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Abstract

Correlation clustering is a fundamental optimization problem at the intersection of
machine learning and theoretical computer science. Motivated by applications to
big data processing, recent years have witnessed a flurry of results on this problem
in the streaming model. In this model, the algorithm needs to process the input
n-vertex graph by making one or few passes over the stream of its edges and using
a limited memory, much smaller than the input size.

All previous work on streaming correlation clustering has focused on semi-
streaming algorithms with Ω(n) memory, whereas in this work, we study streaming
algorithms with much smaller memory requirements of only polylog(n) bits. This
stringent memory requirement is in the same spirit of classical streaming algo-
rithms that instead of recovering a full solution to the problem—which can be
prohibitively large with such small memory as is the case in our problem—, aimed
to learn certain statistical properties of their inputs. In our case, this translates to
determining the “(correlation) clusterability” of input graphs, or more precisely,
estimating the cost of the optimal correlation clustering solution.

As our main result, we present two novel algorithms that in only polylog(n) space
are able to estimate the optimal correlation clustering cost up to some constant
multiplicative factor plus some extra additive error. One of the algorithms outputs
a 3-multiplicative approximation plus o(n2) additive approximation, and the other
one further reduces the additive error at the cost of increasing the multiplicative
factor to some large constant. We then present new lower bounds that justify the
mix of both multiplicative and additive error approximations in our algorithms.

1 Introduction

Correlation clustering is a fundamental optimization problem at the intersection of machine learning
and theoretical computer science. This problem was introduced by the work of [BBC04]1, with
motivation to document clustering, as follows: we have a complete graph G = (V,E) whose edges
are labeled by either (+) or (−), and the objective, known as disagreement minimization, is to
cluster the vertices so that the number of (+) edges across clusters and (−) edges inside the same
clusters are minimized. Correlation clustering has since found broad applications in areas such as
document categorization [BBC04], webpage segmentation [CKP08], microscopy imaging [ZYH14],
and community detection [VGW18, SDE+21], to name a few.

There is an abundant body of literature studying polynomial time algorithms for correlation clustering.
[BBC04, CMSY15] showed that there exists a 2.06-approximation algorithm in polynomial time and
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the problem is NP-hard and even APX-hard. Furthermore, [ACN05] gave a simple (combinatorial)
poly-time 3-approximation algorithm that is widely used in practice. Very recently, breakthrough re-
sults by [CLN22, CALLN23] achieved 1.73 approximation in polynomial time. In addition, efficient
algorithms are also explored for several variants of this problem like the agreement maximization
objective [BBC04, Swa04, CGW03], weighted graphs [Swa04, CGW03, EF03], fixed number of
clusters [GG06], fair clustering [AEKM20, SZ22], and others.

In recent years, with the rapid development of the ‘big data era’, there has been a growing interest
in algorithms for correlation clustering under sublinear models. In general, learning algorithms
under sublinear models are able to output the answer without processing or storing the entire input.
For instance, [BGK13, AW22] gave algorithms to (approximately) learn the clustering in sublinear
time, and [CLM+21, BCMT22] designed algorithms in the Massively Parallel Computation (MPC)
model. Another widely popular model of sublinear algorithms—the focus of our paper—is the graph
streaming model. In this model, the edges of the input graph are given to the algorithm one by one
in a stream and the memory of the algorithm is desired to be substantially smaller than the input.
Here, [ACG+15] designed a streaming algorithm with Õ(n) memory2 that achieves 3-approximation
with O(log log(n)) passes – here, n is the number of vertices of the graph and thus the input size is
Θ(n2) bits. The number of passes of these algorithms were later improved to O(1) by [CLM+21]
and a single pass by [AW22], albeit with much larger, yet still a constant, approximation factor. Very
recently, [BCMT23] further improved the approximation ratio of single-pass streaming algorithms to
a 5-approximation in polynomial time and (1 + ε)-approximation in exponential-time.

The aforementioned line of work in [ACG+15, CLM+21, AW22, BCMT23] focused on the Õ(n)-
memory regime, otherwise known as the semi-streaming memory. Allowing for Ω(n) memory in these
algorithms is necessary given that even outputting the solution, namely, the clustering of the input
labeled graph, requires this much memory. Yet, in many application, Ω(n) memory can still be quite
large, and the implementations can require significant resource. In such cases, it is highly desirable to
determine the “clusterability” of the input graph before running the actual clustering algorithm. If even
the optimal cost for the input is high, it implies the clustering cannot provide any meaningful outcome,
and we should not waste resources on these instances. This type of “value estimation” problem is
extensively studied in the streaming literature, see e.g. [KKS15, GT19, ACL+22, BOS22, DKPP22]
for several examples in this context. This raises the following fundamental question:

How well can we estimate the optimal correlation clustering cost with polylog(n)-
space streaming algorithms?

