
A Licenses and Terms of Use716

ClimateLearn is a software package that can be installed from the Python Package Index as follows.717

pip install climate-learn

The source code is available online under the MIT License at https://github.com/718

aditya-grover/climate-learn, and the accompanying documentation website is at https:719

//climatelearn.readthedocs.io/. The Extreme-ERA5 dataset does not exist as a distinct en-720

tity, but can be produced by running code provided in our library. The Machine Intelligence Group at721

UCLA is the maintainer of ClimateLearn.722

The sources for datasets provided by ClimateLearn are WeatherBench, ClimateBench, the Earth723

System Grid Federation (ESGF), the Copernicus Climate Data Store (CDS), and PRISM. The724

WeatherBench dataset (https://mediatum.ub.tum.de/1524895), ClimateBench dataset (https:725

//zenodo.org/record/7064308), and MPI-ESM1.2-HR outputs from ESGF (https://pcmdi.726

llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-2.html) are available under the CC BY 4.0 li-727

cense. Neither Copernicus (https://cds.climate.copernicus.eu/api/v2/terms/static/728

licence-to-use-copernicus-products.pdf) nor PRISM (https://prism.oregonstate.729

edu/terms/) use a Creative Commons License. Instead, they each set forth their own terms730

of use, both of which permit reproduction and distribution for non-commercial purposes.731

B Experiment details732

B.1 Network architectures733

B.1.1 ResNet734

Our ResNet architecture is similar to that of WeatherBench [61, 60], in which each residual block735

consists of two identical convolutional modules: 2D convolution ! LeakyReLU with ↵ = 0.3 !736

Batch Normalization ! Dropout.737

Table 4: Default hyperparameters of ResNet

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Hidden dimension Number of output channels of each residual block 128
Residual blocks Number of residual blocks 28
Dropout Dropout rate 0.1

Table 4 shows the hyperparameters for ResNet in all of our experiments. We use a convolutional layer738

with a kernel size of 7 at the beginning of the network. All paddings are periodic in the longitude739

direction and zeros in the latitude direction.740

B.1.2 UNet741

We borrow our UNet implementation from PDEArena [21]. Table 5 shows the hyperparameters for742

UNet in all of our experiments. Similar to ResNet, we use a convolutional layer with a kernel size of743

7 at the beginning of the network, and all paddings are periodic in the longitude direction and zeros744

in the latitude direction.745

19

https://github.com/aditya-grover/climate-learn
https://github.com/aditya-grover/climate-learn
https://github.com/aditya-grover/climate-learn
https://climatelearn.readthedocs.io/
https://climatelearn.readthedocs.io/
https://climatelearn.readthedocs.io/
https://mediatum.ub.tum.de/1524895
https://zenodo.org/record/7064308
https://zenodo.org/record/7064308
https://zenodo.org/record/7064308
https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-2.html
https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-2.html
https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-2.html
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
https://prism.oregonstate.edu/terms/
https://prism.oregonstate.edu/terms/
https://prism.oregonstate.edu/terms/
https://github.com/microsoft/pdearena/blob/main/pdearena/modules/twod_unet.py

Table 5: Default hyperparameters of UNet

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Hidden dimension Base number of output channels 64

Channel multiplications Determine the number of output channels
for Down and Up blocks [1, 2, 2]

Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.1

B.1.3 ViT746

We use the standard Vision Transformer architecture [14] with minor modifications. We remove747

the class token and add a 1-hidden MLP prediction head which is applied to the tokens after the748

last attention layer to predict the outputs. Tabel 6 shows the hyperparameters for ViT in all of our749

experiments.

