73.30 ±0.59 77.94 ±0.48

Trans. w/o learnable tokens 75.25 ±0.55 80.42 ±0.47

Trans. w learnable tokens 76.29 ±0.51 80.80 ±0.42

As shown in Table 4, our infer-
ence modules consistently outperform
the variants, regardless of whether
the inference network is probabilis-
tic or deterministic. When using the
probabilistic one, our inference mod-
ules respectively achieve 1.04% and
2.99% performance gains over Trans.
w/o learnable tokens and MLP under
the 4-task 5-way 1-shot setting.
This implies the importance of learn-
able tokens and task-relatedness in formulating transformer-structured inference modules, which
reduces negative transfer among heterogeneous tasks in each meta-test episode. Moreover, the
variants with probabilistic inference modules consistently beat deterministic ones in performance,
demonstrating the advantages of considering uncertainty during modeling and inference.

Table 5: Performance comparisons of different implemen-
tations of generating each local latent parameter wm

τ,o

from the condition zmτ and C1:M
τ .

Methods A C P R Avg.
Concat 65.69 ±0.59 58.64 ±0.61 77.54 ±0.68 77.10 ±0.64 69.74 ±0.51

Add 69.92 ±0.69 63.73 ±0.71 78.81 ±0.77 79.03 ±0.78 72.87 ±0.61

Ours 73.31 ±0.63 64.92 ±0.68 83.38 ±0.66 83.54 ±0.64 76.29 ±0.51

Effects of Different Ways to Gener-
ate Local Latent Parameters. We
investigate the effects of different
ways to generate each wm

τ,o from the
shared condition zmτ and C1:M

τ . Given
a Monte Carlo sample of global la-
tent variables as zmτ

(i), in Table 5,
we compare with two alternatives:
1) Concat directly concatenates each context feature and zmτ

(i), and takes the concatenation as
inputs of the transformer-structured inference network ϕ. 2) Add sums up each context feature and
zmτ

(i) and takes the result as the input. 3) Ours incorporates zmτ
(i) into the transformer-structured

inference module by merging it with the refined learnable tokens in Eq. (10). As shown in Table 5,
Ours consistently performs the best. This implies that incorporating the conditional variables into the
inference module is more effective than the direct combinations of zmτ

(i) and instance features.

Effects of More "Shots" or "Classes". To investigate the effects of more "shots" or "classes" in
the episodic multi-task classification setup, we conduct experiments by increasing K or O in the
defined M-task O-way K-shot setup.

Table 6: Performance comparisons on Office-Home un-
der the 4-task 5-way K-shot setup.

Methods 1-shot 5-shot 10-shot 20-shot

TNP-D 65.49 ±0.53 78.94 ±0.43 80.81 ±0.32 81.12 ±0.68

HNPs 76.29 ±0.51 80.80 ±0.42 81.28 ±0.38 81.56 ±0.36

As shown in Table 6, the proposed
HNPs have more advantages over the
baseline method with the context data
points below ten shots. With shots
larger than ten, both methods will
reach a performance bottleneck.

Moreover, Table 7 shows that our method consistently outperforms the baseline method as the number
of classes increases from 20 to 40 in step 5. However, the performance gap between them narrows
slightly with more classes. The main reason could be that the setting with more classes suffers from
less data insufficiency.
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Table 7: Performance comparisons on DomainNet under the 6-task O-way 1-shot setup.
Methods 5-way 20-way 25-way 30-way 35-way 40-way

TNP-D 49.10 ±0.42 28.83 ±0.17 25.93 ±0.14 24.08 ±0.12 22.62 ±0.11 21.64 ±0.53

HNPs 62.36 ±0.53 39.32 ±0.23 35.72 ±0.19 32.27 ±0.17 31.27 ±0.14 29.31 ±0.13

Figure 5: Average accuracy and runtime of HNPs with
different numbers of Monte Carlo samples. Nz and Nw

are sampling numbers of zmτ and wm
τ,1:O, respectively.

Sensitivity to the Number of Monte
Carlo Samples. For the hierarchi-
cal latent variables in the HNPs, we
investigate the model’s sensitivity to
the number of Monte Carlo samples.
Specifically, the sampling number of
the global latent representation zmτ
and local latent parameters wm

τ,1:O
varies from 1 to 30. We examine
on Office-Home under the 4-task
5-way 1-shot setting. In Figure 5,
the runtime per iteration grows rapidly
as the number of samples increases.
However, there is no clear correlation
between the performance and the num-
ber of Monte Carlo samples. There are two sweet spots in terms of average accuracy, one of which
has favorable computation time. Hence, we set Nz and Nw to 5 and 10, respectively.

Table 8: Inference time of different NP-based methods.

Methods CNPs NPs TNP-D HNPs

Inference time(s) 0.04 0.05 0.08 0.15

We also investigate the inference
time of NP-based models per iter-
ation on Office-Home under the
4task5way1shot setup. As shown in
Table 8, our model needs more infer-
ence time than other NP-based meth-
ods for performance gains. The cost mainly comes from inferring the designed hierarchical latent
variables; however, we consider this a worthwhile trade-off for the extra performance.

5 Conclusion

Technical Discussion. This work develops heterogeneous neural processes by introducing hierar-
chical latent variables and transformer-structured inference modules for episodic multi-task learning.
With the help of heterogeneous context information and meta-knowledge, the proposed model can
exploit task-relatedness, reason about predictive function distributions, and efficiently distill past
knowledge to unseen heterogeneous tasks with limited data.

Limitation & Extension. Although the hierarchical probabilistic framework could mitigate the
expressiveness bottleneck, the model needs more inference time than other NP-based methods for
performance gains. Besides, the proposed method requires the target space to be the same across all
tasks in a single episode. This requirement could limit the method’s applicability in realistic scenarios
where target spaces may differ across tasks. Our work could be extended to the new case without
the shared target spaces, where the model should construct higher-order task-relatedness to improve
knowledge sharing among tasks. Our code 3 is provided to facilitate such extensions.
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