Despite the vast body of work on streaming correlation clustering in general, this question has
received almost no attention so far. Indeed, to the best of our knowledge, the only prior work here is
that of [ACG+15] who proved that any (finite) purely multiplicative factor approximation of the cost
is not possible in o(n) space. This result however does not rule out any additive error approximation
(say, in the spirit of [BGK13] for local query algorithms).

We remedy this state of affairs in this paper. Our main algorithmic results show that one can obtain a
3-approximation plus o(n2) additive approximation to the cost of optimal correlation clustering in
only polylog(n) space – the additive approximation can be further reduced at the cost of increasing
the multiplicative approximation to some large constant. We then complement these results with
new streaming lower bounds that further justify the necessity of the additive errors in our algorithms.
Throughout, we will present algorithms in the manner of insertion-only streams. However, we shall
note that our algorithms can be extended to dynamic streams wherein the edges of the graph can be
both inserted and deleted during the stream.

Our Contributions

To state our results, we need the following notation. Let OPT be the optimal cost for correlation clus-
tering. We say an algorithm achieves an (α, β)-approximation of OPT if it gives an α-multiplicative
with a β additive approximation, namely, outputs a number ALG such that

OPT ≤ ALG ≤ α ·OPT + β.

2Here, and throughout, we use Õ(·) to hide polylog terms on the parameters.
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Our first main result is a single-pass streaming algorithm that achieves an (O(1), δn2)-approximation
with high probability in poly(log n, 1/δ) space.

Result 1. There is a single-pass streaming algorithm that outputs an (O(1), δn2)-approximation
of the optimal correlation clustering cost with high probabilitya and uses O(polylog(n)/δ5)
space.

aHere, and throughout, with high probability means with probability at least 1− 1/n.

The δ−5-dependence of our algorithm ensures that by setting δ = n−0.19 we can reduce the additive
error down to n1.81 = o(n2) and still achieve an o(n)-space algorithm. On the flip side however,
the leading constant multiplicative factor is quite large in this algorithm – as we will see shortly, the
algorithm is built on the sparse-dense decomposition idea from [AW22], which inevitably incurs a
(worst-case) constant of at least 107. Our next result addresses this drawback: we present another
algorithm that achieves a (3, δn2)-approximation in expectation with polylogn space at the cost of
an exponential dependence on δ in the space.

Result 2. There is a single-pass streaming algorithm that outputs a (3, δn2)-approximation of
the optimal correlation clustering cost in expectation and uses 2O(1/δ) · polylog(n) space.

Compared to the algorithm in Result 1, the algorithm in Result 2 is more suitable for instances whose
optimal correlation clustering costs are large (e.g. OPT = Ω(n2)). In such a case, we can pick δ to
be a small constant, and achieve a (3 + δ)-multiplicative approximation with polylog(n) space.

Since both of our upper bounds contain the δn2 additive error, we would naturally wonder to what
extent these additive terms are necessary. We present two new lower bounds that partially address
this question, and show that the additive errors are necessary to a large extent. Our first lower bound
shows that if only additive error is allowed, there is no polylog(n)-space streaming algorithm in a
single pass achieves additive error substantially better than O(n2).

Result 3. No single-pass streaming algorithm with polylog(n) space can output a (1, n2−ε)
approximation of the optimal correlation clustering cost with a sufficiently large constant
probability of success for some ε = o(1).

Result 3 can also be interpreted as the additive counterpart of the lower bounds in [ACG+15],
which focus instead on the purely multiplicative approximation. Since our upper bound allows both
approximations, we further provide a second lower bound showing that a Θ(n) additive error is
necessary even if both multiplicative and additive errors are allowed.

Result 4. No single-pass streaming algorithm with even o(
√
n) space can output a (1.19, O(n))

approximation of the optimal correlation clustering cost with a sufficiently large constant
probability of success.

We now discuss the applicable scenarios for our algorithms. To test instances with low vs. high
correlation clustering costs (e.g. o(n2) vs. Ω(n2)), it suffices to run our algorithm in Result 1 with
δ = 1/ log(n) which uses Õ(1) space. On the other hand, to separate instances that are ‘partially
clusterable’ (e.g. optimal cost of n2/1000) vs. instances that are ‘not clusterable at all’ (e.g. optimal
cost of n2/5), it suffices to run our algorithm in Result 2 with δ = O(1) a small constant which
uses Õ(1) space. The only case our algorithms are not able to deal with is to separate multiple
‘well-clusterable’ instances which does not seem that motivated in practice either.