Table 6: Default hyperparameters of ViT

Hyperparameter Meaning Value

p Patch size 2
D Embedding dimension 128
Depth Number of ViT blocks 8
heads Number of attention heads 4

MLP ratio Determine the hidden dimension of
the MLP layer in a ViT block 4

Prediction depth Number of layers of the prediction head 2
Hidden dimension Hidden dimension of the prediction head 128
Drop path For stochastic depth [30] 0.1
Dropout Dropout rate 0.1

750

B.2 Datasets751

B.2.1 ERA5752

We refer to https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation753

for more details of the raw ERA5 data. We use the preprocessed version of ERA5 at 5.625� from754

WeatherBench [61] for our experiments. Table 7 summarizes the variables we use for our experiments.755

756

B.2.2 Extreme-ERA5757

Calculating thresholds We use the surface temperature (T2m) data corresponding to the years758

1979 � 2015 from ERA5 at a resolution of 5.625� to calculate the thresholds. The thresholds are759

localized i.e. they are calculated for every pixel on the grid. For a given timestamp and pixel, we760

first calculate a 7 day mean till that timestamp. Now, to account for neighboring regions/pixels, we761

set the localized mean as 0.44 * current pixel’s mean + 0.11 * sum of means of pixels sharing an762

edge + 0.027 * sum of means of pixels sharing a vertex but not an edge. Note, that there is no need763

of padding while accounting for neighboring pixels, since earth is a globe, the neighbors of leftmost764

pixels include the rightmost pixels and vice-versa. Finally, the 5th and 95th percentile values of this765

new mean data corresponding to every pixel is set as threshold.766

20

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation

Table 7: ERA5 variables used in our experiments. Constant represents constant variables, Single rep-
resents surface variables, and Atmospheric represents atmospheric properties at the chosen altitudes.

Type Variable name Abbrev. Levels

Static Land-sea mask LSM
Static Orography
Static Latitude

Single Toa incident solar radiation Tisr
Single 2 metre temperature T2m
Single 10 metre U wind component U10
Single 10 metre V wind component V10

Atmospheric Geopotential Z 50, 250, 500, 600, 700, 850, 925
Atmospheric U wind component U 50, 250, 500, 600, 700, 850, 925
Atmospheric V wind component V 50, 250, 500, 600, 700, 850, 925
Atmospheric Temperature T 50, 250, 500, 600, 700, 850, 925
Atmospheric Specific humidity Q 50, 250, 500, 600, 700, 850, 925
Atmospheric Relative humidity R 50, 250, 500, 600, 700, 850, 925

Building masks As the purpose of Extreme-ERA5 is evaluation of forecasting models under extreme767

weather conditions, we build it for test years i.e. 2017� 2018 only. We first create a 2-D mask of768

size, latitude x longitude, filled with zeros for every available timestamp in the test years. Similar to769

the calculating thresholds, we compute the mean of each pixel at every timestamp for T2m’s test data.770

We then, set the value for a given pixel in the mask as 1, if the mean value is outside the bounds set771

by the thresholds. Finally, during evaluation time, we use these masks to select subset of data.772

B.2.3 CMIP6773

MPI-ESM1.2-HR We use MPI-ESM1.2-HR, a dataset in the CMIP6 data repository for our774

experiments in Section 4.1.3. Table 8 summarizes the variables we use for our experiments.

Table 8: MPI-ESM1.2-HR variables used in our experiments. Single represents surface variables and
Atmospheric represents atmospheric properties at the chosen altitudes.

Type Variable name Abbrev. Levels

Single 2 metre temperature T2m
Single 10 metre U wind component U10
Single 10 metre V wind component V10

Atmospheric Geopotential Z 50, 250, 500, 600, 700, 850, 925
Atmospheric U wind component U 50, 250, 500, 600, 700, 850, 925
Atmospheric V wind component V 50, 250, 500, 600, 700, 850, 925
Atmospheric Temperature T 50, 250, 500, 600, 700, 850, 925
Atmospheric Specific humidity Q 50, 250, 500, 600, 700, 850, 925

775

ClimateBench We adopt data from ClimateBench [82] for our climate projection experiment.776

ClimateBench contains simulated data from experimental runs by the Norwegian Earth System777

Model [69], a member of CMIP6, on different emission scenarios. Specifically, ClimateBench778

includes 7 esmission scenarios: historical, ssp126, ssp370, ssp585, hist-aer, hist-GHG, and ssp245.779

We refer to the original ClimateBench paper for the exact temporal coverage and more details of780

these scenarios.781

21

B.3 Training details782

B.3.1 Continuous training783

Continuous models additionally condition on lead times to make predictions. To do this, we add784

the lead time value in hours divided by 100 to the input channels to make the model aware of the785

lead time it is forecasting at. During training, we randomize the lead time from 6 hours to 5 days786

�t ⇠ U [6, 120], and during evaluation, we fix the lead time to a certain value to evaluate the model’s787

performance at a certain lead time. This setting was commonly used in previous works [50, 61].788

B.3.2 Software and hardware stack789

We use PyTorch [51], numpy [24] and xarray [29] to manage our data and model training. We also790

use timm [86] for our ViT implementation. All training is done on 10 AMD EPYC 7313 CPU cores791

and one NVIDIA RTX A5000 GPU. We leverage fp16 floating point precision in our experiments.792

B.4 Metrics793

We use the following definitions in our metric formulations794

• N is the number of data points795

• H is the number of latitude coordinates.796

• W is the number of longitude coordinates.797

• X and X̃ are the ground-truth and prediction, respectively.798

The latitude weighting function is given by799

L(i) =
cos(Hi)

1
H

P
H

i=1 cos(Hi)
(1)

B.4.1 Deterministic weather forecasting metrics800

Root mean square error (RMSE)801

RMSE =
1

N

NX

k=1

vuut 1

H ⇥W

HX

i=1

WX

j=1

L(i)(X̃k,i,j �Xk,i,j)2. (2)

Anomaly correlation coefficient (ACC) is the spatial correlation between prediction anomalies X̃
0

802

relative to climatology and ground truth anomalies X
0

relative to climatology:803

ACC =

P
k,i,j

L(i)X̃
0

k,i,j
X

0

k,i,jqP
k,i,j

L(i)X̃
02
k,i,j

P
k,i,j

L(i)X
02
k,i,j

, (3)

X̃
0
= X̃

0
� C,X

0
= X

0
� C, (4)

in which climatology C is the temporal mean of the ground truth data over the entire test set804

C = 1
N

P
k
X .805

B.4.2 Probabilistic weather forecasting metrics806

Spread-skill ratio (Spread by RMSE) measures a probabilistic forecast’s reliability. Let N be the807

number of forecasts produced either by ensembling or drawing samples from a parametric prediction.808

Spread is given by809

Spread =
1

N

NX

k

vuut 1

H ⇥W

HX

i=1

WX

j=1

L(i)var(X̃i,j) (5)

22

Continuous ranked probability score measures a probabilistic forecast’s calibration and sharpness.810

Let F denote the CDF of the forecast distribution. For a Gaussian distribution parameterized by mean811

µ and standard deviation �, the closed-form, differentiable solution is812

CRPS(Fµ,�, X) = �

⇢
X � µ

�

2�

✓
X � µ

�

◆
� 1

�
+ 2�

✓
X � µ

�

◆
� 1p

⇡

�
(6)

where � and � are the CDF and PDF of the standard normal distribution, respectively.813

B.4.3 Climate downscaling metrics814

Root mean square error (RMSE) This is the same as Equation (2).815

Mean bias measures the difference between the spatial mean of the prediction and the spatial mean816

of the ground truth. A positive mean bias shows an overestimation, while a negative mean bias shows817

an underestimation of the mean value.818

Mean bias =
1

N ⇥H ⇥W

NX

k=1

HX

i=1

WX

j=1

X̃ � 1

N ⇥H ⇥W

NX

k=1

HX

i=1

WX

j=1

X (7)

Pearson coefficient measures the correlation between the prediction and the ground truth. We first819

flatten the prediction and ground truth, and compute the metric as follows:820

⇢
X̃,X

=
cov(X̃,X)

�
X̃
�X

(8)

Masking for PRISM Since PRISM does not record data over the oceans, we mask out those values821

for evaluation. Concretely, we set NaN values in the ground truth data to 0. Then, we multiply the822

model’s predictions by a binary mask that is 0 wherever the ground truth data is originally NaN and is823