Experiments To further validate our algorithms, we conduct experiments of our algorithms with
the stochastic block model (SBM) extensively studied in the literature (e.g., [HLL83, ABH16, ZT23,
Abb17a]). For correlation clustering, we can use a variate of the model that plants clusters with sizes
Ω(n) and samples (+) edges between the vertices in the same cluster with a large probability and (−)
edges with a low probability, and vice versa. Our implementation on the simulations of graph streams
from the Stochastic Block Model shows that our algorithms consistently obtain approximations within
a factor of 3 for the optimal clustering cost, while only storing 0.04% ∼ 3.6% 3 total edges when the
graphs is moderately large. Furthermore, our algorithms are able to distinguish instances that are
“well-cluserable” vs. “badly-clusterable” using a very small memory.

30.04% fraction of edges are obtained by implementing the algorithm of Result 2 in a two-pass manner
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2 Preliminaries

We now introduce the notation and the problem definition. For standard technical tools, please see
the supplementary material.

Notation. We use G = (V,E+ ∪ E−) to denote a labeled complete graph arriving in a stream.
For any vertex v, we denote by N+(v) all vertices that have an (+) edge from v, and we let
N+[v] = {v} ∪N+(v). Similarly, we denote by N−(v) all vertices that have an (−) edge from v,
and we let N−[v] = {v} ∪N−(v). We use N+(u)4N+(v) (resp. N−(u)4N−(v)) to denote the
disjoint neighborhoods of u and v, i.e. N+(u)4N+(v) = (N+(u)∪N+(v)) \ (N+(u)∩N+(v)).
For a fixed set of vertices A ⊆ V , we further let E+(v,A) be the set of (+) edges between v and
vertices in A, and E−(v,A) be the set of (−) edges between v and vertices in A.

We use G+ = (V,E+) to denote the positive subgraph of G with all the (+) edges, and we define
G− = (V,E−) analogously. Note that since we work with labelled complete graph, the information
of G− edges can be uniquely inferred from the positive subgraph G+. As such, when we work
with G+ only, we call a (+) edge (u, v) ∈ E+ as an edge in G+. Similarly, we call a (−) edge
(u, v) ∈ E− an non-edge in G+. We may omit G+ when the context is clear.

For a fixed cluster C on a labeled complete graph G, we use cost (C) to denote the total cost of
correlation clustering on G by C (we omit G since it is obvious by the context). Furthermore, we
slightly abuse the notation to reload cost(·) as a function of cost on subgraphs of G in the following
occasions: 1) For an induced subgraph H ⊆ G, we let cost(C, H) be the cost of C induced by the
edges whose both endpoints are in H; 2) For two vertex sets A ∪B ⊆ V , we let cost(C, (A,B)) be
the cost of C induced by the edges with exactly one endpoint in A and one endpoint in B.

Finally, for a single edge (u, v), we use the notation edge-cost( C, (u, v)) to denote the cost induced
by a single edge (u, v) for clustering C. We may write a short-hand notation edge-cost( (u, v))
when the context is clear that C is used.

Problem Definition

We now give the formal description of the problem.
Problem 1 (Correlation Clustering Value Estimation). Given a labeled complete graphG = (V,E−∪
E+) and a clustering C that partitions V into disjoint set of vertices C1, C2, · · · , Ck, the cost of
disagreement minimization correlation clustering on C is defined as

cost(C) :=
∣∣{(u, v) ∈ E+ | ∃i 6= j s.t. u ∈ Ci, v ∈ Cj

}∣∣+
∣∣{(u, v) ∈ E− | ∃i s.t. u, v ∈ Ci

}∣∣
Let OPT be the minimum cost over all possible clusterings. The Correlation Clustering Value
Estimation problem asks for a number ALG such that OPT ≤ ALG ≤ f(OPT) for some function
f(x) ≥ x . If f(OPT) = α ·OPT + β · n2 for α and β, we say that ALG is a (α, β)-approximation
of the value of correlation clustering in this scenario.

We study algorithms for correlation clustering value estimation under the graph streaming model,
where edges arrive one after another in a stream with the labels. We give a more formal definition of
the streaming model (and the more general dynamic streaming model) in the supplementary material.