1 everywhere else.824

B.4.4 Climate projection metrics825

Normalized spatial root mean square error (NRMSEs) measures the spatial discrepancy between826

the temporal mean of the prediction and the temporal mean of the ground truth:827

NRMSEs =

vuut
*

1

N

NX

k=1

X̃ � 1

N

NX

k=1

X

!2+�
1

N

NX

k=1

hXi , (9)

in which hAi is the global mean of A:828

hAi = 1

H ⇥W

HX

i=1

WX

j=1

L(i)Ai,j (10)

Normalized global root mean square error (NRMSEg) measures the discrepancy between the829

global mean of the prediction and the global mean of the ground truth:830

NRMSEg =

vuut 1

N

NX

k=1

⇣
hX̃i � hXi

⌘2� 1

N

NX

k=1

hXi . (11)

Total normalized root mean square error (Total) is the weighted sum of NRMSEs and NRMSEg:831

Total = NRMSEs + ↵ · NRMSEg, (12)

where ↵ is chosen to be 5 as suggested by Watson-Parris et al. [82].832

23

C Additional experiments833

C.1 Climate projection834

Task We consider the task of predicting the annual mean distributions of 4 target variables in835

ClimateBench [82]: surface temperature, diurnal temperature range, precipitation, and the 90th836

percentile of precipitation.837

Baselines We compare ResNet, UNet, and ViT, three deep learning models supported by838

ClimateLearn with CNN-LSTM, the deep learning baseline in ClimateBench. The network archi-839

tectures of the three models are identical to Appendix B.1.840

Data We regrid the original ClimateBench data to 5.625� for easy training and evaluation. The input841

variables include 4 forcing factors: carbon dioxide (CO2), sulfur dioxide (SO2), black carbon (BC),842

and methane (CH4). Similar to the deep learning baseline in ClimateBench, we stack 10 consecutive843

years to predict the target variables of the current year. We standardize the input channels to have 0844

mean and 1 standard deviation, but do not standardize the output variables. Training and validation845

data includes the historical data, ssp126, ssp370, ssp585, and the historical data with aerosol (hist-aer)846

and greenhouse gas (hist-GHG) forcings, and test data includes ssp245. We split train/validation data847

with a ratio of 0.9/0.1.848

Training and evaluation We train one network for each target variable. We use the same optimizer849

and scheduler as in Section 4.1. We train for 50 epochs with 16 batch size, and use early stopping850

with a patience of 5 epochs. We use mean-squared error as the loss function and evaluation metric.851

We report normalized spatial root mean square error (NRMSEs), normalized global root mean square852

error (NRMSEg), and Total = NRMSEs + 5⇥NRMSEg as test metrics.853

Results Table 9 shows the performance of different baselines on ClimateBench. CNN-LSTM and854

UNet are the best-performing methods, with each achieving the best performance in 5/12 metrics,855

followed by ResNet which performs best on 2/12 metrics. ViT achieves a reasonable performance856

but underperforms the CNN-based methods.857

Table 9: Performance of different deep learning baselines on ClimateBench. CNN-LSTM result is
taken from ClimateBench.

Surface temperature Diurnal temperature range Precipitation 90th percentile precipitation

NRMSEs NRMSEg Total NRMSEs NRMSEg Total NRMSEs NRMSEg Total NRMSEs NRMSEg Total

CNN-LSTM 0.107 0.044 0.327 9.917 1.372 16.778 2.128 0.209 3.175 2.610 0.346 4.339
ResNet 0.182 0.042 0.395 9.128 0.737 12.810 2.930 0.180 3.828 3.413 0.286 4.845
UNet 0.097 0.046 0.328 6.300 0.946 11.030 2.483 0.141 3.187 3.122 0.282 4.532
ViT 0.191 0.092 0.650 7.725 0.746 11.460 2.909 0.327 4.545 3.615 0.418 5.704

C.2 Extreme weather prediction858

Table 10 shows the performance of different models across various different lead times on the default859

test split and Extreme-ERA5. As discussed in Section 4.1.2, the performance of all models except860

Climatology is better on the extreme split than on the default split.861

Table 10: Latitude-weighted RMSE on the normal and extreme test splits of ERA5 for different lead
times.

T2M 6 Hours 1 Day 3 Days 5 Days 10 Days

Climatology 5.87 / 6.51 5.87 / 6.53 5.87 / 6.58 5.88 / 6.65 5.89 / 6.76
Persistence 2.76 / 2.99 2.13 / 1.78 2.99 / 2.42 3.26 / 2.61 3.59 / 2.89
ResNet 0.72 / 0.72 0.94 / 0.91 1.50 / 1.33 2.20 / 1.86 2.78 / 2.39
U-Net 0.76 / 0.77 1.04 / 0.99 1.65 / 1.43 2.26 / 1.88 2.76 / 2.44
ViT 0.78 / 0.80 1.09 / 1.05 1.71 / 1.55 2.38 / 2.04 2.78 / 2.30

24

Table 11: Performance of different models trained on one dataset (columns) and evaluated on another
(rows). Training data for CMIP6 is available from the years 1850 � 2010, at a 6 hour frequency.
Training data for ERA5 is available from years 1979� 2010, at an one hour frequency.

3 Days 5 Days

ERA5 CMIP6 ERA5 CMIP6

ACC RMSE ACC RMSE ACC RMSE ACC RMSE

ERA5

ResNet
Z500 0.95 315.07 0.96 302.08 0.77 646.57 0.86 531.47
T850 0.93 1.84 0.91 2.08 0.80 3.00 0.83 2.77
T2m 0.95 1.56 0.94 1.85 0.89 2.35 0.90 2.29

U-Net
Z500 0.92 388.17 0.94 337.34 0.74 686.90 0.82 590.80
T850 0.91 2.09 0.90 2.17 0.78 3.10 0.81 2.93
T2m 0.95 1.72 0.93 1.89 0.89 2.38 0.89 2.37

ViT
Z500 0.93 380.22 0.93 373.57 0.68 749.82 0.82 592.36
T850 0.91 2.08 0.89 2.31 0.75 3.27 0.80 2.97
T2m 0.94 1.73 0.92 2.10 0.88 2.54 0.88 2.52

CMIP6

ResNet
Z500 0.95 35.84 0.98 24.51 0.77 71.50 0.89 50.58
T850 0.92 2.09 0.96 1.43 0.79 3.19 0.89 2.33
T2m 0.94 1.88 0.97 1.32 0.88 2.54 0.94 1.87

U-Net
Z500 0.92 43.36 0.96 30.61 0.75 74.68 0.85 58.67
T850 0.90 2.30 0.95 1.67 0.78 3.29 0.87 2.57
T2m 0.93 2.00 0.96 1.46 0.88 2.57 0.93 1.99

ViT
Z500 0.93 42.19 0.95 34.83 0.68 83.68 0.85 58.86
T850 0.90 2.25 0.94 1.83 0.75 3.48 0.86 2.60
T2m 0.92 2.15 0.95 1.59 0.85 2.88 0.92 2.03

Table 12: Performance of different models trained on one dataset (columns) and evaluated on another
(rows). The training years and data availability frequency is same for both the datasets.

3 Days 5 Days

ERA5 CMIP6 ERA5 CMIP6

ACC RMSE ACC RMSE ACC RMSE ACC RMSE

ERA5

ResNet
Z500 0.95 322.86 0.94 345.00 0.79 624.20 0.78 646.48
T850 0.93 1.90 0.90 2.21 0.81 2.91 0.79 3.11
T2m 0.95 1.62 0.93 1.94 0.90 2.33 0.88 2.55

U-Net
Z500 0.92 401.08 0.91 422.77 0.74 685.75 0.73 712.62
T850 0.90 2.17 0.88 2.42 0.78 3.10 0.76 3.29
T2m 0.94 1.81 0.91 2.19 0.89 2.44 0.86 2.73