3 An Algorithm based on Sparse-dense Decomposition

In this section, we present our first streaming algorithm that achieves a (O(1), δn2)-approximation
for testing the value of correlation clustering in O(polylog(n)/poly(δ)) space, as long as δ ≥
1/polylog(n). We utilize the idea in [AW22] to test a (O(1), δn2)-approximate value of the sparse-
dense decomposition-based correlation clustering cost, which in turn is an O(1) approximation of
the optimal cost. Our algorithm uses a memory of O(polylog(n)/poly(δ)) bits, which is efficient for
large-scale inputs. More formally, the guarantee of our algorithm is as follows.
Theorem 1. There is a (dynamic) streaming algorithm that with high probability gives a (O(1), δn2)-

approximation for the correlation clustering value and take space O
(

log2(n)
δ5

)
words.

On a high level, our algorithm for Theorem 1 uses the idea to approximate the value of optimal
correlation clustering with sparse-dense decomposition (see supplementary material). It is shown in
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[AW22] that once we can find such a decomposition on G+, we can achieve an O(1)-approximation
by simply putting every sparse vertex into a singleton cluster and gathering each almost-clique Ki in
a separate cluster. Therefore, an approximation of the number of the aforementioned edges in a fixed
decomposition will result in a good estimation of the cost.

However, since the sparse-dense decomposition is not unique, it is unclear how to estimate the edges
for a fixed decomposition. On the other hand, an algorithm with polylog(n) space is necessarily
oblivious of the decomposition since it takes Θ(n) bits to write it down. To overcome the problem,
we forgo the strict notion of the sparse-dense decomposition, and utilize the notion of ε-sparse edges
and ε-dense non-edges (of G+) instead. We now formally define these notions as follows.

Definition 1. Fix an arbitrary graph G = (V,E) (which is not necessarily labeled and complete) and
a vertex pair (u, v) ∈ G, we say

1. (u, v) is an ε-sparse edge (resp. non-edge) if (u, v) ∈ E (resp. (u, v) 6∈ E) and |N(v)4N(u)| ≥
ε ·max{deg(u), deg(v)}.

2. (u, v) is an ε-dense edge (resp. non-edge) if (u, v) ∈ E (resp. (u, v) 6∈ E) and |N(v)4N(u)| ≤
ε ·max{deg(u), deg(v)}.

Note that the definitions of the ε-sparse and ε-dense edges/non-edges are generic and not restricted to
the labeled complete graph (or even the correlation clustering application). Similarly, the sketching
tools we design in this section are also generic: we will use them in the context of correlation
clustering later. We now prove the existence of the following tools.

Lemma 3.1. There exists a dynamic streaming algorithm Tool-spr with parameters ε, δ that given
any graph G = (V,E) in a stream and a pair of vertices u, v ∈ V , satisfying the promise deg+(u) ≥
δn and deg+(v) ≥ δn, with high probability outputs ‘Yes" if (u, v) is at least ε-sparse and “No" if
(u, v) is not ε8 -sparse using O(1/ε2δ) words of space.

Lemma 3.2. There exists a dynamic streaming algorithm Tool-dns with parameters ε, δ that given
any graph G = (V,E) in a stream and a pair of vertices u, v ∈ V , satisfying the promise deg+(u) ≥
δn and deg+(v) ≥ δn, with high probability outputs ‘Yes" if (u, v) is at most ε-dense and “No" if
(u, v) is not 8ε-dense using O(1/ε2δ) words of space.

We defer the proofs of Lemmas 3.1 and 3.2 to the supplementary material, and use them as blackboxes
in the rest of the paper. We now discuss how to use the ε-sparse edges and ε-dense non-edges (defined
in Definition 1) in G+ to estimate the correlation clustering cost. In what follows, we use E+

ε-sparse

to denote the set of ε-sparse (positive) edges, and E−ε-dense to denote the set of ε-dense non-edges.
Furthermore, for each vertex v, we use E−ε-dense, v to denote the set of ε-dense non-edges incident on
v. We let m+

ε-sparse :=
∣∣E+

ε-sparse

∣∣ denote the number of ε-sparse edges, m−ε-dense :=
∣∣E−ε-dense

∣∣ denote

the number of ε-dense non-edges and let m−ε-dense,v :=
∣∣∣E−ε-dense, v

∣∣∣ denote the number of ε-dense

non-edges incident on v. Finally, we define m̂−ε-dense as follows.

Definition 2. For each vertex v define m̂−ε-dense,v := min{m−ε-dense,v, deg+(v)}. Furthermore, let
m̂−ε-dense :=

∑
v∈V m̂

−
ε-dense,v .