ViT
Z500 0.91 426.70 0.90 444.14 0.72 698.08 0.72 720.15
T850 0.89 2.27 0.87 2.51 0.78 3.12 0.76 3.31
T2m 0.94 1.88 0.91 2.19 0.89 2.43 0.87 2.69

CMIP6

ResNet
Z500 0.95 36.47 0.96 31.29 0.79 69.62 0.81 65.04
T850 0.91 2.11 0.94 1.70 0.81 3.09 0.84 2.82
T2m 0.93 1.91 0.96 1.53 0.88 2.51 0.91 2.24

U-Net
Z500 0.92 44.95 0.93 40.98 0.74 75.45 0.76 72.67
T850 0.89 2.37 0.92 2.05 0.78 3.27 0.81 3.04
T2m 0.91 2.23 0.94 1.74 0.86 2.73 0.90 2.31

ViT
Z500 0.91 46.92 0.92 43.91 0.73 76.80 0.75 74.22
T850 0.89 2.40 0.91 2.15 0.77 3.29 0.80 3.06
T2m 0.91 2.15 0.94 1.82 0.87 2.68 0.90 2.32

C.3 Dataset robustness862

Table 11 shows the comparison of the performance for different models when trained on ERA5 and863

evaluated on CMIP6 and vice versa at 3 and 5 days of lead time. For the CMIP6 evaluation purposes,864

the models trained on ERA5 were slightly worse than the moodels trained on CMIP6. Surprisingly,865

for evaluating on ERA5, models trained on CMIP6 were comparable, if not slightly better to the866

ones trained on ERA5. These results are in line with results of [50], thus highlighting the dataset867

usefulness of CMIP6 over ERA5. Note that the data’s raw size is roughly similar for both the datasets868

as despite the ERA5’s temporal training range being 1979-2010 in this setup, it’s data availability869

frequency is 1 hour compared to 6 hour in CMIP6.870

25

To find out whether this superiority of CMIP6 over ERA5 is just a result of differences in temporal871

range, we conducted the similar study but with same dataset temporal characteristics (i.e. setting872

training years as 1979-2010 and subsampling the data at 6 hours). This time the results just for873

ResNet at 3 day lead time is shown in Table 2 and for all models at different lead times, is shown in874

Table 12. These results show that the performance is slightly worse for both the cases now. Thus875

showing that the performance improvement of training over CMIP6 than ERA5 is likely just the876

bigger temporal range.877

D Visualizations878

ClimateLearn provides visualization functionality to help with an intuitive understanding of model879

performance. Below is an example figure generated by ClimateLearn for visualizing the quality of880

a model’s forecast. Each row represents a distinct time in the test set. The leftmost column shows881

weather conditions at the time the model is making a prediction from. The next column shows the882

ground truth conditions at the forecast horizon. The next column shows the model’s predictions. The883

last column shows the model’s bias, and its per-pixel forecast error.884

Figure 4: Example visualization of deterministic forecasting.

Additionally, ClimateLearn can generate the rank histogram for probabilistic forecasts. A rank885

histogram that resembles a uniform distribution means that the ground truth value is indistinguish-886

able from any member of the forecast ensemble. A rank histogram that is skew right occurs when887

the ground truth is consistently lower than the ensemble prediction. A rank histogram that ap-888

pears U-shaped is indicative of both low biases and high biases. An example figure generated by889

ClimateLearn for visualizing the rank histogram is shown below.890

Figure 5: Example visualization of the rank histogram for probabilistic forecasting.

We show an example of how to generate another visualization called “mean-bias” in the next section.891

26

E Code snippets892

ClimateLearn can be used to download heterogeneous climate data from a variety of sources in a893

single function call. Here, we provide an example for downloading ERA5 2-meter temperature data894

at 5.625� resolution from WeatherBench.895

1 from climate_learn.data import download
2 download(
3 root="./weatherbench-data",
4 source="weatherbench",
5 dataset="era5",
6 resolution="5.625",
7 variable="2m_temperature"
8)

Further, ClimateLearn can process downloaded data into a form that is loadable into PyTorch.896

In fewer than 30 lines, the following code loads raw ERA5 data; normalizes it; splits it into train,897

validation, testing sets; and prepares batches for the forecasting task.898

1 # For flexibility with loading datasets and implementing new ones
2 # in the future, ClimateLearn's data processing pipeline is made
3 # up of three parts: the climate dataset (e.g., ERA5), the task
4 # (e.g., forecasting), and the PyTorch dataset (e.g., Map). These
5 # are all combined into a Pytorch Lightning DataModule.
6 from climate_learn.data.climate_dataset.args import ERA5Args
7 from climate_learn.data.task.args import ForecastingArgs
8 from climate_learn.data.dataset import MapDatasetArgs
9 from climate_learn.data import DataModule

10

11 # Next, we define the arguments: the location of the data, the
12 # variables we will use as input/target, and the data splits
13 root = "./weatherbench-data"
14 variables = ["2m_temperature"]
15 train_years = range(1979, 2016)
16 val_years = range(2016, 2017)
17 test_years = range(2017, 2019)
18

19 # Next, we construct the arguments for the three parts of the data
20 # processing pipeline to build the training dataset.
21 climate_dataset_args = ERA5Args(root, variables, train_years)
22 task_args = ForecastingArgs(
23 [f"era5:{var}" for var in variables], # format - dataset:var
24 [f"era5:{var}" for var in variables], # format - dataset:var
25 pred_range=72, # hours ahead to predict
26 history=3, # past time steps
27 subsample=6 # hours per time step
28)
29 train_data_args = MapDatasetArgs(climate_dataset_args, task_args)
30

31 # The validation and test datasets can be constructed easily by
32 # copying arguments from the train dataset which are the same and
33 # modifying only what is needed.

27

34 val_data_args = train_data_args.create_copy({
35 "climate_dataset_args": {"years": val_years}
36 })
37 test_data_args = val_data_args.create_copy({
38 "climate_dataset_args": {"years": test_years}
39 })
40

41 # Finally, we can unify all parts of the data pipeline to get a
42 # single PyTorch Lightning data module.
43 dm = DataModule(train_data_args, val_data_args, test_data_args)

With the loaded data, ClimateLearn can be used to build, train, and evaluate a model in fewer than899

20 lines of code.900

1 import climate_learn as cl
2 from climate_learn.training import Trainer
3

4 model_kwargs = {
5 "in_channels": 1, # predicting 2m_temperature
6 "history": 3, # matching 'ForecastingArgs'
7 "n_blocks": 4 # number of residual blocks to use
8 }
9 optim_kwargs = {} # use the default settings

10 mm = cl.load_forecasting_module(
11 data_module=dm,
12 model="resnet",
13 model_kwargs=model_kwargs,
14 optim_kwargs=optim_kwargs
15)
16

17 trainer = Trainer()
18 trainer.fit(mm, dm)
19 trainer.test(mm, dm)
20

ClimateLearn can also be used to load pre-defined models (e.g., persistence, Rasp and Thuerey901

[60]) as follows.902

1 persistence = cl.load_forecasting_module(
2 data_module=dm,
3 preset="persistence"
4)
5 rasp_theurey_2020 = cl.load_forecasting_module(
6 data_module=dm,
7 preset="rasp-theurey-2020"
8)

ClimateLearn can use the trained forecasting models to produce visualizations in a single line of903

code. For example, one visualization of interest is the mean bias, which shows the expected error of904

the model’s forecast, per pixel, over the evaluation period.905

28

1 from climate_learn.utils.visualize import visualize_mean_bias
2 visualize_mean_bias(persistence, dm)

Figure 6: Visualization of the mean bias of temperature
906

This graphic shows that, on average, persistence has little bias below the equator. Over the northern907

part of North America, persistence achieves negative mean bias, which means it generally under-908

predicts 2-meter temperature in that region. Meanwhile, in the northern part of Europe, persistence909

achieves positives mean bias, indicating overprediction.910

29