The intuition behind m̂−ε-dense,v is to count the non-edges (of G+) in E−ε-dense, v for at most deg+(v)

times. Our estimator for ε-dense non-edges will estimate m̂−ε-dense instead of m−ε-dense for the following
reason: it suffices to estimate m̂−ε-dense since the number of non-edges inside each almost-clique
is at most deg+(v); on the other hand, if we estimate all ε-dense non-edges, there could be a
very large overhead since the non-edges between almost-cliques are also counted. We note that if
m̂−ε-dense,v = m−ε-dense,v for all v ∈ V then m̂−ε-dense is twice m−ε-dense (since we are double counting
edges). But this is a 2-approximation in the worst case, and we do this to make calculations easier.

We prove the following lemmas that establish the connections between the aforementioned sets of
edges and the edges from the sparse-dense decomposition. Due to space limits, we directly present
the properties of our estimators, and defer the proof to the supplementary material.

Lemma 3.3. Suppose G = (V,E) is any labeled graph and V = Vsparse t K1 t . . . t Kk is an
ε-sparse-dense decomposition of G+ for 0 ≤ ε ≤ 1/360 and η0 ≤ 1/20. Let CSDD be the cost of
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correlation clustering when the clusters are the almost cliques and sparse vertices are in singleton
clusters. Then we have 2

η0·ε ·m
+
η0ε-sparse +m+

ε-sparse + m̂−4ε-dense ≥ CSDD ≥ OPT.

We upper bound the cost of m+
ε-sparse and m̂−ε-dense by a function of OPT using a charging argument.

Lemma 3.4. Suppose G = (V,E) is any labeled graph and OPT be the optimal correlation
clustering cost, and let ε ≤ 1

32 and β ≤ 1
2ε , then m+

βε-sparse ≤
2
βε ·OPT and m̂−βε-dense ≤ 8 ·OPT.

By Lemmas 3.3 and 3.4 if we are able to exactly recover m+
ε-sparse and m̂−ε-dense then we would get an

O(1) approximation of OPT. Such a task seems difficult, however, using Lemmas 3.1 and 3.2 we
design our tools for estimating m+

ε-sparse and m̂−ε-dense with an additive error.

Lemma 3.5. There exists a dynamic streaming algorithm with parameters ε, δ that given any graph
G = (V,E) in a stream returns a value Zsp that is at least m+

ε-sparse and at most m+
ε/8-sparse + δn2

with high probability and uses O(log n/ε2δ3) words of space.

Lemma 3.6. There exists a dynamic streaming algorithm with parameters ε, δ that given any graph
G = (V,E) in a stream returns a value Zden that is at least m̂−ε-dense and at most m̂−8ε-dense + δn2

with high probability and uses O(log2 n/ε2δ5) words of space.

Finalizing the proof sketch of Theorem 1. We are given a parameter δ as input and we want the
additive error to be at most δn2. We fix ε = 1/360, η0 = 1/20 and δ′ = δ · (2 + 2

η0ε
)−1.

Run the algorithm in Lemma 3.5 with parameters ε and δ′, and let the output be Zεsp. Also, run the
algorithm in Lemma 3.5 with parameters η0ε and δ′, and let the output be Zη0εsp . Run the algorithm in
Lemma 3.6 with parameters 4ε and δ′, and let the output be Zden.

Lemmas 3.3 to 3.6 imply that the cost ZCC we output satisfies:

OPT ≤ ZCC := Zεsp + (2/η0ε) · Zη0εsp + Zden ≤ O(1) ·OPT + δn2.

The space taken is O(log n/δ3) for both copies of Lemma 3.5 and O(log2 n/δ5) for Lemma 3.6
giving a total space of O(log2 n/δ5) words. This proves Theorem 1.

4 An Algorithm based on Pivot

In this section, we give our second streaming algorithm that is a (3 + γ, δn2)-approximation for the
correlation clustering value for any choice of δ and γ < 1/2. The algorithm works in O(polylog(n))
space as long as δ ≥ Ω( 1

log log(n) ). Consider the following formal statement:

Theorem 2. There is a (dynamic) streaming algorithm that with high probability gives a (3+γ, δn2)-

approximation for the correlation clustering value and takes space O
(

27/6δ·log2 n
γ·δ5

)
words.

Our algorithm in Theorem 2 is inspired by the Local Cluster algorithm from [BGK13]. The Local
Cluster algorithm samples 1/δ random vertices in a set U and computes the greedy maximal in-
dependent set (MIS) M of U to get the cluster centers p1, p2, . . . , pt. The clusters generated then
are N+[pi]− ∪i−1j=1N

+[pj ] and all the remaining vertices (called unclustered vertices) are clustered
in their own singleton cluster. [BGK13] proved that the expected cost of this clustering is at most
3 ·OPT + δ

2n
2. More formally, they showed the following:

Proposition 4.1 ([BGK13]). The expected cost of Local Cluster is at most 3 ·OPT + δ
2n

2.

To simulate the Local Cluster algorithm in a streaming manner, while forming a cluster we need to
know which of its neighbors are already clustered in previous clusters which requires new sketching
tools (on G+) that are different from the ones we used in Section 3. These tools estimate the number
of non-edges within or the number of edges going out of the neighborhood of a vertex (u) outside
of the (+) neighborhood of a known set of vertices (S). In other words, fix a graph G = (V,E), a
vertex u, and a set S, we want to estimate the number of non-edges within or the number of edges
going out of N [u]−N [S]. We again use the generic form to present the sketching tools and do not
specify (+) edges. The formal definitions can be given as follows.
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Definition 3. A non-edge (x, y) is within N [u]−N [S] iff: i) x 6∈ N [S] and ii) y 6∈ N [S] and iii)
x ∈ N [u] and y ∈ N [u].
Definition 4. An edge (x, y) is going out of N [u]−N [S] iff i) x 6∈ N [S] and ii) y 6∈ N [S] and iii)
x ∈ N [u] or y ∈ N [u] but not both.
Definition 5. An edge (x, y) is unclustered w.r.t. S iff i) x 6∈ N [S] and ii) y 6∈ N [S].

We also define mne(u, S) as the number of non-edges within N [u]−N [S], me(u, S) as the number
of edges going out of N [u]−N [S], and mu(S) as the number of unclustered edges w.r.t. S. We
write mne,me, and mu when u and S are clear from context.

Exactly recoveringmu,mne andme is difficult, so we have the following lemma about estimating the
number of non-edges withinN [u]−N [S], the edges going out ofN [u]−N [S], and the unclustered
edges with respect to S:
Lemma 4.2. There exist streaming algorithms called NE-Tool, E-Tool, and U-Tool that given u
and S before the stream, respectively compute with high probability i). the number of non-edges
within; ii). the number of edges going out of N [u] − N [S]; and iii). the number of edges with
unclustered w.r.t. S with an overestimation of at most δn2 and take space O(1/δ2) words.

Using the tools we have built so far, we present a (3, δn2) approximation algorithm in expectation.

Algorithm 1. Simulation of the Local Cluster algorithm
Input: G = (V,E+ ∪ E−) in a (dynamic) stream
Output: (3, δn2)-approximation to the correlation clustering value in expectation
Pre-Processing:
1. Sample a set U of 1/δ random vertices
2. Let π be a random permutation of the vertices in U
During the Stream:
1. Store (+) all edges between vertices of U
2. For all u ∈ U and S ⊆ U compute NE-Tool(u, S), E-Tool(u, S), U-Tool(S) with parameter
δ2/6 using the G+ subgraph.

Post-Processing:
1. Compute the greedy MIS M := p1, p2, . . . , pt of U in the order of π (using edges stored

between vertices of U ).
2. S0 = ∅. Z̃ = 0.
3. For i = 1 to t:

• Z̃ = Z̃ + NE-Tool(pi, Si−1) + E-Tool(pi, Si−1).
• Si := Si−1 ∪ {pi}

4. Output Z := Z̃ + U-Tool(M)

Algorithm 1 estimates mu,mne and me with at most δn2 additive error. We now show that with the
exact values of mu,mne and me, we get the exact clustering value of the Local Cluster algorithm.
Claim 4.3. The clustering value of Local Cluster is equal tomu+

∑
imne(pi, Si−1)+me(pi, Si−1).

Combining Lemma 4.2 and Claim 4.3 gives us the following performance guarantees for Algorithm 1.
Lemma 4.4. The output Z of Algorithm 1 is at least OPT with high probability and is at most
3OPT + δn2 in expectation.

Proof. Using Claim 4.3 we know that if the tools worked with no error, Algorithm 1 would give
the exact clustering cost of Local Cluster. Also, we know that the tools do not underestimate and
overestimate by δ2n2/6 with high probability (Lemma 4.2). We first note that Z is at least OPT
because of the above conditioning and the fact that the clustering cost of Local Cluster is at least OPT.
Using Proposition 4.1 we know that the expected cost of the clustering when choosing 1

δ random
pivots is at most 3OPT + δ

2n
2. Therefore, the clustering cost of Algorithm 1 is between OPT and

3OPT + δ
2n

2 plus the overestimate.

7



We now calculate the overestimate. We use parameter δ2/6 for the tools thus the additive error in each
tool is at most δ2n2/6. There are 1/δ pivots implying a total additive error of at most δn2/3 over all
the copies of NE-Tool and E-Tool. U-Tool has an error of at most δ2n2/6 implying that the overall
error is at most δn2/2 + δn2/3 + δ2n2/6 ≤ δn2 giving a (3, δn2) approximation in expectation.

We note that we condition on the high probability events for all copies of the tools and union
bound over the failure probabilities. Thus, for the overall failure probability to be small we need
21/δ ≤ poly(n). This requirement is trivially statisfied by the fact that 21/δ is on the space bound
(Lemma 4.5), and the space bound for any streaming algorithm is at most O(n2).

We now show the space bound of Algorithm 1.

Lemma 4.5. The space of Algorithm 1 is O
(

21/δ·logn
δ5

)
words.

Proof. Each copy of the tools with parameter δ2/6 takes O(log n/δ4) words of space, and we
compute the tools for all v ∈ U and S ⊆ U . Thus, the space used is O(21/δ · log n/δ5) words.
Storing edges between vertices in U takes space at most 1/δ2 words which is a lower order term.

Lemmas 4.4 and 4.5 together give us a (3, δn2) approximation in expectation using O
(

21/δ·logn
δ5

)
space. We now prove Theorem 2. We run Algorithm 1 60 logn

γ times in parallel and let Zmin be the
minimum cost over all iterations. Zmin is a (3 + γ, 76δn

2)-approximation with high probability.

Claim 4.6. OPT ≤ Zmin ≤ (3 + γ)OPT + 7
6δn

2 with high probability.

Thus, we get a (3 + γ, 76δn
2)-approximation with high probability. Each parallel repetition of the

algorithm takes O
(

21/δ·logn
δ5

)
words of space. Repeating O( logn

γ ) times and re-scaling δ by a factor

of 7
6 gives a total space bound of O

(
27/6δ·log2 n

γ·δ5

)
words. This completes the proof of Theorem 2.

5 A Lower Bound for O(n2−ε) Additive error

In this section, we show that if we only allow additive error, any streaming algorithm with poly-
logarithm memory cannot cross an error barrier of Ω(n2−ε) for some ε = o(1). Here, and throughout,
we will refer this lower bound as the almost-quadratic lower bound. The lower bound is weaker than
the linear lower bound of Section 6 in terms of the multiplicative factor since it only works for c = 1.
However, it is much stronger in the additive sense: the upper bounds obtained by our algorithms are
O(n2), and the almost-quadratic lower bound matches this term up to an O(nε) factor – this provides
a strong justification of the additive error in our algorithms.

The formal statement of the almost-quadratic lower bound is as follows.

Theorem 3. There exists a constant C, such that any single-pass streaming algorithm that estimates
the optimal value OPT of correlation clustering by a C ·n2−ε purely additive error (i.e., an estimated
value that is at most

(
OPT + C · n2−ε

)
) with probability at least 99

100 has to use a memory of Ω (nε)
bits, even on labeled complete graphs.

Note that Theorem 3 does not require the stream to be dynamic, which is in contrast to our upper
bound results that work for dynamic streams. We obtain the almost-quadratic lower bound by a new
reduction from the INDEX problem. On the high level, the instance we construct ‘hides’ an Ω(n2−ε)
gap between the yes and no cases inside a case-invariant Ω

(
n2
)

cost. The reduction can be viewed as
a more involved variant of the space lower bound for the exact correlation clustering in a very recent
work [AAD+23]. In a nutshell, we modify their construction to ‘boost’ the gap between yes and no
cases, and apply a new trick to separate the values of clustering. Due to space limits, we defer the
proof of Theorem 3 to the supplementary material.
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6 A Lower Bound for O(n) Additive error

In this section, we show that any dynamic streaming algorithm that gets a (c, εn)-approximation for
c < 1.2 and O(n) additive error needs Ω (

√
n) bits of space. Here, and throughout, we will call this

lower bound the linear lower bound. Formally, we have:
Theorem 4. Let c ∈ [1, 65 ) and ε ∈ (0, 65 − c). Any single-pass streaming algorithm that estimates
the optimal value OPT of correlation clustering by a (c, εn)-approximation (i.e., an estimated value
that is at most (c ·OPT + ε · n)) with probability at least 99

100 has to use a memory of Ω (
√
n) bits,

even on labeled (complete) graphs.

Similar to the case in Theorem 3, Theorem 4 does not require the stream to be dynamic. Comparing
with the almost-quadratic lower bound we show in Section 5, the lower bound in Theorem 4 is
weaker in the additive sense. However, it allows the multiplicative approximation of the algorithm to
be > 1, while the lower bound in Section 5 only rules out algorithms with purely additive errors.

Our lower bound uses the celebrated machinery from Boolean Hidden Hypermatching (BHH) and
Gap Cycle Counting (GCC) pioneered by [VY11]. The Gap Cycle Counting (GCC) lower bound
states that for any algorithm to distinguish whether a graph consists of cycles with length 2t or cycles
with length 4t for some t ≥ 2, a memory of Ω

(
n1−

1
t

)
bits is necessary. On the high level, our

plan is to show that for graphs similar to the ones prescribed in the GCC problem, the values of
correlation clustering are different by an additive gap of O(n). Therefore, by a reduction argument,
any algorithm that breaks this barrier of additive gap requires ω (polylog(n)) memory.

Due to space limits, we defer the lower bound construction to the supplementary material.

7 Experiments

We describe in this section the experiments of algorithms on the Stochastic Block Model and the
Erdos-Renyi random graphs. These experiments show that for a very natural family of graphs,
our algorithms can achieve a very competitive performance on the estimated cost values, and the
performances are often much better than the worst-case theoretical analysis. Furthermore, our
algorithms are capable of separating “well-clusterable” vs. “badly-clusterable” instances.

Experiment Settings Limited by space, we sketch the key settings of our experiment, and defer
the full discussion to the full version in the supplementary material. As we have discussed, we
perform our experiments on the data generated from the well-studied Stochastic Block Model (SBM)
that plants ground-truth clusters with sizes Ω(n), samples (+) edge between vertex pairs (xi, xj)
in the same planted cluster with probability p > 0.5, and samples (+) edges between vertex pairs
(xi, xj) in different clusters with probability 1− p. The SBM captures a lot of real-world scenarios,
including social networks [HLL83], community detection [Abb17b], graph clustering [LW19], and
Bioinformatics [MGC21], to name a few.

We test SBM instances that are reasonably “cluserable”, i.e., we set p = 0.8 with vertices n = 500,
n = 1000, and n = 2000. Furthermore, we compare the costs estimated by algorithms for the SBM
and the Erdos-Renyi random graphs G(n, p) with p = 0.5. In this regime, the Erdos-Renyi graph
does not appear to have any clustering property, and the cost is high. Under the n = 1000 setting, we
tested whether our algorithms can distinguish the costs between “good” (SBM with p = 0.95) and
“bad” (Erdos-Renyi with p = 0.5) instances – a property that can be extremely useful in practice.

We implement our algorithms based on our descriptions in Section 3 and Section 4 with some
relaxation of parameters. Notably, for the pivot-based algorithm, we slightly relax the requirement to
allow 2-pass over the stream; as such, we can use the first pass to perform greedy MIS on the sampled
vertex set, so we do not have to pay the 2O(1/δ) factor in the space.

We evaluate the performances mainly based on two metrics: the multiplicative factor of the cost
estimation (which we call the “competitive ratio”) and the fraction of the edges used. To overcome
the possible effects of random seed, we fix our random seed from 0 to 14, and run 15 experiments.
We include the error bars and the curves of the competitive ratios and fraction of the edges. For the
experiment to distinguish SBM and Erdos-Renyi graphs, we simply plot the two types of costs w.r.t.
experiment runs, and give the distributions of the costs. All the experiments were conducted on two
macbooks and public Colab clusters.
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Experimental Results We first show that our algorithms are insensitive to the choice of parameters
– this property is evident by the figures we used in the full version in the supplementary material.
As such, we focus on the settings with ε = 0.01 for the SDD-based algorithm and δ = 0.1 for the
pivot-based algorithm for the rest of this section.

Due to the space limit, we only discuss our algorithm based on sparse dense decomposition (SDD).
The left 3 plots in Figure 1 give the plots of the cost estimation for the SDD-based algorithm on
n = 2000. The figures show that the approximation factor for this algorithm is roughly between 1
and 2, our algorithm consistently uses less than 4% of the edges in the graph.

The results for our SDD-based algorithm to distinguish between SBM instances with p = 0.95 and
ER instances with p = 0.5 with the SDD-based algorithm is shown in the right two plots of Figure 1.
From the figure, it can be observed that the the SDD-based algorithm outputs drastically different
clustering costs of the SBM instances vs. the Erdos-Renyi instances. We can observe from the
left plot that the supports of the costs are disjoint. As such, by a simple linear threshold, our SDD
algorithm is able to perfectly distinguish between both types of instances while using less than 10%
of the edges (n = 1000 case).

Figure 1: The performance of the SDD-based algorithm for cost estimation and instance clusterability
distinguishing. Top 3 plots: the cost estimation of the SDD-based algorithm over 15 runs; Bottom 2
plots: the costs of SBM and ER graphs estimated by the SDD-based algorithm over 15 runs.
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